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ABSTRACT 

A Hyper-Spectral Image (HSI) has high spectral and low spatial resolution. As a result, most 

targets exist as subpixels, which pose challenges in target detection. Moreover, limitation of target 

and background samples always hinders the target detection performance. In this thesis, a hybrid 

method for subpixel target detection of an HSI using minimal prior knowledge is developed. The 

Matched Filter (MF) and Adaptive Cosine Estimator (ACE) are two popular algorithms in HSI 

target detection. They have different advantages in differentiating target from background. In the 

proposed method, the scores of MF and ACE algorithms are used to construct a hybrid detection 

space. First, some high abundance target spectra are randomly picked from the scene to perform 

initial detection to determine the target and background subsets. Then, the reference target 

spectrum and background covariance matrix are improved iteratively, using the hybrid detection 

space. As the iterations continue, the reference target spectrum gets closer and closer to the central 

line that connects the centers of target and background and resulting in noticeable improvement in 

target detection. Two synthetic datasets and two real datasets are used in the experiments. The 

results are evaluated based on the mean detection rate, Receiver Operating Characteristic (ROC) 

curve and observation of the detection results. Compared to traditional MF and ACE algorithms 

with Reed-Xiaoli Detector (RXD) background covariance matrix estimation, the new method 

shows much better performance on all four datasets. This method can be applied in environmental 

monitoring, mineral detection, as well as oceanography and forestry reconnaissance to search for 

extremely small target distribution in a large scene.  
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1. INTRODUCTION 

1.1 The importance of HSI target detection 

Traditional remote detection uses single wavelength or RGB image in target detection, and target 

features can attenuate after long distance transmission and become insignificant. Hyperspectral 

sensors measure the radiance values of each pixel in the visible and short wave infrared regions 

with high spectral resolution that can be as low as 5-10 nm. As shown in Figure 1.1, HSI consists 

of hundreds of bands that can reflect the absorption and reflection property of certain materials, 

thus, any subtle variation in the spectra may imply possible existence of a target. As each material 

has its own spectral characteristics, high accuracy in spectral space helps to differentiate the small 

variance between pixels, offering a better opportunity in target and abnormal detection. 

Furthermore, the HSI camera can operate in a remote distance, such as satellite and Unmanned 

Aerial Vehicle (UAV), mostly at a height over 500 m. Remote detection, which avoids direct 

contact with hazardous materials, would be safer than direct contact detection methods. In 

addition, HSI does not require an active source used to illuminate the scene making it easier for 

implementation in a wide area. 

 

Figure 1.1: Hyperspectral data-cube  
(a) Visualized as a set of spectra each for a single pixel; (b) Basic data-cube structure; (c) 

Visualized as a stack of images each for a single spectra channel [1] 
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HSI target detection is the method to search materials with a specific spectral signature to 

locate and identify hazardous materials or targets of interest [2]. High resolution in spectra enables 

target detection and identification based on comparing the material reflectance properties to the 

standard library. Some organizations have collected various material spectral samples to build 

standard spectral libraries for matching purposes. HSI target detection has been widely applied in 

environmental monitoring, mine detection, geographic airborne searches, rescue operations, 

oceanography and forestry reconnaissance. Its strong ability has been proven in public safety and 

defense applications. 

As the HSI camera becomes less expensive, HSI is also applied in food production, medical 

examination, transportation infrastructure inspection and many other fields. The need for high 

quality detection algorithms is as important as development and improvement of the hardware. 

With the advance of remote detection techniques, HSI is attracting more and more attention as a 

complement detection method along with traditional ones.  

1.2 Development of HSI detection algorithms 

Multispectral image (MSI) has been studied since the 1970s, and in recent years, MSI and HSI 

have been introduced to many applications in various fields. HSI is much better in remote detection 

than the traditional methods because imagery beyond the visual allows more information to be 

extracted from a scene. More and more scholars are attracted to HSI research. The United States 

Geological Survey (USGS) has built the spectral database since the 1980s. The Airborne 

Visible/Infrared Imaging Spectrometer (AVIRIS) developed by NASA’s Jet Propulsion 

Laboratory and  Hyperspectral Digital Image Collection Experiment (HYDICE) sensor developed 

by the Naval Research Laboratory have achieved great success and been widely used for target 

detection.  



 

 

3 
 

The Linear Mixing Model (LMM) [3] introduced in 1986 became the cornerstone for 

hyperspectral image analysis. The LMM assumes all the pixels consist of non-overlapping 

materials. Then, Craig invented Convex Geometry (CG) for Hyperspectral Unmixing (HU) in the 

early 1990s [4]. Many pioneers such as Boardman made great contributions to CG-based blind 

HU. Among them, is Winter, who proposed the maximization of simplex volume to solve for the 

spectra of endmembers, which is the famous N-FINDR algorithm [5], still popular today.  These 

models then became the fundamental basis for HSI research. 

Most detection algorithms are based on the Multi-Variate Normal (MVN) distribution 

assumption of background and target distribution, and then the Generalized Likelihood Ratio Test 

(GLRT) is applied to find whether the test pixel is a target according to the Probability Density 

Function (PDF) of the target and background on the specific test pixel. In anomaly detection, pixels 

that have a significantly different spectral signature from their neighboring background clutter 

pixels are defined as spectral anomalies [6]. Reed and Yu proposed the famous RX anomaly 

detector in 1990 [7]. This well-known detector, which has been successfully applied to many 

hyperspectral target detection applications, is based on the MVN distribution of background. The 

RX detector is a CFAR adaptive anomaly detector which is derived from the GLRT [8] and now 

considered as the benchmark anomaly detection algorithm for HSI [9]. A number of hyperspectral 

detection techniques have been developed to address the spectral variability and spectral mixing 

issues either jointly or separately [10]. Many target detection algorithms have been developed to 

meet these needs. The Spectral Angle Mapper (SAM) developed by Boardman in 1993 is the 

simplest algorithm that is not based on any assumption of data distribution [11, 12]. It has low 

computation cost but is not capable for subpixel target detection. Then the Matched Filter (MF) 

based on statistics distribution was proposed to improve detection performance for subpixel targets 
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[13]. In 1995, a more powerful algorithm, Adaptive Cosine Estimator (ACE) [14], which also 

derived from the GLRT, was introduced to strengthen the detection performance for extremely 

small subpixel targets. 

Besides the statistical model, another popular model for target detection is the subspace 

model. In the subspace model, any pixel consists of a linear combination of target subspace and 

background subspace. The Matched Subspace Detector (MSD) [15] and the Adaptive Subspace 

Detector (ASD) [16] are algorithms based on the subspace model [12]. The MSD employs the 

LMM model for the subpixel target detection. Background and target pixels correspond to target 

absent (H0) and target present (H1) hypotheses, respectively. Then, the Maximum Likelihood 

Estimation (MLE) is used to evaluate the existence of a target. Some approaches use array 

processing techniques to nullify the background signatures as one would nullify an interfering 

signature when performing beamforming [17]. The Orthogonal Subspace Projection (OSP) 

algorithm [18], developed by Harsanyi and Chang in 1994, is an example of such methods. The 

OSP is used to deal with subpixel signals, separating desired spectral signals from the undesired 

spectra [10].  

In recent years, one other kind of approach for target detection has emerged. This kind of 

method directly sets a threshold for the target abundance values of the pixels. Examples of this 

type of approach include the fully constrained least squares algorithm and representation methods 

[19, 20, 21]. The Sparse Representation-based Detector (SRD), originally developed for face 

recognition, has attracted considerable attention in the past ten years [22]. Sparse representation 

was first proposed to solve computer vision tasks with the assumption that pixels belonging to the 

same class should lie in the same low-dimensional subspace [23]. In 2011, Chen introduced sparse 

representation to HSI target detection and classification, which leads to good performance [23, 
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24]. The essence of the SRD is built on the concept that a pixel can be represented as a linear 

combination of labeled samples via the sparse regularization techniques, such as the l0-norm 

regularization and the l1-norm regularization [22]. Another similar algorithm is the Collaborative 

Representation Detector (CRD) proposed by Li in 2015 [21], which represents the test pixel as a 

linear combination of all the training samples. The CRD also plays an important role in HSI target 

detection [25].  

HSI usually has the similar spectral properties in the neighboring region. Therefore, 

combining contextual information in the post processing stage can improve the detection 

performance greatly. More and more detection methods have used joint spatial-spectral features to 

improve the detection performance [26].  In addition to the constraints on sparsity and 

reconstruction accuracy, spatial smoothness across neighboring HSI pixels are often taken into 

consideration [27]. Two models have been proposed to apply contextual information to the SRD 

method: Simultaneous Orthogonal Matching Pursuit (SOMP) and Orthogonal Matching Pursuit-

Smooth (OMP-S). SOMP supposes neighboring pixels can be simultaneously represented by 

common atoms, while OMP-S is with smoothing constraints that force vector Laplacian to be close 

to zero. In CRD, Joint Collaborative Representation (JCR) seeks to incorporate the contextual 

information during classification [26]. Similar to SOMP and OMP-S, JCR incorporates spatial 

information into the algorithms. The neighboring pixels are assumed to be a linear combination of 

some common samples from the training dictionary but have different weights [23]. 

In real HSI, due to the existence of man-made objects or other factors, the data do not always 

have a linear property. The kernel method was first introduced to address the nonlinear properties 

of data structure by Kwon in 2005 [9].  The original data is transformed into a high-dimensional 

feature space, which consists of many nonlinear combinations of the original spectra. This process 
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enhances the discrimination between classes and makes the decision simpler. Therefore, the kernel 

method has been applied to different detection algorithms to address the nonlinear properties of 

HSI and improve the detection performance. 

1.3 Challenges 

1.3.1 Subpixel detection 

Although HSI has high resolution in spectral space, it does not have good resolution in spatial 

space, roughly 1 m -3.6 m per pixel for aerial HSI. Due to the long distance from the scene and 

low spatial resolution [28], mixed pixels broadly exist. This increases the difficulty in the detection 

process. 

The challenge in detecting low abundance subpixel targets is how to separate the target's 

spectral signature from majority mixture signatures of background within the pixel [17]. Although 

HSI data have low spatial resolution, their rich spectral information can compensate for this. Under 

high spectral resolution, targets of interest present as some data abnormalities. Using this 

information, subpixel or low abundance targets can be detected.  

1.3.2 Uncertainty of spectra 

It is observed that although two pixels consist of the same material, their spectra may vary (Figure 

1.2). On the other hand, different materials may show similar spectra. These phenomena are called 

spectral variation. Spectral variation widely exists because of the random properties of the 

transmission environment. Illumination and atmosphere are the main factors contributing to 

spectral variation.  
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Figure 1.2: Variation of water spectral curves extracted from Moffett Field image 

In application of HSI target detection, a relative pure spectral signature is usually needed. 

Currently, researchers obtain the spectral curve from one of two methods: a standard spectral 

library or HU from the data. The standard library, as mentioned before, is built by organizations 

like the USGS through many years of accumulation. The fixed target signature from the standard 

library could be quite different from the target spectral extracted from the scene [29] because of 

the interference of many factors such as illumination, gas, vapor, and aerosol, as well as the 

interaction among pixels. This would nullify the prior spectral signature in the spectral library and 

finally affect the detection results. To improve the detection performance, researchers have used a 

preprocessing stage to compensate for the impacts of atmospheric influence. These techniques can 

convert original data to the same domain as the library spectra. 

However, the reference signatures in the standard library would be useless if high inference 

happens. In real practice, extracting the endmember of interest (the pure material spectral curve) 

from the scene would be better than using the target signature from the standard library. Extracting 
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the material spectral curve and calculating the corresponding abundance is called Hyperspectral 

Unmixing (HU). The extracted spectral curve is then used to fulfill target detection or 

classification. The limitation of HU is the need to estimate the number of endmembers before 

unmixing. Different estimations would lead to quite different results. Furthermore, as most HU 

algorithms are based on the CG assumption, the lack of full pixels of interest would lead to 

inaccuracy in the extracted target spectral signature. 

Using a single sample spectral curve extracted from the scene for target detection would also 

cause low detection performance due to uncertainty of spectra. Acquiring spectral data in different 

conditions and studying the principles of spectral variation can improve target detection 

performance. Some researchers try to use multiple signatures to capture the variational nature of 

target spectra [29]. The physics-based model MODTRAN has been introduced to extract the target 

spectra and exclude the environmental interference. In subspace detection algorithms, these target 

signature samples span as a subspace which can better represent the target. 

1.3.3. Background estimation 

One critical challenge in detecting targets and anomalies is to describe the background with 

minimum interference of targets. Classical background models such as MVN distribution [30] and 

subspace models have led to many target detection algorithms [31]. However, a considerable 

mismatch is observed between these simple models and the complicated properties of the HSI 

background. In the MVN model, the estimate covariance matrix may be ill conditioned due to the 

contamination of subpxiel targets, and noise as well as a high correlation between bands. In the 

subspace model, uncompleted background endmembers would also have deleterious effects in 

constraining the background signals. Therefore, more complex models should be developed to 

meet the needs of low abundance subpixel target detection. 
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1.4 Summary 

As the HSI technique is applied in more and more areas, traditional target detection methods based 

on the standard library or extracting the target spectrum using HU may not still be applicable. The 

goal of this thesis is to improve the subpixel target detection performance with minimal prior 

knowledge. 

The remainder of this thesis is organized as following: Chapter II introduces the fundamental 

theories of HSI analysis; Chapter III discusses about the HSI pre-processing algorithms that are 

widely used for traditional HSI detection methods; basic target detection algorithms are introduced 

in Chapter IV; the proposed method based on hybrid detection space is discussed in Chapter V; 

experimental models, results and discussions are provided in Chapter VI; conclusions of this thesis 

are presented in Chapter VII. 
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2. HSI FUNDAMENTALS 

2.1 HSI representation 

There are three common representations for HSI: image space, spectral space and feature space 

(Figure 2.1). These methods can help in visualization of the abstruse HSI dataset, and make it 

easier for analysis. Image space describes the brightness versus the pixel coordinates for a given 

band. Spectral space describes the brightness versus spectral bands for a given pixel. In feature 

space, different materials are represented by two principal bands which can differentiate the main 

features of the materials. Similar to feature space, detection space in which two axes are the scores 

of two different algorithms, is introduced in Chapter V. 

 

Figure 2.1: The forms for representing hyperspectral data [32] 

2.2 Linear mixing model 

The research of HSI starts with a data model. Currently, there are mainly two data models: the 

Linear Mixing Model (LMM) and the nonlinear model. The assumption for LMM is that the 

spectra are represented by unique, spatially-nonoverlapping materials (Figure 2.2) [33]. The 

interaction between endmembers is ignored. The LMM is the corner stone for most subpixel 
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detection algorithms [17]. It has been proven that the LMM can achieve satisfactory decomposed 

results and is the most useful model. 

 

Figure 2.2: Linear Mixing Model [34] 

The LMM assumes that any pixel is a linear combination of target and background 

endmembers. Abundances are the percentages of each endmember for a given pixel [35]. 

Obviously, each pixel must be a combination of certain endmembers, and Abundances must satisfy 

the Sum-to-one Constraint (ASC) and the Abundance Nonnegative Constraint (ANC) [36]. 

Mathematically, the LMM is written as [17]: 

x=Aα+E, αi>=0,  ∑ 𝛼𝛼𝑖𝑖 = 1𝑀𝑀𝑖𝑖=1  (2.1) 

where x is a vector that represents the spectra of a specific pixel, M is the number of endmembers; 

A is a matrix where each column represents each endmember; α is a vector where the entries 

represent the corresponding abundance value αi for the ith endmember; E is an error vector. 

The LMM assumes that the photons received by the camera only react with one material. On 

the other hand, the nonlinear mixing model believes that the photons have reacted with different 
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materials before entering the sensor. In real practice, linear mixing and nonlinear mixing coexist. 

Considering from an energy perspective, due to the energy of the photon, which reflects multiple 

times being so weak, it can be ignored most of the time. Normally, researchers only consider that 

the photon reacts with the first material. In this way, the complex nonlinear model can be simplified 

to the LMM.  

The LMM has a simple structure and defined physical meaning and can satisfy the accuracy 

requirement for most cases. Therefore, the LMM has been broadly applied in HSI analysis. 

Currently, most endmember extraction and target detection algorithms are based on the LMM. 

2.3 Background description model 

In most HSI algorithms, varieties of backgrounds are described in two modeling strategies: statistic 

and subspace. 

2.3.1 Statistical model  

Inspection of several density scatter plots suggests that a plausible model for the PDF of 

hyperspectral data is the density mixture [37, 38]: 

𝑓𝑓(𝑥𝑥) = ∑ 𝜋𝜋𝑘𝑘𝑓𝑓𝑘𝑘(𝑥𝑥),𝜋𝜋𝑘𝑘 ≥ 0,∑ 𝜋𝜋𝑘𝑘 = 1,𝑁𝑁𝑘𝑘=1𝑁𝑁𝑘𝑘=1   (2.2) 

where 𝑓𝑓𝑘𝑘(𝑥𝑥) is the PDF of kth class; 𝜋𝜋𝑘𝑘 is a priori probability of kth class; N is the number of 

classes. Normally, when N=1, natural hyperspectral backgrounds have heavy-tail behavior. The 

multivariate t-Elliptically Contoured Distribution (t-ECD) can capture the heavy-tail behavior of 𝑓𝑓𝑘𝑘(𝑥𝑥) [1]. As N increases, each band approximately follows a normal distribution (Figure 2.3). As 

a result, the HSI distribution tends towards the MVN distribution (Figure 2.4) and has lighter tails. 

The MVN distribution of a k-dimensional random vector x = [X1, X2… Xk] can be written in the 

following notation [39, 40]: 
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𝑥𝑥~𝒩𝒩(𝜇𝜇,𝐶𝐶𝑏𝑏), 

with a k-dimensional mean vector: 

𝜇𝜇 = 𝐸𝐸(𝑥𝑥) (2.3) 

and a k×k covariance matrix: 

𝐶𝐶𝑏𝑏 =:𝐸𝐸[(𝑥𝑥 − 𝜇𝜇)(𝑋𝑋 − 𝜇𝜇)𝑇𝑇] = [𝐶𝐶𝐶𝐶𝐶𝐶�𝑋𝑋𝑖𝑖,𝑋𝑋𝑗𝑗�; 1 ≤ 𝑖𝑖, 𝑗𝑗 ≤ 𝑘𝑘] (2.4) 

Because each class approximately follows normal distribution, if the symmetric covariance 

matrix Cb is positive definite, the distribution density fx of a random vector x would be [39]: 

𝑓𝑓𝑥𝑥(𝑥𝑥1, … , 𝑥𝑥𝑘𝑘) =
exp (− 12 (𝑥𝑥 − 𝜇𝜇)𝑇𝑇𝐶𝐶𝑏𝑏−1(𝑥𝑥 − 𝜇𝜇))�(2𝜋𝜋)𝑘𝑘|𝐶𝐶𝑏𝑏|

 (2.5) 

 

Figure 2.3: Histogram of Band 42 82 100 for the Moffett Field image 

 

https://en.wikipedia.org/wiki/Positive-definite_matrix


 

 

14 
 

 

Figure 2.4: An example of multivariate normal distribution [39] 

2.3.2 Subspace model 

The background is assumed to lie in a low-dimensional subspace in the subspace model [27]. The 

pixel spectrum is represented by a linear combination of background and target endmembers in its 

low-dimensional subspace. The distribution of background does not matter in this model. A target-

free pixel x, which is consistent with the null hypothesis, can be written as [31]: 

x=Bβ+n (2.6) 

where B defines the background subspace; β specifies the coefficients of the linear combination of 

vectors in B; and n is a “lack of fit” noise term that should be of small magnitude if the model is 

accurate [31]. The target is assumed to be somewhat orthogonal to the background subspace. 

Projecting the pixels to be tested into the subspace orthogonal to the background subspace and 

observing the residuals can enhance the detection of target signals: 

𝑛𝑛�0 = (𝐼𝐼 − 𝑃𝑃𝐵𝐵)𝑥𝑥  (2.7) 

where 𝑃𝑃𝐵𝐵 = 𝐵𝐵(𝐵𝐵𝑇𝑇𝐵𝐵)−1𝐵𝐵𝑇𝑇  is a projection matrix associated with the Nb-dimensional background 

subspace <B> [41]. The OSP detector is based on the subspace model, for a given pixel x: 
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𝑥𝑥 = 𝑠𝑠𝛼𝛼 + 𝐵𝐵𝐵𝐵 + 𝑛𝑛 (2.8) 

where s is the desired target; B is the known background subspace; the columns of B are the 

undesired background endmember spectra; n is noise. The output of the OSP detector is [29]: 

𝐷𝐷𝑂𝑂𝑂𝑂𝑂𝑂 = 𝑞𝑞𝑂𝑂𝑂𝑂𝑂𝑂𝑇𝑇 𝑥𝑥 = 𝑠𝑠𝑇𝑇𝑃𝑃𝐵𝐵⊥𝑥𝑥 (2.9) 

where 𝑞𝑞𝑂𝑂𝑂𝑂𝑂𝑂𝑇𝑇 = 𝑠𝑠𝑇𝑇𝑃𝑃𝐵𝐵⊥is the OSP operator consisting of a background spectral signature rejecter 𝑃𝑃𝐵𝐵⊥ = (𝐼𝐼 − 𝑃𝑃𝐵𝐵) followed by a matched filter [29]. The OSP nullifies the background signatures 

using the spectral matching filter 𝑞𝑞𝑂𝑂𝑂𝑂𝑂𝑂𝑇𝑇 . Its detection process is as follows (Figure 2.5): 

 

Figure 2.5: Orthogonal projection spaces, modified from [42] 

First the target data x is projected in the subspace orthogonal to the background subspace <B> 

by using the orthogonal complement projector  𝑃𝑃𝐵𝐵⊥ . Then the residual projects to the target 

subspace <s>. Finally, the test pixel x is decomposed into two parts: the desired signature of 

interest s, and undesired signature matrix B [43]. In the HSI, background and target spectra are not 

constant all the time. It is more accurate to describe the background and target in a subspace rather 
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than using only one spectrum. While looking for multiple targets, a subspace detector needs to be 

employed. However, even increasing the size of the subspace slightly, the number of combinations 

of signatures increases quickly, resulting in retrieving more pixels and obtaining a higher FAR. 

Besides that, the OSP is also quite sensitive to noise. 

2.4 Neyman-Pearson criterion and Generalized Likelihood Ratio Test (GLRT) 

In statistics, the Neyman–Pearson(NP) lemma, named after Jerzy Neyman and Egon Pearson, 

states that when performing a hypothesis test 𝛬𝛬(𝑥𝑥) between two simple hypotheses, f0(x|H0) is the 

conditional PDF  of observing  x under the H0 hypothesis and f1(x|H1) is the PDF of observing x 

under the H1 hypothesis [1, 37, 39, 44], the Likelihood-Ratio Test (LRT) rejects H0 in favor of H1 

only if Λ(x) exceeds a certain threshold η, otherwise, the H0 is accepted. 𝛬𝛬(𝑥𝑥) can be represented 

as: 

𝛬𝛬(𝑥𝑥) =
𝑓𝑓1(𝑥𝑥|𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑝𝑝𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇𝑝𝑝𝑇𝑇)𝑓𝑓0(𝑥𝑥|𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑏𝑏𝑝𝑝𝑇𝑇𝑝𝑝𝑇𝑇)

≜ 𝑓𝑓1(𝑥𝑥|𝐻𝐻1)𝑓𝑓0(𝑥𝑥|𝐻𝐻0)
≷𝐻𝐻0𝐻𝐻1 𝜂𝜂  (2.10) 

For example, in Figure 2.6, p1 is the PDF of the H1 hypothesis at x1 and p0 is the PDF of the 

H0 hypothesis at x1. Then, a threshold can be set for p1/p0 to determine whether x1 belongs to H1.  

The Detection Rate (DR) and False Alarm Rate (FAR) are defined as: 

𝐷𝐷𝐷𝐷 =
𝑁𝑁ℎ𝑖𝑖𝑇𝑇𝑁𝑁𝑇𝑇 =

∫ 𝑓𝑓1(𝑥𝑥|𝐻𝐻1)𝑑𝑑𝑥𝑥∞𝑥𝑥1∫ 𝑓𝑓1(𝑥𝑥|𝐻𝐻1)𝑑𝑑𝑥𝑥∞−∞  𝑎𝑎𝑛𝑛𝑑𝑑 𝐹𝐹𝐹𝐹𝐷𝐷 =
𝑁𝑁𝑚𝑚𝑖𝑖𝑝𝑝𝑝𝑝𝑁𝑁𝑇𝑇𝑡𝑡𝑇𝑇 =

∫ 𝑓𝑓0(𝑥𝑥|𝐻𝐻0)𝑑𝑑𝑥𝑥∞𝑥𝑥1∫ 𝑓𝑓0(𝑥𝑥|𝐻𝐻0)𝑑𝑑𝑥𝑥∞−∞  (2.11) 

where Nhit represents the number of targets detected; Nt stands for the total number of targets; 

Nmiss is the number of backgrounds detected as targets; Ntot is the total number of background 

pixels; and f1, f0 is the PDF of target and background, respectively. The DR becomes one when all 

the target pixels are detected [45]. The NP criterion can maximize the DR while keeping the FAR 

under a certain predetermined value. 
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To calculate 𝛬𝛬(𝑥𝑥), 𝑓𝑓1(𝑥𝑥|𝐻𝐻1) and 𝑓𝑓0(𝑥𝑥|𝐻𝐻0) are needed. However, in real practice, 𝑓𝑓𝑖𝑖(𝑥𝑥|𝐻𝐻𝑖𝑖) 

often depends on some unknown parameter θ, which relates to the hypothesis model. The 

Generalized Likelihood Ratio Test (GLRT) is based on the MVN distribution assumption of the 

background. If θ is nonrandom, the GLRT under each hypothesis is:  

𝛬𝛬𝐺𝐺 ≜ 𝑓𝑓1(𝑥𝑥|𝜃𝜃�1,𝐻𝐻1)𝑓𝑓0(𝑥𝑥|𝜃𝜃�0,𝐻𝐻0)
≷𝐻𝐻0𝐻𝐻1 𝜂𝜂, 𝜃𝜃�𝑖𝑖 = max 𝑓𝑓𝑖𝑖(𝑥𝑥|𝜃𝜃,𝐻𝐻𝑖𝑖) (2.12) 

 

Figure 2.6: Maximum likelihood estimation 

The mean and covariance are expected to be estimated from the HSI. The GLRT approach 

leads to many useful detectors in the form of: 

𝐷𝐷(𝑥𝑥) ≷𝐻𝐻0𝐻𝐻1  𝜂𝜂 (2.13) 

The LRT process is summarized in Figure 2.7: first, construct background and target 

hypothesis models; then, find the PDF of each model; and finally calculate the detection function 

for a specific pixel x based on the N-P criterion. 
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Figure 2.7: Development process for statistical detector 

2.5 Evaluation methods 

2.5.1 Receiver operating characteristic curve 

There are two ways to define targets in an image: per pixel and per target [46]. This research 

focuses on a per pixel definition of targets. The per pixel definition of targets states that each pixel 

belongs to a target is treated as an individual target. Each target pixel inside the target regions is 

then considered as a candidate to be detected [10].   In order for an object to be perfectly identified 

as a target, each pixel in it must be classified as a target. An important part of a performance 

evaluation metric is the presence of a truth map for targets in question. A truth map contains, at 

minimum, the location of all target pixels in an image. In addition to the location, the type of target 

pixel may also be noted. A truth map can be used to differentiate between multiple targets as well 

as different backgrounds within an image.  

The essential performance metric for a target detection algorithm is the Receiver Operating 

Characteristic (ROC) curve [38].  An ROC curve is the plot of the DR versus the FAR for a given 

target. ROC curves are generated based on the ground-truth information of the HSI. The ideal 

detector exhibits no overlap between H0 and H1 distributions and thus has detection the probability 

of 1 regardless of the FAR; the area under such a curve is 1 [47]. ROC curves can be stretched 

using a log FAR axis to visualize differences at low FAR values. A minimum FAR value must be 

set when using log ROC curves as the minimum cannot go to zero. The ROC curves provide a 

quantitative metric for performance comparison.   
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2.5.2 Separability analysis  

The proposed method of this thesis uses the score of two popular detection algorithms, the MF and 

ACE, to construct a hybrid detection space (see Section 5.1 Hybrid detection space for details). In 

the experiments, pixel distribution in the hybrid detection space is used to show the separability 

between target and background. The hybrid detection space figure is shown in Figure 2.8: black 

dots are background pixels, while the red ones represent the targets. Ideally, they should not 

overlap, indicating that the targets are completely separable from the background [33].  This kind 

of graph can show how well a method differentiates the target from the background. A good 

detector would consistently suppress the background into a confined region while separating the 

targets [17]. 

 

Figure 2.8: Hybrid Detection Space  
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3. TYPICAL PRE-PROCESSING ALGORITHMS FOR HSI 

HSI processing algorithms can be classified as calibration, feature extraction, HU, abnormal 

detection, target detection, and classification for different application purposes. Because the data 

acquired from the sensor may vary due to the environmental interference, pre-processing 

techniques, such as calibration and band selection, are necessary in order to achieve high quality 

detection performance while using the traditional methods.  

 

Figure 3.1: Flowchart of traditional detection methods 

Traditional detection methods first acquire the HSI from the sensor, then convert the raw 

radioactive signals to reflectance signals and extract the main features from the data. For full pixel 

target detection, the SAM can be directly applied to compare the angle between the spectrum of 

the pixel under testing and the reference spectrum in standard library (Figure 3.1a). The reference 

target endmember spectra can also be extracted using HU to improve the accuracy. In some cases, 

the RXD can be applied before a detection algorithm to enhance the estimate of a background 
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covariance matrix, which would be used in the detection algorithm (Figure 3.1b). All these pre-

processing techniques are discussed in following. 

3.1 Calibration algorithm 

Radioactive signals of the HSI can be distorted by the atmospheric elements. Traditionally, to 

compare with the standard spectral library provided by authorized organizations, the signals 

acquired by the hyperspectral sensor must be calibrated to a usable format which has a similar unit 

with the standard spectra. The calibration step is essential to the overall performance of the 

hyperspectral system.  

HSI calibration includes both spatial and spectral. In this thesis, the stress is spectral 

calibration. The raw data obtained from an imaging system consists of recorded radiance values 

reaching the sensor. However, this information does not easily relate to object information in the 

scene. The at-sensor radiance values are the results of atmospheric and illumination variables 

acting on the reflectance spectra of objects. Following are the two main steps for HSI calibration: 

First, convert the raw sensor data to radiance which records the energy at a given time passing 

though the input aperture; second, convert the radioactive data to reflectance to reduce the impact 

of atmospheric interference and equipment noise. This process is also called atmospheric 

compensation. The difficulty in atmospheric compensation is how to estimate the distribution of 

atmospheric constituents such as, aerosols, vapor, etc. 

There are various techniques for calibrating at-sensor radiance values to object reflectance 

values. The Empirical Line Method (ELM) is the most popular one [48]. The ELM works by 

associating pixels in a radiance image to known reflectance values. If no ground truth data is 

associated with the image, bright and dark pixels can be assigned approximate reflectance values. 

Ideally, full pixels for calibration should be located in a scene where reflectance measurements of 
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the pixels have been made. In the ELM model, Radiance (L) and reflectance (r) would follow a 

linear relationship: 

L = m×r + b (3.1) 

where slope m is the atmospheric transmittance factor; offset b is the dark current offset. These 

terms are wavelength dependent but can be solved when good ground truth data is given. Then, 

the original image data can be converted to the reflectance unit.  

3.2 Feature extraction and dimension reduction 

The HSI contains a great amount of spectral information, which is very useful for target detection 

and classification. However, due to high spectral resolution of HSIs [36], there is huge redundant 

information between the adjacent bands; as well as some noisy channels and water absorption 

bands which are useless in detection applications. Furthermore, as there are so many bands in 

HSIs, huge amounts of calculation limit their applications. Hyperspectral dimension reduction 

keeps the original data information, and removes the noise and relevant information between 

bands. Therefore, dimensional reduction/band selection is important for HSI target detection and 

classification [49]. 

Principal Component Analysis (PCA) is the most basic hyperspectral dimension reduction 

technique [27]. The process of PCA dimensional reduction is as follows (Figure 3.2): 

1. Vectorize the HSI information, input image represented as X= (x1, x2, x3, …xp) T, xi is a N*1 

column vector, here N=m×n, means transforming an m×n size image into an N×1 column 

vector; 

2. Centralize the data, each vector subtracts the mean column vector E(x): Y=X-E(X); 

3. Solve for the covariance matrix ∑ for Y; 
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4. Solve for the characteristic matrix A for ∑; 

5. Implement PCA transformation: Φ=ATY. 

 

Figure 3.2: PCA Transformation, modified from [50] 

PCA is a linear transformation, which has huge impacts on HSI data compression, noise 

removal, and feature extraction. After PCA processing, all the components are independent from 

each other. PCA can maximize the original data information while reducing the data dimensions.  

An example of principal components of Moffett Field image used in Chapter VI is shown in 

Figure 3.3. It can be observed that, as the number of component increases, the eigen value 

decreases and the component image becomes noisy. The PCA algorithm can be applied to estimate 

the number of endmembers [51] and reduce the dimensions before HU. Moreover, it can also be a 

powerful tool to visualize the extracted main features of the high dimensional data. 
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Figure 3.3: Sample PCA bands of Moffett Field image 

3.3 Hyperspectral Unmixing (HU) 

HU is the process of extracting the endmember of each material present in the scene. Observing 

from hyperspectral geometric characteristic, the HSI data has obvious CG structure which is based 

on the LMM. Normally, the closer the pixel to the vertex, the purer the pixel is. Unmixing 

algorithms based on the CG put more emphasis on the data structure for solving the endmembers 

in the original data distribution. The advantage of these algorithms is the simple model.  Under the 

CG model, hyperspectral data has two constraints: non-negative and sum to one. The CG based 

HU is an elegant and efficient blind source separation approach. 
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Currently, endmember extraction algorithms that are under the CG model include: PPI, N-

FINDR, vertex component analysis, etc. Basically, all these algorithms solve for the vertex points 

of the simplex, assuming that the pure pixels exist in the HSI. However, in real HSI, due to the 

atmospheric effects and remote distance, mixed pixels are more common than pure pixels, and this 

would lead to variation of spectra extracted from the scene and violation of the pure pixel 

assumption. Recent studies on blind HU have also introduced advanced techniques in optimal 

signal decomposition, such as Non-negative Matrix Factorization (NMF), dictionary-based sparse 

representation, etc.  

This section introduces one basic HU algorithm: N-FINDR, which is based on the CG. The 

N-FINDR algorithm [5] looks for the endmembers of a dataset that maximize the volume of a 

simplex enclosing all image points in N-dimensional space. It operates under the assumption that 

pure endmembers or highly abundant mixed pixels exist in the space. The simplex enclosing all 

points with maximum volume has its vertices as the endmembers of the scene. The procedure of 

N-FINDR begins with a random initial selection of pixels (Figure 3.4a); then the volume of the 

simplex is calculated using following formula: 

𝑉𝑉𝐸𝐸 =
1

(𝑁𝑁 − 1)!
𝑎𝑎𝑎𝑎𝑠𝑠(|𝐸𝐸|) (3.2) 

where 𝐸𝐸 = � 1 1𝑒𝑒1 𝑒𝑒2   
… 1

… 𝑒𝑒𝑁𝑁�; e1, e2 …eN are the selected endmembers; N is the estimated number 

of endmembers; VE is the volume for the simplex. N-FINDR finds the maximum volume of the 

simplex by replacing the selected endmembers. The procedure repeats until there are no more 

endmember replacements (Figure 3.4 b). 
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Figure 3.4: Graphical interpretation of the N-FINDR algorithm in a 3-dimensional space  
(a) N-FINDR initial endmembers selection (p=4); (b) Final volume estimation by N-FINDR [52] 

3.4 Abnormal detection 

Abnormal detection is a scheme to detect pixels that obviously differ from the background. In 

spectral anomaly detection, pixels identified as anomalies should have significantly different 

spectral signatures [29, 30]. No prior knowledge of target spectra is needed in anomaly detection. 

The Reed-Xiaoli Detector (RXD) is one of the most popular methods for hyperspectral anomaly 

detection [53]. The RXD was developed to detect pixels with spectral characteristics other than 

background clusters with unknown spectra covariance. In the RXD, Mahalanobis distance between 

the global background and the pixel under testing is calculated based on the global covariance 

matrix.  

Let H1 be the target hypothesis and H0 be the background hypothesis. The following are the 

statistical models for these two hypotheses [53]: 

𝐻𝐻0: 𝑥𝑥 = 𝑎𝑎 

𝐻𝐻1: 𝑥𝑥 = 𝑠𝑠 + 𝑎𝑎 

(3.3) 
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where x is a sample pixel vector; s is the target signal; and b is the background cluster, which 

follows a MVN distribution with a mean vector µ , and a covariance matrix Cb, i.e. b~N(µ,Cb).  

This leads to the background and target statistics: x|H0~ N(µ,Cb) and x|H1~ N(µ+s,Cb). With these 

definitions in mind, the PDF of 𝑝𝑝(𝑥𝑥|𝐻𝐻0) can be written as: 

𝑝𝑝(𝑥𝑥|𝐻𝐻0) =
1

(2𝜋𝜋)𝐾𝐾/2|𝐶𝐶𝑏𝑏|1/2 𝑒𝑒−12(𝑥𝑥−𝜇𝜇)𝑇𝑇𝐶𝐶𝑏𝑏−1(𝑥𝑥−𝜇𝜇) (3.4) 

where K is the number of bands in the HSI. p(xs|H0) is assumed to be small for an anomalous pixel 

xs, because it is expected to be far from the background.  As 
1

(2𝜋𝜋)𝐾𝐾/2|𝐶𝐶𝑏𝑏|1/2 is fixed, (𝑥𝑥 −
𝜇𝜇)𝑇𝑇𝐶𝐶𝑏𝑏−1(𝑥𝑥 − 𝜇𝜇 ) should be larger for an anomalous pixel than that of the background.  

In this expression, the background covariance matrix is known. In reality, the background 

covariance is unknown and can be estimated from a set of sample data, which affects the 

background statistics. Then, for a pixel x=[x1, x2…xK]T with K bands, the output of RXD is:  

𝐷𝐷𝑋𝑋(𝑥𝑥) = (𝑥𝑥 − �̂�𝜇𝑏𝑏)𝑇𝑇�̂�𝐶𝑏𝑏−1(𝑥𝑥 − �̂�𝜇𝑏𝑏) (3.5) 

where �̂�𝜇𝑏𝑏 is the estimated mean vector of the background and �̂�𝐶𝑏𝑏 is the estimated background 

covariance matrix. The RXD has been applied in many applications and is considered as the 

milestone of anomaly detection for hyperspectral data [29]. 

 



 

 

28 
 

4. TARGET DETECTION ALGORITHMS 

Remote target detection is a major application of HSI. It is widely utilized in the environment, 

urban, mineral and military fields. The HSI has high spectral and low spatial resolution. Targets 

more likely exist as subpixels in the HSI because of low spatial resolution. Therefore, the HSI 

target detection focuses on subpixel detection based on spectral variation, which is different from 

detection using the traditional high spatial resolution images.  

Based on the data models theory, detection algorithms can be classified by subspace model, 

statistical model, and signal processing model. In this chapter, spectral angle mapper is introduced 

in Section 4.1, then some classical target detection algorithms based on the statistical model such 

as CEM, MF and ACE, are reviewed. Among them, the MF and ACE are applied in the proposed 

method in Chapter V.  

4.1 Spectral angle mapper 

The SAM, developed by Boardman [11], is a simple detection algorithm that computes the angle 

between two vectors. The SAM algorithm is expressed in a vector form as [54]: 

𝐷𝐷𝑂𝑂𝑆𝑆𝑀𝑀(𝑥𝑥) =
𝑠𝑠𝑇𝑇𝑥𝑥

(𝑠𝑠𝑇𝑇𝑠𝑠)1/2(𝑥𝑥𝑇𝑇𝑥𝑥)1/2 (4.1) 

where s represents the target spectrum and x represents the pixel under test. This equation has 

values between 0 and 1 for a reflectance dataset. Similar pixels have a value near 1, which 

corresponds to a small angle between the vectors in question. Figure 4.1 shows a target vector and 

two pixel vectors. According to the SAM algorithm, pixel A is more likely to be the target than 

pixel B, due to the smaller angle between it and the target vector. The SAM is a quick and basic 

detection algorithm that is computationally inexpensive. However, the SAM is not good at 
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subpixel target detection, as the abundances of some subpixel targets are too small to affect the 

angle. Furthermore, the SAM is dependent only on the spectral shapes of the objects and is 

independent of magnitude differences between the target and test pixel [55]. Illumination and 

shadow effects are eliminated, which creates difficulties when trying to discriminate between 

classes of similar spectral shape but different magnitudes. The SAM is included here as the 

baseline detection algorithm against which more elaborate algorithms are presented in following 

sections. 

 

Figure 4.1: SAM angle comparison [46] 

4.2 Constrained energy minimization 

Constrained Energy Minimization (CEM) [30, 56, 57] is a statistically matched filter algorithm 

minimizing total energy E in the scene with a target constraint: 

𝑠𝑠𝑇𝑇𝑤𝑤 = � 𝑠𝑠𝑙𝑙𝑤𝑤𝑙𝑙 = 1
𝐿𝐿𝑙𝑙=1  (4.2) 
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where s is the desired signature; w= (w1, w2… wL) T is the FIR linear filter with L filter coefficients. 

The FIR filter output yi for a specific pixel ri can be written as: 

𝑦𝑦𝑖𝑖 = � 𝑤𝑤𝑙𝑙𝐿𝐿𝑙𝑙=1 𝑟𝑟𝑖𝑖𝑙𝑙 = 𝑤𝑤𝑇𝑇𝑟𝑟𝑖𝑖 = 𝑟𝑟𝑖𝑖𝑇𝑇𝑤𝑤 (4.3) 

where ri={ri1,ri2,…,riL)T for 1≤i≤N is a sample input vector. Then, the total energy in the scene is 

calculated as: 

𝐸𝐸 =
1𝑁𝑁 [� 𝑦𝑦𝑖𝑖2] =

1𝑁𝑁 [� (𝑟𝑟𝑖𝑖𝑇𝑇𝑤𝑤)𝑇𝑇𝑟𝑟𝑖𝑖𝑇𝑇𝑤𝑤𝑁𝑁𝑖𝑖=1 ]
𝑁𝑁𝑖𝑖=1 = 𝑤𝑤𝑇𝑇 �1𝑁𝑁� 𝑟𝑟𝑖𝑖𝑟𝑟𝑖𝑖𝑇𝑇𝑁𝑁𝑖𝑖=1 �𝑤𝑤 = 𝑤𝑤𝑇𝑇𝐷𝐷𝑤𝑤 (4.4) 

where R=
1𝑁𝑁 [∑ 𝑟𝑟𝑖𝑖𝑟𝑟𝑖𝑖𝑇𝑇]𝑁𝑁𝑖𝑖=1  is  an L × L sample autocorrelation matrix of HSI dataset S={r1,r2,…rN}. 

Minimizing (4.4) with the constraint 𝑠𝑠𝑇𝑇𝑤𝑤 = ∑ 𝑠𝑠𝑙𝑙𝑤𝑤𝑙𝑙 = 1𝐿𝐿𝑙𝑙=1  yields: 

min𝑤𝑤 1𝑁𝑁 [∑ 𝑦𝑦𝑖𝑖2] = min𝑤𝑤𝑁𝑁𝑖𝑖=1 𝑤𝑤𝑇𝑇𝐷𝐷𝑤𝑤 subject to  𝑠𝑠𝑇𝑇𝑤𝑤 = 1 (4.5) 

The solution to Equation (4.5) can solve for the optimal weight vector w*: 

w ∗=
R−1s

sTR−1s
 (4.6) 

Then, the CEM detector for a given pixel x can be represented as: 

𝐷𝐷𝐶𝐶𝐶𝐶𝑀𝑀(𝑥𝑥) = 𝑤𝑤∗𝑇𝑇𝑥𝑥 = (
R−1s

sTR−1s
)𝑇𝑇𝑥𝑥 =

sTR−1x

sTR−1s
 (4.7) 

4.3 Matched Filter (MF) 

The MF and Adaptive Coherence/Cosine Estimator (ACE) are two hypothesis-test-based detection 

algorithms. The MF and ACE first formulate the target detection as binary hypothesis test 

problems and then use the LRT or GLRT to obtain the detectors [58]. These algorithms are 

statistical in nature, and are based on signal models, where a data vector x conditional to the 
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background (H0) hypothesis is assumed to follow a MVN distribution [47]. The inverse covariance 

matrix of the background data is used to find new coordinate axes, where the background follows 

spherical or “whitened” distribution. Most multivariate detection algorithms are simple tests of 

Euclidean geometry in the whitened space. 

After subtracting the mean value from the original background data, the hypothesis model for 

MF [38, 59] is: 

𝐻𝐻0: 𝑥𝑥 = 𝑛𝑛,  

𝐻𝐻1: 𝑥𝑥 = 𝑎𝑎𝑠𝑠 + 𝑛𝑛,  

(4.8) 

The MF model is based on the assumption that the background noise has a Gaussian 

distribution N( 0, Cb), and the target also follows a Gaussian distribution, N(as, Cb),  which have 

the same covariance statistics, but a different mean. a is an average target abundance value, 𝑠𝑠 =

[𝑠𝑠1𝑠𝑠2 … 𝑠𝑠𝑝𝑝]𝑇𝑇 is the target spectral signature. For a p×1 input x with distribution:  

𝑥𝑥~𝑁𝑁𝑝𝑝(𝑎𝑎𝑠𝑠,𝜎𝜎𝑏𝑏2𝐶𝐶𝑏𝑏) 

where a≥0 and 𝜎𝜎𝑏𝑏2 ≥ 0 are scalar quantities; s is a p×1 known vector; and Cb is a p×p positive 

definite known matrix. Since the matrix Cb is positive definite, its square-root decomposition 𝑪𝑪𝒃𝒃𝟏𝟏/𝟐𝟐
 

is invertible. Therefore, the whitening transformation is [38]: 

𝑥𝑥� = 𝐶𝐶𝑏𝑏−1/2𝑥𝑥, �̃�𝑠 = 𝐶𝐶𝑏𝑏−1/2𝑠𝑠 (4.9) 

resulting in a new distribution: 

𝑥𝑥�~𝑁𝑁𝑝𝑝(𝑎𝑎�̃�𝑠, 𝐼𝐼) 
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which is spherical (“white”) normal distribution, and the detection problem is equivalent to the 

original one, but the new distribution can simplify derivation and analysis. The LRT for the 

whitening model leads to the following result [38]: 

𝑦𝑦1 = 𝑎𝑎𝑠𝑠 ̃𝑇𝑇𝑥𝑥� ≷𝐻𝐻0𝐻𝐻1 𝜂𝜂 (4.10) 

where a is the unknown target abundance (a = 0 when no target is present and a>0 when a target 

is present); n is zero-mean Gaussian random background noise. Since a>0 for the H1 hypothesis, 

both sides of the inequality can be divided by a. The resulting equation, 

𝑦𝑦2 = 𝑠𝑠 ̃𝑇𝑇𝑥𝑥� (4.11) 

is independent of a. However, the MF does not have the Constant False Alarm Rate (CFAR) 

property because the threshold depends on a. 

Equation (4.11) is often divided by √𝑠𝑠 ̃𝑇𝑇�̃�𝑠, which is the magnitude of the target vector in the 

whitened space. Since this value is constant, the division does not impact the performance, and the 

output of the MF for input x is [29]: 

𝐷𝐷𝑀𝑀𝑀𝑀(𝑥𝑥) =
𝑠𝑠 ̃𝑇𝑇𝑥𝑥�√𝑠𝑠 �̃�𝑇�̃�𝑠 =

𝑠𝑠𝑇𝑇�̂�𝐶𝑏𝑏−1𝑥𝑥�𝑠𝑠𝑇𝑇�̂�𝐶𝑏𝑏−1𝑠𝑠 ≷𝐻𝐻0𝐻𝐻1 𝜂𝜂𝑀𝑀𝑀𝑀  
(4.12) 

where 𝑪𝑪�𝒃𝒃 represents the estimated covariance matrix for the centered observation data and 𝜂𝜂𝑀𝑀𝑀𝑀  

represents a threshold. 𝐷𝐷𝑀𝑀𝑀𝑀  is the projection length of the test vector onto the target vector in the 

whitened space. If the projection length is greater than what is typical of the background, the H0 

hypothesis is rejected and the test vector is determined to contain the target [47]. 

The MF detector has a very similar form to the CEM detector. The major difference is whether 

the mean vector is removed from all the data pixels in advance.  Geng showed theoretically that 
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the CEM detector will never improve over the MF [60]. That is to say, of these two benchmark 

target detection methods, the CEM can now be considered obsolete. 

4.4 Adaptive Coherence/Cosine Estimator  

In practice of MF, a and 𝜎𝜎𝑏𝑏2are unknown. However, they can be estimated using Maximum 

Likelihood Estimates (MLEs) [38]: 

𝑎𝑎� =
�̃�𝑝𝑇𝑇𝑥𝑥��̃�𝑝𝑇𝑇�̃�𝑝,  𝑝𝑝𝜎𝜎�𝑏𝑏2 = 𝑥𝑥�𝑇𝑇𝑥𝑥� − (�̃�𝑠𝑇𝑇𝑥𝑥�)2�̃�𝑠𝑇𝑇�̃�𝑠  

(4.13) 

The resulting maximum likelihood function is 𝑒𝑒𝑥𝑥𝑝𝑝 �− 𝑝𝑝2� /(2𝜋𝜋𝜎𝜎𝑏𝑏2)
𝑝𝑝2 and can be rewritten as 

[37]: 

Λ𝐺𝐺(𝑥𝑥�) = (
𝜎𝜎�𝑏𝑏2 𝑢𝑢𝑛𝑛𝑑𝑑𝑒𝑒𝑟𝑟 𝐻𝐻1𝜎𝜎�𝑏𝑏2 𝑢𝑢𝑛𝑛𝑑𝑑𝑒𝑒𝑟𝑟 𝐻𝐻0)−𝑝𝑝/2 = [1− (�̃�𝑠𝑇𝑇𝑥𝑥�)2

(�̃�𝑠𝑇𝑇�̃�𝑠)(𝑥𝑥�𝑇𝑇𝑥𝑥�)]−𝑝𝑝/2 (4.14) 

Since a>0 under H1 and only the term �̃�𝑠𝑇𝑇𝑥𝑥� retains the sign of  𝑎𝑎�, the Normalized MF (NMF) 

is defined by: 

𝑦𝑦𝑁𝑁𝑀𝑀𝑀𝑀 =
�̃�𝑝𝑇𝑇𝑥𝑥��(�̃�𝑝𝑇𝑇�̃�𝑝)(𝑥𝑥�𝑇𝑇𝑥𝑥�)= 𝑝𝑝𝑇𝑇𝐶𝐶𝑏𝑏−1𝑥𝑥�𝑝𝑝𝑇𝑇𝐶𝐶𝑏𝑏−1𝑝𝑝�𝑥𝑥𝑇𝑇𝐶𝐶𝑏𝑏−1𝑥𝑥 ≷𝐻𝐻0𝐻𝐻1 𝜂𝜂𝑁𝑁𝑀𝑀𝑀𝑀 (4.15) 

where the covariance matrix Cb is estimated from the data. 𝑦𝑦𝑁𝑁𝑀𝑀𝑀𝑀2  is also known as the Adaptive 

Coherence/Cosine Estimator (ACE).  

After the whitening transformation, the estimated covariance matrix of whitened 

hyperspectral background data equals the identity matrix [29]. An intuitive geometrical description 

of the MF and ACE detectors in the whitened space are provided in Figure 4.2 [38]. The 

vector �̃�𝑠/||�̃�𝑠||, where ||▪|| denotes Euclidean distance, is a unit vector. yMF is the projection distance 

of the observation vector onto the target. In contrast, the value of yNMF is the cosine of the angle 
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between the observation and target vector. Therefore, the ACE is invariant to scaling of the target 

and observation measurements. The essence of target detection process is to test any pixel in the 

image to find out whether it belongs to H0 or H1 [61]. The ACE detector is used in this way to 

discriminate between object signatures. It is assumed that only one kind of target presents in the 

scene and all the mixture targets lie in the vector which connects the background and the target 

signature. The ACE is a measurement of how a pixel fits the mixing model, while the MF is defined 

as the target fill fraction of a pixel. 

 

Figure 4.2: Geometrical description of the MF and ACE detectors in whitened space 

A 2001 study [62] by Manolakis showed the ACE algorithm generally performs better than 

all other MF detection algorithms examined and is therefore adopted in the proposed method. 

The whitened data is assumed to follow a spherical normal distribution in MF and ACE 

derivations. However, in real practice, the whitened data are not white. Therefore, further study 

about the interband and intra/interband correlation of noise can improve the noise covariance 
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estimation and improve the detection performance. A comparison of basic detection algorithms is 

shown in Table 4.1. 

Table 4.1: Comparison of basic detection algorithms 

Detection 

algorithm 
H1 H0 Detector 

Year/ 

Reference 

RXD 
𝑥𝑥 = 𝑠𝑠 + 𝑎𝑎 

N(µ+s,Cb) 

𝑥𝑥 = 𝑎𝑎 

N(µ,Cb) 
𝐷𝐷𝑋𝑋𝐷𝐷(𝑥𝑥) = (𝑥𝑥 − �̂�𝜇𝑏𝑏)𝑇𝑇�̂�𝐶𝑏𝑏−1(𝑥𝑥 − �̂�𝜇𝑏𝑏) 1990/[7] 

SAM Not applicable 𝐷𝐷𝑂𝑂𝑆𝑆𝑀𝑀(𝑥𝑥) =
𝑠𝑠𝑇𝑇𝑥𝑥

(𝑠𝑠𝑇𝑇𝑠𝑠)1/2(𝑥𝑥𝑇𝑇𝑥𝑥)1/2 1993/[11] 

CEM Not applicable 𝐷𝐷𝐶𝐶𝐶𝐶𝑀𝑀 =
𝑠𝑠𝑇𝑇𝐷𝐷−1𝑥𝑥𝑠𝑠𝑇𝑇𝐷𝐷−1𝑠𝑠 

 

1993/[57] 

OSP 𝑥𝑥 = 𝑠𝑠𝛼𝛼𝑇𝑇 + 𝐵𝐵𝐵𝐵 + 𝑛𝑛 𝑥𝑥 = 𝐵𝐵𝐵𝐵 + 𝑛𝑛 𝐷𝐷𝑂𝑂𝑂𝑂𝑂𝑂 = 𝑠𝑠𝑇𝑇𝑃𝑃𝑏𝑏⊥𝑥𝑥 1994/[18] 

MF 

𝑥𝑥 = 𝑎𝑎𝑠𝑠 + 𝑛𝑛 

N( as Cb) 𝑁𝑁𝑝𝑝(𝑎𝑎�̃�𝑠, 𝐼𝐼) 

𝑥𝑥 = 𝑛𝑛 

N( 0 Cb) 𝑁𝑁𝑝𝑝(0, 𝐼𝐼) 

𝐷𝐷𝑀𝑀𝑀𝑀(𝑥𝑥) =
𝑠𝑠𝑇𝑇�̂�𝐶𝑏𝑏−1𝑥𝑥�𝑠𝑠𝑇𝑇�̂�𝐶𝑏𝑏−1𝑠𝑠 

1992/[13] 

ACE 

𝑥𝑥 = 𝑎𝑎𝑠𝑠 + 𝑛𝑛 

N( as Cb) 𝑁𝑁𝑝𝑝(𝑎𝑎�̃�𝑠, 𝐼𝐼) 

𝑥𝑥 = 𝑛𝑛 

N( 0 Cb) 𝑁𝑁𝑝𝑝(0, 𝐼𝐼) 

𝐷𝐷𝑆𝑆𝐶𝐶𝐶𝐶(𝑥𝑥) =
(𝑠𝑠𝑇𝑇C�𝑏𝑏−1𝑥𝑥)2

(𝑠𝑠𝑇𝑇C�𝑏𝑏−1𝑠𝑠)(𝑥𝑥C�𝑏𝑏−1𝑥𝑥)
 1995[14] 
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5. PROPOSED METHOD 

As discussed in Chapter III, traditional material detection follows steps of calibration, feature 

extraction and comparison with the standard spectral library using detection algorithms. The 

performance of traditional HSI target detection can be easily affected by the following factors: 

• Errors between the reference spectrum in library and image spectra  

• Uncertainty of material spectra due to illumination, atmosphere, background environment 

and equipment noise 

• Calibration and pre-processing errors  

• Inaccurate background/noise modeling 

Therefore, this kind of method may not detect subpixel targets very well and it is necessary to 

improve HSI detection algorithms. For target detection purposes, the HSI pixels can generally be 

divided as target and background. Improving the representation of target and background can lead 

to better separation of target and background. Therefore, addressing target variation and better 

estimating background are two major challenges in improving subpixel target detection. Finding 

methods that can suppress the background and stress the majority of targets can improve the 

detection performance greatly. 

In the traditional statistical detection method, it is not appropriate to use any random pixel 

containing the target as the target signature because it would be corrupted by the background [17]. 

Furthermore, using the target signature from the scene would also reduce the pool of targets and 

bias the results. Therefore, most of the current methods use atmospheric compensation and HU 

techniques to extract the target spectrum from the image. Subspace methods, such as MSD and 

ASD, require the description of the target and background using many endmembers. Since the 
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endmembers are unknown while testing a randomly selected dataset, HU technology such as N-

FINDR and PPI, is needed to extract the endmembers. However, HU requires the estimation of the 

number of endmembers and would lead to inaccurate results in the case of lacking full pixel 

endmembers in the scene. Although recent research [21, 23] shows representation methods can 

achieve higher detection performance than statistical and subspace methods, they also highly rely 

on the dictionary sample size and the constraints of contexture pixels to improve the performance. 

Library construction, computation cost, and constraint design are the main concerns for these 

methods. Table 5.1 shows the comparison of these three categories of detection methods. 

Table 5.1: Comparison of three categories detection methods 

Detection 

Method 
Advantages Limitations 

Possible improvement 

methods 

Statistics 

[13, 14] 

a. Easy implementation 

b. Intuitive physical 

meaning 

a. Based on MVN 

assumption 

b. Relies on reference 

target spectrum 

a. Target free 

background estimation 

b. Improve the 

reference target 

spectrum 

c. Kernel 

transformation 

d. Locality constraints 

Subspace 

[15, 18] 

a. adapt to spectral 

variation better than 

single target spectrum 

a. Require all 

endmember of 

background and target 

b. Sensitive to  noise 

a. Improve endmember 

extraction 
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Representation 

[21, 23] 

a. High accuracy with 

over complete 

dictionary and proper 

constraints 

b. Good for some 

special target spectra 

 

a. Over complete 

dictionary required 

b. Regularization and 

contextual constraint 

required 

c. Calculation 

complexity 

a. Fusion with statistical 

method 

 

As HSI applications become more and more common, future target detection algorithms 

should depend less on a standard library, be adaptive to spectral variation and most importantly, 

provide high detection performance without any specific constraint on a specific case. 

A good target detection algorithm can differentiate a target from the background cluster. 

Reference target spectrum and background representation are two critical variables in target 

detection algorithms and affect the performance greatly. Therefore, extracting a better 

representation of the target and the background is essential in subpixel target detection. Although 

larger target samples are needed to achieve accurate detection performance, in most cases, only a 

few target samples are available [10].  This chapter introduces a new method, which starts with a 

few randomly picked target spectra, and then improves the reference target spectrum iteratively 

using hybrid detection space to address the aforementioned challenges and gradually improve the 

target detection performance. The ACE is used to estimate the target with minimum interference 

from the background and the MF is used to estimate the background with minimum interference 

from the target. 
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5.1 Hybrid detection space  

The proposed method is based on the hybrid detection space (Figure 2.7), which is constructed by 

scores of the MF (x axis) and ACE (y axis). The MF and ACE are two popular target detection 

algorithms based on statistical theory. The MF has the physical meaning of projection length of 

data vector onto the target vector, while the ACE means the square of cosine of the spectral angle 

between the test pixel’s spectrum and the target’s spectrum in the whitened space (Figure 4.2).  

The whitened background is assumed to follow a sphere normal distribution 𝑁𝑁𝑝𝑝(0, 𝐼𝐼), in an N 

dimensional space. If N is fixed, for a constant FAR, the detection angle for the ACE is fixed, and 

the ACE score is also fixed. This is the same for MF. Geng proved that adding any band linearly 

independent of the original ones improves the detection performance of the CEM [63]. 

Experiments show the same results for both the MF and ACE. The more bands, the lower the 

scores are for background’s ACE. If the background covariance matrix is estimated accurately, 

with a constant FAR, then the ACE and MF scores are fixed. For example, for a HSI of 172 bands, 

the ACE score is approximately 0.06 at 0.2% FAR, and the MF score is approximately 2.7 at 1% 

FAR. This means most of the background would be confined to a small background region in the 

hybrid detection space. 

The hybrid detection space transforms the high dimensional whitened data to a visual form 

using the distance and angle, which are basic elements in geometry. High abundance targets are 

far from the background region. The corresponding position in the hybrid detection space for a 

certain pixel can be used to determine whether it is the target, which helps in analyzing the data 

and separating the target from the background. 

As the whitened background follows the sphere normal distribution N(0,I) in high dimensional 

space, the center of the hypersphere with the highest distribution density is transformed to the 
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origin of the hybrid detection space, and the background distribution in the hybrid detection space 

is symmetrical about the y-axis. If there are some targets present, the pixel distribution in the hybrid 

detection space performs as asymmetrical about the y-axis. As targets would trend towards the 

target center, which is in the first quadrant, targets would probably fall in the first quadrant and 

the pixels in the second quadrant could be considered as pure background. The overall FAR can 

be estimated by observing the FAR of background distribution in the second quadrant. This helps 

in setting thresholds for separating the target and background. 

5.2 Low abundance target detection 

The detection performance for subpixel targets can be affected by the following factors: 

• Distance between the centers of target and background 

• Bands and abundance of subpixel targets 

• Detection algorithms 

As the whitened background follows the sphere normal distribution, the whitened hypersphere 

is defined with a radius equal to the distance from the center of the background to the hyperplane, 

which divides the background into 99% and 1%. In most real aerial HSIs, targets with an 

abundance of greater than 50% are usually fewer than targets with abundance lower than 50%. To 

evaluate the proposed method more accurately, subpixel targets within the whitened hypersphere 

are defined as low abundance targets and those outside the hypersphere are defined as high 

abundance targets. Specifically, FARs greater than 1% are called high FARs and less than 0.1% 

are low FARs. Normally, low abundance targets would have an abundance less than 10% and high 

abundance targets would have an abundance greater than 10%. 
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High abundance targets fall outside the hypersphere and most likely fall inside the hypercone 

with a small detection angle. That is to say, both the MF and ACE methods have excellent detection 

performance on high abundance targets. However, low abundance targets are more likely mixed 

with the background and hard to detect.  For low abundance targets with fill fractions less than 

1%, the targets are likely to fall near the center of the background and are extremely difficult to 

differentiate from the background. As the energy of these targets is so small, these targets can be 

considered as background in order to simplify the detection process.  

The proposed method aims to improve the detection performance for Low Abundance Targets 

with abundance value ranging from 1%- 10%, which are noted as LATs. If one method can work 

well on LATs, it should work well for high abundance targets, and improving the overall detection 

performance.  

As shown in Figure 5.1, for the MF method , LATs trend towards the center of target from the 

center of the background; thus at a high FAR, most of LATs can be detected, as indicated to the 

right of the vertical line FG. However, at a low FAR, the detection performance is poor because 

most of the LATs are within the radius of the hypersphere and mixed with the background. As 

both the target and the background are assumed to follow an MVN distribution, for a constant 

abundance “a”, the subpixel targets would also follow an MVN distribution. If “a” varies from 0 

to 1, the resulting target distribution would be greater along the horizontal line, BT. In low FARs, 

the ACE can still capture some of the targets between the center of the background and the 

reference target spectrum (Area DBE), thus, it has better performance than that of the MF. As the 

FAR increases, the detection angle also increases, however, there are still some LATs still fall 

outside the hypercone area ABC in the figure.  



 

 

42 
 

 

Figure 5.1: Subpixel target detection inside hypersphere.  

Blue points are low abundance subpixel targets. Back circle is the hypersphere in two-
dimensional space. Region ABC and line FG are the decision cone/plane at a high FAR for ACE 
and MF algorithm, respectively. DBE and HI are the decision cone/plane at a low FAR for ACE 

and MF algorithm, respectively. 

Therefore, for LATs, the ACE has better performance at low FARs and the MF has better 

performance at high FARs. Because of the properties of these two algorithms, the ACE is good for 

capturing potentially pure target pixels from the scene and the MF is good for extracting potentially 

pure backgrounds. 

5.3 MF background estimation 

For both the MF and ACE, it is assumed that the background and target follow an MVN 

distribution. The background covariance matrix is essential in estimating the PDF of the 

background and target, and ultimately affects the detection results. Conventional background 

models seem to be effective; however, they cannot adapt to the diversity of the real world. When 

the background pixels are contaminated by target signals, the estimated background would 

strongly deviate from the real background distribution and lead to corruption of the estimated 
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statistics [31]. Background contamination with target signals violates the pure background 

assumption and has a deleterious effect on target detection. Therefore, the development of complex 

models for background estimation is necessary as the background is indeed complex [31]. A target-

free background model could improve detectability of subpixel targets. 

It is impossible to find a perfect model that can capture all the characteristics of hyperspectral 

background [38] because the presence of some man-made objects can produce anomalies that 

cannot be predicted by any model. However, it is useful to obtain a relative effective model by 

excluding the majority of target pixels while estimating the background. Many methods have been 

developed for excluding the targets from the background to achieve greater multivariate 

normality.   

A. Adaptive threshold 

As background signals may vary from location to location, one way to counteract this phenomenon 

is to use adaptive threshold technique [33]: setting appropriate thresholds for different regions can 

better characterize the background and exclude the target signals.  

B. HSI pre-clustering 

Pre-clustering using HSI classification can improve the target detection performance. Data 

distribution within one class is more likely to follow the MVN distribution than inter-class 

mixtures. Therefore, the estimated statistics can better suppress the background and reduce the 

FAR. However, the inclusion of target pixels in the background is a problem while performing the 

HSI classification [64]. 
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C. Mahalanobis Distance 

To find the background and abnormality, it is necessary to calculate the Mahalanobis Distance 

(RXD value): 

𝑀𝑀𝐷𝐷(𝑥𝑥) = �(𝑥𝑥 − �̂�𝜇)𝑇𝑇�̂�𝐶𝑏𝑏−1(𝑥𝑥 − �̂�𝜇) (5.1) 

Any pixel with a score greater than a certain threshold (i.e., above the red line in Figure 5.2) 

is considered to be an outlier. Otherwise, pixels under the red line in Figure 5.2 are considered as 

background. 

 

Figure 5.2: RXD background estimation 

The claimed background may actually contain LATs while using the Mahalanobis method 

because the signals of LATs are too small to be present as abnormalities (Figure 5.3a). This usually 
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results in an ill-form of the covariance matrix and affects the detection performance. The proposed 

method attempts to remove more LATs in the background region while estimating the background. 

The global covariance matrix without excluding all targets is inaccurate as the estimated 

background center moves towards the targets. This would lead to errors in estimating the PDF of 

background. Generally, the MF algorithm has good detection performance at a high FAR, 

therefore, it can exclude most of the targets from the background (Figure 5.3b). In the hybrid 

detection space, the area with MF FARs greater than 1% is considered as background region. As 

the remaining targets only have small fractions or of low intensity, it is assumed that the 

background is close to being a target-free background. This generates a covariance matrix close to 

the real one, achieves accurate PDF for the background and improves the detection performance. 

Figure 5.3:  Background estimation using (a) the RXD method compared to (b) the MF method 

Another purpose of the MF background covariance matrix evaluation is to keep the 

background as the background during the iterative process. As most of the background (99%) is 
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located inside the background region, the corresponding covariance matrix reflects the relationship 

between bands and constrains the background pixels into a small area, with low scores when using 

both the MF and ACE. Then, the background probably stays in or near the background region of 

the hybrid detection space. 

5.4 Hybrid detection algorithm 

The proposed hybrid detection algorithm is as follows: 

Algorithm 1: Hybrid detection algorithm 

Initialization: 

1. Pick one to five high abundance target pixel(s) from the image, and average them to get an 

initial reference target spectrum  

2. Perform the MF and ACE detection algorithms using the initial target spectrum and global 

covariance matrix 

Main iteration: 

3. Consider all the pixels with ACE FARs less than 0.2% (0.01% for the first and second 

iterations) and MF FARs less than 1% as targets 

4. Average the targets to update the reference target spectrum sp(i) 

5. Use the region with MF FARs greater than 1%, assumed to be the background, in order to 

calculate the respective covariance matrix Cb(i) 

6. Use the new reference target spectrum sp(i) and the background covariance matrix Cb(i) to 

perform the MF and ACE algorithms 

7. Calculate the evaluation metrics: Ni and Li 

Stop the main iteration if Ni/Ni-1<1.02 or Li/Li-1<1.02 

else go to Step 3 
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8. Follow the detection order from the high ACE score to the low ACE score in the target and 

mixed region first, then from the high MF score to the low MF score in the background 

region  

The traditional method obtains the reference target spectrum from the standard library or 

extracts it from HSI using HU. The reference spectrum from the standard library may not identify 

or be close to that of the actual target being sought due to spectral variation. Therefore, it would 

be inaccurate to use the standard one. Another concern is the original data also need to be calibrated 

before applying the detection algorithm. Furthermore, because the HSI covers a wide range, there 

is not a uniform parameter that generally applies to all bands and locations in the calibration model. 

Therefore, errors always happen in calibration.  

On the other hand, extracting the target spectra from the scene using HU based on the CG 

seems to be a better solution. However, a mismatch in estimating the number of endmembers or 

lack of full pixels produces inaccurate results. Computational complexity is also a concern. In this 

section, a new method is introduced to extract the reference target spectrum from the HSI using 

iterative improvement. 

In HSI, both the background and the target are assumed to follow the MVN distribution and 

subpixel targets are linear combinations of background and target subsets. Therefore, the subpixel 

targets would also follow MVN distribution and have greater density along the line BT, which 

connects the centers of background and target (Figure 5.4).  

The background is always constrained in the background region while using the MF 

background covariance matrix evaluation. Whitened background would follow hyper-sphere 

normal distribution and the detection angle for the hypercone would be the same for a constant 

FAR. To achieve better detection performance, the reference target spectrum must be close to line 
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BT so that the detection region can cover more targets. However, for a randomly picked spectrum, 

it may fall far away from line BT, for example, sp1. As a result, the detection area can only cover 

a region (ABC) with low density target distribution.   

 

Figure 5.4: Terminal condition I: maximum target coverage 

In the hybrid algorithm, first, the target dictionary is assumed to be unknown. One or a few 

high abundance target pixel(s) are randomly picked from the image and averaged to get the initial 

reference target spectrum. Then, the MF and ACE detection algorithms are applied to the data 

using a global covariance matrix. In the hybrid detection space, the corresponding threshold value 

for a certain FAR can be estimated by observing the pixel distribution in the second quadrant 

(Figure 5.5). The region with MF FARs greater than 1% is considered as background (left side of 

black line); the region with ACE FARs lower than 0.2% and MF FARs lower than 1% (upper right 

corner of the red curve) is considered as the target region (setting ACE FARs 0.01% for the first 

two iterations, because the target subset is very small at the beginning, high FARs brings more 

background pixels into the target subset and reduces the accuracy of detection). The region in the 

lower right corner is defined as mixed region. 
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Figure 5.5: Hybrid detection space 

Then, a new background covariance matrix is evaluated from the new background subset and 

a new reference target spectrum for the next iteration is calculated by averaging all the pixels in 

the target region.  If the target spectrum is obviously different from those of the background 

clusters, the target and background distributions are shown in Figure 5.4. In the detection region 

ABC, because region GBC is closer to the line BT than region ABG, the target distribution should 

be higher in region GBC. As a result, the new reference target spectrum, for example- sp2, which 

is the average spectrum of target samples in the target region- would be closer to the line BT than 

sp1 would be. When applying sp2 as the reference target spectrum with the same detection angle, 

more target pixels that are close to the line BT can be detected. Then, most of the targets would 

have higher ACE and MF scores, and thus would escape from the background region. For example, 

if point H in line BT is the pixel to be tested, then as the reference target spectrum moves from sp1 
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to T, the ACE score increase from cos(θ) to 1, and point H escapes from the background region. 

Then, the new background is purer than the previous one. After some iterations, the reference 

target spectrum falls on or very close to line BT. Then, the number of pixels covered by the 

hypercone outside the hypersphere, Ni (where i is the number of iteration)- which includes the 

detected targets and some constant false alarms of the background- would reach a maximum value, 

and the iterative process should be terminated. 

 

Figure 5.6: Abnormalities with similar spectrum to target present 

(a) Target spectrum sp1 and similar abnormity spectrum sp2; (b) targets, similar 
abnormalities and background distribution in the whitened space 

Although both the MF and ACE can be used for iterative improvement of the target spectrum, 

the ACE can capture more LATs in low FARs, thus providing more information about target 

distribution. Furthermore, if some abnormalities (sp2) with similar spectra as the target (sp1) are 

present in the scene, as shown in Figure 5.6, since the decision hyperplane of the MF divides the 

space into two parts, then the resulting targets are contaminated by the other abnormalities, thus 

affecting the final detection performance. On the other hand, the hypercone of ACE only covers 

1/500 of the space while using 0.2% FAR; 500 is a number that is much higher than the number 
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of endmembers existing in the scene, so, the overlap probability of target and other abnormalities 

should be much lower than when using MF. This would ensure the purity of the target samples; 

therefore, the ACE is selected to estimate the target samples.  

If abnormalities similar to the target are present in the scene, then the iterative process may 

deviate from the target spectrum to other abnormalities; because the transition region may also 

have a higher pixel density than the actual target region. A new metric, maximum MF score (Figure 

5.7), is needed to improve the accuracy of the proposed method. 

 

Figure 5.7: Terminal condition II: maximum MF score 

In Figure 5.7, the points B and T are the centers of the background and target, respectively, 

and A is the reference target spectrum. The maximum MF score is the distance of AB: 

𝑀𝑀𝑎𝑎𝑥𝑥(𝑀𝑀𝐹𝐹) = 𝐹𝐹𝐵𝐵 = 𝐵𝐵𝐶𝐶 + 𝐶𝐶𝐹𝐹 = 𝐵𝐵𝐵𝐵 × cos(𝜃𝜃) + 𝐷𝐷𝑇𝑇  (5.2) 

where BT is the distance from T to B; 𝜃𝜃 is the angle between the reference target spectrum and the 

central line; 𝐷𝐷𝑇𝑇 is the radius of targets in whitened space. Since BT and 𝐷𝐷𝑇𝑇 are constant, the 

maximum MF score increases as 𝜃𝜃 decreases. The MF score reaches a maximum value when the 

reference spectrum is very close to the central line. As in the transition region, the maximum MF 

score usually decreases; this can imply that the spectrum is moving to an abnormal region. To 
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mitigate the effect of abnormal distribution, the top 100 MF scores are averaged as an index 

(denoted as Li for ith iteration) to determine whether the iterative process should be terminated. 

 In sum, by ignoring minor errors in the iterative process, the terminal conditions for the iterative 

process are set as: Ni+1/Ni<1.02 or Li+1/Li<1.02. The iterative process should be terminated if either 

condition is satisfied; and the optimal spectrum is assumed to be achieved. 

Generally speaking, the MF has better performance at high FARs while the ACE has better 

performance at low FARs. In the hybrid detection space, the background region has the lowest 

Target to Background Ratio (TBR) and the target region has the highest TBR. Therefore, avoiding 

the background region yields better detection performance while keeping a constant FAR. During 

the detection process, the detection order first should be from the high ACE score to the low ACE 

score in the target and mixed region. Then, as the FAR reaches 1% (and an ACE score equal to 0), 

the next detection order should move from the high MF score to the low MF score. A flowchart of 

the proposed method is shown in Figure 5.8. 

 

Figure 5.8: Flowchart of the proposed method 
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Although there is spectral variation of targets, a large amount of bands can compensate for 

this. Hundreds of bands extend to a high dimensional space. In the high dimensional whitened data 

space, any specific material should have its own hypercone. This provides a good opportunity to 

differentiate the target of interest from background and other abnormalities. For one specific target, 

although the subpixel targets have some variation, they should fall inside its hypercone and follow 

some distribution principles. The essence of the proposed method is finely adjusting the direction 

of the hypercone according to the target distribution principles and making the hypercone cover 

the maximum number of targets.  
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6. EXPERIMENTS AND RESULTS 

The effectiveness of the proposed method for subpixel target detection is demonstrated in this 

chapter. The experimental model is constructed in Section 6.1. Then, two synthetic and two real 

hyperspectral datasets are applied in the experiments and the results are compared to those of other 

counterpart methods.  

6.1 Experimental model 

The first three HSI datasets used in the experiments are originally taken from the Jet Propulsion 

Lab (JPL) of the NASA [65] and the spectral bandwidth of each band is approximately 10 nm. The 

first dataset is “Cuprite,” the second dataset is “Low Altitude,” and the third dataset is “Moffett 

Filed.” These images were collected by the AVIRIS, which operates in the Visible to Near Infrared 

and Short-Wave Infrared range of 400 nm to 2500 nm. However, only 172 of 224 spectral bands 

are selected for the experiments by discarding some water absorption and noisy bands. The 

selected spectral bands are the 3rd to 43rd, 45th to 60th, 67th to 80th, 86th to 105th, 121st to 151st, 172nd 

to 173rd and 177th to 224th (Table 6.1). All of these images are then cropped into the regions of 

interest with a pixel size of 512×512. 

Table 6.1: Band selection for the original hyperspectral data 

Adopted bands Number of adopted bands Excluded bands Excluded wavelength (nm) 

3-43 41 1-2 365-376 

45-60 16 44 763 

67-80 14 61-66 928-976 

86-105 20 81-85 1120-1158 

121-151 31 106-120 1343-1483 

172-173 2 152-171 1802-1968 

177-224 48 174-176 1998-2018 
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In Experiment A and B, two synthetic datasets are tested to evaluate the newly developed 

method. A target implantation strategy that has been successfully used for performance evaluation 

in previous developments is applied to the original datasets [53]. First, signatures for water and 

vegetation are extracted from AVIRIS data “Moffett Field.” Then, water spectra and vegetation 

spectra are implanted into “Cuprite” image and “Low Altitude” image using the LMM, 

respectively.  

A traditional detection method (TDM) is introduced to compare the performance, and can be 

described as follows:  

First, PCA transformation is performed to solve for the covariance matrix and eigen values. 

Each eigen value is normalized by dividing the sum of all. If the sum of the first n normalized 

eigen values reaches a threshold of 0.999, then the number n is considered as the number of 

endmembers. Second, N-FINDR is performed to extract the endmembers. The extracted spectra 

are matched to the reference spectrum, which is the average of high abundance target spectra that 

is known in the scene, using the SAM. The endmember with the minimum angle compared to the 

reference spectrum is considered as the target endmember. Third, the RXD algorithm is applied to 

evaluate the background covariance matrix. The RXD threshold is set to the value that detects the 

number of abnormalities approximate to the targets present in the scene. Finally, the MF and ACE 

detection algorithms are performed using the extracted target endmember and the RXD estimated 

covariance matrix. 
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Figure 6.1: Flowchart for synthetic image experiment 

For the proposed method in synthetic data, one to five random target spectra from the high 

abundance target samples are selected.  As the insertion points are known, ground-truth image is 

also known. Then the detection performance under a certain false alarm is easy to calculate. 

Finally, the results are compared with the counterpart methods (Figure 6.1).   As the performance 

of TDM is much worse than the proposed method, another method, Traditional RXD background 

estimated Detector (TRD), using the best target spectrum of the proposed method and the RXD 

covariance matrix, is also applied to evaluate the effectiveness of the MF background evaluation. 

Although a synthetic image can provide a totally controllable environment for evaluating the 

performance of the proposed detector, one of the main concerns is how to model it as closely as 

possible to the real-world image, reduce the bias, and provide meaningful results. The first dataset 

introduces a scenario with 8000 low abundance (1%-3%) target pixels and 2000 high abundance 

(60%-95%) target pixels which are presented as 25 integrated panels. In the second dataset, 5000 

of high abundance target pixels and 5000 of low abundance target pixels are inserted into the image 

with 100 panels. The inserted target spectra are randomly selected from the pool of target samples. 
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This experimental model could simulate target variations in the real world,  and could also model 

the co-existence of high and low abundance targets.  

The detection performance is evaluated using ROC log curves and average DR, which are 

common metrics for detection evaluation [53]. Detection results under a certain FAR, as well as 

pixel distribution in hybrid detection space are also provided to show the effectiveness of the 

proposed method. The high abundance targets are likely to be detected, so in the synthetic 

experiments, the DR only refers to the low abundance targets. In this way, detection performance 

of low abundance targets could be evaluated more accurately than using overall DR. 

For the real datasets, as the ground-truth images are unknown, the detection results at a certain 

FAR for proposed method is compared with that of TRD by observation. It would be better to have 

the high spatial resolution image for these two real HSI datasets to determine if the detected pixels 

consist of the target of interest. However, it is not easy to find such data. Because a pixel is more 

likely to be a target if the majority of its surrounding pixels are targets, the detection results of real 

data experiments could be judged by combining the contexture information of the image. For 

example, if some soil pixels which are close to the grass are detected as “grass”, these pixels of 

soil are then considered with some fill factions of grass that are too small to discern by human 

observation. However, the proposed method can catch the subtle spectral variation in theses pixels 

and detect them as a target. Although this observation method may produce some error, it is the 

best way to evaluate the proposed method in detecting the low abundance subpixel targets of real 

datasets. 

6.2 Descriptions of datasets 

A. Dataset 1: Inserting water signature into Cuprite image 
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The spectra data of Cuprite Hills area in southern Nevada were collected in the original image. To 

generate the synthetic data, 3500 water spectra extracted from Moffett Field are implanted into 

this scene. The synthetic image is generated using the LMM. A synthetic pixel with a spectral 

signature Z is the mixture of the desired Target T (T is a randomly picked water spectrum from the 

extracted samples) with abundance fraction a and background signature B of a selected pixel with 

abundance fraction (1-a): 

Z=a×T+(1-a)×B  (6.1) 

 

Figure 6.2: Pseudo-color image and the ground-truth map of 25 target panels for Dataset 1 

The test image containing targets with different fractions is generated synthetically. In this 

image, 5×5 target panels are implanted (Figure 6.2 b) in different locations. The abundance 

fractions of the panels reduce from left to right. The far left column has maximum values randomly 

generated from the range 0.6-0.95. The abundances for the second, third, fourth and fifth columns 

are random numbers from 0.025-0.03, 0.02-0.025, 0.015-0.02, and 0.01-0.015, respectively. The 



 

 

59 
 

main reason for setting abundance 0.6-0.95 for the first column is that it can simulate the existence 

of high abundance target in the real world.  So, this synthetic image consists of 8000 low 

abundance target pixels and 2000 high abundance target pixels. Figure 6.2 shows the pseudo-color 

image and the ground-truth map of 25 target panels for Dataset 1. One can see, as the abundances 

of the right four columns are so small, these targets cannot be discerned in the RGB image.  

B. Dataset 2: inserting vegetation signatures into the Low Altitude image 

The second hyperspectral image is the commonly-used AVIRIS Low Altitude image. After pre-

processing, this image has a spatial dimension of 512×512 pixels with 172 bands. It contains some 

construction, such as buildings, roads and agricultural fields.  

 

Figure 6.3: Pseudo-color image and the ground-truth map of targets for Dataset 2 
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In this image, 10×10 target panels are implanted and each panel consists of 10×10 pixels. The 

locations of the synthetic pixels are provided in Figure 6.3 b. The synthetic pixels are generated 

using the LMM model which is used in Dataset 1. New synthetic data are obtained by a linear 

combination of the original background spectra and the selected target spectra from the target 

samples (vegetation spectra extracted from Moffett Field). The abundances of the panels increase 

from left to right: 0.05 0.06 0.07 0.08 0.09 for the left five columns, and 0.55 0.65 0.75 0.85 0.95 

for right five columns, respectively. So, this synthetic image consists of 5000 low abundance target 

pixels and 5000 high abundance target pixels. Figure 6.3 shows pseudo-color image and the 

ground-truth map for Dataset 2. 

C. Dataset 3: Moffett Field  

The Moffett Field image shows a very smooth area of water and a fairly homogeneous urban area 

which is mainly composed of three components: water, soil, and vegetation [66]. Therefore, this 

dataset is a good example for water and vegetation study.  

This Dataset is used to evaluate the performance of the proposed method in detecting subpixel 

targets of real image. After pre-processing, this image has the spatial dimension of 512×512 pixels, 

each having 172 bands with the 52 noisiest bands removed.  

D. Dataset 4: Pavia University  

The fourth dataset used in this experiment is the Pavia University image acquired at the University 

of Pavia, Italy, using the Reflective Optics System Imaging Spectrometer (ROSIS) sensor [67]. 

The scene shows an urban area comprised of different buildings, parking lots, roads and other 

typical human-made constructions, together with trees, green areas, and bare soil. The image size 

in pixels is 610 × 340, with a spatial resolution of 1.3 m/pixel [68]. The original image has 103 
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spectral channels covering wavelength range from 0.43 to 0.86 μm. Only 89 channels are preserved 

for the experiment after discarding 14 noisy spectral bands. 

6.3 Experimental results and discussion 

A. Dataset 1 

 

Figure 6.4: Iterative reference target spectrum improvement for Dataset 1 

Figure 6.4 shows the iterative reference target spectrum improvement. This image transforms the 

high dimensional data into a two-dimensional data plot, using PCA. B is the center of the 

background; T is the center of the target; black dots are background pixels; green dots are target 

pixels; and sp, sp1, sp2 and sp3 are the reference spectra acquired using the proposed method. The 

trajectory of the reference target spectra gets closer and closer to the central line BT. From Table 

6.2, one can see sp2 is the best target spectrum, according to the iterative terminal conditions 

provided in Chapter V, and has the minimum angle to the line BT. The detection performance for 



 

 

62 
 

different reference spectra at different FARs are provided in Table 6.3. sp2 also has the best 

average detection rate of all the spectra.  

Table 6.2: Evaluation of spectra for Dataset 1 

Reference spectrum sp sp1 sp2 sp3 

Target Detected 2142 7390 8302 8715 

Max(MF) 15.6 158 222 226 

Angle 2.28 1.19 1.01 / 

Table 6.3: Detection rates for Dataset 1 

Spectrum FAR 0.02% 0.05% 0.1% 0.2% 0.5% 1% 2% 5% Mean 

sp MF 0 0.0006 0.0014 0.0066 0.0236 0.0414 0.0739 0.154 0.0377 

ACE 0 0.0006 0.0015 0.0029 0.0094 0.0174 0.0299 0.0696 0.0164 

sp1 MF 0.023 0.1274 0.3511 0.5326 0.6975 0.7875 0.8578 0.9197 0.5371 

ACE 0.3535 0.4387 0.51 0.5751 0.659 0.7205 0.781 0.8524 0.6113 

sp2 MF 0.005 0.0709 0.2285 0.4636 0.6774 0.7833 0.8576 0.9231 0.5012 

ACE 0.3602 0.4367 0.5101 0.5814 0.6794 0.7496 0.8067 0.8766 0.6251 

sp3 MF 0.0014 0.0236 0.1278 0.3706 0.6362 0.7705 0.8518 0.9223 0.4630 

ACE 0.301 0.374 0.464 0.5439 0.6646 0.7426 0.807 0.8789 0.597 

HDS Fusion 0.3671 0.4456 0.5268 0.6022 0.7175 0.7833 0.8576 0.9231 0.6529 
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Figure 6.5: Background-Target separability (a) before and (b) after applying the proposed 
method for Dataset 1 

Target-background separability for initial as well as best detection results of the proposed 

method are shown in the hybrid detection space (Figure 6.5).  The black dots stand for background 

pixels, while red dots stand for target pixels. The background is always constrained in a small 

region and is symmetrical about the y axis during the iterative process. The subpixel targets are 

mixed with the background at the beginning; however, they achieve better separability after 

applying the proposed method, because most of them escape from the background region.  

Finally, the detection performance of the proposed method, shown in Table 6.4, is compared 

with the TDM and TRD methods. TDMF and TDMA mean MF and ACE algorithms under TDM 

conditions, respectively. TRDM and TRDA mean MF and ACE algorithms under TRD conditions, 

respectively. HDS means the proposed method. ROC log curves comparison is shown in Figure 

6.6. The blue line is the HDS; the red line is the TRDM; the magenta line is the TRDA; the black 

line is the TDMF; and the green line is the TDMA. Both the ROC curve and the average detection 

rate show that the proposed method has a better performance than the TDM and TRD. 
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Table 6.4: Detection rates comparison for Dataset 1 

FAR 0.02% 0.05% 0.1% 0.2% 0.5% 1% 2% 5% Mean 

TDMF 0.0001 0.0006 0.0018 0.0031 0.011 0.0256 0.057 0.1411 0.0300 

TDMA 0 0.0004 0.0016 0.0045 0.0108 0.0209 0.0397 0.089 0.0209 

TRDM 0 0.003 0.0343 0.1251 0.3147 0.4427 0.5669 0.7 0.2733 

TRDA 0.0454 0.0833 0.1325 0.1854 0.2574 0.3049 0.3596 0.4465 0.2269 

HDS 0.3671 0.4456 0.5268 0.6022 0.7175 0.7833 0.8576 0.9231 0.6529 

 

 

Figure 6.6: ROC curve comparison for Dataset 1 

Figure 6.7 shows the detection results for the TRDM and the hybrid algorithm at 1% FAR. 

For high abundance targets, both algorithms can detect all of the targets. For low abundance 

targets, the right two columns of the targets in the left image are hardly detected. However, the 

middle three columns in the right image are almost detectable. This indicates that the detection 
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performance of the proposed method is much better than other counterparts in Dataset 1 at 1% 

FAR. 

 

Figure 6.7: Detection images comparison for Dataset 1 at 1% FAR 
 (a) TRDM; (b) Proposed method 

B. Dataset 2 

The iterative improvement of the reference target spectrum is shown in Figure 6.8. sp, sp1, sp2, 

sp3 and sp4 are the reference spectra acquired using the proposed method. As one can see, the 

trajectory gets closer and closer to the central line. Table 6.5 shows the evaluation of the spectra. 

sp4 is the one that satisfies the terminal conditions. Detection performances under different FARs 

are shown in Table 6.6. sp4 yields the best average detection rate among all of the spectra. 
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Figure 6.8: Iterative reference target spectrum improvement for Dataset 2 

Table 6.5: Evaluation of spectra for Dataset 2 

Reference Spectrum sp sp1 sp2 sp3 sp4 sp5 

Target Detected 1249 4878 7613 9145 9346 9359 

Max(MF) 10 43 108 152 173 172 

Angle 18.85 14.94 12.61 2.63 1.06 / 

Table 6.6: Detection rates for Dataset 2 

Spectrum FAR 0.02% 0.05% 0.1% 0.2% 0.5% 1% 2% 5% mean 

sp MF 0.0002 0.0002 0.0012 0.0024 0.0078 0.0182 0.036 0.0874 0.0192 

ACE 0.0006 0.0014 0.002 0.0044 0.0096 0.0172 0.0306 0.065 0.0164 

sp1 

 

MF 0.0152 0.0872 0.1726 0.2512 0.3338 0.3886 0.4516 0.5406 0.2801 

ACE 0.181 0.2104 0.231 0.2668 0.3174 0.359 0.4078 0.4882 0.3077 

sp2 MF 0.202 0.4056 0.5236 0.5998 0.6702 0.7096 0.7512 0.8072 0.5837 
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 ACE 0.4988 0.5344 0.5726 0.6036 0.6502 0.682 0.7172 0.7722 0.6289 

sp3 

 

MF 0.2938 0.552 0.675 0.756 0.8152 0.8514 0.8764 0.91 0.7162 

ACE 0.678 0.715 0.742 0.768 0.808 0.8334 0.8554 0.886 0.7857 

sp4 

 

MF 0.3164 0.5746 0.7102 0.7968 0.8558 0.8846 0.9124 0.936 0.7484 

ACE 0.7348 0.7682 0.79 0.8142 0.849 0.8734 0.8962 0.9222 0.831 

HDS Fusion 0.745 0.7798 0.8006 0.831 0.8642 0.8846 0.9124 0.936 0.8442 

 

Figure 6.9: Background – Target separability (a) before and (b) after apply the proposed method 
for Dataset 2 

Figure 6.9 shows the target-background separability for initial and best detection results of 

proposed method in the hybrid detection space. The background is always constrained in the 

background region and is symmetrical about the y axis during the iterative process. The results 

indicate that better separability can be achieved by applying the proposed method. Most of the 

subpixel targets have high contrast in respect to those of the background in the final results. 
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Table 6.7: Detection rates comparison for Dataset 2 

FAR 0.02% 0.05% 0.1% 0.2% 0.5% 1% 2% 5% Mean 

TDMF 0.001 0.0014 0.0014 0.0036 0.0072 0.0106 0.0232 0.0502 0.0123 

TDMA 0 0.001 0.002 0.0038 0.0054 0.012 0.0206 0.047 0.0115 

TRDM 0.1814 0.3866 0.5372 0.6562 0.7898 0.851 0.8948 0.9298 0.6534 

TRDA 0.6496 0.6896 0.7152 0.7418 0.7816 0.811 0.8414 0.8768 0.7634 

HDS 0.745 0.7798 0.8006 0.831 0.8642 0.8846 0.9124 0.936 0.8442 

Table 6.7 shows the comparison of detection performances of the proposed, TDM and TRD 

methods. For illustrative purposes, Figure 6.10 shows the ROC log curves corresponding to the 

detection results reported in Table 6.7. Generally, the proposed method can achieve better 

performance compared to the TDM and TRD methods. 

Figure 6.11 shows the detection results for the TRDA and hybrid algorithm at 0.1% FAR. For 

high abundance targets, both algorithms can detect most of targets. For low abundance targets, 

more pixels inside the square panels are detected in Figure 6.11b than Figure 6.11a. This indicates 

the detection performance of the proposed method is better than its counterparts for Dataset 2 at 

0.1% FAR. 
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Figure 6.10: ROC curve comparison for Dataset 2 

 

Figure 6.11: Detection results comparison for Dataset 2 at 0.1% FAR 

(a) TRDA; (b) Proposed method  
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C. Dataset 3 

In this section, the Moffett Filed data collected by the AVIRIS are used for experiment evaluation 

of the proposed detector in real scenarios. Vegetation in the scene is considered as the target of 

interest. 

Figure 6.12 shows the iterative improvement of the reference target spectrum. Because the 

background and target truth maps are unknown, the final target region is assumed to include all 

the targets; the final background region is assumed to include all the background. At this point, the 

centers T and B can be calculated. Generally, the trajectory of the reference target spectra gets 

closer and closer to the central line. Table 6.8 evaluates the spectra acquired from the proposed 

method. sp8 is the one that satisfies the terminal conditions. 

 

Figure 6.12: Iterative reference target spectrum improvement for Dataset 3 
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Table 6.8: Evaluation of spectra for Dataset 3 

Reference Spectrum sp sp1 sp2 sp3 sp4 sp5 sp6 sp7 sp8 sp9 

Target Detected 1722 8971 15980 23171 28583 32021 34823 36352 37499 37261 

Max(MF) 5.1 9.3 13.8 17 19.7 21.3 22.9 23.9 24.6 24.3 

Angle 46.21 21.49 15.28 8.78 5.15 2.95 1.67 0.663 0 / 

 

Figure 6.13: Background-Target separability (a) before and (b) after applying the proposed 
method for Dataset 3 

Pixel distribution in the hybrid detection space for initial and final detection results of the 

proposed method are shown in Figure 6.13. In the Figure 6.13b, potential targets escape from the 

background region. Figure 6.14 compares the detection results of the TRDM and proposed method 

at 0.1% FAR. The regions circled in red contain the low abundance targets (mixture of vegetation 

and soil). The proposed method can detect more of the low abundance targets than the TRDM. 

Obviously, the proposed method overrides the TRDM.  
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Figure 6.14: Detection results comparison for Dataset 3 

 (a) TRDM with 0.1% FAR; (b) Proposed method with 0.1% FAR; (c) Pseudo-color image of 
Dataset 3; (d) Image of the difference between (b) and (a)  
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D. Dataset 4 

In this section, the Pavia University image is used for experiment evaluation of the proposed 

detectors in real scenarios. The Meadow is considered as the target. 

Table 6.9 shows the evaluation of the spectra acquired from the proposed method. sp13 is the 

best spectrum according to the terminal conditions. Initial and final background-target separability 

in the hybrid detection space is shown in Figure 6.15. The potential targets escape from the 

background region in Figure 6.15b. As the ground truth image is unknown, the pixels in the final 

target region are considered to contain all the targets and the pixels in background region are 

considered to contain all the background. Then, the centers T and B can be determined and the 

errors can be minimized. From Figure 6.16, the reference target spectra get closer and closer to the 

central line as the iterative process proceeds. 

 

Figure 6.15: Background-Target separability (a) before and (b) after applying the proposed 
method for Dataset 4 
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Table 6.9: Evaluation of spectra for Dataset 4 

Reference Spectrum sp sp1 sp2 sp3 sp4 sp5 sp6 sp7 

Target Detected 1538 4198 6265 8488 9449 10304 10976 12193 

Max(MF) 5.7 7.2 7.9 8.5 8.7 8.9 9 9.2 

Angle 72.05 58.99 51.18 44.58 40.72 37.71 34.26 30.30 

Reference Spectrum sp8 sp9 sp10 sp11 sp12 sp13 sp14  

Target Detected 13642 15035 16144 17158 17708 18433 18737  

Max(MF) 9.5 9.7 9.9 10.6 11 11.3 11.5  

Angle 25.17 18.30 11.18 6.02 2.52 0 /  

 

Figure 6.16: Iterative reference target spectrum improvement for Dataset4 

Figure 6.17 shows the detection results for performance comparison of the TRDM and 

proposed method at 1% FAR. The proposed method overrides the TRDM in detecting the low 

abundance targets (circled in red) obviously.  
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Figure 6.17: Detection results comparison for Dataset 4 

(a)TRDM with 1% FAR; (b) Proposed method with 1% FAR; (c) Pseudo-color image of Dataset 
4; (d) Image of the difference between b and a  

While applying the proposed method, both the number of detected targets inside the 

hypercone, and the average of top MF scores increase. However, as the updated spectrum gets 

closer to the central line, the increase rates slow down and the angle between the new spectrum 

and the central line decrease. When the evaluation metrics reach terminal conditions, the best target 

spectrum usually leads to the best detection performance. Furthermore, the MF background 

evaluation excludes most of the targets from the background region and yields to better statistics. 

During the iterative process, the background is always constrained in the background region; 

subpixel targets escape from the background region and lead to better separability. Therefore, the 

proposed method has the best performance among all algorithms used in the experiment. 

The traditional detection method used the N-FINDR target extraction and RXD background 

evaluation has the worst performance due to errors in extracted target spectrum and the background 

statistics. The detection results of the traditional method can vary and depend greatly on the quality 
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of the extracted target spectrum. The actual target spectrum may not be extracted due to a lack of 

full pixel targets in the scene. Moreover, a single pixel spectrum from the image could not reflect 

the spectral variation of the targets, so that the traditional method does not have very good 

performance. Although the endmember extraction technique can be improved using such 

techniques as NMF, the computational cost would also increase.  

The TRD having better performance than the TDM implies the importance of the reference 

target spectrum. The fact that the proposed method performs better than the TRD indicates that 

MF background evaluation is superior to RXD background evaluation. 

The detection algorithm developed in this work provides a great improvement with regard to 

its traditional counterparts. In general, these four experiments demonstrate the ability of the hybrid 

algorithm to achieve the best detection performance by gradually improving the reference target 

spectrum, which can represent target spectral variability, and improving target-free background 

modeling. 

The calculation time for six iterations of the proposed method is 377 seconds, while the 

calculation time for the traditional method using N-FINDR endmember extraction is 395 seconds, 

both running in MATLABTM R2016a with i7-4790s CPU and 8GB RAM. In general, the proposed 

method does not increase the computational cost.  
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7. CONCLUSIONS AND FUTURE WORK 

The MF and ACE have been widely applied in HSI target detection since the 1990s. However, 

how to characterize the background and target is always an important issue while employing these 

algorithms.  A hybrid detection space constructed by these two simple algorithms is developed to 

extract a better target and background representation. The principle of the hybrid detection space 

is transforming original data to high dimensional whitened data first, and then transforming the 

high dimensional data to the visualized hybrid detection space. Since background distribution in 

hybrid detection space is constrained to a small area, targets are easy to separate from the 

background. 

The proposed MF background evaluation aims at a better representation of background. As 

most of the targets are excluded from the background samples, the proposed method can lead to a 

more accurate covariance matrix and better suppress the background. Furthermore, detection 

region calculated with an improved target spectrum can cover a maximum number of targets at a 

given false alarm rate, thus improve the separability of the detection algorithm.  

The experimental results, conducted using both synthetic and real hyperspectral datasets, 

indicate that the proposed method provides better performance than the traditional counterparts, 

particularly for the detection of sub-pixel targets. 

The conventional methods, like statistical methods, representation methods, and subspace 

methods, highly rely on the background and target sample size. However, the sample size may be 

limited in most applications. The proposed method is different from the conventional ones in many 

aspects. It does not require calibration or HU before applying the detection algorithm and does not 

rely on the standard library. These simplify the detection process and reduce the errors in pre-
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processing. For the initial detection, the reference target spectrum can be any high abundance target 

randomly picked from the scene, and the background covariance matrix can be evaluated by the 

whole image. Therefore, the proposed method is generally applicable. Experiments also show 

promising results in low abundance (as low as 1%-10%) target detection. This proves the high 

spectral resolution properties of the HSI indeed compensate for the low spatial resolution. Target 

detection by HSI can cover a much greater area, meanwhile improving the detection performance. 

Furthermore, as the MF and ACE are simple algorithms, this makes it possible for real time 

processing. The hybrid algorithm can be applied in detecting water resources, vegetation and oil 

contamination in a large scene. All these benefits would help in the development of hyperspectral 

detection applications. 

Some issues still need further study to improve the proposed method: because the iterative 

process is time consuming, reducing the computational cost of the iterative process and making it 

converge faster become important. Moreover, improving the MVN model of the background by 

kernelizing the data and combining the detection results with contexture information are good 

directions to further improve the performance. 

Another shortcoming of the proposed method is that it is only applicable in case of many 

(above thousands) targets existing in the scene because the iterative improvement is based on the 

target distribution assumption inside the hypercone. If the target sample size is limited, then the 

target distribution assumption would not hold. Nonetheless, in most remote sensing cases, which 

are looking for targets like mineral resources, water, or pollution, the proposed method still has a 

significant improvement compared to the traditional methods.  
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