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Abstract

In this paper, we present a new image matting algorithm

that achieves state-of-the-art performance on a benchmark

dataset of images. This is achieved by solving two ma-

jor problems encountered by current sampling based al-

gorithms. The first is that the range in which the fore-

ground and background are sampled is often limited to such

an extent that the true foreground and background colors

are not present. Here, we describe a method by which a

more comprehensive and representative set of samples is

collected so as not to miss out on the true samples. This

is accomplished by expanding the sampling range for pixels

farther from the foreground or background boundary and

ensuring that samples from each color distribution are in-

cluded. The second problem is the overlap in color distri-

butions of foreground and background regions. This causes

sampling based methods to fail to pick the correct samples

for foreground and background. Our design of an objective

function forces those foreground and background samples

to be picked that are generated from well-separated dis-

tributions. Comparison on the dataset at and evaluation

by www.alphamatting.com shows that the proposed method

ranks first in terms of error measures used in the website.

1. Introduction

Accurate extraction of a foreground object from an im-

age is known as alpha or digital matting. It has a funda-

mental role in image and video editing operations. The

process is mathematically modeled by considering the ob-

served color of a pixel as a combination of foreground and

background colors using the compositing equation given by

Iz = αzFz + (1− αz)Bz, (1)

where Fz and Bz are the foreground and background colors

of pixel z that are linearly combined using αz to represent

its observed color Iz . The opacity parameter α takes values

in the range [0, 1] with pixels having α = 1 belonging to

the foreground and those having α = 0 belonging to the

background.

The estimation of seven unknowns for each pixel from

three compositing equations - one for each color channel -

is highly ill-posed. Typically, matting approaches rely on

constraints such as assumption on image statistics [10, 9]

or the availability of a trimap to reduce the solution space.

Trimaps partition the image into three regions - known fore-

ground, known background and unknown regions that con-

sist of a mixture of foreground (F ) and background (B) col-

ors. The trimaps could be drawn by the user or generated

automatically [16] or semi-automatically[8].

Current alpha matting approaches can be categorized

into alpha propagation based and color sampling based

methods. Alpha propagation based matting methods [10,

15, 6, 8, 2] assume that neighboring pixels are correlated

under some image statistics and use their affinities to prop-

agate alpha values of known regions toward unknown ones.

A closed form solution for alpha matting is proposed in [10]

by minimizing a quadratic cost function based on α. The

assumptions of large kernels by [8] and local color line of

[10] are relaxed in KNN matting [2] using nonlocal princi-

ples and K nearest neighbors.

Color sampling based methods collect a set of known

foreground and background samples to estimate alpha val-

ues of unknown pixels. Different combinations of spatial,

photometric and probabilistic characteristics of an image

are used [5, 18] to find the known samples that best repre-

sent the true foreground and background colors of unknown

pixels. Once the best known foreground and background

samples are selected for pixel z, its alpha value is computed

as

αz =
(Iz −B) · (F −B)

‖F −B‖
2 . (2)

This approach can be further sub-divided into parametric

and non-parametric methods. Parametric sampling meth-

ods like [3, 13, 16] usually fit parametric statistical mod-

els to the known foreground and background samples and

then estimate alpha by considering the distance of unknown

pixels to known foreground and background distributions.

Non-parametric methods including [11, 1, 18, 5, 7, 14] sim-

ply collect set of known F and B samples to estimate alpha

values of unknown pixels. However, the quality of the ex-
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Figure 1. (a) Original Image and Sampling strategies of Proposed, Robust, Shared and Global matting methods. (b) Groundtruth matte

and estimated mattes by Proposed, Robust [18], Shared [5] and Global matting [7] methods.

tracted matte is highly dependent on the selected samples.

It degrades when the true foreground and background col-

ors of unknown pixels are not in the sample sets. We call

this the missing true samples problem. Hence, the challenge

is to select a comprehensive set of known samples that en-

compass the different F and B colors in the image. A brief

review of sampling strategies is presented next. A compre-

hensive review on image matting methods can be found in

[17].

Mishima’s [11] well-known blue screen matting method

extracts a foreground object placed in front of a

monochrome background (painted blue) by forming two

clusters - one corresponding to the background and the other

to the foreground and estimates alpha using the relative po-

sition of an unknown pixel to the clusters.

In the knockout system [1], known regions are extrapo-

lated into unknown region and a weighted sum of known

samples are used to estimate true foreground and back-

ground of unknown samples. The weights of known sam-

ples are proportional to their spatial distances to the un-

known samples.

Robust matting [18] collects a few samples that are spa-

tially close to the unknown pixel as shown in the first row

of Fig. 1(c) in which the unknown pixel is shown in yel-

low and the foreground and background samples are shown

in red and blue, respectively. The selection of best known

background and foreground samples from the candidate set

is done with respect to a color fitness parameter. It works

better than the knockout system because only good samples

that linearly explain the observed color of unknown pixels

are used for matting. However, the quality of estimated mat-

tes degrades when the true samples are not in the sets of

known samples.

Shared matting [5] divides the image plane into disjoint

sectors containing equal planar angles and collect samples

that lie along rays that are emanated from unknown pix-

els as shown in the first row of Fig. 1.(d). It collects these

samples from the boundaries of foreground and background

regions as specified by a trimap. Different combinations of

spatial, photometric and probabilistic characteristics of the

image are used to find best samples for unknown pixels.

The weighted color and texture matting [14] uses the same

sampling approach. Here, too, if the desired sample for un-

known pixels does not lie on the boundary, the extracted

matte will not be accurate.

In order to avoid missing true samples, the largest set

of known samples, among all other sampling based ap-

proaches, are built by collecting all known boundary sam-

ples in Global matting [7] as shown in the first row of

Fig. 1(e). A simple cost function and an efficient random

search are used to find the best samples among a huge num-

ber of known samples for every unknown pixel. Finally,

the estimated alpha matte is refined by solving a global op-

timization problem. Once again, the true samples may still

be missed if they are not on the boundary of the trimap from

where the samples are collected.

The drawback of collecting samples only around the

boundaries of known regions is illustrated in Fig. 1. The

original image of doll with trimap boundaries of known F

and B regions is shown in the first row of Fig. 1.(a). The

doll has black and light brown colors but only light brown

color samples are on or near the foreground boundaries.

Thus, sets of collected known foreground samples by robust

and shared matting methods do not contain black colors and

therefore, the black region of the doll is wrongly estimated

as background as shown in Fig. 1(c) and (d) in second row.

This problem is further compounded due to the overlapping

color distributions of foreground and background. More im-

portantly, when all samples along the boundary are selected

as shown in second row of Fig. 1(e) for global sampling,

the matte is still inaccurate because foreground black color

samples are inside the region and are excluded from the set
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of candidate samples. Hence, it is important that the set

of candidate samples should be comprehensive enough to

represent all color variations in foreground and background

regions.

In this paper a sampling method is presented that takes

advantage of highly correlated boundary samples as well as

samples inside of the F and B regions to build a set of com-

prehensive samples that covers a large range of diverse color

distributions in the image, thus avoiding the missing true

samples problem. A new objective function is proposed that

contains measures of chromatic distortion, spatial and color

statistics in the image. The color statistics helps especially

in the case when foreground and background color distri-

butions overlap leading to erroneous samples for F and B.

Finally the estimated mattes are refined using conventional

Laplacian approach. The selected samples according to the

proposed method are shown in Fig. 1(b) in row 1 and the

estimated matte is shown in second row of Fig. 1(b). The

improvement in performance by selecting a comprehensive

set of samples compared to other sampling strategies can be

seen clearly. Later, we show in the experimental results that

the proposed method obtains state-of-the-art performance

on a benchmark dataset.

2. Proposed Method

In this section, we first describe how a comprehensive

set of samples are generated followed by the process by

which candidate samples are selected. Next, we illustrate

the problem when the F and B color distributions overlap

and finally formulate an objective function whose optimiza-

tion leads to the true foreground-background (F,B) pair for

an unknown sample.

2.1. Gathering comprehensive sample set

The goal of the sampling process is to find the best fore-

ground/background combination to represent the color at a

given pixel. We achieve this in two ways. First, the range

over which samples are gathered is varied according to the

distance of a given pixel to the known foreground and back-

ground. The motivation for this is that the closer an un-

known sample is to known regions, the higher is the like-

lihood of a high correlation with known samples and thus

known samples can estimate true samples robustly. This

is intuitively obvious and indeed, previous sampling based

methods have employed this criterion. However, they were

constrained to use the known F and B samples that lie

around boundaries of known region. By removing this re-

striction and instead adjusting the sampling range, we col-

lect samples near boundaries as well as from inside F and B

regions generating a more comprehensive sample set. Sec-

ond, we ensure that every color distribution in a pixel’s sam-

pling range is represented in the sample set. Together, these

two ideas allow our method to avoid missing true samples

Figure 2. Illustration of sampling approach in foreground region.

(a) Original Image, (b) Colored trimap showing foreground, back-

ground and unknown region, (c) - (f) Region 1, Region 2, Region 3

and Region 4 in foreground from where potential samples are ob-

tained, (g) Unknown samples at varying distance from foreground.

Each of them will receive known foreground samples from differ-

ent regions based on its distance to the foreground, e.g., sample a

receives from Region 1 while b receives from Region 3. (h) The

generated alpha matte.

and to generate more accurate foreground/background sam-

ples.

The trimap is divided into regions to obtain a set

of known F and B samples which form foreground-

background pairs for an unknown pixel. The process is

best explained with the help of Fig. 2 which shows region

partitioning for foreground regions only. A similar strat-

egy is used for background regions. Fig. 2(a) shows part of

an original image whose trimap consisting of background,

foreground and unknown regions labeled as B, F and U

is shown in Fig. 2(b). The foreground region is divided

into four regions (for illustration only), labeled as activated

known foreground samples, as shown in Fig. 2(c)-(f). The

width of the regions increases going from (c) to (f) as each

region subsumes the previous regions. For instance, the ac-

tivated region in Fig. 2(e) includes the regions in Fig. 2(d)

and Fig. 2(c). Two questions arise: (i) how many such re-

gions are needed? and (ii) what is the width of each re-

gion? The number of regions is determined by the size of

the foreground region; however, we need as many regions

as to cover the entire foreground as seen in Fig. 2(f).

The widths of the regions follow an incremental se-

quence starting from the region closest to the boundary.

This is because for an unknown pixel that is close to the

boundary, it is usually true that the correlation would be

highest with pixels in a narrow region close to the boundary.

However, the farther an unknown pixel is from the bound-

ary, it is not possible to establish correlation with any nar-

row band of pixels. Hence, we would like to cover a larger
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area to capture as much representative samples as possible.

Thus, the widths of the regions is narrowest at the bound-

ary, but increases as the regions cover more and more of the

foreground/background region.

For each region, a two-level hierarchical clustering is ap-

plied. In the first level, the samples are clustered with re-

spect to color through Gaussian mixture models (GMM) in

which the number of components of the GMM is same as

number of peaks in the color histogram of samples in the

region. In the second level, the same clustering process is

applied on samples of each cluster but with respect to spa-

tial index of pixels. The mean value of the color in each

cluster at the second level constitutes the set of candidate

samples in each region. Thus, we obtain a comprehensive

sample set that includes samples from all color distributions

thereby handling the missing samples problem.

Our approach of parametrically determining the sam-

ple set differs from most current methods that sample non-

parametrically. We observe that constructing a comprehen-

sive sampling set covering all possible foreground and back-

ground colors is more important than whether that set was

constructed parametrically or non-parametrically.

2.2. Choosing candidate samples

Each pixel in the unknown region collects a set of

candidate samples that are in the form of a foreground-

background pair. Once again, in the following discussion,

we consider only foreground region to illustrate the idea.

Consider the yellow pixel labeled a in Fig. 2(g). Since it

is close to the foreground region, its candidate pixels will

come from the region closest to the boundary of the fore-

ground, viz., the region in Fig. 2(c) marked in pink. This is

because the color correlation of the unknown pixel is likely

to be the highest with pixels in this region. Thus, the fore-

ground candidate samples for pixel a are the means of the

clusters generated in the corresponding region, as discussed

in the previous subsection. However, the pixel marked b

is further away from the boundary and hence, would need

a larger collection of foreground candidate samples. This

is obtained as the means of clusters of pixels in the pink re-

gion of Fig. 2(e). Finally, the pixel marked c is very far from

the boundary and the entire foreground region is utilized to

generate foreground samples for this pixel.

The above discussion about Fig. 2 considered only the

foreground region. Using exactly the same method, back-

ground candidate samples can be obtained for the unknown

pixels. The candidate samples for each unknown pixel is in

the form of a foreground-background pair (F,B). For ex-

ample, if an unknown pixel obtains 4 candidate foreground

samples and 3 candidate background samples, then the total

number of candidate (F,B) pairs is 12. The next task is to

choose the best (F,B) from among the candidate samples.

Figure 3. Illustration of the problem of sample selection when

foreground and background have similar color. (a) Color distri-

bution of foreground and background regions, (b) Effect of over-

lapped distribution on α.

2.3. Handling overlapping color distributions

In addition to selecting a representative set of candidate

samples, the proposed method also addresses the problem

encountered in current sampling based matting methods

that involves overlapped color distributions of foreground

and background regions. This problem was addressed in

[14] by considering texture feature in addition to color.

Here, we do not introduce any new feature; instead, we

show that the overlapping problem can be alleviated to a

large extent by considering only color. The problem is illus-

trated in Fig. 3(a) where the overlapped color distributions

of known foreground and background regions which gen-

erated (F,B) pairs are shown in red and blue. Four pairs

(F1, B1), (F2, B2), (F3, B2) and (F3, B1) are collected to

estimate α of the unknown pixel z as shown in Fig. 3(b).

The estimated alpha values show that the pixel is considered

as foreground by (F1, B1) and as background by (F2, B2).
It is hard to find the best pair because the pixel is close to

F1 and B2 in color space and the alphas estimated by other

pairs are out of the range [0, 1]. The question, therefore,

is which pair can accurately estimate α? We propose that

the (F,B) pair that is generated from the least overlapping

color distributions of a foreground and background cluster

should be selected. The objective function that we describe

in the next section contains a term specifically to address

the overlapped color distributions.

2.4. Selection of best (F,B) pair

Once the set of candidate (F,B) pairs is determined for

unknown pixels, the task is to select the best pair that can

represent the true foreground and background colors and

estimate its α using eq. (2). The selection is done through a

brute-force optimization of an objective function based on

photometric and spatial image statistics. It consists of three

parts as follows:

Oz(Fi, Bi) = Kz(Fi, Bi)×Sz(Fi, Bi)×Cz(Fi, Bi) (3)

where K indicates chromatic distortion and S and C con-

tain spatial and color statistics of the image. Next, we dis-

cuss each of these parameters.
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K: The linear model of compositing equation success-

fully explains the color of a pixel as a convex combina-

tion when the estimated color is close to its observed color.

Hence, K accounts for chromatic distortion. For a certain

(F,B) pair, the estimated color of the unknown pixel is ob-

tained by the compositing equation. The distortion between

estimated color and observed color is given by

Kz(Fi, Bi) = exp (−‖Iz − (αFi + (1− α)Bi)‖) (4)

where Iz is observed color of pixel z. It has a high value for

(F,B) pairs whose estimated color is close to the observed

color.

S: This term involves the distance between an (F,B)
pair and unknown pixel in the spatial domain and favors

spatially close pairs.

Sz(Fi, Bi) = exp

(

−‖z − F s
i ‖

1
|SF

z
|

∑

Fk∈SF
z

‖z − F s
k‖

)

× exp

(

−‖z −Bs
i ‖

1
|SB

z
|

∑

Bk∈SB
z

‖z −Bs
k‖

) (5)

where SF
z is set of known foreground samples for pixel z

and
∣

∣SF
z

∣

∣ is its cardinality. The spatial coordinates of fore-

ground sample Fi is shown by F s
i . The Euclidean spatial

distance between the pixel and foreground sample Fi is in-

dicated by ‖z − F s
i ‖ that shows spatial cost required for Fi

to reach the unknown pixel.

C: This term is biased towards those (F,B) pairs that

come from well separated distributions and is formulated as

Cz(Fi, Bi) =
d(Fi, Bi)

Mz

(6)

where d(Fi, Bi) is Cohen’s d value of color distributions

[4] that generated Fi and Bi, Mz is a scaling factor which

is the maximum Cohen’s d value among the set of (F,B)
pairs for pixel z. To reiterate, the color distributions are of

the pixels within a cluster in the foreground/background re-

gion. Cohen’s d value is inversely proportional to the over-

lap of distributions; it is high for distributions that are well

separated and is computed as

d(Fi, Bi) =
µFi

− µBi
√

(NBi
−1)σ2

Bi
+(NFi

−1)σ2

Fi

NBi
+NFi

−2

(7)

where µFi
, σ2

Fi
and NFi

are the mean, variance and popu-

lation size of the distribution that generated sample Fi.

2.5. Pre and Post-processing

The proposed method uses a pre-processing step to ex-

pand known regions to unknown regions according to the

following condition: An unknown pixel z is considered as

foreground if, for a pixel q ∈ F ,

(D(z, q) < Ethr) ∧ (‖Iz − Iq‖ ≤ (Cthr −D(z, q)) (8)

where D(z,q) is the Euclidean distance between pixels z and

q in spatial domain and Ethr and Cthr are threshold in spa-

tial and color spaces which are empirically set as 9 in our

experiments. A similar formulation is applied to compare

the unknown pixel with a background pixel.

The alpha matte obtained by estimating α for each pixel

using the best (F,B) pair in eq. (2) is further refined

to obtain a smooth matte by considering correlation be-

tween neighboring pixels. In particular, we adopt the post-

processing method of [5] where a cost function consisting

of the data term α̂ and a confidence value f together with

a smoothness term consisting of the matting Laplacian [10]

is minimized with respect to α. The confidence value is

the value of the objective function in eq.(3) for the selected

(F,B) pair. The cost function is given by [5]

α = argmin αTLα+λ(α− α̂)TΣ(α− α̂)

+γ(α− α̂)T Γ̂(α− α̂)
(9)

where λ is a large weighting parameter compared to the es-

timated alpha α̂ and its associated confidence f while γ is

a constant (10−1) that indicates the relative importance of

data and smoothness terms. Σ is a diagonal matrix with

values 1 for known foreground and background pixels and

0 for unknown ones, while diagonal matrix Γ̂ has values 0
for known foreground and background pixels and f for un-

known pixels.

3. Experimental Results

In the first experiment, the performance of the pro-

posed matting method is evaluated on a benchmark dataset

[12]. It consists of 8 images with three types of trimaps

-small, large (coarse) and user defined and is available at

www.alphamatting.com. The ground truth alpha mattes are

hidden from the public and an independent quantitative

evaluation is provided in terms of the mean squared error

(MSE), the gradient error and the sum of absolute differ-

ence (SAD). Next, we illustrate the effectiveness of the pro-

posed sampling method in alleviating the problem of miss-

ing true samples. Finally, we evaluate the performance on

the dataset described in [14], which contains images with

significant overlap in color distributions of foreground and

background; we show that the proposed method outper-

forms other color sampling based methods.

3.1. Evaluation on benchmark dataset

Table 1 shows the quantitative evaluation of the proposed

matting method when compared to current matting methods
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Table 1. Evaluation of Matting methods by alpha matting website over set of bench mark images with three trimaps with respect to SAD ,

MSE and Gradient errors .

Figure 4. Visual Comparison of matting methods. (a) Original Image, (b) Zoomed area. Estimated mattes by (c) Robust [18], (d)

Shared [5], (e) Global sampling [7], (f) Weighted color and texture [14] and (g) proposed method.

as evaluated by the alpha matting website. Only the top 10

methods are shown in the table. “Average small/large/user

ranks” refers to the average rank over images for each of the

three types of trimaps. The overall rank is the average over

all the images and for all the trimaps. The proposed method

performs best with overall ranks of 4.8, 4.8 and 4.7 with re-

spect to SAD, MSE and gradient errors, respectively. SVR

matting [19] , Weighted Color and Texture [14], Shared [5]

and Global [7] matting methods have SAD ranks of 5.7, 6,

6.8 and 8 respectively. Visual comparison of the proposed

method with some other sampling based matting methods

are shown in Fig. 4. Original images and zoomed areas are

shown in Fig. 4(a) and (b), respectively. The estimated mat-

tes for zoomed areas by sampling based matting methods of

Robust [18], Shared [5], Global sampling [7] and Weighted

Color and Texture [14] are shown in Fig. 4(c-f). The Ele-

phant (first row) has similar color as background, which

makes it hard for color sampling based methods (Robust,

Shared and Global) to discriminate between foreground and

background as shown Fig. 4(c,d,e). Using only boundary

samples makes it hard for Robust, Shared and Global Mat-

ting method to estimate true foreground colors for plant’s

leaves in unknown region. The problem is same for Doll

image in last row in which some characters on the book are

considered as foreground as shown in Fig. 4(c,d,e). The

problem of overlapped color distribution is compensated in

[14] using texture. However, it uses a sampling strategy

similar to shared matting and hence, it still suffers from

missing true samples problem as seen in Fig. 4(f) for Plant

and Doll images.

The proposed methods takes advantage of comprehen-

sive sampling to cover all true samples and also selects the

best foreground and background pairs that are generated

from well-separated distributions. These two characteris-

tics of the algorithm help to generate a more accurate matte

as shown in Fig. 4(g). Moreover, the standard deviation of

matting methods over three types of trimaps on the set of

benchmark images with respect to SAD is computed. The

proposed method achieves the lowest overall standard devi-

ation rank, 7.625, among more than 25 matting methods on

the site. In comparison, the overall standard deviation ranks

of Shared [5], Global sampling [7], Robust [18], Closed

form [10] and weighted color and texture [14] methods are

8.375, 12.25, 17.5, 15 and 8.75 respectively which indicates

that the quality of estimated mattes by the proposed method

has less dependency on the trimap.
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Figure 5. Illustration of missing true samples. (a) Original Images.(b) Zoomed region, (c) Ground truth matte. Estimated mattes by (d)

Proposed, (e) Global [7], (f) Shared [5] and (g) Robust [18] matting methods.

3.2. Missing true samples

Current sampling based matting methods fail to estimate

the true foreground and background colors of pixels when

the set of collected samples do not contain the true colors.

Fig. 5(a) shows two original images with their correspond-

ing boundaries of known F and B regions. Zoomed regions

and ground truth alpha mattes of zoomed regions are shown

in Fig. 5(b) and (c), respectively.

The boundary of the foreground in the ball image does

not contain blue colors of the ball. Because of this, the set

of samples collected by the global, shared and robust mat-

ting methods cannot sample from the blue color distribu-

tion and are unable to estimate the true foreground colors

of these parts of the ball. They are wrongly estimated as

background as shown in Fig. 5(e),(f) and (g). A similar sit-

uation arises in the second image whereby global, shared

and robust matting miss the true black and white colors in

the foreground as shown in Figs. 5(e), (f), and(g), respec-

tively. The proposed method uses samples inside of known

regions to complement the set of highly correlated bound-

ary samples to solve the problem of missing true samples

by sampling from all color distributions. The visual com-

parison between ground truth mattes and estimated ones by

the proposed method in Fig. 5(c) and (d) shows that the col-

lected set of samples by proposed method is comprehensive

enough to solve the problem of missing true samples.

3.3. Effect of overlapping distributions

The effectiveness of the proposed objective function con-

taining only color information in reducing the effect of

overlapping distributions is shown by comparing proposed

method with Shared [5], Robust [18], Closed form [10] and

Weighted Color and Texture [14] matting methods on the

dataset described in [14]. Three of ten images with zoomed

parts are shown in Fig. 6(a) and (b). The color similarity

between foreground and background in the images is illus-

trated in Fig. 6(c) in which histograms are computed from

the red channel of the images.

In the first row, the background texture contains colors

similar to the leaves making it hard for sampling based

methods to find the true samples as shown in Fig. 6(e) and

(f) for Robust and Shared Matting. False correlations are

increased due to color similarity for closed form matting

in Fig. 6(d). The strong edges intensify the problem by

blocking the propagation of alpha. Weighted color and tex-

ture matting, which was developed precisely to address this

problem, uses 3×3 window to obtain texture information to

complement color in matting. However, when texture infor-

mation is not captured properly as shown in Fig. 6(g), the

performance degrades considerably. Similar comments can

be made about the Doll image. For the flower image, the

performance of weighted color and texture matting is bet-

ter, probably because the texture is not as strong as in the

other two images. The estimated mattes by our proposed

method are shown in Fig. 6(h), which are comparable to the

ground truth shown in Fig. 6(i). It takes advantage of an

effective objective function to find the best known samples

even when they come from overlapped color distributions.

Of course, if the overlap is to such an extent that the colors

are not distinguishable, then color sampling based methods

fail and we would need to resort to additional features such

as texture. Even so, the feature should be able to capture

the texture variation accurately. This may require additional

parameters such as the size of the window over which the

texture feature is captured. In this paper, we show the effec-

tiveness of using only color information.

4. Conclusion

A new sampling based image matting method is pro-

posed that uses a new sampling strategy to build a com-

prehensive set of known samples by sampling from all color

distributions in known regions. This set includes highly cor-

related boundary samples as well as samples inside the F

and B regions to capture all color variations and solve the

problem of missing true samples. Moreover the problem

of overlapping color distributions of foreground and back-
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Figure 6. Visual comparison of matting methods on the dataset of [14] to illustrate cases when foreground and background color dis-

tributions overlap. (a) Original image, (b) Zoomed area, (c) Foreground and background color distributions on red channel, (d) Closed

form [10], (e) Robust [18], (f) Shared [5], (g) Weighted color and texture [14], (h) Proposed method, (i) Ground truth.

ground are handled by using an effective objective function

that chooses the best (F,B) pair by choosing those sam-

ples that were generated from well-separated distributions.

Finally, the quality of the estimated mattes is improved us-

ing conventional Laplacian refinement. Experimental re-

sults shows that the proposed method achieves state-of-the-

art performance in terms of standard error measures on a

benchmark dataset.
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