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ABSTRACT Imputation is one of the key steps in the preprocessing and quality control protocol of any

genetic study. Most imputation algorithms were originally developed for the use in human genetics and

thus are optimized for a high level of genetic diversity. Different versions of BEAGLE were evaluated on

genetic datasets of doubled haploids of two European maize landraces, a commercial breeding line and a

diversity panel in chicken, respectively, with different levels of genetic diversity and structure which can be

taken into account in BEAGLE by parameter tuning. Especially for phasing BEAGLE 5.0 outperformed the

newest version (5.1) which in turn also lead to improved imputation. Earlier versions were far more

dependent on the adaption of parameters in all our tests. For all versions, the parameter ne (effective

population size) had a major effect on the error rate for imputation of ungenotyped markers, reducing error

rates by up to 98.5%. Further improvement was obtained by tuning of the parameters affecting the structure

of the haplotype cluster that is used to initialize the underlying Hidden Markov Model of BEAGLE. The

number of markers with extremely high error rates for the maize datasets were more than halved by the use

of a flint reference genome (F7, PE0075 etc.) instead of the commonly used B73. On average, error rates for

imputation of ungenotyped markers were reduced by 8.5% by excluding genetically distant individuals from

the reference panel for the chicken diversity panel. To optimize imputation accuracy one has to find a

balance between representing as much of the genetic diversity as possible while avoiding the introduction

of noise by including genetically distant individuals.
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Imputation is one of the key steps in preprocessing genetic data

generated by SNP-chips or DNA sequencing, as follow-up applications

like genomic prediction (Meuwissen et al. 2001) often do not allow for

missing values. In some applications the use of a higher marker density

can lead to better results even though individuals were not genotyped

for most markers (e.g., in genome-wide association studies previously

not identified regions can be detected (Yan et al. 2017)).

The imputation of genotype data were first introduced by Li and

Stephens (2003). The basic idea of the algorithm is the fitting of a

Hidden Markov Model (HMM, (Baum and Petrie 1966; Rabiner

1989)) to the sequence of alleles of a haplotype. Over the years, a wide

variety of tools with similar basic frameworks, but improvements to the

computational efficiency for larger datasets (Howie et al. 2009), refer-

ence panels (Browning et al. 2018) or modifications for improved

modeling have been developed. Among others, improvements to the

modeling include the use of coalescent trees (Marchini et al. 2007),

haplotype clusters (Scheet and Stephens 2006) and pre-phasing steps

(Scott et al. 2007; Howie et al. 2012; Loh et al. 2016).

To account for the specific structure of livestock and crop

datasets, special tools for both cases have been developed. As fully

homozygous lines are commonly present in crops, the software
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TASSEL (Bradbury et al. 2007) was developed to work well on this

data structure (Swarts et al. 2014). Since pedigrees in animal breed-

ing can be much denser than in human populations (both w.r.t.

depth and family size), tools like FImpute (Sargolzaei et al. 2014)

and AlphaImpute (Hickey et al. 2011) have been developed to fully

utilize this information.

In the imputation process all those methods use the fact that

physically close markers are likely inherited together, resulting in

non-random associations of alleles. These methods thereby rely on

the knowledge of the physical position or at least the order ofmarkers

for modeling linkage and thus the resulting linkage disequilibrium

(LD). In contrast, the software LinkImpute (Money et al. 2015)

accounts for LD between pairs of markers and not their physical

positions. This can be particularly relevant for species in which no

reference sequence is available or whose genomes are known for a

high amount of translocations and inversions.

In contrast to other methods using a HMM, the Markov chain in

BEAGLE is not initialized by the genotypes or haplotypes themselves,

but instead the genetic dataset is used to initialize a haplotype cluster

(Browning and Browning 2007), which subsequently initializes the

HMM. In essence, imputation is then performed by identifying themost

likely path through the haplotype cluster based on the non-missing

genotypes. As BEAGLE was originally developed for application in

human genetics, default settings are chosen to work well for imputa-

tion in outbred human populations. Nevertheless, the user still has

considerable flexibility to tune the algorithm to the specific genetic

structure of the respective dataset. As imputation is usually just a step

in the preprocessing and quality control protocol, authors tend to use

the default settings of a recent version of some imputation software.

To increase the operational marker density via imputation an

additional dataset (reference panel) that is genotyped under a higher

density can be used. With increasing computational power and more

efficient methods available the common advice here is to use as many

individuals as possible to get a good representation of the population

(Zhang et al. 2013; Browning et al. 2018).

Inthispaper,wecomparedifferentBEAGLEversions(4.0/4.1 /5.0 /5.1)

and perform bench-marking tests in regard to imputation quality on

virtually all parameters in BEAGLE for a variety of livestock and crop

datasets, as it is one of the most frequently used tools in both animal

and plant breeding and a new version of the tool has been recently

published (Browning et al. 2018). We further evaluate which individ-

uals to include in a reference panel when aiming at increasing the

marker density of a dataset.

Since imputation algorithms like BEAGLE rely on the assumed

physical order of markers, the used reference genome influences the

imputation quality. Recently, a variety of newmaize reference genomes

have been made public (Unterseer et al. 2017). We here compare the

imputation performance of the commonly used B73v4 (Schnable et al.

2009; Jiao et al. 2017) and new reference genomes from flint lines in

maize that should be genetically closer to our material. To this day,

all reference genomes derived in chicken were generated based on an

inbred Red Jungle Fowl (Gallus gallus gallus; (International Chicken

Genome Sequencing Consortium 2004; Bellott et al. 2010).

MATERIALS AND METHODS

Genotype data used

In the following, we will consider genotypic data of 910 doubled haploid

(DH) lines of two European maize (Zea mays) landraces (n ¼ 501

Kemater Landmais Gelb (KE) and n ¼ 409 Petkuser Ferdinand Rot

(PE), (Hölker et al. 2019)) genotyped using the 600k Affymetrix Axiom

Maize Array (Unterseer et al. 2014). Markers were filtered for being

assigned to the highest quality class (Poly High Resolution (Pirani et al.

2013)), having a callrate of at least 90%, and for having at most 5%

heterozygous calls, as no heterozygous calls are expected for DH lines.

The remaining heterozygous calls were set to NA and subsequently

imputed using BEAGLE 4.0 with nsamples = 50, resulting in a dataset

of 501,124 markers with known haplotype phases.

We further considered two chicken (Gallus gallus) datasets geno-

typed with the 580k SNP Affymetrix Axiom Genome-Wide Chicken

Genotyping Array (Kranis et al. 2013). First, a chicken diversity panel

containing 1,810 chicken of 82 breeds including Asian types, European

types, wild types, commercial broilers and layers (Weigend et al. 2014;

Malomane et al. 2019). Second, a dataset containing 888 chicken of

a commercial breeding program from Lohmann Tierzucht GmbH.

For quality control SNPs / animals with less than 99% / 95% callrate

were removed. We will here focus on chromosome 1, 7 and 20 with

56,773 / 65,177, 12,585 / 13,533 and 5,539 / 5,940 SNPs representing

cases for large, medium and small size chromosomes. Remaining miss-

ing genotypes for both chicken panels were imputed using BEAGLE

4.1 default.

For tests regarding imputation of ungenotyped markers in maize

we used the overlapping markers (45,655 SNPs) of the Illumina

MaizeSNP50 BeadChip chip (Ganal et al. 2011) as a smaller SNP

array. As there is no similar public smaller array with a majority of

overlapping markers for the chicken panels, we simply used a subset

of every tenth marker. All tests regarding imputation quality were

performed on imputed datasets. This might favor the respective

method used for the imputation. As the missingness in the maize data

(1.20%), diversity panel (0.27%) and commercial chicken breeding

line (0.32%) were low in the raw data, this effect should only be minor

and is neglected here.

To assess the genetic diversityof the three datasets,wederived theLD

decay (Figure 1) resulting in the highest rates of association for the

European maize landraces, followed by the commercial chicken dataset

and the chicken diversity panel. The overall genetic diversity in all used

datasets should be far smaller than in an outbred human population,

which is the data structure BEAGLE was originally developed for.

It should be noted that this comparison does not account for possible

differences in ascertainment bias (Albrechtsen et al. 2010) between

the arrays or the genetic diversity of species and their genomes. Since

BEAGLE (and other HMM based imputation methods) are relying on

local associations betweenmarkers this should still be a good indication

for potential imputation performance.

Evaluation Pipeline

The imputation process itself can be split up into three internally linked

stepswhichcanbeofdifferent importancebasedon thedataathandand,

in the following, will be analyzed separately:

1. Inference: All partly or fully missing individual genotypes in the

actual dataset are completed, but no additional markers are added.

2. Imputation of ungenotypedmarkers (UM imputation): Additional

markers are added to the genetic data based on information pro-

vided by a second dataset (reference panel) with higher marker

density.

3. Phasing: The two haplotypes of diploid individuals, i.e., their

gametic phases, are estimated from genotype data.

To assess the quality of inference and UM imputation we used the

following testing pipeline and repeated the procedure 100 times for each

test.We start froma completed dataset inwhichmissing genotypes have

been imputed, and consider this as the ”true” genotype dataset:
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1. Randomly generate missing values (NAs) in the “true” genotype

dataset.

In case of inference set randomly chosen alleles of all geno-

types to NA (in our case: 1% of all alleles with no partly

missing genotypes).

In case of UM imputation additionally set all entries in a

particular marker to NA (maize: according to existing low

density array (Ganal et al. 2011); chicken: 90% of all markers).

2. Perform the imputation procedure under a given parameter set-

ting, software and potential use of a reference panel.

3. Evaluation of performance by comparison to the ”true” dataset.

For more on this we refer to the following subsections.

Evaluation of inference and UM imputation quality

To evaluate the quality of inference andUM imputation we count the

total number of entries in the genotypematrix that are different to the

“true” dataset (allelic error rate). In this procedure, markers with a

low minor allele frequency have a lower impact on the overall qual-

ity than in the commonly used practice of calculating the correlation

between imputed and ”true” dataset (Hickey et al. 2012). To account

for this, we will provide error rates depending on the allele fre-

quency as well. A disadvantage of using a correlation is that it does

not account for fixed markers as correlation is not defined for those

markers, leading to them being excluded from the analysis. As rare

variants tend to be more difficult to impute and those variants tend

to be fixed at a higher rate, this leads to lower average correlations

for methods imputing a rare allele (instead of just imputing the same

variant everywhere). Therefore, a fair comparison should only con-

sider those markers that are not fixed over all settings and different

software. Especially for UM imputation this would lead to a much

smaller set of markers to be considered.

Evaluation of phasing quality

To evaluate phasing qualitywe use the switch error rate as defined inLin

et al. (2002), which evaluates the number of switches between neigh-

boring heterozygous sites to recover the true haplotype phase compared

to the total number of heterozygous markers. Since the true haplotype

phase is usually not known the assessment of phasing quality is usually

not as straight forward. As we are working with doubled haploid lines

in the maize dataset, the true gametic phase is known and a “true”

dataset for testing was generated by randomly combining two doubled

haploid lines to a Pseudo S0. The rest of the pipeline can be performed

in the same way as for the inference testing. For this analysis, we

considered datasets with no missing genotypes to remove any potential

noise caused by inference errors.

Choice of reference panel in UM imputation

A common first question when planning to generate genetic data

are how many individuals need to be genotyped with high marker

density to obtain sufficient imputation quality for individuals

genotyped with lower marker density. To evaluate this, we per-

formed imputation on datasets containing 50 individuals as the

”true” dataset in our pipeline and generated reference panels con-

taining 25, 50, 100, 150, 200, 250, 300, and 350 individuals,

respectively.

Furthermore, we investigate how to chose the individuals to

include in a reference panel. This is especially relevantwhenpotential

candidates for the reference panel vary in their relationship to the

dataset itself. For this, we split the chicken diversity panel into ten

subpopulations by iteratively minimizing the total sum of squared

genetic distances between breeds within the subpopulations. Dis-

tances between the breeds were calculated as Nei standard genetic

distances (Nei 1972). In a first step, the custom made algorithm

randomly assigned the breeds to ten equal sized subpopulations.

The contribution of each breed to the sum of squared distances

was calculated and the algorithm started iteratively exchanging

the most noisy breeds to other subpopulations. If there was a re-

duction of the total sum of squared distances within the subpopu-

lations, the exchange was accepted and the contributions were

calculated again. The process was repeated until no exchange could

improve the fit. To overcome results depending on specific starting

positions, the process was repeated for 60 random starting points.

Nei standard genetic distances for evaluation of UM imputation

quality of BEAGLE were calculated based on the subpopulation

assignment of individuals and UM imputation was performed using

the following reference panels:

A. All other individuals of the same subpopulation

B. All individuals of one other subpopulation

C. All individuals of all other subpopulations

D. All individuals of subpopulations with below-average Nei stan-

dard genetic distance to the dataset

E. All individuals of those subpopulations with reduced error rates

when testing A + B compared to A as the reference panel

Additionally combinations of panelsA+B,A+C,A+DandA+E

were tested. Testswere repeated 20 times for each subpopulationwith

datasets containing 50 randomly sampled individuals. For each

dataset, all different reference panels were tested. The interested

reader is referred to Supplementary Table S8 for a detailed list of the

used subpopulation assignments and Supplementary Figure S1 for

the resulting neighbor-joining-tree.

Figure 1 LD decay based on physical length
(A) and marker distance (B) for chromosome
1 for all considered datasets. Outliers in (A) are
corrected for by using a Nadaraya-Watson-
estimator (Nadaraya 1964), using a Gaussian
kernel and a bandwidth of 50 kb. (B) is using
averaged values for each SNP distance.
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Data availability

Genetic data for chromosome 1 for all three panels used are available at

https://github.com/tpook92/HaploBlocker. Table S1 and S2 contains

error rates of UM imputation for the commercial breeding line and

the diversity panel in chicken. Table S3 provides phasing error rates for

the set of Pseudo S0 with no missing data. Table S4 contains in-

ference error rates for the PE DH-lines using different reference

genomes. Table S5 and S6 contain lists of “critical” markers for

KE and PE. Table S7 gives error rates of UM imputation using

different reference panels for the subpopulations. Table S8 contains

the subpopulation assignments for all chicken from the diversity

panel. Table S9 contains the minimal error rates and used parameter

settings for all performed tests.

Figure S1 provides the neighbor-joining-tree for the ten subpopu-

lations of the chicken diversity panel. Figure S2 displays the relation

between local LD and error rate for chromosome 9 in maize. Figure S3

displays the change in the number of errors in eachmarker by using low

values of buildwindow. Figure S4 and S5 display the relation between

DR2 and the number of errors per marker. Figure S6 - S24 display the

relation between input parameters and error rates for inference in the

maize data. Figure S25 - S45 display the relation between input param-

eters and error rates for inference and phasing for the set of Pseudo S0.

Figure S46 - S74 display the relation between input parameters and

error rates for UM imputation for the maize data, the commercial

chicken line and the chicken diversity panel.

Supplemental material available at figshare: https://doi.org/

10.25387/g3.9977087.

RESULTS
In the following, obtained error rates of the imputationunder a variety of

tuning option in BEAGLE are discussed. Here, we consider virtually all

available parameters in BEAGLE, the size of the reference panel, and the

underlying genetic map. The effect on the error rate of different tuning

options are somewhat independent from each other as they commonly

affect different parts of the imputation algorithm. Therefore, wewillfirst

consider each tuning option individually and later discuss suggested

imputation pipelines for the different use cases.

Unless otherwise mentioned, we will report for maize the error rates

in the landrace KE averaged over all chromosomes. Results for PE were

similar with, on average, slightly increased error rates.

Inference quality

On default, BEAGLE 5.0 (error rate: 0.0142%) and BEAGLE 5.1

(0.0127%) both clearly outperformBEAGLE4.1 (0.255%) andBEAGLE

4.0 (0.201%) for the maize data. For all four versions the error rates are

significantly higher for alleleswith low frequency (Figure 2). In regard to

the location of inference errors one can observe a high volatility with a

tendency to have increased error rates in telomeric regions (Figure 3).

Additionally, error rates in regions of high LD tend to be lower

(Supplementary Figure S2).

Forall four versions thebiggest improvementwasobtainedby tuning

parameters that are affecting the structure of the haplotype cluster. The

optimal parameter values (Table 1) for buildwindow (4.0), singlescale

(4.0), modelscale (4.1) lead to less similar haplotypes being clustered

jointly. Phase-segment (5.0), phase-states (5.0 / 5.1) affect the minimum

length and number of different haplotypes in the haplotype cluster.

Overall, all these settings lead to longer and/or less related haplotypes

to be considered jointly. The gains by fitting those parameters aremuch

higher in BEAGLE 4.0 and 4.1 but overall error rates are still higher

than in BEAGLE 5.0 and 5.1 (Table 1) with BEAGLE 5.1 performing

best. Improvements in overall inference quality can be observed for

all allele frequency classes and regions in the genome (Figures 2 & 3).

It should be noted that in contrast to later tests in UM imputation the

use of low (and probably more realistic) values for ne (effective pop-

ulation size) can lead to substantially increased error rates (Figure 4).

The interested reader is referred to Supplementary Figures S6 - S24

for the effect on the inference error rate for different parameters. For

the maize data the inference error rates were basically unaffected by

the number of iterations performed in any of the imputation steps in

BEAGLE (Table 1). Since the haplotype phase in DH-lines is known

and the main purpose of further iterations in BEAGLE is to improve

that haplotype phase, this should not be that surprising. After pa-

rameter tuning error rates are still lowest in BEAGLE 5.1 with

0.0122% but differences are considerably reduced (BEAGLE 4.0:

0.0307%, BEAGLE 4.1: 0.0436%, BEAGLE 5.0: 0.0132%, Supplementary

Figure 2 Allele specific error rate depending on the
allele frequency under different BEAGLE settings for
the maize data. Only those dataset entries with the
respective allele in the ”true” dataset are consid-
ered when deriving the allele specific error rate.
Y-axis is log-scaled.

Figure 3 Inference error rate based on the location of the genome.
Outliers are corrected for by using a Nadaraya-Watson-estimator
(Nadaraya 1964), using a Gaussian kernel and a bandwidth of 3,000
markers for the maize data. Y-axis is log-scaled.
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Table S9). Tuning of both singlescale and buildwindow in BEAGLE

4.0 jointly did not further improve performance with buildwindow

overall performing better for inference. Even though error rates for

extremely low values for buildwindow are lowest, this change is not

recommended as some markers do show massively increased error

rates (Supplementary Figure S3).

The inference error rates for the chicken diversity panel are much

higher for all versions (�1%) and the relative improvement obtained by

adapting parameter settings is lower. As the chicken diversity panel

contains more variation and is structurally more similar to outbred

human data than the European landraces in maize, this should not

be that surprising. With the exception of the parameter err the change

from the default was always in the same direction as for the maize data.

As err is controlling the allele mismatch probability of known alleles

when identifying the most likely path through the haplotype cluster

(Browning et al. 2018) this can be seen as an indicator for a higher

overall data quality for the maize data. Lowest obtained error rates are

1.01% for BEAGLE 4, 0.80% for BEAGLE 4.1, 0.81% for BEAGLE 5.0

and 0.82% for BEAGLE 5.1 (Supplementary Table S9).

Inference error rates for the datasets from the commercial chicken

breeding program are between 0.20% and 0.23% for basically all tested

settings, leading us to conclude that for inference on this dataset there is not

muchpotential todecreaseerrorrates.Apotential reasonforthis is thatother

errorsources likeSNPcallingerrorsmaybehigherthaninferenceerrorrates.

Whenworking with the Pseudo S0 inmaize instead, ideal parameter

settings are very similar with the key difference of additional gains by

increasing the number of iterations performed (Table 2). As the algo-

rithm starts with randomly phased genotypes and improves the phase

in each iteration, this should again not be surprising. However,

excessive burnin iterations prior to the actual algorithm only worsened

results. The interested reader is referred to Supplementary Figure S25 -

S45 for parameter influences on both inference and phasing quality for

the Pseudo S0. Inference accuracies after parameter tuning are again

similar with BEAGLE 5.0 performing best (BEAGLE 4.0: 0.0193%,

BEAGLE 4.1: 0.0168%, BEAGLE 5.0: 0.0109%, BEAGLE 5.1:

0.0148%). Note that error rates given in Table 2 are just for chromo-

some 10, as not all tests were performed in sufficient sample size for all

chromosomes but effect of parameters results should be very similar for

all chromosomes. For all three datasets containing heterozygous indi-

viduals BEAGLE 5.0 outperformed BEAGLE 5.1, with differences being

highest for the set of Pseudo S0.

Phasing quality

Thenumberofphasingerrors for the setofPseudoS0 inmaize is extremely

low with just one phasing error per 2,540 heterozygous markers in BEA-

GLE 5.1, which should be sufficient formost applications, and the obtain-

able improvements by parameter tuning were relatively low (Table 2).

Error rates in BEAGLE 5.0 were about 10% lower (2,716). Biggest im-

provements in both BEAGLE 5.0 and 5.1 were obtained by adaptation of

ne. For S0 the ideal parametrization in BEAGLE 5.0 for phasing is much

higher than for inference (Figure S25). Especially for BEAGLE 4.0 and 4.1

parameters influencing the structure of the haplotype library had sub-

stantial impact on the error rates. In contrast to inference and UM im-

putation the ideal parametrization for buildwindow (4.0) and phase-states

(5.0 / 5.1) are higher than the default settings (Table S3). This in turn leads

to only highly related haplotypes to be considered jointly.

To further isolate the structure of phasing errors the same tests were

performed on a set of Pseudo S0 without missing alleles. The interested

n■ Table 1 Inference error for the KE DH-lines by changing a single imputing parameter

Parameter default range tested best overall impact

BEAGLE 5.1 — — default (0.0127%) —

ne 1,000,000 1 - 1,000,000 100,000 (0.0125%) Figure S7
err 0.000067 0.01 - 0.00001 0.001 (0.0125%) Figure S9
window 40 10 - 1,000 100 (0.0125%) Figure S11
burnin 6 2 - 50 50 (0.0126%) Figure S13
iterations 12 2 - 40 40 (0.0127%) Figure S15
phase-states 280 50 - 10,000 default (0.0127%) Figure S18
imp-states, imp-segment, c

luster, imp-step, imp-nsteps
1,600, 6, 0.005, 0.1, 7 — — only impacts UM imputation

BEAGLE 5.0 — — default (0.0142%) —

ne 1,000,000 1 - 1,000,000 30,000 (0.132%) Figure S6
err 0.0001 0.01 - 0.00001 0.005 (0.0141%) Figure S8
window 40 10 - 1,000 200 (0.0140%) Figure S10
burnin 6 2 - 50 default (0.0142%) Figure S12
iterations 12 2 - 50 25 (0.0141%) Figure S14
phase-segment 4 1 - 25 10 (0.0135%) Figure S16
phase-states 280 50 - 1,000 100 (0.0136%) Figure S17
imp-states, imp-segment,

cluster, imp-step
1,600, 6, 0.005, 0.1 — — only impacts UM imputation

BEAGLE 4.1 — — default (0.255%) —

niterations 5 0 - 25 — virtually no differences for DHs
modelscale 0.8 0.5 - 5 1.5 (0.0438%) Figure S19
ne 1,000,000 1 - 1,000,000 10,000 (0.254%) Figure S20
BEAGLE 4.0 — — default (0.201%) —

buildwindow 1,200 1 - 2,500 5 (0.028%) Figure S21
singlescale 0.8 0.5 - 5 1.5 (0.066%) Figure S22
nsamples 4 1 - 50 50 (0.152%) Figure S23
burnin-its 5 2 - 25 25 (0.199%) Figure S24
phase-its 5 2 - 25 — virtually no differences for DHs
impute-its 6 2 - 25 — only impacts UM imputation
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reader is referred to the Supplementary Table S3 for detailed results on

this. As phasing is not affected by potential inference errors in this case,

error rates are even lower (BEAGLE 5.1 default: one error per 59756

heterozygous markers, BEAGLE 5.0: 6,141) but the direction of im-

provement for all parameters stays the same. It should be noted that the

maize dataset considered in this study contains highly related individ-

uals and a substantial ascertainment bias toward markers with me-

dium allele frequency (Albrechtsen et al. 2010) which both should

improve phasing accuracy. For datasets containing less related

individuals and sequence data, phasing accuracies can be substantially

worse.

UM Imputation quality

The algorithm used for UM imputation in BEAGLE 5.0 and 5.1 is the

same, thereby differences are only caused because of slightly different

techniques for phasing (B. Browning, personal communication). As

no phasing is required for the DH-lines error rates never differed by

more than 0.001% and are here reported jointly. When performing

UM imputation, error rates were much higher than in the inference

case. For all considered datasets tuning of newas absolutely essential

(Table 3, Figure 5), because individuals in the considered livestock

and crop datasets are far more related than in an outbred human

population with an effective population size of 1,000,000 that is

assumed in BEAGLE as default. In the imputation algorithm a

low value for ne is leading to a reduced probability to switch to a

random node in the haplotype cluster and should therefore be ben-

eficial for highly related individuals (Browning and Browning 2016;

Browning et al. 2018). BEAGLE 4.0 does not provide a parameter for

the effective population size and is just assuming equidistant

markers and fixed switch rates.

Figure 4 Effect of the parameter ne on the infer-
ence error rates for the maize data in BEAGLE 5.0
and 5.1. Default settings are indicated by the verti-
cal line.

n■ Table 2 Inference and phasing error for the 250 Pseudo S0 lines based on the KE DH-lines for chromosome 10. � BEAGLE crashed for
this dataset when using phase-segment > 10, phase-states < 100 or phase-states > 10,000

Parameter default range tested best inference best phasing overall impact

BEAGLE 5.1 — — default (0.0239%) default (2,540) —

ne 1,000,000 1 - 1,000,000 30 (0.0168%) 10 (3,206) Figure S26
err 0.00015 0.05 - 0.00001 0.0005 (0.0229%) 0.05 (2,556) Figure S28
window 40 10 - 1,000 200 (0.0179%) 200 (2,581) Figure S30
burnin 6 2 - 25 25 (0.0229%) 2 (2,555) Figure S32
iterations 12 2 - 40 default 40 (2,638) Figure S34
phase-states 280 100� - 10,000� 10,000 (0.0168%) 5,000 (2,675) Figure S37
imp-states, imp-segment,

cluster, imp-step, imp-nsteps
1,600, 6, 0.005, 0.1, 7 — — — only impacts UM imputation

BEAGLE 5.0 — — default (0.0138%) default (2,716) —

ne 1,000,000 1 - 1,000,000 1 (0.0111%) 30,000 (3,136) Figure S25
err 0.0001 0.05 - 0.00001 0.005 (0.133%) 0.001 (2,747) Figure S27
window 40 10 - 200 100 (0.0139%) 200 (2,737) Figure S29
burnin 6 2 - 25 2 (0.0136%) 2 (2,748) Figure S31
iterations 12 2 - 40 20 (0.0135%) 40 (2,760) Figure S33
phase-segment 4 1 - 10� 10 (0.132%) 10 (2,758) Figure S35
phase-states 280 100� - 10,000� 10,000 (0.0130%) 5,000 (2,815) Figure S36
imp-states, imp-segment, cluster 1,600, 6, 0.005 — — — only impacts UM imputation
BEAGLE 4.1 — — default (0.0345%) default (2,617) —

niterations 5 0 - 25 25 (0.0249%) 25 (3,392) Figure S38
modelscale 0.8 0.5 - 5 1 (0.0198%) 1 (3,223) Figure S39
ne 1,000,000 1 - 1,000,000 30 (0.0325%) 30,000 (2,999) Figure S40
BEAGLE 4.0 — — default (0.119%) default (1,240) —

buildwindow 1,200 1 - 5,000 50 (0.0316%) 5,000 (1,618) Figure S41
singlescale 0.8 0.5 - 5 1.0 (0.0626%) 1.25 (1,955) Figure S42
nsamples 4 1 - 50 50 (0.0780%) 50 (2,308) Figure S43
burnin-its 5 2 - 50 50 (0.108%) 50 (1,599) Figure S44
phase-its 5 2 - 50 50 (0.0944%) 50 (2,320) Figure S45
impute-its 5 2 - 50 — — only impacts UM imputation
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All other parameter settings were tested with adapted ne, as relative

effects were virtually zero otherwise. Appropriate parameter settings for

the other parameters were similar to the inference case (Table 3) but the

overall deviations from the default for buildwindow, singlescale and

modelscale were slightly lower. As the number of informative markers

in a windowwith a set number of markers is lower than in the inference

case this alsomakes sense from amodeling perspective. In BEAGLE 5.0

and 5.1 there are additional parameters to control the structure of the

haplotype cluster that are only available for UM imputation (imp-

segment, imp-states, cluster). Similar to inference, the optimized param-

eter settings lead to longer and less related haplotypes to be considered

jointly. Furthermore, a method to detect identity-by-state (IBS) seg-

ments (imp-step, imp-nsteps) has been added in BEAGLE 5.1 but de-

faults are already adequately chosen for themaize data. After parameter

adaptation error rates in BEAGLE 5.0 and 5.1 were lowest (0.0856% /

0.0857%), followed by BEAGLE 4.1 (0.0887%) and BEAGLE 4.0

(0.139%) (Supplementary Table S9).

For both chicken datasets similar results were obtained with

BEAGLE 5.0 slightly outperforming BEAGLE 5.1 in for these sets.

The interested reader is referred to Supplementary Table S1 and S2 for

detailed results for UM imputation for the chicken panels. Overall, the

relative gains by adaptation of ne for both the commercial breeding

line (0.774–0.280% in BEAGLE 5.0) and the diversity chicken panel

(3.313–2.484% in BEAGLE 5.0) were lower than for the maize data.

The optimal parametrization for the effective population for the di-

versity panel was highest (ne = 3,000). With this, the smaller gains by

tuning the effective population size nicely support our expectation of

the effective population sizes of the underlying populations. It should

still be noted that especially BEAGLE 5.0 and 5.1 were very robust to

changes in the effective population size (Figure 5 and S46) and overall

error rates differ by only 0.013% for an effective population size be-

tween ne = 1 and ne = 10,000 for the maize dataset, indicating that

the use of any reasonable value should work here. As the default of

1,000,000 is not realistic for most livestock and crop datasets, adap-

tation is necessary and critical when performing UM imputation.

For BEAGLE 4.1 there were usually no statistically significant differ-

ences between reasonable ne values and overall variance in error rates

between runs was slightly higher.

As one would expect a larger reference panel leads to smaller error

rates for UM imputation (Figure 6). Overall, the effect of a larger

n■ Table 3 UM imputation error for the KE DH-lines by changing a single imputing parameter with ne = 1,000 for BEAGLE 5.0 / 5.1 and
ne = 300 for BEAGLE 4.1

Parameter default range tested best overall impact

BEAGLE 5.0 / 5.1 — — default (3.09%) —

ne 1,000,000 1 - 1,000,000 1,000 (0.0877%) Figure 5 and S46
err 0.01 (5.0) / 0.00098 (5.1) 0.001 - 0.00001 0.00005 (0.0877%) Figure S47 and S48
window 40 10 - 1,000 200 (0.0868%) Figure S49 and S50
burnin 6 2 - 25 default (0.0877%) Figure S51 and S52
iterations 12 2 - 25 default (0.0877%) Figure S53 and S54
phase-segment (5.0) 4 1 - 100 50 (0.0873%) Figure S55
phase-states 280 50 - 1,000 default (0.0877%) Figure S56 and S57
imp-states 1,600 100 - 5,000 250 (0.0873%) Figure S58 and S59
imp-segment 6 2 - 100 50 (0.0874%) Figure S60 and S61
imp-step (5.1) 0.1 0.001 - 20 0.05 (0.0876%) Figure S62
imp-nsteps (5.1) 7 1 - 50 50 (0.875%) Figure S63
cluster 0.005 0.1 - 0.00001 0.00005 (0.0868%) Figure S64 and S65
BEAGLE 4.1 — — default (6.59%) —

ne 1,000,000 1 - 1,000,000 300 (0.0958%) Figure S66
niterations 5 0 - 25 — Figure S68
modelscale 0.8 0.5 - 5 2 (0.0886%) Figure S67
BEAGLE 4.0 — — default (5.15%) —

buildwindow 1,200 1 - 2,500 100 (0.799%) Figure S69
singlescale 0.8 0.5 - 5 1.5 (0.188%) Figure S70
nsamples 4 1 - 25 2 (4.36%) Figure S71
burnin-its 5 2 - 50 default (5.15%) Figure S72
phase-its 5 2 - 50 25 (5.071%) Figure S73
impute-its 5 2 - 50 50 (0.189%) Figure S74

Figure 5 Effect of the parameter ne on the UM im-
putation error rate for the maize data, the commer-
cial chicken line and the chicken diversity panel in
BEAGLE 5.0. Default settings are indicated by the
vertical line.
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reference panel in BEAGLE 5.0 was higher than for BEAGLE 4.1. It

should still be noted that even for a reference panel with 20 individuals

error rates after parameter tuningwere below 1% for themaize data and

overall error rates only reduce slightly after reaching a size of 150.With

higher amounts of overall genetic diversity, the required size of the

reference panel should be increasing (Zhang et al. 2013).

Comparison of reference genomes

Themost commonlyusedreferencegenome inmaizegenetics is thedent

line B73 (Schnable et al. 2009; Jiao et al. 2017). The European maize

landraces tested here are considered as flint germplasm with potential

major differences in the physical map (Unterseer et al. 2016). After

reducing error rates of inference by choosing appropriate parameter

settings, markers with high error rates tend to be clustered (Figure 7).

Markers and regions with high inference error rate can be considered as

candidates for misalignment in the genetic map. We compared our

results obtained with B73v4 (Jiao et al. 2017) to those obtained with

reference genomes of the flint lines F7, EP1, DK105 and PE0075

(Unterseer et al. 2017). Since the array itself was constructed using

B73 as a reference (Unterseer et al. 2014) more markers can be mapped

to the B73 reference than to the other reference genomes. For those

markersmapped to both B73 and the respective flint reference genomes

average error rates for inference are reduced by 3–5% (Table 4). This

improvement is mainly caused by a much reduced number of markers

with extremely high error rates. On average, the overall number of

markers with error rates above 10% (here referred to as: “critical”

markers) is reduced by 57%. For a detailed list of the ”critical”

markers for all reference genomes mapped on the 600k array

(Unterseer et al. 2014), we refer to Supplementary Table S5 and

S6. No notable difference in inference quality for PE when using

PE0075 as the reference genome compared to other flint references

(Supplementary Table S4) was found.

Use of a genetic map

Up toBEAGLE4.0 allmarkers are assumed tobe equidistant,whereas in

BEAGLE 4.1, 5.0 and 5.1 the genetic distance between markers can be

provided.Ondefault, theposition inbasepairs is convertedbya rationof

100,000,000 base pairs per Morgan. This might be realistic for human

genetics but for chicken a ratio of 41,203,130 / 33,955,860 / 26,631,160

base pairs per Morgan for chromosomes 1 / 7 / 20 is more realistic

(Groenen et al. 2009). However, the use of those genetic maps without

any further parameter adaptation leads to massively increased error

rates. Error rates for UM imputation increased to 3.23% for the com-

mercial line and 15.8% for the diversity panel compared to the 0.774%

and 3.313% without a provided genetic map in BEAGLE 5.0. A poten-

tial reason for this is that other parameters like ne and imp-segment are

implicitly affected by the higher distance between markers, leading to

smaller segments being considered jointly in the haplotype cluster. After

additional fitting of ne error rates reduced to values (0.276% / 2.50%)

which were very similar to those obtained without use of a genetic map

(0.280% / 2.48%; Supplementary Table S1 and S2).

Quality control using Dosage R-Squared

When performing UM imputation BEAGLE is providing the measure-

ment Dosage R-Squared (DR2; (Browning and Browning 2009)) as an

estimate for the uncertainty for the imputation quality in each respec-

tive marker. When using BEAGLE 5.0 with adapted ne, only some

markers have low DR2 values and the observed error rates in those

markers are highly increased (Figure 8.A). Markers with DR2 values

below 0.8 on average had 140 times as many imputing errors for UM

imputation. Note that no scaling for the allele frequency was performed

here and no apparent correlation between DR2 values and minor allele

frequencies could be observed. In case of no adaption of the effective

population size, the number of markers with low DR2 values is mas-

sively increased. Even though error rates are still a higher for markers

with low DR2, the relative differences are much lower (18 times as

many errors for markers with DR2 , 0.8). Even more problematic

for filtering is that in contrast to the 44 problematic markers after

parameter adaptation, a total of 31,635 of the 62,986 markers in the

panel have DR2 values below 0.8 (Figure 8.B). Results for the commer-

cial chicken line (Supplementary Figure S4) and the diversity panel

(Figure Supplementary Figure S5) are similar even though differences

in DR2 are not as distinct for adapted parameter settings.

Choice of the reference panel

In case the reference population has a lot of stratification, the design of a

good reference panel for UM imputation ismore difficult, as genetically

distant individualsmay introducemore noise than relevant information

to the model. When comparing results for all considered reference

datasets for UM imputation of a single subpopulation it becomes

apparent that UM imputation without other individuals from the same

subpopulation leads to extremely high error rates (.15%) and thus

Figure 7 Error rate per marker for the first 100,000
SNPs according to physical position (starting with
chromosome 1) using BEAGLE 5.0 default with
B73v4 (Jiao et al. 2017) as a reference genome.

Figure 6 Error rates for UM imputation depending on the size of the
reference panel in the maize data. Y-axis is log-scaled.
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should in practice only be performed with extreme caution. In contrast,

the decision to include other subpopulations in the reference panel is

not as clear. When including single other subpopulations in the refer-

ence panel we observe significant effects on the overall error rate of UM

imputation. Absolute differences of UM imputation error rates are

between -0.307% and +0.604% with overall error rates between 1%

and 4%. For a detailed list containing all changes in error rates when

including a single other subpopulation in the reference panel, we refer

to Supplementary Table S7. It should be noted that subpopulationswith

lower genetic distance to the dataset tend to reduce the error rate and a

less related subpopulation leads to an increased error rate (Figure 9).

For all ten subpopulations the slope of the error rate in regard to

distance to the subgroup is statistically significantly positive with the

main difference between the subpopulations being the intercept. The

most extreme case for this is subpopulation 6 (turquoise4 in Figure 9;

including all wild types). For this group the inclusion of any other

subpopulation in the reference panel decreases the imputation quality

and is ignored for all averages and statistics in this subsection. Even

though SNP-based genetic distances to other subgroups are relatively

low, the time to the last common ancestor of any other subpopulation is

most likely relatively high. Overall imputation quality when using a

reference panel containing all subpopulations is worse than when using

a reference panel with only those subpopulation with below average

genetic distance (Nei 1972) to the dataset (2.25% vs. 2.18% - Figure 10).

Even though results are statistically significant (two-sample t-test:

p-value: 0.0117), differences are only minor and of limited practical

relevance for most applications. In our analysis a reference panel con-

taining only the individuals of the same subpopulation on average lead

to an UM imputation error of 2.26% with no statistically significant

difference to reference panels containing all subpopulations. When

performing in-depth analysis for which regions of the dataset UM

imputation quality is improved, we observed that especially those in-

dividuals with rare variants and overall higher error rates benefited

from includingmore samples in the reference. On the contrary, already

well imputed individuals usually had similar or slightly increased error

rates.When using a reference panel containing all those subpopulations

that individually lead to reduced error rates, average error rates are

reduced to 2.06%. It should be noted that a selection based on error

rates inUM imputation is usually not possible in practice. Nevertheless,

this result demonstrates that there is potential in the use of more

sophisticated approaches than just selecting all subpopulation with

below average Nei distance (Nei 1972) as the reference panel. For a

detailed list containing error rates for all four different structures of

reference panels, we refer to Supplementary Table S7.

DISCUSSION AND CONCLUSIONS

Significance of improvement

When comparing error rates under different parameter settings one has

to keep inmind the relevance of that optimization. A difference in error

rates of 1% in a dataset containing 1%missing genotypeswill only result

in an improvedoverall dataqualityof0.01%and thusmightbenegligible

compared to other error sources like calling errors (Unterseer et al.

2014). If those improvements would mainly occur in the markers of

interest (e.g., markers with low minor allele frequency) or the overall

share of missing positions is high (as in UM imputation), this improve-

ment could still be significant for later steps of the analysis.

It should be noted that positions set toNA in this study are chosen at

random whereas in a real dataset there might be causal reasons like

deletions, leading to some markers with much higher missing rates.

When performing imputation on the actual NAs, we observed a higher

variance in the imputed allele under different random seeds. As all

considered methods always input one of the two allelic variants, this is

ignored here but it should be noted that actual error rates are probably a

bit higher than reported in this study.

Genetic map and DR2

The used reference genome only mildly affected overall error rates in

maize. As the number of markers with extremely high error rates is

reduced, we still recommend the use of a reference genome of a more

related individual. This of course requires its existence and similar

overall quality. The overall gains should not be high enough to justify

n■ Table 4 Inference error rates using different reference genomes compared to B73 for KE DH-lines. Only markers mapped on both the
flint reference genome & B73v4 (Jiao et al. 2017) are considered for “critical” markers (error rate > 10%)

Reference genome F7 EP1 DK105 PE0075

Overlapping markers to B73v4 352,326 342,037 338,882 338,244
”Critical” markers when using this map 109 113 115 114
”Critical” markers when using B73v4 271 264 262 262
Relative change in error rate 25.11% 23.87% 24.68% 23.32%

Figure 8 DR2 values in relation to
the obtained number of error per
marker after fitting of ne (A) and on
default (B) in BEAGLE 5.0 for the
maize data. 50 / 350 DH-lines were
used for study / reference sample.
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the generation of a new reference genome just for imputation. Instead

one could consider either removing critical markers from the set or use

imputation methods like LinkImpute (Money et al. 2015) that do not

rely on a genetic map.

We highly recommend the use of DR2 to check validity of results

obtained in BEAGLE 5.0 and 5.1. First, observation of a high number of

low values ofDR2 can be seen as an indicator of overall poor imputation

quality. Second, one should consider removingmarkers with low values

for DR2 as error rates of UM imputation are typically massively

increased. Here, one has to find a balance between removing potentially

informative high qualitymarkers andworkingwith lowqualitymarkers

that could potentially lead to false positive results in later steps of an

analysis. In any case, markers that tend to have large effects (e.g., in a

genome-wide association study) should be checked for their DR2 value.

Reference panel

Without any knowledge of the genetic structure or excessive testing of

genetic relatedness, we recommend to use all available individuals

genotyped under high marker density for the reference panel, as the

BEAGLE algorithm seems to be quite good at filtering out irrelevant

information. However, in casemost of the genetic diversity of the study

sample can be represented in a subset of the individuals in a reference

panel (e.g., a reference panel containing all founder individuals), sig-

nificant improvements toUM imputation performance can bemade by

excluding genetically distant individuals. Representing a high share of

the genetic diversity of a dataset however is far more important as error

rates increase massively if no genomic data of highly related individuals

is available in the reference.

Parameter adaptation

Overall, we can conclude that the quality for inference, UM imputation

and phasing in BEAGLE 5.0 and 5.1 was better or at least as good as in

BEAGLE 4.0 and 4.1 and less tuning of parameters is necessary to obtain

good performance for livestock and crop datasets. However, even in

BEAGLE 5.0 and 5.1 the adaptation of the parameter ne is absolutely

necessary when working with genetic datasets with less diversity than a

human outbred population. Especially when no parameter tuning in

BEAGLE 4.0 and 4.1 was done, one should consider re-running pre-

vious preprocessing and quality control protocols. However, a switch

from BEAGLE 5.0 to 5.1 is not necessary, nor even recommended as

error rates for phasing (and thereby inference and UM imputation)

were lower in BEAGLE 5.0. It should be noted that all datasets in this

study contain less genetic diversity than an outbred human population

and for datasets with higher genetic diversity like those of UK Biobank

(http://www.ukbiobank.ac.uk/) BEAGLE 5.1 is supposed to have

around 25% lower error rates (B. Browning, personal communications).

Especially for UM imputation and in case of heterozygous indi-

viduals an increase of the number of iterations improved results

slightly. As long as computing time is no issue we suggest to in-

crease the number of iterations. As the gains by a higher number of

iterations is relatively low one can also consider reducing the number

of iterations to 4 (or in case of DHs to 2) for large datasets which will

dramatically reduce computing time.

Other than in the case of ne for UM imputation, improvements in

BEAGLE 5.0 and 5.1 by parameter tuning are relatively small, lead-

ing us to conclude that the use of default settings should be enough

for most applications. Especially for datasets with relatively low

genetic diversity one should consider increasing the parameters

phase-segments, imp-segments and window while reducing imp-

states and ne. For substantial changes of the imputing parameters

and for maximizing the imputing accuracy we strongly suggest to

apply a testing pipeline similar to the one suggested in the methods

section. As potential gains should not be much higher than 5–10%

one has to decide based on the application if this additional effort is

worth it. Obtainable improvements in BEAGLE 4.0 and 4.1 are high

but we do not recommend to use these versions anymore. Addi-

tional benefits of the use of BEAGLE 5.0 and 5.1 are massively re-

duced computing times and memory requirements. Two potential

exceptions to this are if high quality pedigree is available, as only

BEAGLE 4.0 is able to incorporate pedigree data in its imputation

algorithm and in case only genotype likelihoods are available as

input as BEAGLE 5.0 and 5.1 only allow for genotypes as input.

Figure 9 Effect of the inclusion of a single subpopulation in the
reference panel based on their genetic distance to the dataset for
the chicken diversity panel. Colors according to the subpopulation
used as the real dataset in Supplementary Figure S1. For a detailed
list of subpopulation assignment we refer to Supplementary Table
S8. Subpopulation 6 (including wild types - turquoise 4) is ignored in
the regression.

Figure 10 Comparison of error rates of UM imputation for different
reference panels for the different subpopulations in the chicken
diversity panel. Y-axis is log-scaled. For a detailed list on which
individual is assigned to which subpopulation we refer to Supplementary
Table S8.
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