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Traditionally, plant disease recognition has mainly been done visually by human. It is often

biased, time-consuming, and laborious. Machine learning methods based on plant leave

images have been proposed to improve the disease recognition process. Convolutional

neural networks (CNNs) have been adopted and proven to be very effective. Despite

the good classification accuracy achieved by CNNs, the issue of limited training data

remains. In most cases, the training dataset is often small due to significant effort in

data collection and annotation. In this case, CNN methods tend to have the overfitting

problem. In this paper, Wasserstein generative adversarial network with gradient penalty

(WGAN-GP) is combined with label smoothing regularization (LSR) to improve the

prediction accuracy and address the overfitting problem under limited training data.

Experiments show that the proposed WGAN-GP enhanced classification method can

improve the overall classification accuracy of plant diseases by 24.4% as compared to

20.2% using classic data augmentation and 22% using synthetic samples without LSR.

Keywords: plant disease, classification, regularization, convolutional neural network, generative adversarial

network

INTRODUCTION

With the increasing global population, the demand for agriculture production is rising. Plant
diseases cause substantial management issues and economic losses in the agricultural industry
(Abu-Naser et al., 2010). It has been reported that at least 10% of global food production is lost
due to plant disease (Strange and Scott, 2005). The situation is becoming increasingly complicated
because climate change alters the rates of pathogen development and diseases are transferred from
one region to another more easily due to the global transportation network expansion (Sladojevic
et al., 2016). Therefore, early detection, timely mitigation, and disease management are essential for
agriculture production (Barbedo, 2018a).

Traditionally, plant disease inspection and classification have been carried out through optical
observation of the symptoms on plant leaves by human with some training or experience. Plant
disease recognition has known to be time-consuming and error-prone. Due to the large number
of cultivated plants and their complex physiological symptoms, even experts with rich experience
often fail to diagnose specific diseases and consequently lead to mistaken disease treatments and
management (Ferentinos, 2018).
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Many methods have been developed to assist disease
recognition and management. Lab-based techniques have been
developed and established in the past decades. The commonly
used techniques for plant disease recognition include enzyme-
linked immunosorbent assay (ELISA), polymerase chain reaction
(PCR), immunoflourescence (IF), flow cytometry, fluorescence
in situ hybridization (FISH), and DNA microarrays (Sankaran
et al., 2010). However, these techniques require an elaborate
procedure and consumable reagents. Meantime, image-based
machine learning methods for plant disease recognition,
which identify plant diseases by training computers with
labeled plant images, have become popular. The advantages
of image recognition include: (1) the ability to deal with a
large number of input parameters, i.e., image pixels, (2) the
minimization of human errors, and (3) the simplified process
(Patil and Kumar, 2011).

The key to improving the plant disease recognition accuracy
is to extract the right features of the surface of plant leaves
(Naresh and Nagendraswamy, 2016; Zhang and Wang, 2016).
The emergence of deep learning techniques has led to improved
performance. Although deep learning based models take a long
time to train, its testing time is fast because all information from
the training dataset has been integrated into the neural network
(Kamilaris and Prenafeta-Boldú, 2018). For the agricultural
applications, convolutional neural networks (CNN) have been
used for image recognition (Lu et al., 2017). Dhakate et al. used a
convolutional neural network for the recognition of pomegranate
plant diseases and achieved 90% overall accuracy (Dhakate
and Ingole, 2015). Ghazi et al. proposed a hybrid method of
GoogLeNet, AlexNet, and VGGNet to classify 91,758 labeled
images of different plant organs. Their combined system achieved
an overall accuracy of 80% (Ghazi et al., 2017). Ferentinos
developed CNNmodels to classify the healthy and diseased plants
using 87,848 images. The success rate was significantly high
which can reach 99.53% (Ferentinos, 2018). Ma et al. proposed
a deep CNN to recognize four cucumber diseases. The model was
trained using 14,208 images and achieved an accuracy of 93.4%
(Ma et al., 2018). With the high classification accuracy, it can be
concluded that CNNs on leave images are highly suitable for plant
disease recognition (Grinblat et al., 2016).

It should be noted that the high prediction accuracy is
predicated on that thousands of labeled images were used
to train CNNs. A major problem often facing the automatic
identification of plant diseases with CNNs is the lack of labeled
images capable of representing the wide variety of conditions
and symptom characteristics found in practice (Barbedo, 2019).
Experimental results indicate that while the technical constraints
linked to automatic plant disease classification have been largely
overcome, the use of limited image datasets for training brings
many undesirable consequences that still prevent the effective
dissemination of this type of technology (Barbedo, 2018b). Real
datasets often do not have enough samples for deep neural
networks to properly learn the classes and the annotation errors,
which may damage the learning process (Barbedo, 2018a). If the
model learns to assign a full probability to the ground truth
label for each training example, it is not guaranteed to generalize
because the model becomes too confident about its predictions

(Szegedy et al., 2016). It should be noted that although it is
relatively cheap to collect images, using additional unlabeled
data is non-trivial to avoid model overfitting. This serves as the
major motivation for this study on developing a newmethod that
can address the plant disease classification with limited labeled
training images.

Data augmentation using synthetic images is the most
common method used in training CNN with small amounts of
data (Emeršic et al., 2017). Hu et al. synthesized face images
by compositing the automatically detected face parts from two
existing subjects in the training set. Their method improved over
the state-of-the-art method with a 7% margin (Hu et al., 2017).
Guo et al. merged the training set with another dataset from
the same domain and obtained a performance improvement of
2% (Guo and Gould, 2015). Papon et al. proposed a rendering
pipeline that generates realistic cluttered room scenes for the
classification of furniture classes. Compared to using standard
CNN, the proposed method improved the classification accuracy
by up to 2% (Papon and Schoeler, 2015). These methods generate
synthetic images by extracting and recombining of local regions
of different real images.

In this study, we designed a generative adversarial network
(GAN) to generate completely new synthetic images to enhance
the training set. GAN was designed based on game theory
to generate additional samples with the same statistics as
the training set. Compared with the methods in the existing
literature, GAN is capable to generate full synthetic images that
can increase the diversity of the dataset. Therefore, it has become
an increasingly popular tool to address the limited dataset issue
(Goodfellow et al., 2014). Nazki et al. (2020) proposed Activation
Reconstruction (AR) – GAN to generate synthetic samples of
high perceptual quality to reduce the partiality introduced by
class imbalance. Compared with Nazki’s work which considered
9 classes of images with about 300 images in each category,
our work has considered a more stringent situation of limited
dataset which includes 38 classes with 10-28 images in each
category. Therefore, one of the key objectives of this study is to
reduce overfitting of the model. Label smoothing regularization
(LSR) is introduced in this paper. In addition to maximizing
the predicted probability of the truth-ground class, LSR also
maximizes the predicted probability of the non-truth ground
classes (Szegedy et al., 2016). Similarly, Xie et al. (2016) proposed
a method named DisturbLabel which prevents the overfitting
problem by adding label noises to the CNN. Pereyra et al. (2017)
found out that label smoothing can improve the performance of
the models on benchmarks without changing other parameters.
In our paper, Wasserstein generative adversarial network with
gradient penalty (WGAN-GP) is combined with LSR to generate
images that can enlarge the training dataset and regularize the
CNNmodel simultaneously.

The main contributions of this study lie in two dimensions:

1. To improve the generalization of the proposed method,
multiple diseases and multiple plant types have been
considered in this paper. The majority of the existing
studies focused on a single type of disease or only one
plant type. In reality, there may exist multiple diseases for
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FIGURE 1 | Framework of the proposed method.

one plant type. However, in reality, it is often necessary
to detect the multiple diseases of multiple plant types.
Therefore, it would be preferable to design recognition
methods with the capability to address the multi-disease
and multi-plant type situation.

2. To address the issue of limited training set, an approach
that combines classical data augmentation and synthetic
augmentation is proposed. LSR has also been employed
to increase the generalization ability of the model.
Four experiments have been conducted to validate
the effectiveness of each component in the proposed
framework. The results show that compared to the classic
data augmentation methods, the proposed method can
improve the total accuracy by 4.2%.

The rest of this paper is organized as follows. Section 2
introduces the motivation of this paper and the structure of the
proposed regularized GAN-based approach. Section 3 includes a
case study, the experiment results and comparisons. Finally, the
paper concludes with the summary, findings, and future research
directions in Section 4.

MATERIALS AND METHODS

Image-based plant disease recognition techniques have been
developed with the reduced cost for image collection and the
increased computational resources. However, in many situations
for plant disease, there is not enough well-labeled data due to
the high cost of data annotation. Under these circumstances, the
machine learningmodels are prone to overfitting and fail to make
accurate classifications for new observations. This study aims to
achieve high plant disease classification accuracy with limited
training dataset.

Framework of the Proposed Method
To improve the prediction accuracy of CNN in the classification
of plant diseases using a limited training dataset, three techniques
have been designed and implemented in this study, i.e., data
augmentation, WGAN-GP, and LSR. The framework of the
proposed method is shown in Figure 1. The first step is to
train the WGAN-GP with LSR using real images. The trained
WGAN-GP is then used to generate additional labeled images.
The synthetic images will be mixed with real images and
then augmented through classic data augmentation methods.

Finally, the combined dataset will be used to train the CNN.
In the following few sections, we will discuss each of the
components in detail.

Convolutional Neural Networks (CNN)
Convolutional Neural Networks is used as the supporting
framework of our method. CNN is a class of deep, feed-forward
artificial neural networks. It was adopted widely for its fast
deployment and high performance on image classification tasks.
CNNs are usually composed of convolutional layers, pooling
layers, batch normalization layers and fully connected layers.
The convolutional layers extract features from the input images
whose dimensionality is then reduced by the pooling layers.
Batch normalization is a technique used to normalize the
previous layer by subtracting the batch mean and dividing by
the batch standard deviation, which can increase the stability
and improve the computation speed of the neural networks. The
fully connected layers are placed near the output of the model.
They act as classifiers to learn the non-linear combination of the
high-level features and to make numerical predictions. Detailed
descriptions on each type of function can be accessed from Gu
et al. (2018).

It should be noted that CNN requires a large training dataset,
which is typically not the case for plant disease recognitions.With
the number of model parameters is greater than the number of
data samples, a small training dataset will lead to the overfitting
problem, which results from a model that responds too closely to
a training dataset and fails to fit additional data or predict future
observations reliably. One of the commonly adopted methods to
address this problem is data augmentation.

Data Augmentation
Data augmentation is a method to increase the number of labeled
images. The classic data augmentation methods include vertical
flipping, horizontal flipping, 90◦ counterclockwise rotation,
180◦ rotation, 90◦ clockwise rotation, random brightness
decrease, random brightness increase, contrast enhancement,
contrast reduction and sharpness enhancement. Figure 2

lists the examples of original image (Figure 2A), rotation
(Figure 2B), brightness increase (Figure 2C), and contrast
increase (Figure 2D).

Although data augmentation techniques decrease the
impact of the limited training dataset problem, they cannot
reproduce most of the practical diversity. This is also the
reason why the generative adversarial network has been
incorporated in this study.

Wasserstein Generative Adversarial
Network (WGAN)
Unlike regular data augmentation methods, GAN is able to
generate new images for training, which increases the diversity
of data. GANs were firstly introduced by Ian Goodfellow et al.
(2014). The generative adversarial networks (GANs) consist
of two sub-networks: a generator and a discriminator. The
generator captures the training data distribution while the
discriminator estimates the probability that an image came from
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FIGURE 2 | Classic data augmentation methods. (A) Original, (B) Rotation, (C) Brightness, and (D) Contrast.

FIGURE 3 | Training process of the original GAN.

the training data rather than the generator.

min
G

max
D

V(D,G) = Ex−pdata(x)[logD(x)]

+ Ez−pNoise(z) [log(1 − D(G(z))]
(1)

WhereD represents the discriminator network,G is the generator
network, z is a noise vector drawn from a distribution pNoise(z), x
is a real image drawn from the original dataset pdata(x).

The idea behind Eq. (1) is that it increases the ability of
the generator to fool the discriminator which is trained to
distinguish synthetic images from real images. The training
process of the original GAN is shown in Figure 3. The specific
steps are as follows.

1. Initialize the parameters of the generator and
the discriminator.

2. Sample a batch of noise samples for the generator. Usually,
uniform distribution or Gaussian distribution is used.

3. Use the generator to transform the noise samples and
predefined labels into images that are labeled as fake.

4. The real images are labeled as true. Then the real images
and the synthetic images are mixed and used as the input of
the discriminator.

5. Train the discriminator to improve the ability to classify the
synthetic images and the real images.

6. Train the generator to generate more images that will be
discriminated as true by the generator.

7. Repeat step 2 - step 6 until the termination condition is
satisfied.

Many variants of GAN have been proposed in the past several
years. Mirza et al. proposed the conditional GAN, which can
provide better representations for multimodal data generation
(Mirza and Osindero, 2014). Radford et al. proposed the deep
convolutional GAN (DCGAN), which allows training a pair
of deep convolutional generator and discriminator networks
(Radford et al., 2015). Arjovsky et al. (2017) proposed the
Wasserstein GAN (WGAN) which uses Wasserstein distance to
provide gradients that are useful for updating the generator.
Even though the WGAN performs more stable in the training
process, it sometimes fails to converge due to the use of weight
clipping. Therefore, Gulrajani et al. (2017) proposed an improved
version of WGAN in which the weight clipping is replaced by the
gradient penalty.

As shown in Figure 4, the major differences between the
implementation of WGAN-GP and the original GAN include
two aspects. The first is that the WGAN-GP uses the Wasserstein
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FIGURE 4 | Training process of the WGAN-GP. The real images are labeled as

“1”. The synthetic images are labeled as “-1”. The Wasserstein distance and

gradient penalty are used in the loss function.

loss function with gradient penalty. Compared with the Jensen–
Shannon (JS) and Kullback–Leibler (KL) divergence used in the
DCGAN,Wasserstein distance canmeasure the distance between
the distribution of real images and fake images, which can help
improve the convergence of the network. The second is that in
the WGAN-GP, the real and fake images are labeled as 1 and -1,
while in the DCGAN, they are labeled as 1 and 0. This encourages
the discriminator (critic) to output scores that are different for
real and fake images.

WGAN–GP With Label Smoothing
Regularization (WGAN-GP-LSR)
In this paper, we made two changes to the WGAN-GP. The
first is that we combined the conditional GAN and the WGAN-
GP so that the generator can generate images of specific labels.
For the generator, the input is a noise vector and a predefined
label. Firstly, the label will be represented following the one-hot
encoding method. Then the label will be converted to a vector
that has the same size as the noise vector by multiplying a matrix.
In practice, we used the built-in embedding function of Keras
in which each input integer label is used as the index to access
a table that contains all possible vectors. The final input vector
is obtained by conducting an element wise multiply operation
between the noise vector and the label vector. The generator is
basically a neural network that outputs matrices of the image size
with one matrix representing one image. For the discriminator,
the output includes the class labels and the validity labels. The
second is that LSR is used to modify the loss function of GAN.
Compared with L1 and L2 regularization methods which change
the weights, LSR directly influences the output of the network
through the loss function. At the same time, LSR can increase the
robustness of GAN and help avoid model collapse.

In the training of GAN, the most widely used loss function for
multiclass classification tasks is the cross-entropy loss as Eq. (2),

L = −

N∑

i=1

log(p(i))q(i) (2)

where i is the index of the disease type, N is the total number
of disease types, p(i) is the predicted probability of the image
belonging to class i, q(i) equals to 1 if the label of the image is
i; otherwise, q(i) equals to 0.

The minimization of the cross-entropy loss is achieved when
the predicted probability of ground-truth classes is maximum.
However, if the model assigns full probabilities to ground-
truth labels, it is likely to be overfitted. In other words, it will
be very easy for CNN to determine the truth-ground classes

of the images. It means that the improvement brought by
generating additional images for training will be limited. Thus,
the regularization is introduced. Regularization is a technique
that makes the model less confident such that the model
generalizes better.

The LSR method is used in this paper. The objective function
of GAN is as Eq. (3) (Szegedy et al., 2016),

LLSR = −(1 − ε) log(p(y)) −
ε

N

N∑

i=1

log(p(i)) (3)

where ε is a hyperparameter between 0 and 1, i is the index of
the disease type, N is the total number of disease types, p(i) is the
predicted probability of the image belonging to non-truth ground
class i, p(y) is the predicted probability of the image belonging to
truth-ground class y.

If εis equal to 0, Eq. (3) is the same as Eq. (2) since the
second term in Eq. (3) becomes 0. The objective is to maximize
the predicted probability of the truth-ground class. If εis equal
to 1, the first term equals to 0. The objective is to maximize
the summation of the predicted probability of the other non-
truth ground classes. Therefore, in addition to maximizing the
predicted probability of the truth-ground class, the LSR function
also maximizes the predicted probability of the other non-
truth ground classes. In the training process of the generator,
the synthetic images will learn the same distribution of the
probability. In other words, each generated image contains the
features of all disease types, which can improve the generalization
ability of the model. In practice, a generated image will be
assigned with the label of the largest predicted possibility.

CASE STUDY

To validate the effectiveness of the proposed method, a case
study on plant disease classification has been conducted. The
dataset contains images of different plant diseases from multiple
species. Four experiments were conducted to compare the
results. In Experiment I, the CNN was trained without data
augmentation. In Experiment II, the CNN was trained with
classic data augmentation methods. In Experiment III, the CNN
was trained with classic augmentation methods and WGAN-
GP. In Experiment IV, the CNN was trained with classic data
augmentation methods and WGAN-GP-LSR.

Data Source and Performance Measure
The dataset used in this paper is from www.plantvillage.org.
The original dataset contains 43,843 labeled images. To imitate
the limited dataset problem, we randomly selected 873 images
(i.e., 1.9% of all available images) as the training dataset.
For each category, there are 10-28 images for training. We
also randomly selected 4,384 images (i.e., 10% of all available
images) as the testing dataset. This step was completed by
using the train_test_split function from sklearn package. As
shown in Table 1, the images include 14 crop species: Apple,
Blueberry, Cherry, Corn, Grape, Orange, Peach, Bell Pepper,
Potato, Raspberry, Soybean, Squash, Strawberry, and Tomato. It

Frontiers in Plant Science | www.frontiersin.org 5 December 2020 | Volume 11 | Article 583438

http://www.plantvillage.org
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Bi and Hu Plant Disease Classification

contains images of 17 fungal diseases, 4 bacterial diseases, 2 mold
(Oomycete) diseases, 2 viral diseases, and 1 disease caused by a
mite. Twelve crop species also have images of healthy leaves that
are not visibly affected by a disease (Hughes and Salathé, 2015).
The total number of classes is 38 which includes 12 groups of
healthy leaves and 26 groups of diseased leaves.

Four measurements have been used as the performance
indicators in this study, i.e., overall accuracy, precision, recall,
and F1 score. The overall accuracy, recall and precision can be
calculated as in Eq. (4)–Eq. (6).

Overall Accuracy =
True Positive + True Negative

Total
(4)

Recall =
True Positive

True Positive + False Negative
(5)

Precision =
True Positive

True Positive + False Positive
(6)

Since the problem is a multi-class classification problem, a
modification on recall and precision calculations has been made
as Eq. (7) and Eq. (8). The F1 score is the harmonic mean of the
recall and precision which can be calculated based on Eq. (9).

Recalli =
Mii∑
jMij

(7)

Precisioni =
Mii∑
jMji

(8)

F1 scorei =
2 × Recalli × Precisioni
Recalli + Precisioni

(9)

WhereMij is the number of images belonging to the ith category
that are predicted to be in the jth category,

∑
jMij is the number

of samples belonging to the ith category, Recalli is the ratio of
samples belonging to the ith category that are correctly classified,
Presioni is the ratio of samples predicted to be in the ith category
that are correctly classified.

Parameters of Neural Networks
The architectures of the generator and the discriminator are
shown in Table 2. For the generator, we established a network
with a 1000-dimensional vector input. The inputs consist of
two parts, i.e., noise and label. The noise is a vector of 1000
randomly generated variables. The label is converted to a vector
of size using the built-in embedding function in Keras. In the
function, each integer label is used as the index to access a
table that contains all possible vectors. Then the input can be
obtained by conducting element-wise multiplication on the two
1000-dimensional vectors. A dense layer is then used to covert
the input vector to a vector of size 128 × 16 × 16. Through
three convolutional layers, the output is an image of dimension
128 × 128 × 3. For the discriminator, all input images have been
resized to 128 × 128 × 3. The real images are assigned with label
“1” while the synthetic images are assigned with label “-1”. There
are two output layers. One output layer has one neuron telling
whether the input image is real or fake. The other output layer has
38 neurons representing the 38 classes of leaves. The optimizer
is RMSprop with the learning rate α = 0.00005. The objective
functions of the discriminator include Wasserstein loss function,
gradient penalty function, and cross-entropy function as Eq. (3).
We have conducted numerical experiments and analyses to tune

TABLE 1 | Dataset for classification of plant disease.

Specie Class N1 N2 Specie Class N1 N2

1.Botryospaeria obtuse 10 46 Potato 14. Alternaria solani 16 81

Apple 2. Venturia inaequalis 13 58 15. Phytophthora Infestans 24 58

3. Gymnosporangium juniperi-virginianae 15 30 H. Healthy 22 15

A. Healthy 20 162 Squash 16. Erysiphe cichoracearum 28 168

Blueberry B. Healthy 22 117 Strawberry 17. Diplocarpon earlianum 25 65

Cherry 4. Podosphaera spp. 19 98 I. Healthy 28 40

C. Healthy 14 76 Raspberry J. Healthy 19 51

5. Cercospora zeae-maydis 27 32 Soybean K. Healthy 28 378

Corn 6. Puccinia sorghi 25 90 Tomato 18. Xanthomonas campestris pv. vesicatoria 27 163

7. Exserohilum turcicum 24 69 19. Alternaria solani 25 93

D. Healthy 27 85 20. Phytophthora Infestans 28 142

8. Guignardia bidwellii 28 94 21. Fulvia fulva 24 70

Grape 9. Phaeomoniella spp. 21 117 22. Septoria lycopersici 28 136

10. Pseudocercospora vitis 26 90 23. Tetranychus urticae 27 149

E. Healthy 26 31 24. Corynespora cassiicola 21 121

Orange 11. Candidatus Liberibacter 28 467 25. Mosaic Virus 20 416

Peach 12. Xanthomonas campestris 27 187 26. Yellow leaf curl virus 25 26

F. Healthy 24 26 L. Healthy 24 136

Pepper 13. Xanthomonas campestris 16 96

G. Healthy 22 105

N1 represents the number of training images. N2 represents the number of testing images. The healthy classes are numbered from A to L. The diseased classes are

numbered from 1 to 26.
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TABLE 2 | Architectures of the generator and the discriminator.

Generator Discriminator

Type Output Size Type Output Size

Dense 8 × 8 × 128 Conv3-16(stride size = 2) 64 × 64 × 16

Up sampling 16 × 16 × 128 Conv3-32(stride size = 2) 32 × 32 × 32

Conv3-128 16 × 16 × 128 Zero padding 33 × 33 × 32

Up sampling 32 × 32 × 128 Conv3-64(stride size = 2) 17 × 17 × 64

Conv3-64 32 × 32 × 64 Conv3-128 17 × 17 × 128

Up sampling 64 × 64 × 64 Dense 1

Conv3-32 64 × 64 × 32 Dense 38

Up sampling 128 × 128 × 32

Conv3-3 128 × 128 × 3

The convolutional layer parameters are denoted as “Conv(kernel size)- (number of

channels).” Each convolutional layer is attached with a batch normalization layer

and an activation layer (Leaky ReLU).

the parameter ε in Eq. (3). The results showed that the quality
of the synthetic images of WGAN-GP with LSR was better when
ε was between 0.20 and 0.25. Therefore, the ε is set as 0.22
in this analysis.

As shown in Table 3, the CNN used to classify the images
is the VGG16 with updated 128 × 128 × 3 input (Simonyan
and Zisserman, 2014). The input layer is based on image RGB
color space with a size of 128 × 128 × 3. The output layer has
38 neurons representing the 38 classes of leaves. The optimizer
is RMSprop. The learning rate is 0.0001. The batch size is 100.
All the above networks were built using the Keras framework
(Chollet, 2015).

Experiment Design
To validate the proposed CNN framework, a comparative
experiment using 90% of the original dataset (i.e., 39459 images)
as train set and 10% (i.e., 4384 images) as the test set. The training
accuracy achieved 99.9% while the testing accuracy achieved
99.8%. The results are comparable to the results obtained
by Mohanty et al. (2016). It means that this framework can
achieve a high prediction accuracy if there are enough data
samples. Therefore, the proposed CNN framework can be used
as the baseline model for this study. The influence of the CNN
framework on the model performance can be ruled out.

TABLE 3 | Architecture of the CNN.

Type Output Size Type Output Size

Block 1 Input Layer 128 × 128 × 3 Block 4 Conv3-512 16 × 16 × 512

Conv3-64 128 × 128 × 64 Conv3-512 16 × 16 × 512

Conv3-64 128 × 128 × 64 Conv3-512 16 × 16 × 512

MaxPooling 64 × 64 × 64 MaxPooling 8 × 8 × 512

Block 2 Conv3-128 64 × 64 × 128 Block 5 Conv3-512 8 × 8 × 512

Conv3-128 64 × 64 × 128 Conv3-512 8 × 8 × 512

MaxPooling 32 × 32 × 128 Conv3-512 8 × 8 × 512

Block 3 Conv3-256 32 × 32 × 256 MaxPooling 4 × 4 × 512

Conv3-256 32 × 32 × 256 AverPooling 1 × 1 × 512

Conv3-256 32 × 32 × 256 Dense 512

MaxPooling 16 × 16 × 256 Dense 38

TABLE 4 | Number of images used for training in each epoch.

Methods # of original

images

# of classic

augmented images

# of synthetic

images

Experiment I 873 0 0

Experiment II 0 873 0

Experiment III 0 873 30*38

Experiment IV 0 873 30*38

Four numerical experiments have been designed, which used
873 training images and 4,384 testing images to keep consistency
in the number of testing images. In Experiment I, the CNN is
trained using the real dataset without any data augmentation. In
Experiment II, the CNN is trained using real images with classic
data augmentation methods. The classic augmentation methods
include 360 rotation range, 0.3 width shift range, 0.3 height
shift range, 0.3 zoom range, horizontal flip, and vertical flip. In
Experiment III, the CNN is trained using the classic augmented
data and the synthetic images generated by WGAN-GP without
LSR. In each epoch, we use the trained generator to generate
30 new synthetic images for each category. In Experiment IV,
the CNN is trained using the dataset generated by the proposed
method. The training process is the same as that of the third
experiment. It should be noted that, in Experiment III and IV,
WGAN-GP is trained using the classic augmented data and then
be used to generate synthetic images.

FIGURE 5 | Synthetic images in different training stages of WGAN-GP-LSR (# of iterations) (A) 0, (B) 2,000, (C) 12,000, and (D) 22,000.
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FIGURE 6 | Train loss of WGAN-GP-LSR.

The number of images used for training in each epoch
is shown in Table 4. In Experiment I, the 873 images used
in each epoch are the same. In Experiment II, III and IV,
the classic augmented images and synthetic images used in
each epoch are new images that are generated randomly
by the classical data augmentation methods and WGAN-GP,
respectively. This paper implements the classic augmentation
by using the ImageDataGenerator function from Keras package
which replaces the original batch with the new, randomly
transformed batch. Therefore, in Experiment II, III and IV, the
number of original images used in each epoch is 0. The generator

ran in parallel to the model for improved efficiency. For instance,
this allows us to do real-time data augmentation on images on
CPU in parallel to training our model on GPU.

To eliminate the influence of training time, the models are
trained until the curve of training accuracy converges. This
means the model performance cannot be improved by increasing
the training time. Therefore, the number of epochs is set as 700.
All experiments including the comparative experiment used the
same testing dataset.

Results and Comparisons
The most important process is the training of the GAN. The
training effectiveness of WGAN-GP-LSR can be illustrated by
Figure 5. At the beginning, the output of the generator is just
white noise. After 12,000 iterations, the outline of the leaf can be
identified visually. At the 22,000th iteration, the shape of the leaf
is much clearer. Figure 6 is the train loss curve of WGAN-GP-
LSR. It can be seen that after 20,000, the Wasserstein distance,
which is used to measure the distance between generated images
and real images, converges. Figure 7A shows the real images
drawn from 38 categories while Figure 7B shows the 38 samples
generated by the regularized GAN. Each sample belongs to
one unique class.

It can be found that the synthetic images look different from
the original ones. There are two reasons for this. The first reason
is that the synthetic images also contain information from other
classes because of LSR. For example, for a classification problem
of five classes, the ideal output of discriminator for a sample

FIGURE 7 | Original images and generated image samples. The images at the same location belong to the same class. The healthy classes are numbered from A to

L. The diseased classes are numbered from 1–26. (A) Original images (B) Samples generated by the WGAN-GP-LSR.
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FIGURE 8 | Results of the four numerical experiments (A) Pure CNN, (B) CNN+classic data augmentation, (C) CNN+ data augmentation +WGAN-GP, and (D)

CNN+ data augmentation+WGAN-GP-LSR.

of class 1 should be [1,0, 0, 0, 0]. However, to increase the
generalization ability of the model, the ideal output is expected
to be [0.6, 0.1, 0.1, 0.1, 0.1]. This means the generated images
also have small probabilities to be classified as other non-ground-
truth classes. The second reason is that the WGAN-GP cannot
generate perfect images that restore all details of real images
due to the limited training set. The discriminator of WGAN
only focuses on some specific regions (e.g., leaf shape, yellow
spot, hole) that it can extract features from. Therefore, some
information, such as background color and contrast degree, may
be lost. However, the neural network can extract the right features
to make predictions. The trained generator is used to generate
additional images. Those images are mixed with real images and
used as the input of the CNN.

The results of the four experiments are shown in Figure 8.
From Figure 8A, it can be found that after about 60 epochs,
the training accuracy in Experiment I is close to 1 while the
test accuracy is only about 60%. This is an indicator that
the model is overfitted. It can be seen from Figure 8B that
after using the classic data augmentation methods, the test
accuracy in Experiment II is about 80%, which is 20% higher
than that in Experiment I. Figure 8C shows the results of
training CNN with classic data augmentation methods and
synthetic data augmentation. After introducing the WGAN-
GP, the test accuracy is improved by 1.9%. It proves that

the synthetic images can increase the diversity of the dataset
and improve the prediction accuracy. Since there are more
training images, the curve of test accuracy is more stable
than that in Experiment I and Experiment II. The results
of Experiment IV is shown in Figure 8D. Compared to
using WGAN-GP without LSR, the proposed method can
improve the test accuracy by 2.1%, which validates the
effectiveness of LSR.

Table 5 lists the training accuracy and test accuracy of
the above four experiments. Compared to using CNN only,
the proposed method improves the test accuracy by 21.6%.

TABLE 5 | Comparisons among four methods.

Methods Training accuracy Test accuracy

Pure CNN 100% 60.40%

CNN + classic data

augmentation

90.08% 80.57%

CNN + classic data

augmentation+

WGAN-GP

98.23% 82.41%

Proposed method

(CNN + classic data

augmentation+

WGAN-GP-LSR)

97.84% 84.78%
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TABLE 6 | Recall, precision and F1 scores of 26 diseases (R: Recall; P: Precision; F: F1 score).

Disease No. Experiment I Experiment II Experiment III Experiment IV

R P F R P F R P F R P F

1 0.17 0.89 0.29 0.48 0.54 0.51 0.33 0.88 0.48 0.46 0.60 0.52

2 0.59 0.61 0.60 0.86 0.77 0.81 0.66 0.84 0.74 0.93 0.72 0.81

3 0.37 0.41 0.39 0.50 0.88 0.64 0.70 0.75 0.72 0.30 0.56 0.39

4 0.41 0.85 0.55 0.88 0.43 0.58 0.43 0.93 0.59 0.71 0.96 0.82

5 0.50 0.42 0.46 0.69 0.56 0.62 0.47 0.68 0.56 0.56 0.72 0.63

6 0.53 0.80 0.64 0.89 0.90 0.89 0.96 0.73 0.83 0.92 0.86 0.89

7 0.87 0.65 0.75 0.78 0.76 0.77 0.61 0.91 0.73 0.81 0.79 0.80

8 0.28 0.40 0.33 0.94 0.45 0.61 0.69 0.87 0.77 0.74 0.69 0.71

9 0.92 0.55 0.69 0.67 0.85 0.75 0.91 0.91 0.91 0.91 0.91 0.91

10 0.51 0.84 0.63 0.62 0.95 0.75 0.58 0.91 0.71 0.60 0.98 0.74

11 0.96 0.66 0.78 0.93 0.98 0.95 0.96 0.95 0.96 0.99 0.97 0.98

12 0.66 0.93 0.77 0.95 0.64 0.77 0.90 0.90 0.90 0.95 0.80 0.87

13 0.73 0.43 0.54 0.85 0.55 0.67 0.81 0.71 0.76 0.93 0.53 0.68

14 0.52 0.75 0.61 0.84 0.65 0.74 0.35 0.93 0.50 0.89 0.94 0.91

15 0.12 0.78 0.21 0.79 0.54 0.64 0.72 0.95 0.82 0.69 0.89 0.78

16 0.57 0.98 0.72 0.94 0.88 0.91 0.94 0.82 0.88 0.86 0.97 0.91

17 0.88 0.78 0.83 0.71 0.63 0.67 0.86 0.84 0.85 0.89 0.75 0.82

18 0.28 0.62 0.38 0.62 0.86 0.72 0.84 0.79 0.81 0.66 0.98 0.79

19 0.22 0.65 0.32 0.53 0.52 0.52 0.76 0.57 0.65 0.62 0.66 0.64

20 0.43 0.59 0.50 0.62 0.73 0.67 0.67 0.77 0.72 0.70 0.75 0.73

21 0.29 0.54 0.37 0.54 0.78 0.64 0.81 0.92 0.86 0.81 0.70 0.75

22 0.65 0.57 0.61 0.52 0.89 0.66 0.94 0.52 0.67 0.76 0.70 0.73

23 0.54 0.67 0.60 0.63 0.82 0.71 0.58 0.97 0.73 0.72 0.92 0.81

24 0.60 0.45 0.52 0.31 0.73 0.44 0.93 0.53 0.67 0.81 0.67 0.73

25 0.95 0.74 0.83 0.89 0.98 0.94 0.97 0.89 0.92 0.99 0.97 0.98

26 0.88 0.62 0.73 0.92 1.00 0.96 0.85 0.92 0.88 0.92 0.80 0.86

TABLE 7 | Recall, precision and F1 scores of 12 healthy groups (R: Recall; P: Precision; F: F1 score).

Specie Experiment I Experiment II Experiment III Experiment IV

R P F R P F R P F R P F

Apple 0.37 0.72 0.49 0.93 1.00 0.96 0.81 0.92 0.86 0.89 0.94 0.91

Blueberry 0.44 0.74 0.55 0.91 1.00 0.95 0.76 0.97 0.85 0.84 0.8 0.82

Cherry 0.74 0.35 0.48 0.88 0.97 0.92 0.97 0.71 0.82 0.92 0.84 0.88

Corn 0.67 0.72 0.69 1.00 0.97 0.98 0.99 0.89 0.94 0.91 1.00 0.95

Grape 0.65 0.50 0.57 0.74 0.93 0.82 0.81 0.62 0.70 0.77 0.71 0.74

Peach 0.42 0.55 0.48 0.96 0.71 0.82 0.88 0.82 0.85 0.65 0.94 0.77

Pepper 0.73 0.17 0.28 0.79 0.83 0.81 0.86 0.68 0.76 0.94 0.8 0.86

Potato 0.13 0.22 0.16 0.13 0.67 0.22 0.40 1.00 0.57 0.53 0.47 0.50

Raspberry 0.37 0.76 0.50 0.90 0.68 0.77 0.27 1.00 0.43 0.8 0.85 0.82

Soybean 0.44 0.77 0.56 0.98 0.99 0.98 0.94 0.92 0.93 0.92 0.86 0.89

Strawberry 0.15 0.38 0.22 0.53 0.78 0.63 0.80 0.71 0.75 0.6 0.8 0.69

Tomato 0.54 0.70 0.61 0.85 0.92 0.88 0.86 0.97 0.91 0.86 0.97 0.91

Compared to using CNN with classic data augmentation
methods, the proposed method can improve the test accuracy by
4.2%. Compared to using CNN with classic data augmentation
method and WGAN-GP, the proposed method can improve the
test accuracy by 2.3%.

Table 6 includes the recall, precision, and F1 scores of 26
diseases. The top-5 F1 scores achieved by the proposed method

are 0.91 on disease type 9 (Grape Phaeomoniella Spp.), 0.98
on disease type 11 (Orange Candidatus Liberibacter), 0.91 on
disease type 14 (Potato Alternaria solani), 0.91 on disease type
16 (Squash Erysiphe cichoracearum) and 0.98 on disease type 25
(Tomato Mosaic Virus). Compared to using the CNN only, the
advantages of the proposed method are dominant in terms of
F1 score in almost all classes (i.e., 24 out of 26). For example,
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the proposed method improves F1 scores by 0.38 on disease
type 8 (Grape Guignardia bidwellii), 0.57 on disease type 15
(Potato Phytophthora infestans) and 0.38 on disease type 21
(Tomato Fulvia fulva). The proposed method outperforms the
CNN with classic data augmentation on most of the disease
classes (i.e., 23 out of 26). Compared to usingWGAN-GPwithout
LSR, the proposed method performs much better on disease
type 4 (Cherry Podosphaera Spp.) and disease type 14 (Potato
Alternaria Solani). The average F1 score of the proposed method
(i.e., 0.77) is higher than that of the CNN with classic data
augmentation method (i.e., 0.71) and that of using WGAN-GP
without LSR (i.e., 0.75).

When comparing the recall and the precision of each disease
type, specific patterns of the models can be observed. For
example, the difference between the recall and the precision of
the disease type 10 (Grape Pseudocercospora vitis) is significantly
different for all four models. The recall is 0.51∼0.6 while the
precision is 0.84∼0.98. This means only a small number of
images that have type 10 disease are classified as disease type
10. However, most of the images predicted that are classified
to be type 10 are correctly labeled. The model might be
confused between disease type 10 and other diseases, so it set
a high standard for the classification of type 10. Therefore, the
prediction of disease type 10 is highly reliable but the sensitivity
of the model is low since the false negative predictions are high.

Since the objective of the training process is to improve
the total prediction accuracy over all disease classes, it is not
guaranteed that the proposed method will outperform other
models in all categories. For example, the F1 score of disease type
3 (Apple Gymnosporangium juniperi-virginianae) in Experiment
IV is much lower than that of other diseases. The reason is
that the disease is more likely to be predicted as corn fungus
diseases by the model. The comparison between the recall and
the precision of each disease type can help to gain additional
insights into the models and make the right decision according
to different situations.

Table 7 lists the recall, precision and F1 scores of 12 healthy
groups. The average F1 scores in the four experiments are 0.46,
0.76, 0.78 and 0.81, separately. However, all of the four models
do not perform well for the classification of potato healthy leaves.
Since there are only 15 testing images in this group, the reason
might be that the distribution of the training set is not close to
that of the testing set. Except for this, the F1 scores of most groups
in Experiment II, III and IV are greater than 0.75.

CONCLUSION

Plant disease recognition plays an important role in disease
detection, mitigation, and management. Even though some deep
learning methods have achieved good results in plant disease
classification, the problem of the limited dataset is overlooked.
In practice, it is time-consuming to collect and annotate data. The
performance of CNNwill drop dramatically if there is not enough
training data. Therefore, a method for plant disease recognition
under the limited training dataset is necessary.

In this paper, a CNN has been built for plant disease
recognition, which can recognize multiple species and diseases.

To address the overfitting problem caused by the limited training
dataset, a GAN-based approach is proposed. The LSR method is
also employed, which works by adding a regularization term to
the loss function.

The experiments show that the proposed method can improve
the prediction accuracy by 4.2% than the CNN with the classic
data augmentation method. Compared with using the CNN only,
the proposed method can improve the prediction accuracy by
24.4%. Compared with using the WGAN-GP without LSR, the
proposed method can improve the prediction accuracy by 2.3%.
Based on our work, plant disease classification can be conducted
under the limited training dataset, which will bring benefits to the
rapid diagnosis of plant diseases.

It should be noted that this proposed plant disease
classification method is subject to a few limitations which suggest
future research directions. First, significant computational
resources are needed to train the GAN and generate new labeled
images for training. This problem can be addressed using pre-
trained models. Next, the proposed method still needs enough
images to train the GAN. If the size of dataset is very small, it is
not able to extract enough information to generate new labeled
images. One potential solution to this is to introduce transfer
learning techniques. Last, in this paper, we only used one CNN
framework. In future, we will try different CNN frameworks and
investigate the relationship between the size of the real image
dataset and the effectiveness of the proposed method.
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