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Abstract

Background: The treatment of intratumoral dentritic cells (DCs) commonly fails because it cannot evoke immunity in

a poor tumor microenvironment (TME). Modulated electro-hyperthermia (mEHT, trade-name: oncothermia) represents

a significant technological advancement in the hyperthermia field, allowing the autofocusing of electromagnetic

power on a cell membrane to generate massive apoptosis. This approach turns local immunogenic cancer cell

death (apoptosis) into a systemic anti-tumor immune response and may be implemented by treatment with

intratumoral DCs.

Methods: The CT26 murine colorectal cancer model was used in this investigation. The inhibition of growth of

the tumor and the systemic anti-tumor immune response were measured. The tumor was heated to a core

temperature of 42 °C for 30 min. The matured synergetic DCs were intratumorally injected 24 h following mEHT

was applied.

Results: mEHT induced significant apoptosis and enhanced the release of heat shock protein70 (Hsp70) in CT26

tumors. Treatment with mEHT-DCs significantly inhibited CT26 tumor growth, relative to DCs alone or mEHT

alone. The secondary tumor protection effect upon rechallenging was observed in mice that were treated with

mEHT-DCs. Immunohistochemical staining of CD45 and F4/80 revealed that mEHT-DC treatment increased the

number of leukocytes and macrophages. Most interestingly, mEHT also induced infiltrations of eosinophil, which

has recently been reported to be an orchestrator of a specific T cell response. Cytotoxic T cell assay and ELISpot

assay revealed a tumor-specific T cell activity.

Conclusions: This study demonstrated that mEHT induces tumor cell apoptosis and enhances the release of

Hsp70 from heated tumor cells, unlike conventional hyperthermia. mEHT can create a favorable tumor

microenvironment for an immunological chain reaction that improves the success rate of intratumoral DC

immunotherapy.
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Background
The tumor microenvironment (TME) is an important

factor in successful local treatment and in provoking a

systemic immunological response in cancer patients [1].

Dendritic cells (DCs) that infiltrate the TME are respon-

sible for the uptake of antigens in situ and maturation in

the draining lymph nodes, and the provide the basis for

effective anti-tumor T cell immune responses [2]. In situ

DC-based cancer immunotherapy with radiotherapy has

been utilized to treat cancer patients, but only a small

number of tumor regressions have been observed [3]. A

poor TME can cause DCs to differentiate into immuno-

suppressive regulatory DCs, which inhibit the effect of

cytotoxic T cells activation and promote tumor progres-

sion [4]. The function of DCs is mainly positively

affected by a microenvironment that contains fewer im-

mune suppression factors, more immune potentiating fac-

tors and an immunogenic hub in the tumor site [5, 6].

This fact previously motivated us to develop a new strat-

egy to improve the efficacy of in situ DC vaccination by

adding combining heat shock protein (Hsp) [7] or by

electro-gene therapy with cytokine [8]. How a therapy-

induced anti-tumor immunity should be manipulated is

not clearly known but immunogenic cancer cell death

(ICD) has emerged as the most important sign of a fa-

vorable immunogenic TME [6, 9]. Only a favorable

TME can provide the various important functional im-

munological cells and cytokines that are required for

immunotherapy [10, 11].

Hyperthermia has been used in cancer therapy for de-

cades. A branch of hyperthermia, known as modulated

electro-hyperthermia [12–15] (mEHT – trade name:

oncothermia) has been developed by the capacitive (im-

pedance-based) coupling of 13.56 MHz amplitude-

modulated radiofrequency energy at the tumor site [15].

The electric field energy may be selected and delivered to

the malignant cells by exploiting the larger amount of

ionic connective tissue around the tumor area, creating

massive apoptosis at mild temperatures (≦42 °C) [14–17].

In Europe, mEHT has been successfully utilized in clinical

treatment for over two decades [18–20]. Numerous retro-

spective studies of cancer patients have revealed that

mEHT can treat a very wide range of tumor lesions and

various types of tumor, demonstrating that the mEHT is a

feasible option for treating cancer [14]. It is generally ap-

plied to treat various forms of malignant tumor, such as

lung, liver, pancreas, brain, gastrointestinal, gynecological,

and other such tumors. Qin et al. demonstrated that

mEHT had an abscopal effect in experiments in vivo [21].

However, immature DCs that were used in Qin’s study

may have increased the tolerance of antitumor immunity

whereas mature DCs induce a strong antitumor immunity

when they interact with cancer cells that are undergoing

immunogenic cancer cell death (ICD) [22]. The

combination of mEHT and the intra-tumoral injection of

DCs may be able to provide a more sustained systemic

immunity, enhancing the abscopal effect [23]. We

hypothesize that mEHT is an ideal approach for changing

the TME from immune-suppressive to immune-

stimulatory. Mature DCs were utilized in this experiment

to eliminate interference with the DC maturation process

at tumor site and to observe the change in TME-induced

mDC activation.

Although hyperthermia, combined with an intratu-

moral injection of DC, reportedly evokes systemic im-

munity, two applications of a moderately high

temperature (43.7 °C for 1 h) are required to improve

the induce an effective acquisition of antigens following

three rounds of DCs treatment [24]. However, the

temperature is not easily reached in clinical practice by

conventional hyperthermia machine. Mild temperature

hyperthermia (>42 °C) cannot generate massive apop-

tosis or cause a damage-associated molecular pattern

(DAMP) in the tumor environment. The lack of release

of tumor antigens from apoptotic tumor cells may

dampen the effect of combined DCs and hyperthermia

[21, 25–27]. mEHT has been demonstrated to induce

massive apoptosis and a DAMP-related signal sequence

in colorectal cancer xenografts at mild temperatures

[28]. A favorable anti-tumor immune microenviron-

ment at a mild temperature may be more effective in

promoting an immunological cell death response [28].

For the above reasons, this work proposes that combin-

ing intratumoral DCs at mild temperature with mEHT

may be more effective in generating tumor cell apop-

tosis and DAMP and in providing a favorable immuno-

logical environment eliciting specific immunity. The

data obtained herein evidence that mEHT may change

TME immune phenotypes, including infiltrated leuko-

cytes and eosinophils, and be feasibly combined with

intra-tumoral DCs immunotherapy.

Methods

Cell lines and mice

CT26, a murine colon carcinoma cell line that is derived

from a BALB/c mouse, was purchased from the Culture

Collection and Research Center (Hsinchu,Taiwan), where

fresh batches are thawed every year. CT26 cells were

maintained in Dulbecco’s modified Eagle medium

(DMEM) was supplemented with 10 % fetal bovine

serum (FBS), 100 ng/ml of streptomycin, and 100 U/ml

of penicillin (Invitrogen). Female BALB/c mice were

obtained from the National Science Council Animal

Center, Taipei, Taiwan, and were used at between 6 and

8 weeks of age. This study was approved by the Institu-

tional Animal Care and Use Committee of the Shin

Kong Wu Ho-Su Memorial Hospital (Approval No.

0990827008).
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Modulated electro-hyperthermia treatment (mEHT)

Electromagnetic heating was conducted using capacitive-

coupling with an amplitude-modulated 13.56-MHz radio-

frequency (LabEHY, Oncotherm, Germany). The mEHT

technical details of the method can be found elsewhere

[29]. An in vitro heating model was established in an elec-

trode chamber (LabEHY in vitro applicator), which was

heated to 42 °C for 30 min at a mean power of 8 ~ 9 W.

The cells were placed in a chamber with a culture medium

at 42 °C for 30 min. Tumor implants in the right femoral

area of BALB/c mice were placed in the parallel electric

condenser of the heating circuit, as described elsewhere

[28]. The treatment groups were givena single shot of

mEHT for 30 min at a mean power of 1.5 W under

100 mg/kg Ketamine and 10 mg/kg Xylazine anesthesia.

Intratumoral temperature was maintained at ~ 42 °C on

the treated side of each mice, as measured using optical

sensors (Luxtron FOT Lab Kit, LumaSense Technologies,

Inc., California, USA). The subcutaneous temperature

underneath the electrode was maintained at 38 ~ 40 °C.

Apoptosis assay

Water bath-treated and mEHT-treated CT26 cells were

cultured for 24 h, then trypsinized, and washed twice

with PBS. Apoptosis was verified using an Annexin V

Apoptosis Kit (BD Pharmingen), following the manufac-

turer’s instructions. Briefly, tumor cells were washed

three times with PBS; then, some cells were analyzed im-

mediately for apoptosis using Annexin V/PI staining.

Washed cells were supplemented with 1 % BSA and then

stained directly with 10 μL of PI and 2.5 μL Annexin V-

FITC, following the addition of 222.5 μL of binding

buffer. Immediately after 10 min of incubation in the

dark on ice, the cells were analyzed by flow cytometry.

The percentage of positive cells was determined using a

FACSCalibur cytometer and Cell Quest Pro software

(Becton Dickinson, Mountain View, CA).

Western blot analysis

For protein analysis, the water bath-treated control and

mEHT-treated CT26 cells were lysed for 5 min at room

temperature in a buffer of 150 mM NaCl, 50 mM Tris

(pH 8.0), 5 mM EDTA, 1 % (v/v) Nonidet p-40, 1 mM

phenylmethylsulfonyl fluoride, 20 μg/mL aprotinin, and

25 μg/mL leupeptin (Sigma). The total protein concen-

tration was measured using the Bio-Rad protein assay

reagent. Cell lysates (100 μg) were electrophoresed on a

12 % polyacrylamide gel, transferred onto an Immobilon-

P PVDF membrane (Millipore, Bedford, MA), and blocked

in PBS-Tween 20 and 10 % nonfat milk for 2 h at room

temperature. The filter was incubated with specific anti-

bodies to anti-Hsp70 (Santa Cruz Biotechnology, Santa

Cruz, CA) and anti-HMGB-1 (Abcam, Cambridge, MA,

USA) for 2 h at room temperature in PBS-0.05 %

Tween 20 that contained 5 % nonfat milk, followed by

1 h incubation at room temperature with horseradish

peroxidase-conjugated secondary antibodies (Jackson

ImmunoResearch Laboratories, West Grove, PA) in the

same buffer. Blots were developed using a chemilumin-

escent detection system (ECL; GE Life Science,

Buckinghamshire, UK).

Hsp70 release assay

mEHT treated CT26 cells were cultured for 24 h. The

culture supernatants were harvested and Hsp70 was

measured by using an enzyme-linked immunosorbent

assay (ELISA) (Enzo Life Sciences, Farmingdale, USA). A

Multiskan Plus (Thermo Scientific, Hudson, NH, USA)

was utilized to measure absorbance at 450 nm.

Generation of bone marrow-derived dendritic cells

Bone marrow-derived DCs (BM-DCs) were produced as

described elsewhere [9]. Briefly, BM-DCs were isolated

from BALB/c mice by culturing red blood cell-depleted

BM cells in a complete medium (RPMI 1640 that was

supplemented with 10 % FBS, L-glutamine, and 5 mM

2-mercaptoethanol) that contained 20 ng/ml of recom-

binant mouse GM-CSF (Peprotech, Rocky Hill, NJ,

USA) at 37 °C in a humidified atmosphere with 5 % CO2

and fed every third day with a medium that contained

fresh GM-CSF. On day nine of the culture, the DCs

were mixed with 10 μg/ml AH1 (SPSYVYHQF) that had

been manufactured at 95 % purity by AnaSpec (Fremont,

CA) and 50 μg/ml Hsp70 which was prepared in our la-

boratory as described elsewhere [7] for 24 h. On day ten

of the culture, non-adherent cells were harvested,

washed once in a complete medium, and examined to

evaluate the expression of the DC surface markers

(MHC class II molecule I-Ad/I-Ed, CD80 (B7-1), CD86

(B7-2), CD11c, and DEC205). The BM-DCs (5–10 × 105)

were stained with 50 μL of FITC-conjugated antibodies

in phosphate-buffered saline (PBS) that contained 1 %

bovine serum albumin (BSA) and 0.1 % azide, which was

also used as the washing buffer, before being subjected

to fluorescence-activated cell sorting (FACS) analysis

using a FASCalibur flow cytometer (BD Bioscience, San

Diego, California, USA). Cells were stained with the

corresponding isotype-matched control IgG (BD

Pharmingen, San Diego, CA, USA). Endocytic activity

was quantifiedby incubating cells for 2 h with FITC-

dextran (100 μg/ml) (Sigma) at 4 °C or 37 °C. Cells were

washed extensively with PBS, before being subjected to

FACS analysis. Non-specific binding of FITC-dextran to

the cell surface was measured by incubating the cells at

4 °C [30]. The percentage of positive cells was obtained

using a FACSCalibur cytometer and Cell Quest Pro soft-

ware (Becton Dickinson, Mountain View, CA).
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Animal study

On day zero, the right femoral areas of BALB/c mice

were injected subcutaneously with 5 × 105 CT26 tumor

cells. On day 14 following injection, the mice received

local mEHT treatment (as described above), and then,

on the following day, 5 × 105 syngeneic DCs or PBS in

25 μL were injected into the right femoral tumor area.

Each group comprised ten mice. Sampling was carried

out 48 h following treatment, using three mice in each

group. Each excised tumor was fixed in 10 % formalin,

dehydrated, and embedded in paraffin wax (FFPE). The

sizes of the tumors in the other seven mice in each

group were measured at least three times weekly: length

(L) and width (W) were recorded and the tumor vol-

umes were calculated as L ×W2/2. To evaluate whether

specific immunologic memory responses were generated

in mice that bore CT26 tumor cells, the mice were re-

challenged with 1 × 105 tumor cells in the other flank

30 days following the first tumor inoculation [9]. The

mice were examined three times weekly to evaluate

tumor development for 30 days after tumor cell trans-

plantation or the first inoculated tumor growth until the

tumor was more than 2 cm in diameter.

Cytotoxicity T lymphocyte (CTL) assay

On day 30 following tumor injection, the mice were

killed and their spleens harvested. Erythrocyte-depleted

splenocytes (1 × 106 cells/ml) were cultured for five days

in vitro using mitomycin C-treated CT26 tumor cells

(1 × 106 cells/ml) in 24-well plates, during which time

50 IU/ml of recombinant human IL-2 (Proleukin; Novar-

tis Pharmaceuticals, East Hanover, NJ) was added daily.

On day five, the cells were collected; dead cells were

removed on a density gradient, and the viable cells were

tested to evaluate specific cytotoxicity using LDH-

release assay (Promega, Madison, WI, USA). The

percentage-specific cytotoxicity was calculated as 100 x

[(experimental release – spontaneous release)/(maximal

release – spontaneous release)].

Enzyme-linked immunosorbent spot (ELISPOT) assay

The ELISPOT assay was conducted using a Mouse IFN-

γ Development Module kit (R&D System), following the

manufacturer’s instructions. Splenocytes were prepared

as described for use in the CTL reactions. The harvested

splenocytes (1 × 105 in 100 μL) were then mixed with

100 μL of CT26 tumor lysate (50 μg of protein/ml) in

each well of a 96-well filtration plate (MultiscreenTM

HTS) that had been previously coated with capture anti-

bodies (1:60 dilution). The negative controls were the

medium alone and the splenocytes alone and the posi-

tive control was splenocytes plus 20 μg/ml of Con A.

After incubation overnight at 37 °C, color was developed

using the streptavidin-alkaline peroxidase and BCIP/

NBT that was provided in the ELISPOT kits. The spots

were counted visually under a dissection microscope;

the numbers of spots in the test samples (splenocytes +

tumor lysate), spots obtained using splenocytes alone,

and spots obtained using medium alone were calculated.

Immunohistochemistry and Luna stain

To conduct immunohistochemical studies, the tumor

was resected and fixed in 10 % formalin for 24 h. To

stain the sections immunohistochemically, paraffin sec-

tions were deparaffinized in xylene and rehydrated in a

graded alcohol series, treated with 3 % H2O2 for 10 min,

and boiled in a citrate buffer (pH 6) for 30 min (anti-F4/

80 antibody, Bioss bs-7058R, anti-CD45 antibody, Bioss

bs-0522R), before immunoblock (Bio TnA, TAHC03)

was applied to prevent non-specific binding for 60 min

at room temperature. The sections were incubated with

rabbit anti-F4/80 antibody (diluted 1:100) and anti-

CD45 antibody (diluted 1:100) for one hour at 37 °C,

and analyzed by Mouse/Rabbit Probe HRP labeling

(BioTnA, TAHC03) for 30 min at room temperature.

Peroxidase activity was developed in a diaminobenzi-

dine- H2O2 solution (Bio TnA, TAHC03) for 10 min at

room temperature. The sections were then counter-

stained with hematoxylin. All stained slides were exam-

ined by two pathologists who were blind to the

treatment group data. The percentage of positively

stained cell membranes or cytoplasm was obtained by

microscopically examining the entire tissue at high mag-

nification (×400). The numbers of positive cells was cal-

culated in ten fields. The Luna protocol was performed

as described elsewhere with slight modifications [31].

The sections were immersed in working Hematoxylin-

Biebrich (Sigma, Cat # H-3136 and Acros, CI 26905, re-

spectively) scarlet solution (for five minutes), and then

dipped (∼8x) in 1 % acid alcohol and rinsed in tap water.

The sections were then dipped (∼5x) in lithium carbon-

ate solution until they turned blue and washed in run-

ning tap water (for two minutes). The numbers of

eosinophil on the stained slide were calculated in ten

fields (x400).

Statistical analysis

All results were compared using an unpaired t test (two-

tailed) or one-way ANOVA. Differences were considered

statistically significant at a P value of less than 0.05

Results

mEHT induced more apoptotic cell death than water

bath-induced hyperthermia in CT26 cells

The apoptotic efficacy of hyperthermia that was induced

by a water bath or mEHT in CT26 cells was evaluated

using an apoptosis assay kit. mEHT treatment signifi-

cantly increased the percentage of apoptotic cells
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(35.10 %) above that of the 37 °C control (2.76 %) or the

water bath control (2.98 %, p < 0.05) (Fig. 1). This result

suggests that mEHT increased the susceptibility of CT26

cells to apoptosis, whereas the water bath did not.

mEHT promoted the generation and release of Hsp70 in

CT26 cells

Since the expression of Hsp70 is a characteristic of

hyperthermia treatment, the intracellular amount of

Hsp70 and the release of Hsp70 following mEHT and

water bath-induced hyperthermia were investigated.

Whole-cell extracts were prepared for western blot

against Hsp70. The released Hsp70 was collected from

the cell culture supernatant and assayed by ELISA. Both

water bath and mEHT treatment increased the expres-

sion of Hsp70 in CT26 cells (Fig. 2a). Interestingly, only

mEHT significantly increased the release of Hsp70 for

hyperthermia (Fig. 2b). Another danger signal, high mo-

bility group box 1 (HMGB1) protein, did not show any

difference in mEHT as compared to water bath-induced

hyperthermia (Fig. 2a). Those data revealed that mEHT

induced greater Hsp70 responses at a cellular level than

did water bath-induced hyperthermia.

AH1 and Hsp70 induce maturation of BM-DCs

A CT26-derived epitope (AH1) [32] that was presented

by H-2Dd and Hsp70 was used as an antigen to stimu-

late DC maturation, as described elsewhere [7]. The

maturation of DCs was quantified from the expression

of specific cell surface markers, and the relevant data

were collected from three independent experiments.

Additional file 1: Figure A reveals that a high proportion

of the cells were DC-positive for CD11c (MFI: 51.20 ±

20.04), MHC class II (MFI: 74.43 ± 15.62) and CD80

(MFI: 32.45 ± 7.91) antigens, and that AH1 and Hsp70

upregulated the expression of the mouse DC maturation

markers MHC class II (MFI: 283.33 ± 119.30) and CD80

(MFI: 108.79 ± 26.60) on BM-DCs. Immature DCs ex-

hibit potent endocytotic activity, which declines upon

maturation. The endocytotic activity of the BM-DCs was

evaluated before and after AH1 and Hsp70 treatment by

measuring the phagocytosis of mannose-receptor-

mediated FITC-Dextran. The uptake was significantly

lower (P < 0.05) following AH1 and Hsp70 treatment

than before (35.2 % ±11.4 % versus 85.9 % ±7.9 %)

(Additional file 1: Figure B).

Combination of both local and systemic mEHT induced

anti-tumor effect of DC therapy in vivo

First, whether local mEHT-DC immunotherapy could

induce an either local therapeutic effect or systemic anti-

tumor effects was tested outside of the treatment field in

tumor-bearing mice. Based on the hypothesis that the

indirect antitumor effects of DC are mediated by its abil-

ity to promote cross-priming and, therefore, trigger sys-

temic antitumor immunity, mEHT was administered to

mice before DC injection to change the TME and facili-

tate this process. Tumors were treated to quantify the

direct therapeutic effect of mEHT-DC therapy (Fig. 3a)

by injecting DCs into the tumor site 24 h following

mEHT treatment. Two days later, three tumors were re-

moved for immunohistochemical staining, and the sizes

of the tumors in the rest of the mice were measured

every two or three days weekly. mEHT-DC therapy sig-

nificantly delayed local tumor growth (Fig. 3a), and

complete tumor regression was observed in five out of

seven mice in this group. Interestingly, mEHT treat-

ment alone also caused a significant growth delay rela-

tive to the control mice or mice treated with DC alone

(P < 0.05); complete tumor regression was observed in two

out of seven mice in the mEHT-treatment-alone group.

mEHT-DC treatment improves immunogenicity

To evaluate both the direct and systemic effects of

mEHT-DC therapy, a rechallenge model was utilized in

which mice had one tumor first and were inoculated

with a secondary tumor one month later. All mice that

were originally treated with mEHT-DC showed complete

rejection of a secondary rechallenge (Fig. 3b). In con-

trast, five out of seven mEHT-treated mice and four out

of seven DC-treated mice rejected the rechallenge of

CT26 cells. All of the untreated control mice grew the

rechallenge tumor within 12 days. This result indicates

that mEHT-DC treatment induces an effective antitumor

memory response.

Fig. 1 Apoptosis in mEHT-treated CT26 cells. One and a half million

CT26 cells were heated to 42 °C for 30 min using LabEHY or a water

bath (control). The apoptosis of CT26 cells after 24 h of hyperthermia

treatment was analyzed using Annexin-V assay. (*, p < 0.05; n = 3)
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mEHT-DC therapy increases number of tumor-infiltrating

leukocytes

To elucidate the anti-tumor immune response that is

generated by treatment with mEHT and DC, tumors

from the treated and control mice were extracted and

processed for immunohistochemical analysis two days

after treatment. Tumor-infiltrating CD45+ leukocytes

and F4/80+ macrophages were identified. The presence

of tumor-infiltrating CD45+ leukocytes was significantly

higher in mice that had been treated with mEHT-DC

than in those that had been treated with mEHT alone,

those that had been treated with DC alone and the con-

trol mice. mEHT alone significantly increased the infil-

tration of CD45+ leukocytes over that achieved using

DC alone or evident in the control mice (Fig. 4a). An in-

crease in tumor-infiltrating F4/80+ macrophages was ob-

served following the combined administration of

mEHT/DC (Fig. 4b). This result demonstrates that

mEHT induced an inflammatory environment and that

combined treatment strengthened this inflammatory re-

sponse. In addition, tumor-associated eosinophilia is fre-

quently observed in some cancers. Several studies have

shown that eosinophils are attracted into tumors by

chemotactic factors [33, 34]. However, the role of infil-

trating eosinophils in tumor is unclear. Recently, a pub-

lished study demonstrated that activated eosinophils

caused substantial changes in the tumor microenviron-

ment, including the polarization of macrophages and

(a) (b)

0 5 10 15 20
0

20

40

60

80

100
Control

DC

mEHT

mEHT + DC

***

**

*

Days after rechallenge

tu
m

o
u

r
d

e
v
e
lo

p
m

e
n

t

Fig. 3 Inhibition of tumor growth and rechallenge inoculation. a Mice in different groups were injected with 5 × 105 CT26 tumor cells

(subcutaneously) in right femoral area on day zero and treated with mEHT on day 14, before receiving DC injection on day 15. Data obtained

from each mouse after tumor-cell inoculation (n = 7) were plotted. b A secondary rechallenge with CT26 tumor cells was administered to mice

30 days after first injection with DC alone or following mEHT or mEHT-DC therapy. Contra-lateral flanks of mice in treated groups and untreated

control BALB/c mice were inoculated subcutaneously (1 × 105 parental CT26 cells). Percentage of mice that developed tumors at contra-lateral site

was obtained using Kaplan–Meier method. (n = 7 mice per group.)

Fig. 2 Expression and release of Hsp70 following hyperthermia treatment. One and a half million CT26 cells were heated to 42 °C for 30 min

using LabEHY or a water bath (control). a After 24 h of incubation, cells were harvested for western blot analysis of Hsp70 or HMGB1 protein

in lysates of CT26 (control) (37 °C), a water bath (control) (42 °C) or mEHT. β-actin was used as an internal control. b After 24 h of incubation,

supernatants were harvested and concentration of Hsp70 was measured using ELISA (n = 3). Data are presented as mean +/− SD from three

independent experiments. * indicates p < 0.05
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normalization of the tumor vasculature, which are

known to promote tumor regression [35]. Therefore, eo-

sinophils were examined herein by Luna staining. Ac-

cording to Fig. 4c, the presence of tumor-infiltrating

eosinophils was significantly higher in the mice that

were treated with mEHT-DC than in the other groups.

This result demonstrates that mEHT recruited eosino-

phils into the tumor tissue and might have induced an

inflammatory response.

mEHT-DC therapy induced cytotoxic antigen-specific

CD8+ effector cells

Seven days following DC injection, two other mice were

sacrificed and the induction of AH1-specific IFN-γ–pro-

ducing CD8+ cells was tested after the T cells were re-

stimulated with the AH1 recombinant protein in an

ELISPOT assay. The cytolytic activity of responding T

cells was tested directly on AH1-positive CT26 target

cells in an LDH-release assay. As shown in Fig. 5,
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Fig. 4 Areas of tumor infiltrated by immune cells after mEHT and DC treatment. Representative images of immunohistochemical straining revealed

that quantities of CD45 (a) and F4/80 (b) were increased in tumors that were treated with DC and mEHT, either alone or in combination. Proportion of

positive cells in one field that was randomly selected from ten fields, was calculated. c Amount of eosinophil increased significantly upon treatment of

tumor; error bars represent standard errors. (***) P < 0.001 (t-test) relative to control. EH: electro-hyperethermia
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specific cytotoxicity was significantly higher in mice

that were co-treated with mEHT and DC than in those

that were treated with DCs alone, those that were

treated mEHT alone or the control mice after spleno-

cytes had been stimulated with AH1 recombinant pro-

tein (P < 0.05). The lytic activity of the cultured spleen

cells correlated strongly with the degree of inhibition of

tumor growth in each group, as presented in Fig. 3.

mEHT-DC therapy significantly increased the T cell-

mediated cytotoxicity over that observed in control

mice, while DC alone had no significant effect.

Figure 6a presents representative results of the ELI-

SPOT assays of cells that were pulsed with AH1 recom-

binant protein. The number of IFN-γ-secreting CD8+

T-cells in mice that were co-treated with mEHT and

DC significantly exceeded the corresponding numbers

in mice that were treated with DCs alone, mEHT alone

or the control (Fig. 6b; P < 0.001, one-way ANOVA).

These results indicate that the intra-tumoral injection

of DCs combined with mEHT therapy induced stronger

antigen-specific immunity than did treatment with DCs

alone or mEHT alone.

Discussion

This study found that the combination of mEHT at a

clinical achievable temperature (42 °C) with the intra-

tumoral injection of DCs not only elicits a local antitu-

mor response but also induces a systemic anti-tumor

immune response. A tumor-specific T cell response was

evoked. The ability of mEHT to induce apoptosis in a

high percentage of tumor cells and enhance the release

of Hsp70 is believed to be a key contributor to the

tumor-specific immune response. In our previous study,

co-injection of rHsp70 and DCs was found to turn

Fig. 5 Tumor-specific CTLs. Mice in various groups were injected

with 5 × 105 CT26 tumor cells subcutaneously on day zero and with

mEHT on day 14, before being given DC injection on day 15. On

day 30 following tumor injection, splenocytes were harvested for

CTL assay. Cytotoxic activity of splenocytes was determined by

LDH-release assay at various effector/target cells (E/T) ratios

(a)

(b)

Control DC mEHT mEHT + DC

Fig. 6 ELISpot assays. a Representative results of ELISpot assay of mice splenocytes that were pulsed with AH1. Top two rows, 2 × 105

splenocytes/well; bottom two rows, 105 splenocytes/well. PC: positive control, splenocytes treated with ConA (5 mg/ml) for 24 h. NC: negative

control, splenocytes treated with BSA for 24 h. b Numbers of IFN-γ-secreting T-cells in DC-treated and mEHT + DC-treated mice significantly

exceeded those in mice treated with mEHT alone and untreated control mice. Error bars represent standard errors. (***) P < 0.001 (t-test) relative

to control. EH: electro-hyperethermia
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radiation-induced local apoptosis into a systemic anti-

tumor immune response. Co-injection of rHsp70 and

DCs into the irradiated tumor site caused a more potent

anti-tumor immune response than did the injection of

DCs alone [7]. In this study, mEHT caused a heated

tumor to release more Hsp70 into extracellular spaces

than did other hyperthermic methods. The release of

Hsp70 served as a danger signal that made the TME a

more immunologically responsive milieu, in which infil-

tration by eosinophils.

Mukhopadhaya et al. reported that localized hyper-

thermia, following by heating in a water bath at 43.5 °C,

combined with intratumoral DC induced systemic anti-

tumor immunity [24]. Heat treatment (>43.5 °C) induces

both apoptosis and necrosis and the release of Hsp70

from cancer cells and triggers DC activation. However,

several points must be addressed. First, heating by a

water bath cannot be used in clinical practice. Heating a

localized tumor to 43 °C using conventional hyperther-

mia machines is very difficult. In the experiment in this

study, hyperthermia that was generated using a water

bath at 42 °C induced only a limited apoptotic or nec-

rotic effect in cancer cells. Another radiofrequency ma-

chine, operated at 42 °C for 30 min, also failed to have

cause significant apoptosis in cells (unpublished data).

Only mEHT induced significant apoptotic cell death at

42 °C for 30 min. Accordingly, the combination of

mEHT with intratumoral DC immunotherapy should be

clinically feasible. We have previously reported that the

intratumoral injection of immature DCs into the irradi-

ated tumor (RT-DC treatment) elicits tumor-specific im-

munity in hepatocellular carcinoma patients [3]. The

present study recommends a future clinical trial of a

combination of mEHT, intra-tumoral injection of DCs

and radiotherapy.

The use of mEHT treatment as adjuvant for DC ther-

apy to induce immunogenic apoptotic cell death by has

recently been examined [21, 36]. However, the incuba-

tion of stressed, apoptotic tumor cells with syngeneic

DCs is generally not strong enough to generate protect-

ive immunity, suggesting that the uptake of apoptotic

cells by DCs alone may not be sufficiently efficient to ac-

tivate an immune response, as described by others [37].

In this study, DC alone was not effective in inducing an

immune response. The suppressive monocytes that are

formed by a CT26 tumor have an important role in

general immunosuppression [38]. These suppressive

monocytes may inhibit the function of therapeutic DC.

Therefore, the secondary signals that are required to ac-

tivate DC function are induced by danger molecular pat-

tern proteins, such as calreticulin, HSPs, and the

HMGB1 [39]. mEHT provides danger molecular pattern

proteins and induces inflammatory signals in tumor mi-

croenvironments [28]. Apoptotic cells cannot effectively

activate DC activation in the absence of inflammatory sig-

nals [37, 40, 41]. Candido et al. [42] found that intratu-

moral administration of DC can partially inhibit the

growth of an established tumor, but the co-administration

of inflammation cytokine (TNF-α) strengthens the

DC-mediated anti-tumor effect, consistent with our

observations.

mEHT reversed the immunosuppressive microenviron-

ment to an inflammatory environment and induced a DC-

mediated anti-tumor immune response [21]. The inflam-

matory environment herein was evidenced by the infiltra-

tion of CD45+ cells and F4/80+ cells (Fig. 4). Tumor-

infiltrating CD45RO+-cell density has been identified as a

prognostic biomarker that is associated with the longer

survival of colorectal cancer patients [43]. mEHT im-

proves the expression of this prognostic biomarker.

Changing the TME into an inflammatory environment

is important in ensuring that the DCs function in a

manner that triggers systemic immunity and that the ef-

fector T cells adequately kill tumors. Although several

studies have shown that DC therapy induces immune re-

sponses in cancer patients, few reports have demon-

strated any clinical benefit of DC treatment perhaps

because of the inhibitory effect of the TME. To improve

the efficacy of DC therapy, the immunosuppressive sta-

tus of the TME must be reprogrammed [44]. Immune

checkpoint blockage therapy was recently shown to have

a promising therapeutic effect on cancer patients [45].

The combination of positive immunotherapy with an

anti-negative immune checkpoint inhibitor is a synergis-

tic strategy [46]. The success of immune check point

therapy demonstrates that elimination of the inhibitory

pathways that block effective antitumor T cell responses

is important in cancer therapy. However, the removal of

inhibitory pathways from the immune system does not

suffice to cure all of a cancer: increasing the number of

immunopotentiation tumor-infiltrating cells, including

CD45-positive leukocytes [46] and eosinophils, may be

equally important [35]. However, a tumor tissue that

lacks immunological markers may represent a nonim-

munologic TME. The TME must be turned into an im-

munologic TME before DC therapy can activate T cells.

Reciprocally, active T cells depend on an immunological

TME to have a positive clinical effect. Therefore, com-

bined treatment with mEHT and DCs should help to es-

tablish OR an immunogenic TME that has a clinical

benefit for patients, independently of whether the preex-

isting tumor was immunogenic or nonimmunologic.

Owing to the clinical feasibility of mEHT, this result sug-

gests future clinical applications.

Conclusion
In summary, mEHT is more effective in combined im-

munotherapy than is conventional hyperthermia in a

Tsang et al. BMC Cancer  (2015) 15:708 Page 9 of 11



clinically viable temperature range. Hyperthermia-induced

local tumor apoptosis and release of Hsp70 can be trans-

lated into a systemic anti-tumor immune response. Since

mEHT treatment alone is not sufficiently powerful to gen-

erate a systemic specific anti-tumor immune response, the

best treatment strategy may be to increase the immuno-

genicity of non- or weakly immunogenic tumor cells by

promoting their DC function. Further clinical investiga-

tion will be initiated accordingly.

Additional file

Additional file 1: Figure A. (a) Representative flow cytometric analysis

on immature and mature DCs. The purple histograms represent the

isotype-matched control, and the red line histograms represent staining

with specific antibodies. *MFI represents the mean fluorescence intensity,

which are expressed on the right upper corner of each histogram. Error

bars represent standard errors. (b) Histogram plot of MFI. (*) P < 0.05, (**)

P < 0.01 (t-test) compared with the immature DC. Figure B. Endocytotic

activity was measured by flow cytometry in DCs generated from bone

marrow cultured for 9 d with 20 ng/ml of GM-CSF; mDCs obtained from

iDCs were incubated with 10 g/mL of AH1 and 50 g/mL of Hsp70 for 24

h and reacted with 100 mg/mL of FITC-Dextran at 4°C (purple) or 37 °C

(green line) for 2 h before analysis. This result was represented from one

of three independent experiments. (DOCX 608 kb)

Abbreviation

TME: Tumor microenvironment; DCs: Dendritic cells; mEHT: Modulated

Electro-hyperthermia; Hsp70: Heat shock protein70; ICD: Immunogenic

cancer cell death; DAMP: Damage-associated molecular pattern;

CTL: Cytotoxic T lymphocyte; ELISPOT: Enzyme-linked immunosorbent spot.

Competing interests

The authors disclose no financial interest.

Authors’ contributions

KHC and WTL conceived and designed this study. YWT, CCH, KLY, and MSC

contributed to perform the experiments. HCC contributed to analyzed the

data. YSW, GA, and AS wrote the manuscript. All authors have read and

approved the final manuscript.

Acknowledgements

This study was supported by the research fund of the Department of

Radiation Oncology, Ditmanson Medical Foundation, Chiayi Christian

Hospital, Taiwan and under project SKH-8302-100-DR-20 of the Department

of Radiation Therapy and Oncology, Shin Kong Wu Ho-Su Memorial Hospital,

Taipei, Taiwan. Ted Knoy is appreciated for his editorial assistance.

Author details
1Department of Radiation Oncology, Chiayi Christian Hospital, Chiayi, Taiwan.
2Department of Biomedical Engineering, Chung Yuan Christian University,

Taoyuan City, Taiwan. 3Department of Radiation Therapy and Oncology, Shin

Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan. 4Department of

Radiological Sciences, Graduate School of Medicine and Pharmaceutical

Sciences, University of Toyama, Toyama, Japan. 5Department of Biotechnics,

St. Istvan University, Budapest, Hungary. 6Institute of Radiation Science and

School of Medicine, National Yang-Ming University, Taipei, Taiwan.

Received: 7 May 2015 Accepted: 7 October 2015

References

1. Formenti SC, Demaria S. Systemic effects of local radiotherapy. Lancet

Oncol. 2009;10(7):718–26.

2. Banchereau J, Steinman RM. Dendritic cells and the control of immunity.

Nature. 1998;392(6673):245–52.

3. Chi KH, Liu SJ, Li CP, Kuo HP, Wang YS, Chao Y, et al. Combination of

conformal radiotherapy and intratumoral injection of adoptive dendritic

cell immunotherapy in refractory hepatoma. J Immunother.

2005;28(2):129–35.

4. Rabinovich GA, Gabrilovich D, Sotomayor EM. IMMUNOSUPPRESSIVE

STRATEGIES THAT ARE MEDIATED BY TUMOR CELLS. Annu Rev Immunol.

2007;25:267–96.

5. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, et al.

Immunobiology of dendritic cells. Annu Rev Immunol. 2000;18:767–811.

6. Chi KH, Wang YS, Kao SJ. Improving radioresponse through modification of

the tumor immunological microenvironment. Cancer Biother Radiopharm.

2012;27(1):6–11.

7. Wang YS, Liu SJ, Huang SC, Chang CC, Huang YC, Fong WL, et al.

Recombinant heat shock protein 70 in combination with radiotherapy as a

source of tumor antigens to improve dendritic cell immunotherapy. Front

Oncol. 2012;2:149.

8. Chi CH, Wang YS, Lai YS, Chi KH. Anti-tumor effect of in vivo IL-2 and GM-

CSF electrogene therapy in murine hepatoma model. Anticancer Res.

2003;23(1A):315–21.

9. Wang YS, Tsang YW, Chi CH, Chang CC, Chu RM, Chi KH. Synergistic anti-

tumor effect of combination radio- and immunotherapy by electro-gene

therapy plus intra-tumor injection of dendritic cells. Cancer Lett.

2008;266(2):275–85.

10. Petrulio CA, Kim-Schulze S, Kaufman HL. The tumour microenvironment and

implications for cancer immunotherapy. Expert Opin Biol Ther.

2006;6(7):671–84.

11. Kaufman HL. Manipulation of the Local Tumor Microenvironment for Cancer

Immunotherapy. ASCO Education Book. 2004;23:165–71.

12. Andocs G, Renner H, Balogh L, Fonyad L, Jakab C, Szasz A. Strong synergy

of heat and modulated electromagnetic field in tumor cell killing.

Strahlenther Onkol. 2009;185(2):120–6.

13. Szasz A, Vincze G, Szasz O, Szasz N. An Energy Analysis of Extracellular

Hyperthermia. Electromagn Biol Med. 2003;22(2–3):103–15.

14. Andocs G, Szasz O, Szasz A. Oncothermia treatment of cancer: from the

laboratory to clinic. Electromagn Biol Med. 2009;28(2):148–65.

15. Szasz A, Szasz N, Szasz O. Oncothermia: A New Kind of Oncologic

Hyperthermia. In: Oncothermia: Principles and Practices. Netherlands:

Springer; 2010. p. 173–392.

16. Szasz A, Vincze G. Dose concept of oncological hyperthermia: heat-equation

considering the cell destruction. J Cancer Res Ther. 2006;2(4):171–81.

17. Hegyi G, Szigeti GP, Szasz A. Hyperthermia versus Oncothermia: Cellular

Effects in Complementary Cancer Therapy. Evid Based Complement Alternat

Med. 2013;2013:672873.

18. Gadaleta-Caldarola G, Infusino S, Galise I, Ranieri G, Vinciarelli G, Fazio V,

et al. Sorafenib and locoregional deep electro-hyperthermia in advanced

hepatocellular carcinoma: A phase II study. Oncol lett. 2014;8(4):1783–7.

19. Fiorentini G, Giovanis P, Rossi S, Dentico P, Paola R, Turrisi G, et al. A phase II

clinical study on relapsed malignant gliomas treated with electro-

hyperthermia. In Vivo. 2006;20(6A):721–4.

20. Szasz A. Current status of oncothermia therapy for lung cancer. The Korean

journal of thoracic and cardiovascular surgery. 2014;47(2):77–93.

21. Qin W, Akutsu Y, Andocs G, Suganami A, Hu X, Yusup G, et al. Modulated

electro-hyperthermia enhances dendritic cell therapy through an abscopal

effect in mice. Oncol Rep. 2014;32(6):2373–9.

22. Dudek AM, Martin S, Garg AD, Agostinis P. Immature, Semi-Mature, and

Fully Mature Dendritic Cells: Toward a DC-Cancer Cells Interface That

Augments Anticancer Immunity. Front Immunol. 2013;4:438.

23. Mole RH. Whole body irradiation; radiobiology or medicine? Br J Radiol.

1953;26(305):234–41.

24. Mukhopadhaya A, Mendecki J, Dong X, Liu L, Kalnicki S, Garg M, et al.

Localized Hyperthermia Combined with Intratumoral Dendritic Cells Induces

Systemic Antitumor Immunity. Cancer Res. 2007;67(16):7798–806.

25. Friedman EJ. Immune modulation by ionizing radiation and its implications

for cancer immunotherapy. Curr Pharm Des. 2002;8(19):1765–80.

26. Lugade AA, Sorensen EW, Gerber SA, Moran JP, Frelinger JG, Lord EM.

Radiation-induced IFN-gamma production within the tumor

microenvironment influences antitumor immunity. J Immunol.

2008;180(5):3132–9.

27. Teitz-Tennenbaum S, Li Q, Okuyama R, Davis MA, Sun R, Whitfield J, et al.

Mechanisms involved in radiation enhancement of intratumoral dendritic

cell therapy. J Immunother. 2008;31(4):345–58.

Tsang et al. BMC Cancer  (2015) 15:708 Page 10 of 11

dx.doi.org/10.1186/s12885-015-1690-2


28. Andocs G, Meggyeshazi N, Balogh L, Spisak S, Maros ME, Balla P, et al.

Upregulation of heat shock proteins and the promotion of damage-

associated molecular pattern signals in a colorectal cancer model by

modulated electrohyperthermia. Cell Stress Chaperones. 2015;20(1):37–46.

29. Szasz A. Challenges and Solutions in Oncological Hyperthermia. Thermal

Med. 2013;29(1):1–23.

30. Wang YS, Chi KH, Liao KW, Liu CC, Cheng CL, Lin YC, et al. Characterization

of canine monocyte-derived dendritic cells with phenotypic and functional

differentiation. Can J Vet Res. 2007;71(3):165–74.

31. Hirasawa M, Ito Y, Shibata MA, Otsuki Y. Mechanism of inflammation in

murine eosinophilic myocarditis produced by adoptive transfer with

ovalbumin challenge. Int Arch Allergy Immunol. 2007;142(1):28–39.

32. Huang AY, Gulden PH, Woods AS, Thomas MC, Tong CD, Wang W, et al.

The immunodominant major histocompatibility complex class I-restricted

antigen of a murine colon tumor derives from an endogenous retroviral

gene product. Proc Natl Acad Sci U S A. 1996;93(18):9730–5.

33. Simson L, Ellyard JI, Dent LA, Matthaei KI, Rothenberg ME, Foster PS, et al.

Regulation of carcinogenesis by IL-5 and CCL11: a potential role for

eosinophils in tumor immune surveillance. J Immunol. 2007;178(7):4222–9.

34. Cormier SA, Taranova AG, Bedient C, Nguyen T, Protheroe C, Pero R, et al.

Pivotal Advance: eosinophil infiltration of solid tumors is an early and

persistent inflammatory host response. J Leukoc Biol. 2006;79(6):1131–9.

35. Carretero R, Sektioglu IM, Garbi N, Salgado OC, Beckhove P, Hammerling GJ.

Eosinophils orchestrate cancer rejection by normalizing tumor vessels and

enhancing infiltration of CD8(+) T cells. Nat Immunol. 2015;16(6):609–17.

36. Meggyeshazi N, Andocs G, Balogh L, Balla P, Kiszner G, Teleki I, et al. DNA

fragmentation and caspase-independent programmed cell death by

modulated electrohyperthermia. Strahlenther Onkol. 2014;1–8.

37. Feng H, Zeng Y, Graner MW, Katsanis E. Stressed apoptotic tumor cells

stimulate dendritic cells and induce specific cytotoxic T cells. Blood.

2002;100(12):4108–15.

38. Jaffe ML, Arai H, Nabel GJ. Mechanisms of tumor-induced

immunosuppression: evidence for contact-dependent T cell suppression by

monocytes. Mol Med. 1996;2(6):692–701.

39. Brusa D, Migliore E, Garetto S, Simone M, Matera L. Immunogenicity of 56

degree C and UVC-treated prostate cancer is associated with release of

HSP70 and HMGB1 from necrotic cells. Prostate. 2009;69(12):1343–52.

40. Gallucci S, Lolkema M, Matzinger P. Natural adjuvants: Endogenous

activators of dendritic cells. Nat Med. 1999;5(11):1249–55.

41. Lutz MB, Kukutsch N, Ogilvie AL, Rossner S, Koch F, Romani N, et al. An

advanced culture method for generating large quantities of highly pure

dendritic cells from mouse bone marrow. J Immunol Methods.

1999;223(1):77–92.

42. Candido KA, Shimizu K, McLaughlin JC, Kunkel R, Fuller JA, Redman BG, et al.

Local administration of dendritic cells inhibits established breast tumor growth:

implications for apoptosis-inducing agents. Cancer Res. 2001;61(1):228–36.

43. Nosho K, Baba Y, Tanaka N, Shima K, Hayashi M, Meyerhardt JA, et al.

Tumour-infiltrating T-cell subsets, molecular changes in colorectal

cancer, and prognosis: cohort study and literature review. J Pathol.

2010;222(4):350–66.

44. Benencia F, Sprague L, McGinty J, Pate M, Muccioli M. Dendritic cells the

tumor microenvironment and the challenges for an effective antitumor

vaccination. J Biomed Biotechnol. 2012;2012:425476.

45. Harvey RD. Immunologic and Clinical Effects of Targeting PD-1 in Lung

Cancer. Clin Pharmacol Ther. 2014;96(2):214–23.

46. Sharma P, Allison JP. The future of immune checkpoint therapy. Science.

2015;348(6230):56–61.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Tsang et al. BMC Cancer  (2015) 15:708 Page 11 of 11


	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Cell lines and mice
	Modulated electro-hyperthermia treatment (mEHT)
	Apoptosis assay
	Western blot analysis
	Hsp70 release assay
	Generation of bone marrow-derived dendritic cells
	Animal study
	Cytotoxicity T lymphocyte (CTL) assay
	Enzyme-linked immunosorbent spot (ELISPOT) assay
	Immunohistochemistry and Luna stain
	Statistical analysis

	Results
	mEHT induced more apoptotic cell death than water bath-induced hyperthermia in CT26 cells
	mEHT promoted the generation and release of Hsp70 in CT26 cells
	AH1 and Hsp70 induce maturation of BM-DCs
	Combination of both local and systemic mEHT induced anti-tumor effect of DC therapy in vivo
	mEHT-DC treatment improves immunogenicity
	mEHT-DC therapy increases number of tumor-infiltrating leukocytes
	mEHT-DC therapy induced cytotoxic antigen-specific �CD8+ effector cells

	Discussion
	Conclusion
	Additional file
	Abbreviation
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

