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Abstract 

A Projection Error Propagation-based Regularization (PEPR) 

method is proposed and the reconstructed image quality is 

improved in Electrical Impedance Tomography (EIT). A 

projection error is produced due to the misfit of the calculated and 

measured data in the reconstruction process. The variation of the 

projection error is integrated with response matrix in each iteration 

and the reconstruction is carried out in EIDORS. The PEPR 

method is studied with the simulated boundary data for different 

inhomogeneity geometries. Simulated results demonstrate that the 

PEPR technique improves image reconstruction precision in 

EIDORS and hence it can be successfully implemented to increase 

the reconstruction accuracy in EIT.  

 

Keywords: electrical impedance tomography, projection error 

propagation-based regularization (PEPR), simulated boundary 

potentials, image reconstruction, forward problem, inverse 

problem, finite element method. 

 

 

Introduction 

 

Electrical Impedance Tomography (EIT) [1] is being 

researched in different areas of science and technology due 

to its many advantages [2-4] over other computed 

tomographic techniques [5]. Being a non-invasive, non-

radiating, non-ionizing and inexpensive methodology, EIT 

has been extensively studied in clinical diagnosis [6], 

biomedical engineering [7] and biotechnology [8]. Attempts 

are also being made to develop a better medical-EIT system 

(Fig.-1) for different clinical investigations [9-18] and long 

time patient monitoring. The first impedance imaging 

system, the Impedance Camera, was constructed by 

Henderson and Webster to study pulmonary edema in 1978 

[19]. EIT has, generally, poor signal to noise ratio [7], poor 

spatial resolution [20] and it is highly sensitive to modeling 

parameters [21] such as the electrodes and phantom 

geometry experimental errors in the boundary data. As a 

result EIT is not yet accepted as the gold method in medical 

imaging technology. Therefore improving the image quality 

and spatial resolution is a big challenge in the field of 

impedance imaging. Using noninvasive boundary 

measurements EIT reconstructs the images of impedance 

distribution (conductivity or resistivity or permittivity) of 

the closed domain under test. 

Conductivity reconstruction in EIT is a nonlinear, 

highly ill-posed [21] inverse problem in which a small 

amount of noise in the boundary data can lead to enormous 

errors in the estimates. In fact, like many other inverse 

problems encountered in physics, EIT is a highly ill-posed 

non-linear inverse problem which causes the instability of 

the solution due to errors on the observed data. Being an ill-

posed problem EIT needs a regularization technique [21] to 

constrain its solution space. Regularization technique is 

implemented to convert the ill-posed problem into a well 

posed problem using a suitable regularization parameter (λ). 
Regularization in inverse problems not only decreases the 

ill-posed characteristics of the inverse matrix but also, it 

improves the reconstructed image quality [22]. The 

standard Tikhonov regularization [23] is the simplest 

method to implement, in which the regularization matrix is 

proportional to identity. Since the physical attenuation 

phenomena responsible for the illposed nature of the EIT 

problem is not taken into account, the standard Tikhonov 

regularization cannot provide a satisfactory solution in 

image reconstruction for EIT [24]. 

 

 

Fig.1: An EIT system with electrode array on patient under test. 

In this context a Projection Error Propagation-based 

Regularization (PEPR) method [25] is proposed to improve 

the reconstructed image quality in static EIT, which 

produces an image of the absolute resistivity distribution of 

the medium. The PEPR method is studied with resistivity 

reconstruction in EIT using simulated data. In the PEPR 

method the regularization parameter is set as a function of 
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the projection error which is produced by the mismatch 

between the calculated and measured data. In the first 

iteration, the regularization parameter is calculated with the 

projection error developed by the boundary data estimated 

by the forward solver for an initial guessed resistivity. 

According to the resistivity update vector calculated in all 

the other iterations, regularization parameter is also 

modified. At each iteration, projection error varies 

according to the misfit between the model predicted data 

and experimental data. The variation of mismatch data is 

integrated with the response matrix and the reconstruction 

is conducted.  

To illustrate the performance of this method, resistivity 

images are reconstructed using EIDORS (Electrical 

Impedance Tomography and Diffuse Optical Tomography 

Reconstruction Software) [26-27] with PEPR and compared 

with the images reconstructed with Levenberg-Marquardt 

Regularization (LMR) [25]. To study the PEPR method, 

reconstructed image parameters, normalized projection 

error (error due to the voltage mismatch) and the 

normalized solution error norm are studied for different 

iterations.  Result show that the PEPR technique improves 

image reconstruction precision in EIDORS. It is also 

observed that the PEPR technique can improve image 

quality more effectively and reduces the background noise.  

 

Materials and methods 

 

EIT 

 

Electrical Impedance Tomography is a non linear inverse 

problem [21] in which the electrical conductivity 

distribution of a closed domain (Ω) in an object under test 

called phantom,  [28-29] is reconstructed from the surface 

potential at the boundary (∂Ω) developed by injecting a 

sinusoidal current signal [30]. A low frequency (10kHz-

1MHz) and low magnitude constant current is injected 

through an array of 16 surface electrodes [31] surrounding 

the domain to be imaged using different electrode switching 

protocols [32] and the boundary potentials are measured 

[33] although, the boundary currents can also be measured 

for an applied voltage signal in Applied Potential 

Tomography [34]. The voltage data collected by the data 

acquisition system is then processed by an image 

reconstruction algorithm in a PC. 

 

Mathematical Model  

 

To calculate the nodal potential for a known conductivity a 

relationship can be established between the electrical 

conductivity (σ) and spatial potential (Φ). Electro-dynamics 

of EIT is governed by a nonlinear partial differential 

equation, called the Governing Equation [2-4] of Electrical 

Impedance Tomography, which is given by, 

 

0=Φ∇•∇ σ                                     (1) 

Forward and Inverse Problem 

 

A relation can be obtained between the voltage 

measurements made on the boundary (∂Ω) and the domain 

conductivity can be found [35-36] as, 

                                      

( )[ ][ ]IσKΦ =                                      (2) 

 

Where σ is elemental conductivity values, Ф is the vector 

of nodal potential and K is the transformation matrix 

constructed from the elemental conductivities and nodal 

coordinates.  

If K and I are known, Eq.-2 can be solved numerically 

using the finite element method (FEM) [37] to calculate the 

nodal potentials of the domain for the known conductivity 

(σ). It is known as the “forward problem”. Using the Gauss-

Newton method [38] applied on EIT, the update vector of σ 

[35-36] can be expressed as:  

 

[ ][ ]dΦQσ =                                   (3) 

 

Where, Q is a function of the Jacobian matrix (J) [35-36] 

and regularization parameters [35-36]. Φd is the mismatch 

vector between calculated boundary potential (Vc) and 

measured boundary potential (Vm). That means if the 

matrix Q and the surface potentials Φ are known then the 

elemental conductivity (σe) can be mapped. This is known 

as the “inverse problem” which is discussed in the next 

section. Using the Modified Newton Raphson (MNR) 

iterative technique [35-36], a suitably assumed conductivity 

vector (initial guess), [σo], is modified to [σo + ∆σ ] for 

achieving a specified error limit in the calculated and 

measured voltage ([∆σ] denotes the conductivity update). 

 

Image Reconstruction: Gauss-Newton Approach 

 

Electrical conductivity imaging is a highly nonlinear and 

ill-posed inverse problem. The response matrix [J
T
J] is a 

singular matrix. Hence in EIT, a minimization algorithm 

[35-36, 38-39] is used to obtain the approximate solution of 

the ill-posed inverse problem. In the minimization 

algorithm, the objective function formed by the difference 

between the experimental measurement data (Vm) and the 

computationally predicted data (Vc) is minimized. 

Generally in inverse problems a least square solution [35-

36] of a minimized object function (s) [38-39] obtained 

from the calculated voltage data and the measured voltage 

data  is searched by a Gauss-Newton method based 

numerical approximation algorithm (explained in the next 

sub-section) called the inverse solver [40].   

If Vm is the measured voltage matrix and f is a function 

mapping an E-dimensional (E is the number of element in 

the FEM mesh) impedance distribution into a set of M 

(number of the measured data available) approximate 

measured voltage, then the Gauss-Newton algorithm 
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[35-36, 38-39] tries to find a least square solution of the 

minimized object function s defined as [38-43]:  

 

22

mr Gσ  λ
2

1
 fV 

2

1
s +−=             (4) 

 

Where, sr is the constrained least-square error of the 

reconstructions, G is the regularization operator and λ is a 

positive scalar and called as the regularization coefficient. 

 

( ) ( ) ( ) ( )GσGσλ
2

1
fVfV

2

1
s

T

m

T

mr +−−=         (5) 

 

Now, differentiating Eq.-5 w.r.t. σ, it reduces to: 

 

( ) ( ) ( ) ( )GσGλfVf s
T

m

T

r +−′−=′              (6) 

 

Where the term Jf =′  is known as the Jacobian matrix of 

size g × h and which is defined by [36, 39]: 

 

[ ]
h

g

gh σ
f

fJ
∂

∂
=′=                                (7) 

Where,  

e = 1, 2 … E [E = number of elements in the FEM mesh],  

h = 1, 2…M [M = (number of data measured per current 

projections (d)) × (number of current projections (p))] 

 

By the inherent ill-posed nature of EIT, the [ ]Tf ′ matrix in 

Eq.-6 is always ill-conditioned [22], and hence small 

measurement errors will make the solution of Eq.-6 change 

greatly which is made well posed by the regularization term 

incorporated. Differentiating Eq.-6 w.r.t. σ, it reduces to: 

 

( ) ( ) ( ) ( ) GλGfVfJJs T

m

TT

r +−′′−=″     (8) 

 

By the Gauss Newton (GN) method, 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) GλGfVfJJ

GσGλfVJ

s

s
Δσ

T

m

TT

T

m

T

r

r

+−′′−
−−

=″

′
−=     (9) 

 

Neglecting higher terms, the update vector reduces to: 

 

( ) ( ) ( ) ( )
( ) ( ) GλGJJ

GσGλfVJ
Δσ

TT

T

m

T

+

−−
=                         (10) 

 

Replacing G
T
G by I (Identity matrix) Eq.-10 reduces to: 

( )
λIJJ

λIσfVJΔσ
T

m

T

+
−−

=                         (11) 

In general, for k
th

 iteration (k is a positive integer), the 

conductivity update vector of Eq.-11 is reduced to: 

 

[ ] [ ][ ] [ ] ( )[ ]kk

T

k

1

k

T

kk λIσΔVJλIJ JΔσ −+=
−

   (12) 

 

Where Jk and ( )kΔV are the Jacobian and voltage difference 

matrix respectively at the k
th

 iteration. 

 

Thus the Gauss-Newton method based inverse solver 

algorithm gives a regularized solution of the conductivity 

distribution for the k
th

 iteration as: 

 

[ ] [ ][ ] [ ] ( )[ ]kk

T

k

1

k

T

kk1k λIσΔVJλIJ Jσσ −++=
−

+  (13) 

 

PEPR Method 

 

In this paper a PEPR method is proposed to improve the 

reconstructed image quality in EIT and the resistivity 

reconstruction is studied in EIDORS. Generally, the choice 

of an appropriate regularization can be evaluated or found 

empirically [25] and the regularization parameter is related 

to an objective function [38-39]. In our study, the projection 

error is utilized as the objective function; hence the 

regularization parameter would be expected to be related to 

the projection error. Furthermore, the value of 

regularization is required to vary with projection error. That 

is to say, a greater regularization value is needed for a 

larger projection error during iterations. If the projection 

error is very low, only a small regularization value is 

needed to regulate the ill-posed process [25]. Based on 

these considerations, we define the adaptive regularization 

parameter λ as follows: 

 

ΔΦe2
λ −+

Ψ
=                                  (14) 

 

Where, Ψ is a const (taken as 0.01), ∆Φ is the projection 

error which is defined as the L-2 norm of the difference 

between the calculated data and the measured data. Hence 

the regularization parameter λ in the PEPR method is given 

by:   

 

2
mc   V-V  

e2

01.0λ
−+

=                            (15) 

 

In formula (15), the regularization parameter λ varies in the 

range from 0.01/3 to 0.01/2. It includes two primary 

considerations: (1) Due to the ill-posed characteristic of the 

inverse problem, the regularization should not be reduced 

with iterations to a too small value. (2) The regularization 

value should be lower than the maximum value of diagonal 

elements in the matrix JJ
T
 (calculated by the MATLAB 
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code: max(max(JJ
T
))). In the PEPR method the 

regularization parameter is set as a function of the 

projection error which is produced by the mismatch 

between the calculated and measured data. In the first 

iteration, the regularization parameter is calculated with the 

projection error developed by the boundary data estimated 

by the forward solver for an initial guessed resistivity. 

According to the resistivity update vector calculated, the 

regularization parameter is also modified in all the other 

iterations. Hence at each iteration, the projection error 

varies according to the misfit between the model predicted 

data and experimental data. The variation of mismatch data 

is integrated with the response matrix and the 

reconstruction is carried out. 

The J
T
J matrix is formed by the first derivative (J) of 

the forward solution (FS) and I is the approximation of the 

Hessian [39] which is, actually, the second derivative of the 

FS. Generally, the order of magnitude of Hessian is less 

than the J
T
J due to the higher order derivative.  

Hence, in Eq.-13, I acts as the quadratic term which is 

formed with the maximum value of J
T
J. The magnitude of 

the diagonal elements of λI should be less than the 

maximum value of J
T
J. The identity matrix I is formed 

with the diagonal values equal to the maximum value of the 

matrix J
T
J. In the LMR method the λ is taken as 10-1

 in the 

first iteration and it is then modified as λ/k in the modified 

EIDORS, where k is the number of iterations. For further 

analysis the resistivity reconstruction is also conducted with 

a range of regularization parameters.  

It is observed that the projection error in LMR and 

PEPR becomes minimum at λ = 0.1 and Ψ = 0.01 

respectively. That is why in the first iteration in LMR λ is 
taken as 0.1 and in PEPR λ is calculated with Ψ = 0.01. 
Furthermore, for better understanding the regularization 

effects of both the methods, λ is calculated in PEPR 

technique (using the Eq.-14) with Ψ = 0.01. The result is 

compared with the reconstruction obtained in LMR in 

which the iteration starts with λ = 0.01 and then it is 

decreased by a factor of 10 for the other iterations [25]. 

 

Resistivity Reconstruction and Analysis 

 

Resistivity images are reconstructed using simulated 

boundary data in EIDORS with the PEPR and LMR method 

and the results are compared. Resistivity images are 

reconstructed with simulated data for different 

inhomogeneity geometries. Circular objects (diameter = 60 

mm, resistivity = 33 Ωm) with a homogeneous background 
medium (diameter (D) = 150 mm, resistivity = 2.5 Ωm) are 
simulated for boundary data generation. Resistivity images 

are also reconstructed from the boundary data combined 

with random noise of different percentages. Noisy data are 

used for reconstruction with the PEPR and LMR methods 

and the images are compared. 

To analyze the proposed method, the normalized 

projection error (error due to the voltage mismatch), EV, is 

calculated in each iteration as: 

 

2

cmV VV
2

1
E −=                                (16) 

 

The normalized solution error norm (Eρ) is also 

calculated in each iteration as: 

 

true

truetedreconstruc

ρ ρ
ρρ

E
−

=                          (17) 

 

A contrast to noise ratio (CNR) [44-45] is calculated 

for the reconstructed images in this work to evaluate the 

reconstructed images with different regularization 

techniques. CNR is defined as the ratio of the difference 

between the average inhomogeneity resistivity (IRMean) and 

the average background resistivity (BRMean) divided by the 

weighted average of the standard deviations in the IR 

(SDIR) and BR (SDBR):  

 

( )2

1
2

BRB

2

IRI

MeanMean

)(SDω)(SDω

BRIR
CNR

+

−
=              (18) 

 

Where ωI is the fraction of the area of the region of interest 

with respect to the area of the whole image; ωB is defined 

as ωB=1-ωI. IRMean and BRMean are the mean values of the 

inhomogeneity and the background regions in the 

reconstructed images.  

Percentage of contrast recovery (PCR) [46] is 

calculated for the images reconstructed by all the 

regularization technique to compare the reconstruction 

accuracy. PCR in EIT is defined as the difference between 

the averaged resistivity within the reconstructed image 

(IRMean) and the reconstructed background (BRMean) divided 

by the difference between the original resistivity of the 

inhomogeneity (IROriginal) and the background (BROriginal). 

Hence mathematically the PCR is obtained by the equation: 

 

100
BR-IR

BRIR
PCR

OriginalOriginal

MeanMean ×
−

=                  (19) 

 

Coefficient of Contrast (COC) in EIT is defined as the ratio 

of the mean inhomogeneity resistivity (IRmean) to mean 

background resistivity (BRmean) though in some literature 

this ratio is termed as the contrast recovery [47]: 

 

Mean

Mean

BR

IR
COC =                              (20) 
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CNR, PCR, COC, IRMean and IRMax (maximum values of 

the reconstructed inhomogeneity resistivity) are calculated 

for all the images and are compared to assess the 

reconstructed image quality with PEPR. To evaluate the 

reconstructed images the elemental resistivity along the 

phantom diameter (D), connecting the centre of the 

reconstructed object and the centre of the phantom, is 

plotted against the length of the phantom diameter. This 

resistivity plot is termed as the diametric resistivity plot 

(DRP). The normalized projection error (error due to the 

voltage mismatch) and the normalized solution error norm 

are studied for different iterations. 

 

Results 

 

Imaging with noiseless data for different object positions in 

LMR (Lambda = 0.1) and PEPR (Psi = 0.01) 

 

The reconstruction of the simulated phantom with a circular 

object near electrode 1 (Fig.-2a) shows that the CNR of the 

resistivity image reconstructed with LMR (Fig.-2b) is 3.08 

whereas the CNR of the resistivity image with PEPR (Fig.-

2c) method (Table-1) is 3.55. For the same simulated 

phantom, the PCR of the resistivity image with LMR 

technique is 32.52 whereas the PCR with PEPR is 46.57 

(Table-1). It is also noticed that the COC of the resistivity 

image with LMR technique is 2.05 whereas the COC with 

PEPR is 2.46 (Table-1). It is observed that the DRP of the 

resistivity image with PEPR (Fig.-2d) is more similar to the 

DRP of the original object. 

 

      

     

Fig.2: Resistivity imaging for object near electrode 1: (a) Original 

object, (b) with LMR, (c) with PEPR, (d) DRP of the images. 

 

Table-1: CNR, PCR and COC of reconstructed images of the 

object near electrode 1 

 

Regularization CNR PCR COC 

LMR 3.08 32.52 2.05 

PEPR 3.55 46.57 2.46 

For the object near electrode 3 (Fig.-3a), the reconstructed 

images (Fig.-3b-3c) show that the CNR of the resistivity 

image with LMR technique is 2.99. On the other hand, 

CNR with PEPR is 3.51 (Table-2). The PCR of the 

resistivity image with LMR technique is 31.33 whereas the 

PCR with PEPR is 46.26 (Table-2). It is also noticed that 

the COC of the resistivity image with LMR is 2.01 but with 

PEPR, it is 2.45 (Table-2). Result show that the DRP of the 

resistivity image with PEPR (Fig.-3d) is more similar to the 

DRP of the original object.  

 

      
 

     

 

Fig.3: Resistivity imaging for object near electrode 3: (a) Original 

object, (b) with LMR, (c) with PEPR, (d) DRP of the images. 

 

Table-2: CNR, PCR and COC of reconstructed images of the 

object near electrode 3 

 

Regularization CNR PCR COC 

LMR 2.99 31.33 2.01 

PEPR 3.51 46.26 2.45 

 

It is observed that for the simulated phantom with a circular 

object near electrode 5 (Fig.-4a), the CNR of the image 

reconstructed with LMR (Fig.-4b) is 2.92 whereas the CNR 

of the resistivity image with PEPR (Fig.-4c) is 3.46 

(Table-3). It is also noticed that the PCR of the image with 

LMR is 30.32 whereas the PCR with PEPR is 44.74. 

Results also show that the COC with LMR is 1.98 (Table-3) 

whereas with PEPR technique it is 2.40. It is observed that 

the DRP of the resistivity image with PEPR (Fig.-4d) is 

more similar to the DRP of the original object. 

 

Imaging with noisy data for different object positions in 

LMR (Lambda = 0.1) and PEPR (Psi = 0.01) 

 

Resistivity images are reconstructed from the boundary data 

with 25 % random noise for the object near electrode 1, 3 

and 5. Images reconstructed from the boundary data with 

added noise for the object near electrode 1 show that the 

a b 

c d 

a b 

c d 
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CNR of the resistivity image with LMR technique (Fig.-5a) 

is 1.81. On the other hand, CNR of the image with PEPR 

(Fig.-5b) is 3.17 (Table-4). The PCR of the resistivity 

image with LMR technique is 27.29 whereas the PCR with 

PEPR is 63.79 (Table-4). It is also noticed that the COC of 

the resistivity image with LMR is 1.85 but with PEPR it is 

2.90 (Table-4). Result shows that the DRP of the resistivity 

image with PEPR (Fig.-5c) is more similar to the DRP of 

the original object. 

 

      
 

     

 

Fig.-4: Resistivity imaging for object near electrode 5: (a) 

Original object, (b) with LMR, (c) with PEPR, (d) DRP of the 

images.  

 

Table-3: CNR, PCR and COC of reconstructed images of the 

object near electrode 5. 

 

Regularization CNR PCR COC 

LMR 2.92 30.32 1.98 

PEPR 3.46 44.74 2.40 

 

     
 

Fig.-5: Resistivity images with noisy (25 %) boundary data 

(object near electrode 1): (a) with LMR, (b) with PEPR, (c) DRP 

of the reconstructed image 

 

Table-4: CNR, PCR and COC of reconstructed images for noisy 

data (object near electrode 1) 

 

Regularization CNR PCR COC 

LMR 1.81 27.29 1.85 

PEPR 3.17 63.79 2.90 

 

Resistivity images reconstructed from the noisy boundary 

data of the phantom with object near electrode 3 show that 

the CNR of the image reconstructed with LMR technique 

(Fig.-6a) is 1.60. On the other hand, CNR with PEPR 

(Fig.-6b) is 1.89 (Table-5). The PCR of the resistivity 

image with LMR technique is 23.61 whereas the PCR with 

PEPR is 35.68 (Table-5). It is also noticed that the COC of 

the reconstructed image with LMR is 1.73 but with PEPR it 

is 2.12 (Table-5). It is observed that the DRP of the 

resistivity image with PEPR (Fig.-6c) is more similar to the 

DRP of the original object. 

 

   

 

Fig.-6: Resistivity images with noisy (25 %) boundary data 

(object near electrode 3): (a) with LMR, (b) with PEPR, (c) DRP 

of the reconstructed image 

 

Table-5: CNR, PCR and COC of reconstructed images for noisy 

data (object near electrode 3) 

 

Regularization CNR PCR COC 

LMR 1.60 23.61 1.73 

PEPR 1.89 35.68 2.12 

 

It is also observed that for the resistivity images 

reconstructed from the noisy data for the phantom with 

object near electrode 5, the CNR of the image reconstructed 

with LMR technique (Fig.-7a) is 1.24. On the other hand, 

CNR with PEPR (Fig.-7b) is 1.48 (Table-6). The PCR of 

the resistivity image with LMR technique is 17.59 whereas 

the PCR with PEPR is 25.91 (Table-6). It is also noticed 

that the COC of the resistivity image with LMR is 1.54 but 

with PEPR, it is 1.78 (Table-6). Result shows the DRP of 

the resistivity image with PEPR (Fig.-7c) is more similar to 

the DRP of the original object. 

 

  
 

Fig.-7: Resistivity images with noisy (25 %) boundary data 

(object near electrode 5): (a) with LMR, (b) with PEPR, (c) DRP 

of the reconstructed image 

 

Table-6: CNR, PCR and COC of reconstructed images for noisy 

data (object near electrode 5) 

 

Regularization CNR PCR COC 

LMR 1.24 17.59 1.54 

PEPR 1.48 25.91 1.78 

 

a b 

c d 

a b c 

a b c 
a b c 
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Studies on PEPR and LMR with λ=Ψ 

 

In the above study, for the LMR method the λ is taken as 
10

-1
 in the first iteration and it is then modified as λ/k in the 

modified EIDORS, where k is the number of iterations. For 

further analysis the resistivity reconstruction is also 

conducted with a range of regularization parameters. 

Regularization effect, normalized projection error (error 

due to the voltage mismatch) and the normalized solution 

error norm are studied for different iterations. Result show 

that the resistivity image with PEPR (Ψ = 0.01) is found 

better compared to the image obtained for LMR with a λ = 
0.01 at first iteration and then it is decreased by a factor of 

10 for the other iterations [25]. It is observed that CNR of 

the image reconstructed with LMR technique (Fig.-8a) is 

2.95. On the other hand, CNR with PEPR (Fig.-8c) is 3.26 

(Table-7). Due to the over-estimate of the inhomogeneity 

resistivity (Fig.-8b) the PCR of the resistivity image with 

LMR technique is very high compared to PEPR. For the 

similar reason COC is also found higher than the PEPR 

method. But IRMax and IRMean are both suitable in PEPR 

method whereas, in LMR technique, they are very absurd 

compared to the original value (Table-7).  

 

      

       

 

Fig.-8: Resistivity images obtained from boundary data with 

10 % noise (object near electrode 1): (a) image with LMR, (b) 

DRP of the reconstructed image shown in Fig.-1a, (c) image with 

PEPR, (d) DRP of the reconstructed image shown in Fig.-1c. 

 

Table-7: CNR, PCR, COC, IRMax and IRMean of reconstructed 

images shown in Fig.-8. 

 

Regularization CNR PCR COC IRMax IRMean 

LMR 2.95 89.15 2.90 77.03 41.46 

PEPR 3.26 46.48 2.49 33.96 23.70 

 

Studies on PEPR and LMR in Different Iterations with λ=Ψ 

 

Resistivity imaging with LMR (λ = 0.01) and PEPR (Ψ = 

0.01) techniques is studied for a number of iterations (result 

for first 12 iterations is presented). It is observed that 

resistivity images in LMR method (Fig.-9), the 

reconstruction diverges gradually after second iteration and 

become unstable with a continuously over-estimated 

resistivity (Fig.-10). On the other hand, the resistivity 

reconstruction rapidly converges in the PEPR method 

(Fig.-11) and gets stable after few iterations with a proper 

resistivity reconstruction (Fig.-12).  

 

         

         

         

         

 

Fig.-9: Resistivity images obtained from noisy boundary data 

(Error added = 10 %) with LMR (λ = 0.01) method (object near 

electrode 1) for first twelve iterations: (a) to (l) images represents 

the reconstruction of 1 to 12 iterations respectively. 

 

         

         

         

         
Fig.-10: DRP of the resistivity images shown in Fig.-9 

(reconstruction with LMR): with noisy data (object near 

electrode 3): (a) to (l) images represents the DRP of the images 

shown in Fig.-9a to Fig.-9l respectively. 
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Fig.-11: Resistivity images obtained from noisy boundary data 

(Error added = 10 %) with PEPR (Ψ = 0.01) method (object near 

electrode 1) for first twelve iterations: (a) to (l) images represents 

the reconstruction of 1 to 12 iterations respectively. 

 

         

         

         

          

 

Fig.-12: DRP of the resistivity images shown in Fig.-11 

(reconstruction with PEPR): with noisy data (object near 

electrode 1): (a) to (l) images represents the DRP of the images 

shown in Fig.-11a to Fig.-11l respectively. 

 

Studies on Projection Error and Solution Error Norm 

 

It is observed that the IRMax of the resistivity images with 

PEPR technique is more stable and closer to the original 

value, except for the first iteration (Fig.-13a). On the other 

hand, in LMR, IRMax is larger than the original value (Fig.-

13a) except in first iteration (IRMax < IROriginal) and the 

second iteration (IRMax ~ IROriginal). Result show that, for 

PEPR, the standard deviation of the IRMax during first 

twelve iterations is 1.79 whereas it is 17.59 in LMR method 

(Fig.-13a). 

 

Result show that IRMean of the resistivity images with the 

PEPR method is more stable whereas it is comparatively 

largely variable in the LMR method (Fig.-13b). Result 

show that, for PEPR, the standard deviation of the IRMean 

during the first twelve iterations is 1.79 Ωm whereas it is 
8.21 Ωm in LMR method (Fig.-13b). 

 

  

 

Fig.-13: Reconstruction parameters and reconstruction errors for the 

resistivity images obtained from noisy boundary data (Error added = 10 %) 

with LMR (λ = 0.01) and PEPR (Ψ = 0.01) methods (object near electrode 

1): (a) maximum values of the reconstructed inhomogeneity resistivity 

(IRMax), (b) mean of reconstructed inhomogeneity resistivity (IRMean). 

 

It is observed that the projection error (EV) in LMR 

method is comparatively large and it is gradually increasing 

after third iteration (Fig.-14a). On the other hand, in PEPR, 

EV is comparatively low and almost constant after second 

iteration (Fig.-114a). Result show that, in the PEPR 

method, the normalized solution error norm (Eρ) is less and 

varies from 0.74 to 0.77 (Fig.-14b). But, in the LMR 

method, Eρ is comparatively large and varies from 0.73 to 

1.31 (Fig.-14d).  

 

  

 

Fig.-14: Reconstruction parameters and reconstruction errors for 

the resistivity images obtained from noisy boundary data (Error 

added = 10 %) with LMR (λ = 0.01) and PEPR (Ψ = 0.01) 
methods (object near electrode 1): (a) projection error (EV), (b) 

normalized solution error norm (Eρ). 

 

Studies on Different Values of λ and Ψ 

 

The projection errors (EV) are calculated for different 

values of λ in LMR (Fig.-15a) and different values of Ψ in 
the PEPR method (Fig.-15b). It is observed that, for the 

LMR method, the EV becomes minimum at the third 
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iteration for λ = 1.0 and 0.1 whereas for λ = 0.01, 0.001 and 
0.0001, the EV becomes minimum at the fourth iteration 

(Fig.-15a). On the other hand, result show that (Fig.-15b), 

for the PEPR method, the EV becomes minimum at the third 

iteration for Ψ = 1.0 and 0.1, 0.01 and 0.001 whereas for Ψ 

= 0.0001, the EV becomes minimum at the fourth iteration 

(Fig.-15a). Hence it is observed that the optimum 

reconstruction (i.e. the EV is minimum) occurs in PEPR 

with Ψ = 0.01 where as the optimum reconstruction occurs 
in LMR with λ = 0.1 (Table-8). It is also observed that the 

projection errors are comparatively less (Fig.-15b) in the 

PEPR method for all the values of Ψ. Result show that the 
projection errors are comparatively more stable in PEPR 

and they also become almost constant (Fig.-15b) after 3
rd

 

iteration except for very low Ψ (Ψ= 0.0001).   

Fig.-15: Projection errors (EV) calculated in the resistivity reconstruction at 

different iterations (a) with LMR (λ = 1 to 0.0001), (b) with PEPR (Ψ = 1 

to 0.0001). 

Table-8: Projection errors (EV) calculated for different values of λ in LMR 

and Ψ in PEPR. 

λ or Ψ at 4th
 Iteration LMR PEPR 

1.0 51.8248 53.3685 

0.1 51.3844 51.7703 

0.01 51.5016 51.3234 

0.001 55.9473 51.3802 

0.0001 70.8394 56.8654 

Discussion 

A Projection Error Propagation-based Regularization 

(PEPR) method is proposed and the reconstructed image 

quality is improved in Electrical Impedance Tomography 

(EIT). The projection error is calculated from the difference 

between the calculated and measured data in each iterations 

of the reconstruction process and then it is integrated with 

the response matrix and the reconstruction is carried out. 

The PEPR method is studied with the simulated boundary 

data obtained for different inhomogeneity geometry. 

Studying the resistivity reconstruction from simulated data 

it is observed that the Projection Error Propagation-based 

Regularization (PEPR) method improved the quality of the 

reconstructed images in Electrical Impedance Tomography 

(EIT). CNR, PCR, COC, IRMax IRMean, EV and Eρ all are 

improved in PEPR technique. Especially, the PEPR method 

improved the image quality for noisy boundary data. PEPR 

technique is also studied with the simulated boundary data 

mixed with random noise for different percentage. It is 

observed that the PEPR method gives better reconstruction 

at all the noise levels added to the boundary data. An 

iteration study shows that in LMR method, the 

reconstruction diverges gradually as the iteration goes on 

and become unstable with a continuously over estimated 

resistivity. On the other hand, the resistivity reconstruction 

rapidly converges in the PEPR method and gets stable after 

few iterations with a proper resistivity reconstruction. All 

the results demonstrate that the PEPR technique improves 

image reconstruction precision in EIDORS and hence it can 

be successfully implemented to increase the reconstruction 

accuracy in EIT.  

Conclusions 

PEPR technique is successfully implemented to regularize 

the solution domain in resistivity reconstruction in EIT. the 

PEPR method improves the image quality by increasing the 

CNR, PCR and COC for resistivity reconstruction in 

EIDORS. The simulation study proves that the PEPR 

technique improves the resistivity image quality with a 

better contrast than the traditional regularization for all 

inhomogeneity positions. Especially with noisy boundary 

data, the PEPR method provides improved reconstruction 

with high image contrast. Normalized projection error (EV) 

and the normalized solution error norm (Eρ) are found to be 

less in PEPR technique. It is observed that the resistivity 

reconstruction rapidly converges in the PEPR method and 

gets stable after few iterations with a proper resistivity 

reconstruction. On the other hand, in the LMR method, the 

reconstruction diverges gradually as the iteration goes on 

and become unstable with a continuously over-estimated 

resistivity. Hence it is observed that the PEPR is 

successfully implemented in EIDORS for better 

reconstruction in EIT.  
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