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Abstract. We propose a powerful pipeline for determining the pose of
a query image relative to a point cloud reconstruction of a large scene
consisting of more than one million 3D points. The key component of our
approach is an efficient and effective search method to establish matches
between image features and scene points needed for pose estimation.
Our main contribution is a framework for actively searching for addi-
tional matches, based on both 2D-to-3D and 3D-to-2D search. A unified
formulation of search in both directions allows us to exploit the distinct
advantages of both strategies, while avoiding their weaknesses. Due to
active search, the resulting pipeline is able to close the gap in registration
performance observed between efficient search methods and approaches
that are allowed to run for multiple seconds, without sacrificing run-
time efficiency. Our method achieves the best registration performance
published so far on three standard benchmark datasets, with run-times
comparable or superior to the fastest state-of-the-art methods.

1 Introduction

Image-based localization addresses the problem of finding the position and orien-
tation from which a given picture was taken. It is encountered in many interesting
applications, such as touristic landmark recognition [1, 2], robot localization and
loop closure [3, 4], Augmented Reality [5, 6], and Structure-from-Motion [7].

Available approaches [1–6, 8–13] aim at providing a camera pose estimate
relative to a given scene. The choice of the scene representation has a direct
impact on the way how the localization problem is solved. Using an image col-
lection to model a scene enables the use of efficient image retrieval techniques
[14, 15] for scalable localization. Recently proposed systems are able to handle
hundreds of thousands [12, 13] or even millions of images [2, 9]. They estimate
the position of the query image using the GPS tags of retrieved images [12, 13]. If
higher localization accuracy is required, a 3D point cloud is a more suitable scene
representation. Using correspondences between 2D image features and 3D scene
points, the full camera pose, i.e., position and orientation, can be estimated with
high precision [16]. Also, 3D models offer a more compact representation than
image database, which contain many features not related to 3D scene points.

In this paper, we represent a scene as a 3D point cloud obtained from an
offline Structure-from-Motion reconstruction, where every 3D point is associated
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Fig. 1: Illustration of the localization pipeline. The descriptors of 2D features and 3D
points are assigned to visual words. The camera pose is estimated from 2D-3D matches
between features and points by using an n-point pose algorithm inside a RANSAC-loop.

with its corresponding image descriptors. The main challenge in this setting is
to efficiently search for correspondences between thousands of 2D query image
features and millions of 3D scene points. Afterwards, the camera pose can be
estimated using RANSAC [17]. The number of RANSAC iterations depends on
the quality of the found matches. Thus, the correspondence search not only has to
be efficient but also highly accurate in order to avoid spending too much time on
pose estimation. Sattler et al . have shown that a simple, tree-based approximate
search through all point descriptors yields good registration performance [11].
However, this approach requires several seconds for the search alone. Recently,
efficient algorithms have been proposed that are up to one order of magnitude
faster [1, 10, 11]. So far, this speed-up comes at the cost of a lower number of
images that can be registered. In this paper, we propose a novel approach that
(a) is able to close the performance gap to slower tree-based search and (b) is
still one order of magnitude faster. At its core is a novel active search step that
uses established 2D-to-3D correspondences to trigger 3D-to-2D matching. These
additional matches required to close the performance gap can be found efficiently
by taking advantage of an intrinsic similarity between searches in both directions.
We balance the additional effort of the active search step by several visibility
filtering steps. We thoroughly evaluate the effects of all system parameters and
demonstrate state-of-the-art performance on three challenging datasets.

Related Work. Approaches such as SLAM [3, 5, 18] and PTAM [6] compute
the camera pose relative to an online-built 3D model of the scene. Since larger
reconstructions quickly become infeasible, they are restricted to smaller scenes.

Given an offline-built point cloud of a large-scale scene, Irschara et al . propose
an image retrieval-based system [1]. Their approach obtains correspondences by
matching 2D features from the query image to 2D features in the most simi-
lar database images. These image features in turn belong to 3D points in the
scene. Besides the images used in the reconstruction, the database also contains
synthetic views created by back-projecting 3D points into virtual cameras. For
real-time performance, GPU implementations for vocabulary tree-based retrieval
[14] and feature matching are used. Wendel et al . extend this pipeline to localize
MAVs by creating virtual views in full 3D instead of on the ground [4].

Alcantarilla et al . learn a similarity metric between images based on camera
poses and appearance information [8]. Given a query camera and a rough pose
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estimate, the metric can predict which 3D points should be visible in it. Li et

al . also use visibility information from the images used for the reconstruction to
guide a 3D-to-2D matching process [10]. They propose to accelerate the search
process with prioritization and early termination: When a match for a 3D point
is found, the priorities of the points visible with it in a database image increase.

In contrast, Sattler et al . investigate direct 2D-to-3D matching strategies [11].
Motivated by the registration performance of tree-based search, they propose
an efficient vocabulary-based search approach to establish 2D-to-3D matches.
Although their quantized representation does not achieve the same performance
as tree-based search, their approach still considerably improves on the methods
by Irschara et al . [1] and Li et al . [10], while achieving similar run-times.

In this paper, we combine 2D-to-3D and 3D-to-2D search into a novel active
correspondence search step that allows our approach to achieve the same high
registration performance as tree-based matching, while resulting in run-times
comparable to or faster than the most efficient available approaches. In prepa-
ration of presenting the active search mechanism in Sec. 3, we discuss several
important aspects of the image-based localization problem in the next section.
In a slight abuse of notation, we will refer to 2D features and their descriptors
simply as features and to 3D points and their descriptors as points.

2 The Image-Based Localization Problem

Fig. 1 visualizes the image-based localization problem. Given a 3D point cloud
of a scene and a query image, we want to compute the accurate camera pose of
the query image. Since the point cloud was obtained by Structure-from-Motion,
every 3D point is associated with at least two SIFT descriptors [19] from database
images. By extracting local features in the query image and matching them to
the database descriptors, we can establish correspondences between 2D features
and 3D points, using the SIFT ratio test [19] to reject ambiguous matches. The
main challenge in image-based localization is to efficiently find a large enough
number of high-quality correspondences to facilitate pose estimation.

2D-to-3D vs. 3D-to-2D Search. Since an image contains several orders of
magnitude fewer features than there are points in the model, matching a single
point against the features (3D-to-2D) is more efficient than matching in the
other direction. This comes at the cost of matching quality; Li et al . note that
about every 500th point matches by pure chance [10]. In contrast, the slower
2D-to-3D matching leads to higher-quality matches: If there are several points
in the database that closely match a feature, the ratio test will reject the feature
as too ambiguous. In return, this denser descriptor space is also more likely to
reject correct correspondences, especially for larger datasets. In the next section,
we therefore show how to combine the advantages of both search strategies –
retrieving more correspondences, while maintaining a high confidence level –
through our novel active search mechanism.

Prioritized Search. Correspondence search can be made more efficient by
considering only a fraction of all features/points. This requires a prioritization
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Fig. 2: After finding a 2D-to-3D match, we actively search for 3D-to-2D correspondences
for the N3D points closest to the matched point (red). Using coarser levels in the tree,
we are able to recover matches that would otherwise be lost due to quantization.

scheme that first evaluates the most promising features/points, e.g ., those most
likely to yield a match, and that stops when enough correspondences have been
found. For 3D-to-2D matching, Li et al . propose a prioritization scheme purely
based on co-visibility of 3D points [10]. When a match for a point p is established,
the priorities of all other points visible together with p in one database image are
increased. For 2D-to-3D matching, Sattler et al . propose a strategy purely based
on appearance [11]. They assign both points and features to a set of visual words.
The cost of processing a feature depends on the number of descriptor distance
computations needed to find its nearest neighbor. This number of computations
is proportional to the number of points assigned to the visual word of the feature.
Features are then evaluated in order of increasing cost, preferring words with only
few points and thus highly distinctive appearance. In this paper, we exploit the
intrinsic similarity between 2D-to-3D and 3D-to-2D matching to optimize the
strategy from [11] such that it prioritizes over both appearance and co-visibility.

Bridging the Performance Gap. There is a noticeable gap in the number of
images that can be registered with more efficient approaches [1, 10, 11] compared
to simple but slow tree-based search [11]. The main reason for this gap is that
the tree-based approach places fewer restrictions on the viewing conditions under
which a query image can be registered. Because of the prohibitive run-times of
tree-based search, there is however a strong need for more efficient, yet equally
effective and robust algorithms for correspondence search.

In the next section, we introduce our novel active correspondence search
scheme. This core component of our approach incorporates 3D-to-2D search into
2D-to-3D prioritized matching. Sec. 4 discusses an efficient implementation of our
method. As active search, although computationally efficient, requires additional
effort, Sec. 5 shows how to further improve the run-times of both active search
and RANSAC-based pose estimation through the use of visibility information.
Compared to tree-based search, our approach is one order of magnitude faster
at similar or superior registration rates.

3 Active Correspondence Search

We start from the framework proposed by [11] (c.f . Fig. 1). The points in the
model are assigned to visual words in an offline stage. Given a query image,
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Fig. 3: The three prioritization strategies: The direct strategy performs 3D-to-2D
matching as soon as candidate points have been found. The afterwards strategy fin-
ishes 2D-to-3D matching first before performing active search. The combined strategy
chooses the search direction based on search cost (indicated by dot sizes).

its SIFT features are again mapped to the vocabulary. This results in a list of
candidate points for every feature and the features are considered in ascending
order of the length of their lists. For every feature f , we search through all points
stored in its word and find its two nearest neighbors, i.e., the points p1, p2 with
the most similar descriptors. A correspondence (f, p1, ‖f − p1‖2) is established
if the SIFT ratio test ‖f − p1‖2/‖f − p2‖2 <0.7 is passed. Here, ‖f − p1‖2 is the
descriptor distance between the descriptors of f and p1.

Active Correspondence Search. The use of a visual vocabulary induces
quantization effects that limit the number of correspondences that can be found.
A simple approach to resolve these effects would be to use soft assignments,
mapping one feature to multiple visual words [20]. We instead propose to use
active correspondence search, a more efficient hierarchical approach. Its basic
idea is shown in Fig. 2: Once a 2D-to-3D correspondence between a feature f
and a point p has been found, there is a high probability that points in the 3D
region around p are also visible in the query image. While the method from [11]
ignores this information and continues matching features to points, we actively
search for correspondences among the N3D points closest in 3D space to p. Every
such point p′ is inserted into the prioritization scheme and once it is activated,
we search for a 3D-to-2D match among image features with descriptors similar to
p′. This set of similar features can again be identified using a visual vocabulary.
While we require a rather fine vocabulary for 2D-to-3D matching to limit the
search space, we need to use a coarser vocabulary for the 3D-to-2D search step
to guarantee that enough features are considered. A key observation is that
information about a coarser vocabulary can be obtained without additional cost
by using a vocabulary tree [14, 21] to perform the initial 2D-to-3D matching.
Using a coarser level in the tree has the additional benefit of recovering matches
lost due to quantization effects (c.f . Fig. 2). We provide details on an efficient
implementation of active correspondence search in Sec. 4. Note that active search
is only triggered by 2D-to-3D correspondences and not by 3D-to-2D matches.

Prioritization. Prioritization is key for efficient correspondence search. In our
formulation, correspondence search in any direction is modeled as finding the
two nearest neighbors stored in a visual word for a given descriptor. The pri-
oritization scheme from [11], in which the search cost of a descriptor depends
on the number of comparisons needed to find its nearest neighbors, is thus used



6 Torsten Sattler and Bastian Leibe and Leif Kobbelt

to prioritize search independently of the direction. We stop the search when N
matches have been found. The remaining questions are when to perform the ac-
tive search and which kind of information, appearance (2D-to-3D) or co-visibility
(3D-to-2D), should be preferred. When co-visibility is more important, a direct

prioritization strategy can perform active search as soon as a 2D-to-3D match
is found. 2D-to-3D search is resumed after matching the N3D candidate points
against the image features. This can lead to finding many matches in a small re-
gion in the image, yielding unstable configurations for pose estimation and worse
localization accuracy. If appearance information is preferred, 2D-to-3D search is
performed first and active search and 3D-to-2D matching follow afterwards. This
strategy might benefit only little from active search. We thus propose a combined

strategy to balance both directions. It performs active search as soon as a new
match is found and then uses the predicted search costs of the candidates to
sort them into a common prioritization scheme for both directions. This strat-
egy treats both kinds of information equally, always preferring the kind that is
cheaper to evaluate. Fig. 3 illustrates the three prioritization strategies.

Computational Complexity. Given a point cloud with P points and a vocab-
ulary of size W , the mean number of points stored in a word is P

W . Considering

c+1 words instead of one, soft assignment on average adds a search cost of c· P
W for

each considered feature. This results in an additional search time of O(c·F P
W )

for an image containing F features. In contrast, active search is triggered at
most N times until enough matches are found. Using a kd-tree, the N3D nearest
points can be found in time O(N3D log2(P )). Using a coarser vocabulary of size
W ′, one point is on average matched against F

W ′
features. Since N and N3D are

constants, active search introduces an additional cost of O(log2(P ) F
W ′

), which

is more efficient than soft assignments for large datasets. In practice, F
W ′

can be
considered constant for a fixed W ′, since an image contains 1k-20k features.

Comparison with Existing Methods. Compared to [11], our approach is
able to recover correspondences lost due to the fine vocabulary used. We show in
Sec. 6 that these matches are crucial to close the performance gap. In contrast to
[10], our active search is based on 2D-to-3D matches, which are inherently more
reliable than the 3D-to-2D matches used by Li et al . This allows our algorithm
to achieve both better performance and efficiency than [10]. Both results indicate
that merging the two search directions is critical to achieve good performance.
Active search even offers an advantage over tree-based search. Since the density
of the descriptor space is related to the number of 3D points, the ratio test will
remove more correct matches for larger datasets. By relaxing the matching to
the sparser space in the image, our method can recover these lost matches.

4 Efficient Implementation

In this section, we provide details on the implementation of our method.1 A
fine visual vocabulary of 100k words is used for 2D-to-3D matching, generated

1 Source code is available at http://www.graphics.rwth-aachen.de/localization
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Algorithm 1 3D-to-2D correspondence search

Given: point p′ with set of descriptors D(p′), set of features F found in image, level l in the tree,
set C of correspondences

1 Compute set AW of words on level l assigned to descriptors from D(p′)
2 Initialize the two nearest neighbors: f1 = f2 = noNNfound, dist1 = dist2 = ∞

/* Find two nearest neighbors in image */
3 for w ∈ AW do

4 F (w)=features from F assigned to word w on level l
5 for all pairs (d ∈ D(p′) assigned to w, f ∈ F (w)) do

6 Compute descriptor distance: dist = ‖f − d‖2

7 use dist to update nearest neighbors and distances dist1, dist2, s.t. f1 6= f2

/* Establish correspondence using SIFT ratio test */
8 if dist1, dist2 < ∞ and dist1/dist2 < 0.6 then

9 if C contains correspondence c = (f1, q, dist) then

10 if c not found by 2D-to-3D matching, replace (f1, q, dist) with (f1, p′, dist1) if dist1 < dist
11 else

12 add C = C ∪ {(f1, p′, dist1)}
Return: Set of correspondences C

with approximate k-means clustering [15] of SIFT descriptors. A vocabulary tree
with branching factor 10 is constructed on top of this vocabulary [21]. Similar to
[11], we represent a point stored in a word by the mean of all of its descriptors
assigned to this word. For memory efficiency, the entries of the mean are rounded
to the nearest integer values. Active search is incorporated into the 2D-to-3D
pipeline from [11] (c.f . Sec. 3). After finding N =100 matches, the camera pose
is estimated with a RANSAC-variant [22] using the 6-point DLT algorithm [16].

Alg. 1 shows our implementation of 3D-to-2D matching. As every point in the
model is visible in multiple images, a candidate point p′ for 3D-to-2D matching
usually has multiple descriptors D(p′) stored in different words of the fine vocab-
ulary. They define a set AW of activated visual words on level l in the tree. We
find the two features f1, f2 assigned to words from AW that have the smallest
descriptor distance to the descriptors from D(p′). The two for-loops in Alg. 1
thus define the search cost of p′. We enforce that f1 and f2 are distinct features
so that the SIFT ratio test can reject ambiguous matches. To reflect the larger
uncertainty inherent in 3D-to-2D correspondences, 3D-to-2D matches cannot re-
place 2D-to-3D correspondences. Features for which a 3D-to-2D correspondence
has been found are not considered for 2D-to-3D matching anymore.

The choice of the level l used in the tree directly controls the number of
assigned image features and thus the search cost for the candidate point p′. Since
a query image typically contains 1k-20k features depending on its resolution, we
use level two (100 words) when at most 5k features are found in the image and
level three (1000 words) otherwise. Thus, on average 5−50 features are assigned
to a word, i.e., the search cost for p′ can be assumed to be constant.

5 Incorporating Additional Visibility Information

Although more efficient than soft matching, the active search steps need addi-
tional computational effort. In this section we therefore show how to speed up
the localization pipeline in order to compensate for this run-time increase. The
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Fig. 4: (a) Points and cameras define a bipartite graph G. (b) Neighboring points not
directly visible with the matched point p (pink) are removed. (c) We consider only
the largest connected component (dashed) in the subgraph GC (pink) defined by the
matches. (d) Clustering cameras into sets defines a new bipartite graph.

improvements are based on the observation that the images used for the recon-
struction approximate the set of viewpoints from which a point is visible. This
information allows us to speed up both 3D-to-2D matching and RANSAC-based
pose estimation by filtering out points unlikely to be visible. Due to their ap-
proximative nature, such filters can also remove correct points. We propose a
simple strategy based on camera sets to recover the lost performance.

The filtering steps can be expressed as operations on a bipartite graph G
defined by the cameras and 3D points in the model. Here, one set of nodes in G
represents the images and the other one the points (c.f . Fig. 4(a)).

Filtering 3D Points. Close proximity in 3D space does not imply co-visibility
of two points; they could have been seen from very different directions (c.f .
Fig. 4(a)). Our point filter removes all points from the N3D nearest neighbors
not directly visible with the point p that triggered active search. Only points
two edges away from p in G are used for 3D-to-2D matching (c.f . Fig. 4(a),(b)).

A RANSAC Pre-Filter. As shown in Fig. 4(c), the established matches define
a subgraph GC of G. Points in different connected components in GC should not
be visible together. Our RANSAC pre-filter finds the connected component in
GC containing the most 3D points and keeps only matches pointing to this
component. This accelerates the RANSAC-based pose estimation since outliers
are removed. Notice that this filter has little impact on 3D-to-2D matches since
it is unlikely to find further correspondences around a wrong 2D-to-3D match.

Using Camera Sets. The filtering steps might be too aggressive (c.f . green
points in Fig. 4(b)). By merging cameras we try to find a better, more continuous
approximation of point visibility. For every image Ij , we define the set of similar
images sim(Ij) as all images among the k closest cameras whose viewing direction
differs from Ij by at most 60◦. A minimal subset S′⊂S ={sim(Ij)} of the camera
sets is selected such that every image Ij is contained in at least one set s∈S′.
This set cover problem is solved using a Greedy algorithm which iteratively
selects the set containing the most cameras that have not yet been covered [10].
As shown in Fig. 4(d), the 3D points and S′ again form a bipartite graph G′,
replacing an edge {p, Ij} with {p, s} if Ij ∈s for s∈S′. When using camera sets,
G′ is used instead of G to define the two filtering steps described above.
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Table 1: Datasets used for experimental evaluation

# Cameras # 3D Points # Descriptors # Query Images
Dubrovnik 6044 1, 886, 884 9, 606, 317 800

Rome 15, 179 4, 067, 119 21, 515, 110 1000
Vienna 1324 1, 123, 028 4, 854, 056 266
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Fig. 5: Effect of N3D on the mean number of registered images (top row) and the mean
registration time (bottom row). The matches found through active search enable us to
achieve the performance of tree search while being substantially faster. Compared to
[11] the registration time increases with N3D due to the added computational effort.

6 Experimental Evaluation

In this section we evaluate our localization approach based on active search, as
well as the optimizations discussed in the last section. To allow an easy and fair
comparison, we perform our experiments on the datasets already used in [1, 10,
11], kindly provided by Irschara et al . and Li et al . The Dubrovnik and Rome
datasets were obtained by generating 3D point clouds from Flickr images and
removing some images together with their descriptors and all points visible in
only one remaining camera [10]. The removed images are used as query images.
The Dubrovnik model consists of a single connected component, while the Rome
model consists of multiple reconstructions of individual landmarks. The Vienna
model was generated from images of distinct landmarks taken with a single
camera at regular intervals. Images from the Panoramio website are used for
testing [1]. All query images have a maximal side length of at most 1600 pixels.
Details on the datasets can be found in Table 1. Following [10, 11], we consider
an image as registered if the best pose found by RANSAC has at least 12 inliers.

All experiments for our methods were performed using a single CPU thread
on a PC with an Intel i7-920 CPU with 2.79GHz. We report the mean registration
performance and registration times of our pipeline, excluding feature extraction,
averaged over 10 repetitions. Localization accuracy is measured on a metric
version of the original Dubrovnik model. Following [11], we report the deviation
of the averaged registered camera positions from the ground truth positions.

Evaluation of Active Search. We first evaluate only the proposed active
correspondence search together with the three prioritization strategies described
in Sec. 3 for different values of N3D. (None of the optimizations from Sec. 5 is
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Table 2: Localization errors for the Dubrovnik dataset using the three prioritization
strategies and different values for N3D. The direct strategy performs worse than the
other strategies due to its tendency to find many matches in the same image region.

Method / N3D Median Quartiles [m] #images with error
Strategy [m] 1st 3rd < 18.3m > 400 m
direct

50
1 .9 0 .5 7 .6 674 12

combined 1.3 0.4 5.3 707 10
afterwards 1.3 0.4 6.1 693 15

direct

100
2 .0 0 .6 10 .4 664 12

combined 1.3 0.4 6.1 694 8
afterwards 1.3 0.4 5.2 688 16

direct

150
2 .2 0 .6 9 .8 647 16

combined 1.3 0.4 5.8 696 13
afterwards 1.4 0.4 5.2 697 14

direct

200
2 .4 0 .7 11 .0 655 13

combined 1.3 0.4 5.6 700 9
afterwards 1.4 0.4 5.6 693 10

direct

250
2 .6 0 .7 11 .5 642 17

combined 1.3 0.4 5.6 700 12
afterwards 1.3 0.4 5.5 694 13

P2F [10] 9.3 7.5 13.4 655 -
all desc. [11] 1.4 0.4 5.9 685 16
int. mean [11] 1.3 0.5 5.1 675 13

used yet.) Fig. 5 shows the mean number of registered images and the mean
registration times for the three datasets. The results clearly validate our ap-
proach, showing that the additional 3D-to-2D matches found through active
search are instrumental for achieving a similar registration performance as tree-
based search. Fig. 5 also shows that our method is slower than pure 2D-to-3D
matching [11], observing an increase in registration times by 0.4s on the Vi-
enna dataset. Note that the higher increase in registration times for the Vienna
dataset is caused by RANSAC. Although active search finds the matches required
to register additional images, the inlier ratio for these newly located images is
rather low. Still, our approach is substantially faster than the 3 seconds required
by kd-tree search. Of particular interest is the Rome dataset, with a noticeable
increase in registration performance from 980 to 990 images compared to tree
search. The reason is that the Rome dataset contains the most descriptors. The
resulting descriptor space is so dense that the SIFT ratio test also tends to
remove many correct matches. Active correspondence search is able to recover
these lost matches and offers better registration performance than tree search.

Among the three prioritization strategies, the direct strategy that prefers
visibility information offers the best registration performance. As discussed in
Sec. 3, it is however susceptible to finding many correspondences in a small
part of the image, resulting in a worse localization accuracy, as shown in Tab. 2
for Dubrovnik. Comparing the other two strategies with the location accuracies
from [10, 11] shows that we do not trade registration performance for localization
accuracy, as the additionally registered images do not result in larger localization
errors. Tab. 2 shows that our combination of 2D-to-3D and 3D-to-2D matching
clearly outperforms pure 3D-to-2D search [10] in terms of accuracy, as evident
by a decrease of 8 meters in the median localization error.
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Fig. 6: Influence of the proposed filters on registration performance and efficiency. The
combined strategy and different values for N3D from {50, 100, 150, 200, 250} were used
to create the curves, with the rightmost point belonging to N3D =250. Filtering signifi-
cantly reduces the registration times while slightly decreasing registration performance.

The experiments show that the combined strategy offers a good compromise
between the registration performance of the direct and the localization accuracy
of the afterwards prioritization. This demonstrates that both appearance (direct)
and visibility (afterwards) information are equally important for localization. We
therefore use the combined strategy for the following experiments.

Faster Registration using Filtering. Although the focus in this paper is on
registration performance, we are nonetheless interested in an as-fast-as-possible
localization method. The point filter and RANSAC pre-filter described in Sec. 5
were designed for this purpose. In this experiment, we evaluate the impact of
the filters depending on the value of N3D for the combined strategy. Fig. 6 shows
the effect of applying the filters on registration performance and run-times. As
expected, using the filters reduces the mean registration performance slightly.
This decrease by at most 2 images for a given value of N3D is insignificant
compared to the gain in efficiency. We note that the behavior of the filters differs
for the datasets. The RANSAC pre-filter has the largest impact on the Vienna
dataset (c.f . Fig 6(c)), which contains the fewest descriptors among all datasets.
The 2D-to-3D matching part of our approach is thus more likely to find wrong
correspondences by chance. Since the wrong matches are distributed all over the
model, the RANSAC pre-filter can remove most of them. In contrast, the effect
of the filters is less pronounced on the Rome dataset (c.f . Fig 6(b)). The Rome
dataset contains multiple reconstructions of different landmarks, each consisting
of images taken from very similar viewpoints. Thus many points are visible
together in at least one image. This limits the effectiveness of the RANSAC
pre-filter. Furthermore, the denser descriptor space of the dataset makes it less
likely to find wrong matches which could be removed by the pre-filter.

Based on the results from Fig. 6, we fix N3D = 200 (second to rightmost
point on the curves) for the following experiments as higher values decrease the
efficiency, while lower values yield worse registration performance.

Using Camera Sets. The reason that the filters decrease registration perfor-
mance is that the images in the reconstruction offer only a discrete approximation
to the regions in which a point is visible. In Sec. 5, we therefore proposed to use
a more continuous representation by clustering sets of cameras. Fig. 7 shows the
results for the combined strategy with N3D =200, both filters, and values from
{0, 5, 10, 15, 20} for the number k of nearest cameras considered for generating
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Fig. 7: Using camera sets instead of the original images improves the registration per-
formance. Results (combined strategy, N3D = 200, both filters) are shown for (a)
Dubrovnik, (b) Rome, and (c) Vienna, where k = 0 uses the original images. The black
line denotes the registration performance without filtering. The choice of k is data
dependent, but k = 10 yields a good balance between performance and efficiency.

the sets. As predicted, using camera sets improves registration performance com-
pared to using the original images (k = 0). At the same time, it increases the
registration times slightly, since less points and matches can be filtered. As more
and more unrelated cameras are clustered together with increasing k, the perfor-
mance gain decreases. Since the clustering strongly depends on the distribution
of camera positions, the actual choice of k is dataset dependent. However, values
from the set {5, 10, 15} all provide better registration performance than k = 0,
while still yielding faster registration times on all datasets but Rome compared
to not using filtering. Therefore, we propose to use k = 10 as a good compromise.

Comparison with State-of-the-Art. Table 3 compares our proposed ap-
proach (using the combined strategy with N3D = 200, k = 10 and both filters)
with published results of current state-of-the-art methods. P2F denotes the 3D-
to-2D matching by Li et al ., where P2F+F2P also performs 2D-to-3D matching
if P2F fails [10]. Since results for the method from [1] are only available for Vi-
enna, Li et al . tested a vocabulary tree-based approach on Dubrovnik and Rome,
using either all features in the images or only those belonging to 3D points [10].

Our approach achieves the same or better registration performance than tree-
based search. At the same time, it is on average one order of magnitude faster due
to the filtering steps. Compared to [10], our approach achieves significantly better
registration performance, being able to register at least 5% more images on each
dataset. Compared to [11], a similar performance increase is achieved for Vienna
while the gain is smaller on the other datasets as the room for improvements is
smaller. We notice that only 0.6% of all images for Dubrovnik and Rome could
not be registered at least once during the 10 repetitions of the experiments. Thus
our approach effectively solves both datasets. The better performance does not
come at the expense of efficiency, e.g ., the registration times for Vienna are
decreased by 190ms compared to [11]. On the other datasets, we achieve similar
registration times as [11]. Furthermore, the proposed RANSAC pre-filter can
help us to significantly reduce rejection times as well, saving more than 1.1s on
both Dubrovnik and Vienna. The results show that our combination of both
matching directions outperforms approaches matching only into one direction.
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Table 3: Comparison of the method proposed in this paper (N3D = 200, combined

prioritization, both filters, and k = 10) with current state-of-the-art approaches. We
achieve superior registration performance at registration times comparable to or faster
than the other methods. Except for [1], mean registration and rejection times are given.

Method Dubrovnik Rome Vienna
# reg. registr. reject. # reg. registr. reject. # reg. registr. reject.
images time [s] time[s] images time [s] time [s] images time [s] time [s]

active search 795.5 0.25 0.56 991.5 0.28 2.14 220.1 0.27 0.52
all desc. [11] 783.9 0.31 2.22 976.9 0.29 1.90 207.7 0.50 2.40
int. mean [11] 782.0 0.28 1.70 974.6 0.25 1.66 206.9 0.46 2.43

P2F [10] 753 0.73 2.70 921 0.91 2.93 204 0.55 1.96
P2F+F2P [10] 753 0.70 3.96 924 0.87 4.67 205 0.54 3.62

Voc. tree (all)[10] 668 1.4 4.0 828 1.2 4.0 - - -
Voc. tree (pts.)[10] 677 1.3 4.0 815 1.2 4.0 - - -
Voc. tree GPU[1] - - - - - - 165 ≤ 0.27 (worst case)

kd-tree [11] 795 3.4 14.45 983 3.97 6.27 220 3.44 2.72

Table 4: Localization errors for our proposed method on Dubrovnik (combined strategy,
N3D = 200, k = 10, both filters). Although our approach is able to register more images
than the competing methods, it maintains a similar localization accuracy.

# reg. Median Quartiles [m] #images with error
Method images [m] 1st 3rd < 18.3m > 400 m

active search 795.5 1.4 0.4 5.3 704 9

all desc. [11] 783.9 1.4 0.4 5.9 685 16
int. mean [11] 782.0 1.3 0.5 5.1 675 13

P2F [10] 753 9.3 7.5 13.4 655 -

Finally, Tab. 4 compares the localization accuracy of our approach with the
methods from Li et al . and Sattler et al . Our approach achieves a similar accu-
racy as [11] for the mean and 3rd quartile errors, while it can register 19 more
images with an error < 18.3m. This shows that the better registration perfor-
mance of our algorithm does not come from badly localized images.

7 Conclusion & Future Work

In this paper we have presented an active search approach that efficiently finds
those additional correspondences needed to close the gap in registration perfor-
mance between fast methods and slower tree-based search that has been observed
in [11]. The resulting combination of 2D-to-3D and 3D-to-2D matching achieves
superior registration performance on three standard benchmark datasets. It is
one order of magnitude faster than tree-based search, while yielding comparable
or better run-times than published methods. We show the advantage of combin-
ing both search directions compared to matching in only a single direction.

The results on the Rome dataset indicate that our approach offers a better
scalability than, e.g ., tree-based search. We plan to investigate this behavior in
more detail. Our method will also benefit from better visibility prediction.
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