
Improving In-Memory Database Operations with Acceleration
DIMM (AxDIMM)

Donghun Lee
Minseon Ahn
Jungmin Kim

dong.hun.lee@sap.com
minseon.ahn@sap.com
jungmin.kim@sap.com

SAP Labs Korea

Oliver Rebholz
oliver.rebholz@sap.com

SAP SE

Jinin So
Jong-Geon Lee
Jeonghyeon Cho

Vishnu Charan Thummala
jinin.so@samsung.com

jg1021.lee@samsung.com
caleb1@samsung.com

vishnu.c.t@samsung.com
Samsung Electronics

Ravi Shankar JV
Sachin Suresh Upadhya

Mohammed Ibrahim Khan
Jin Hyun Kim

venkata.ravi@samsung.com
sachin1.s@samsung.com

ibrahim.khan@samsung.com
kjh5555@samsung.com
Samsung Electronics

ABSTRACT
The significant overhead needed to transfer the data between CPUs
and memory devices is one of the hottest issues in many areas
of computing, such as database management systems. Disaggre-
gated computing on the memory devices is being highlighted as
one promising approach. In this work, we introduce a new near-
memory acceleration scheme for in-memory database operations,
called Acceleration DIMM (AxDIMM). It behaves like a normal
DIMM through the standard DIMM-compatible interface, but has
embedded computing units for data-intensive operations. With the
minimized data transfer overhead, it reduces CPU resource con-
sumption, relieves the memory bandwidth bottleneck, and boosts
energy efficiency. We implement scan operations, one of the most
data-intensive database operations, within AxDIMM and compare
its performance with SIMD (Single InstructionMultiple Data) imple-
mentation on CPU. Our investigation shows that the acceleration
achieves 6.8x more throughput than the SIMD implementation.

CCS CONCEPTS
• Hardware → Emerging interfaces; • Information systems
→ Database management system engines.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DaMoN’22, June 13, 2022, Philadelphia, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9378-2/22/06. . . $15.00
https://doi.org/10.1145/3533737.3535093

KEYWORDS
Near-Memory Processing, AxDIMM,AccelerationDIMM, In-Memory
Database, DBMS, Database Management Systems

ACM Reference Format:
Donghun Lee, Minseon Ahn, Jungmin Kim, Oliver Rebholz, Jinin So, Jong-
Geon Lee, Jeonghyeon Cho, Vishnu Charan Thummala, Ravi Shankar JV,
Sachin Suresh Upadhya, Mohammed Ibrahim Khan, and Jin Hyun Kim.
2022. Improving In-Memory Database Operations with Acceleration DIMM
(AxDIMM). In Data Management on New Hardware (DaMoN’22), June 13,
2022, Philadelphia, PA, USA. ACM, New York, NY, USA, 9 pages. https:
//doi.org/10.1145/3533737.3535093

1 INTRODUCTION
As data volumes continue to increase, memory becomes the main
bottleneck in many data-intensive applications like in-memory
database management systems (IMDBMS). Previous research has
successfully improved the performance of data-intensive operations
by using additional accelerators, such as FPGA [11, 19, 23, 26, 34]
and GPU [15, 25, 32]. However, it is inevitable to copy the data from
host memory devices to the local memory within the accelerators,
thus consuming a lot of energy to transfer the data in-between. To
alleviate this data movement overhead between processing units
and host memory devices, processing-in-memory (PIM) [9, 22]
and near-memory processing technologies [18] have been recently
highlighted.

Prior work on in-memory processing, such as UPMEM [10] or
HBM-PIM [22], involves an advanced concept of near-memory pro-
cessing. However, these techniques need additional data copying
or internal data reformatting before the embedded processing ca-
pability is invoked. This extra overhead diminishes the benefit of
in-memory processing.

https://doi.org/10.1145/3533737.3535093
https://doi.org/10.1145/3533737.3535093
https://doi.org/10.1145/3533737.3535093
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3533737.3535093&domain=pdf&date_stamp=2022-06-13

DaMoN’22, June 13, 2022, Philadelphia, PA, USA Donghun Lee, et al.

Our previous research [21] introduced a simple proof-of-concept
system on the PCIe-based FPGA to show that near-memory accel-
eration optimizes data movement between processing units and
memory devices without copying the data out of the memory de-
vices or reformatting the original data for embedded processing.

In this paper, we introduce Acceleration DIMM (AxDIMM), an
acceleration platform for database operations implemented on a
custom FPGA board with the standard DIMM-compatible inter-
face. It behaves like a normal DIMM that is compliant with the
standard DDR protocol, but has embedded computing units for the
data-intensive operations. Since there is no additional overhead
from data copying or internal reformatting, AxDIMM minimizes
data movement and reduces memory bandwidth usage and CPU
usage by the offloaded database operations, thus improving energy
efficiency. In addition, multiple engines within AxDIMM perform
parallel processing on multiple memory ranks (sets of DRAM chips).
Since AxDIMM supports the traditional DIMM form factor, it can
easily replace normal DIMMs without system modification, and its
memory space is recognized as a part of the normal memory space
in the operating system.

We implement scan operations as basic data-intensive operations
and demonstrate the feasibility of AxDIMM in IMDBMSs. Our
experiments show up to 6.8x better performance in both latency
and throughput than the SIMD (Single Instruction Multiple Data)
implementation on CPU.

Here are the main contributions of our research using AxDIMM:

• We apply a near-memory acceleration scheme for database
operations to minimize the data transfer overhead between
CPUs and memory devices.

• We implement AxDIMM, supporting the standard DDR pro-
tocol and accelerating the scan operations.

• We prove the performance benefit of AxDIMM.
• Finally, we discuss the limitations of the current prototype
and possible approaches to rectify them.

The remainder of this paper is organized as follows: Section 2
introduces the scan operations in IMDBMS. Section 3 shows the
architecture and internal configuration of the AxDIMM system. The
experimental setup is described in Section 4, and the evaluation
results are addressed in Section 5. Section 6 discusses the technical
issues. Section 7 represents the relatedwork and Section 8 concludes
the paper.

2 SCAN OPERATIONS IN IMDBMS
This section describes the behavior of scan operations as one of
the basic data-intensive database operations and introduces its
performance characteristics.

2.1 Behavior
Scan operations are data-intensive in IMDBMSs, filtering out the
rows that satisfy the predicates. Recent IMDBMSs widely use the
columnar storage for fast read accesses to support hybrid trans-
actional and analytical processing (HTAP) [30, 31]. We use the
columnar storage consisting of the read-optimized main storage
and the separate write-optimized delta storage [29, 36]. To reduce
the memory footprint, the main storage uses dictionary encoding,

where all distinct values are stored in a dictionary in lexicograph-
ical order. The individual value in each row is replaced with the
corresponding value ID of the dictionary and stored in a separate
value ID array. The value ID arrays are bit-packed compressed such
that the number of bits is determined by the number of distinct
values. If the dictionary contains N distinct values, the number of
bits per value is ceil(loд2(N)) [12]. Scan operations read the bit-
packed value ID arrays to apply the predicates. Two common types
of predicates are (1) range predicate, having from/to values, and (2)
inlist predicate, having a list of filtered values. The scanned results
are marked in a bit vector (BV), where the number of bits in the bit
vector is same as the number of the rows in the table. The value (0
or 1) at a certain index in the BV indicates whether or not the row
at the same index of the value ID array satisfies the filter conditions.

2.2 Performance Characterization
Scan operations access the columns sequentially. Most modern
processors boost the performance of sequential accesses through
prefetching. Once sequential accesses are detected, the prefetcher
in L2 caches issues the next cacheline ahead of the actual memory
request to reduce the long latency of memory accesses. Another per-
formance improvement to the scan operations can be achieved with
SIMD instructions like SSE4, AVX2, and AVX512 [38]. However,
they are bottlenecked by the limited memory bandwidth due to the
huge memory traffic within a short period of time. Fig. 8 in Section 5
shows that SIMD implementations have high memory bandwidth
bound, which means a large portion of CPU cycles is stalled while
the application is running due to the memory bandwidth limit. Pre-
vious research [21] shows that massive data-intensive operations
like scan operations can block the other critical transactions due to
the memory bandwidth bound.

3 AXDIMM DESIGN FOR SCAN OPERATIONS
This section presents the overall architecture and main components
of AxDIMM that support the embedded scan operations. The bit-
packed target data for the scan operations resides within AxDIMM,
as explained in section 2.1. The result buffer for each scan is allo-
cated within AxDIMM before invoking the scan. Finally, the scan
reads the compressed data and writes the filtered results to the
pre-allocated result buffer.

3.1 Hardware Architecture
Fig. 1 shows the overall architecture and working frequency of the
AxDIMM prototype. It includes the system configuration register
space, database acceleration (DBA) engines, andmemory subsystem.
The AxDIMM behaves in the same way as the normal memory
DIMM interfaced via DDR protocol, but supports the additional
near-memory processing feature within it. Since the main storage
of IMDBMS is stored in AxDIMM and the scan operations are
performed by embedded DBA engines, there is no need to copy the
data to processing units out of AxDIMM nor to transform the data
format.

Fig. 2 shows the picture of our AxDIMM prototype. To make
AxDIMM compatible with the existing platform, we customize the
BIOS. The DDR4 host interface in the AxDIMMworks at 400MHz to
support FPGA I/O speed limitation, while the baseline host DRAM

Improving In-Memory Database Operations with Acceleration DIMM (AxDIMM) DaMoN’22, June 13, 2022, Philadelphia, PA, USA

Figure 1: AxDIMM hardware architecture

runs at 800 MHz. AxDIMM is implemented on an on-board Xilinx
Zynq Ultrascale+ FPGA running at 200 MHz with 32 GB on-board
DRAM running at 800 MHz. Its internal memory bandwidth is
twice as large as the baseline host DRAM because of two ranks and
two memory interface generators (MIG) operating at the same fre-
quency as the baseline host DRAM. The embedded data-intensive
operations thus utilize the increased internal memory bandwidth,
resulting in better throughput. The CPU usage is reduced by the
offloaded database operations in AxDIMM. As a result, the con-
served computing resources are consumed by the other operations
improving overall database performance.

Figure 2: AxDIMM prototype

3.1.1 System Configuration Register Space. The configuration reg-
ister space is a portion of memory that consists of a set of registers
for AxDIMM itself and three DBA engines, such as control registers
and status registers. In addition, all the parameters in offloading
APIs are stored in the configuration registers of each DBA engine,
including the addresses of the input data and the result buffer, the
number of bits per value in the value ID array, the starting index,
and the predicates for range and inlist scans. To facilitate the ac-
cesses by the host CPU, 1GB is reserved at the beginning of Rank0.

3.1.2 DBA Engines. The AxDIMM has 3 DBA engines performing
the offloaded database operations. Each DBA engine consists of
a lookup-compare module, a prefetcher, and a write buffer. The
lookup-compare module reads the data and compares it with the
predicate. The prefetcher loads the data from the end-point memory
in AxDIMM to the SRAM buffer in advance until the requested scan

is completed. The write buffer temporarily stores the scan result in
the SRAM buffer before writing it to the AxDIMM memory.

Within DBA engines, all the virtual addresses from the applica-
tions should be translated to physical addresses. AxDIMM memory
is directly mapped to the host address space. Since the memory in-
terleaving is disabled in the host DRAM, AxDIMMmemory is in one
single contiguous region of the physical address space. Therefore,
we can simply translate the virtual addresses from the application
by using the process page table in the Linux kernel [5].

3.1.3 Memory Crossbar. There is a memory crossbar between the
DBA engines and the AxDIMM memory. This memory crossbar
arbitrates memory accesses from 3 DBA engines and sends them
to the corresponding rank, thus allowing all 3 DBA engines to
access all the ranks in AxDIMM. Each DBA engine can perform
the offloaded scan operations regardless of the input data location
within AxDIMM.

3.1.4 Concurrent Accesses between the Host CPU and DBA Engines.
Basically, all the accesses to memory devices should be arbitrated
by the memory controller in the host CPU to maintain the deter-
ministic behavior of the standard DDR protocol. All the memory
requests must go through the memory controller to support the
concurrent memory accesses by both the host CPU and DBA en-
gines. However, memory accesses from DBA engines cannot go
through the memory controller because AxDIMM is located on the
DIMM side. Therefore, it is regarded that implementing a memory
controller within AxDIMM instead of the memory controller in the
host CPU is out of scope and this work focuses on the acceleration
within a DIMM.

As a workaround, we have two separate modes in AxDIMM,
to enable the DBA engines to access the AxDIMM memory in a
time-sharing manner. In non-acceleration mode, the host CPU can
directly access the ranks as a normal DIMM while the DBA engines
are idle. The end-point memory in the AxDIMM behaves in the
same way as the normal memory. In Fig. 1, when the mode is
set to non-acceleration, all the DRAM interfaces from DDR4 PHY
are directly connected to MIGs when the links from the memory
crossbar are disconnected. As such, AxDIMM behaves like a normal
DIMM. In acceleration mode, the DBA engines can exclusively
access the ranks and perform the offloaded scan operations, while
the regular DRAM accesses from the host CPU are not accepted.
All the links from the memory crossbar are directly connected to
MIGs when the DRAM interfaces are disconnected.

3.1.5 Write Combine Cache Policy. When the result buffer is al-
located and initialized by the host CPU, it is also copied to the
CPU caches. As such, the copy in the caches should be invalidated
when a DBA engine modifies the result buffer. To avoid the over-
head of cache coherency in the AxDIMM memory, we use a write
combine cache policy [1]. The whole AxDIMM memory region is
defined as uncached for reads. Since any data read from AxDIMM
cannot be stored in caches, it bypasses the CPU caches, reading the
AxDIMMmemory directly. Therefore, there is no need to invalidate
the caches when reading the result buffers in AxDIMM after the
DBA engine performs offloaded scan operations. Since the cache
size is generally smaller than the result buffer and the host CPU

DaMoN’22, June 13, 2022, Philadelphia, PA, USA Donghun Lee, et al.

consumes the results sequentially, the impact of this cache policy
is negligible.

3.2 Software Stack
This section explains the software stack used to invoke the designed
hardware. Fig. 3 shows the diagram for the AxDIMM software stack.
The AxDIMM memory is exposed to the host as a DAX device [2]
in the system. This allows applications to use the mmap interface
to access this memory region directly, which means no additional
driver is needed. AxDIMM library provides offloading APIs to the
application and manages the DBA registers in AxDIMM to invoke
the embedded scan operations. Once the offloading APIs are called,
the offloading requests are stored in the offloading queue. If one
of the DBA engines is idle, the scheduler assigns the offloading
request to the DBA engine by manipulating the registers.

Figure 3: AxDIMM software stack

3.2.1 Offloading APIs. Table 1 shows the two scan APIs imple-
mented in the system: 1) Range scan with bit-vector output and 2)
Inlist scan with bit-vector output. Each API has the following input
parameters as seen in Table 2: the address pointer to the target
data, the starting index of the data to be scanned, the number of
the records to be scanned, the address pointer to the result buffer,
bit case (the number of bits per value) used in the bit-packed com-
pression, and filter conditions. In case of inlist scans, the predicate
consists of a bit vector where each bit indicates whether or not
the value at the index is included in the predicate. Before calling
the offloading APIs, the result buffer should be allocated in the
AxDIMM memory by the application, and the starting address of
the result buffer is sent to AxDIMM as the input parameter of the
offloading APIs.

3.2.2 Offloading Queue Scheduler. It is quite common to generate
several worker threads to speed up query processing in a DBMS.
The column for a scan operation is divided into several chunks and
multiple scan requests are created concurrently. Since the number
of scan requests can be larger than the number of DBA engines,
an offloading queue is implemented in the AxDIMM library to
handle themultiple requests. The queue handles up to 64 concurrent
requests in the system. The scheduler assigns a single request to an
idle DBA engine in a rank-aware first-in-first-out (FIFO) manner.
Once the DBA engine completes its offloaded scan operation, it

(a) Baseline (b) AxDIMM system

Figure 4: System setup

informs the scheduler. The scheduler then sends the notification
back to the requester and removes the request from the queue.

4 EXPERIMENTS
This section describes the experimental setup to evaluate the per-
formance of AxDIMM and the micro-benchmark to generate the
scan operations against the bit-packed data.

4.1 System Setup
To evaluate the performance benefit in AxDIMM, we built a test
system on a Broadwell server with Intel Xeon CPU E5-2650 v4 @
2.2 GHz. As shown in Fig. 4, the baseline system has one single 32
GB RDIMM working at 800 MHz, while the AxDIMM system has
one 32 GB RDIMM and one 32 GB AxDIMM working at 400 MHz.
RDIMM and AxDIMM are located in different memory channels in
the AxDIMM system. If the channel interleaving is turned on, data
fragments can happen across DIMMs. As AxDIMMdoes not support
communication between multiple DIMMs and cannot handle the
data fragments, we disable memory interleaving.

To evaluate the performance of the scan operations, we use AVX2
implementation [38] in the baseline, since the Intel® Broadwell
CPU does not support AVX512. Our in-house multi-threaded micro-
benchmark adopts the mmap vector implementation [4] to allocate
memory in AxDIMM for the input data and the result buffer.

4.2 Configurations
For the test data in the micro-benchmark, we generate a value ID ar-
ray with the 2 billion records of input data using a uniform random
generator and adopt bit-packed compression for each bit-case. Dur-
ing the scan operations, the dictionary is not used because the filter
conditions are expressed only with value IDs and scan operations
read only value ID array. In this work, we analyze the performance
of three bit-cases — 4, 10, and 17 — with two selectivities per bit-
case to evaluate the performance effect according to the result size.
The test configurations for the scan operations are summarized in
Table 3.

4.3 Procedure
The micro-benchmark performs by (1) preparing the data and the
result buffer for each worker thread in the AxDIMM memory or
RDIMM at the baseline, (2) calling offloading APIs for the offloaded
scan operations or AVX2-based scan operations, (3) measuring the
performance after completing the scan operations, and (4) option-
ally retrieving the result to confirm the correctness of the scan
operations. We create up to 8 threads in the micro-benchmark to
see the performance scalability for both AxDIMM acceleration and
AVX2 implementation. When preparing the data and the result

Improving In-Memory Database Operations with Acceleration DIMM (AxDIMM) DaMoN’22, June 13, 2022, Philadelphia, PA, USA

Table 1: Scan offloading APIs

Range Scan int scan_range_to_bv(begin_index, *data, data_size, *result_buffer, bit_case, min, max);
Inlist Scan int scan_inlist_to_bv(begin_index, *data, data_size, *result_buffer, bit_case, *predicates);

Table 2: Parameters for scan APIs

Type Name Description
uint64_t begin_index the starting index of the data to be scanned
uint64_t* data the address pointer to the target data
uint64_t data_size the number of the records to be scanned
uint64_t* result_buffer the address pointer to the result buffer
uint32_t bit_case bit case used for the bit compression
uint32_t min the minimum value ID of the range predicate
uint32_t max the maximum value ID of the range predicate
uint64_t* predicates the address pointer to the predicate vector of the inlist predicate

Table 3: Predicate configuration for scan operations

Bit-case Selectivity (1) Selectivity (2)
4 0.0625 range: 1 to 2 0.125 range: 1 to 3
10 0.001 range: 1 to 2 0.1 range: 1 to 103
17 0.001 range: 1 to 133 0.1 range: 1 to 13109

buffer in the AxDIMMmemory, AxDIMM is set to non-acceleration
mode. While performing the scan operations in AxDIMM, it is set
to acceleration mode. When retrieving the result from the AxDIMM
memory, AxDIMM is set back to non-acceleration mode.

5 EVALUATION
This section shares our evaluation results on the performance of
DBA engines of AxDIMM in comparison to AVX2 implementation
against the data on the RDIMM as the baseline.

First, we share the latency test results by comparing the elapsed
time in seconds for a single scan between AVX2 implementation
and AxDIMM acceleration. The elapsed time includes the time for
reading the data of 2 billion records, performing the scan operation,
and writing the results in both implementations. Second, we show
the throughput scalability as the number of scan operations on
RDIMM (AVX2) and AxDIMM increases. Finally, we compare the
CPU usage and the memory bandwidth bound between AVX2 and
AxDIMM while running multiple scan operations, which is gath-
ered via Intel® VTune® [3]. The two scans (range and inlist) are
evaluated on three bit-cases with two selectivities for each bit-case.

5.1 Latency Test Results
Fig. 5 shows the single scan latency on 2 billion records. AxDIMM
acceleration has a noticeable gain in latency compared to the AVX2
implementation on RDIMM. AxDIMM speeds up the scan operation
from 1.3x to 6.8x because of the dedicated hardware implementation
within the memory device. AxDIMM has a bigger gain from the
inlist scan than the range scan for all bit-cases, regardless of their
selectivity conditions. AVX2 implementation shows much longer
latency in the inlist scan compared to the range scan, due to the in-
creased number of comparisons based on the number of arguments

in the inlist predicates. Intrinsically, the inlist scan has multiple
comparisons so that the inlist predicate is a bit vector composed
of multiple bits where the number of bits is same as the number
of value IDs in the dictionary. Rather, the range scan has only two
comparisons with its predicate.

Fig. 5 shows that the inlist scan has better performance im-
provement than the range scan because AxDIMM performs the
concurrent comparisons of the inlist scan more efficiently than
AVX2 implementation. AxDIMM acceleration achieves similar per-
formance between the inlist scan and the range scan in bit-cases 4
and 10 because it performs parallel comparisons per cycle. How-
ever, bit-case 17 has much longer latency in inlist scan acceleration
because the number comparison per clock within FPGA is reduced
by the increased size of the inlist predicate.

5.2 Throughput Scalability
Fig. 6 shows the average scan throughput as the number of worker
threads increases. AxDIMM acceleration shows a much higher
throughput, up to 6.8xmore thanAVX2 implementation. TheAxDIMM
throughput becomes saturated with 3 threads in the bit-case 4 due
to the limited number of DBA engines, while it is saturated earlier
in higher bit-cases due to the internal bandwidth limitation result-
ing from the increased data size. Even with more than 3 threads,
AxDIMM shows much better performance than AXV2 implementa-
tion. The throughput becomes smaller in higher bit-cases in both
AxDIMM and AVX2 implementations due to the larger data size.
The AXDIMM throughput of inlist scan in bit-case 17 is reduced
due to the increased predicate size, like the latency results.

5.3 CPU Usage and Memory Bandwidth Bound
We measure CPU usage and memory bandwidth bound in the bit-
case 10 and selectivity 0.1 to show that AxDIMM reduces CPU
resource usage and the memory bottleneck. First, we measure the
average CPU usage in the high load phase in the micro-benchmark.
Fig. 7 shows that most of the CPU usage resulting from the scan
operations is eliminated by offloading. The saved computing re-
sources are used by other database operations and improve overall
database performance. Second, we measure the memory bandwidth

DaMoN’22, June 13, 2022, Philadelphia, PA, USA Donghun Lee, et al.

(a) Bit-case 4 (b) Bit-case 10 (c) Bit-case 17

Figure 5: Latency (x-axis: selectivity)

(a) Bit-case 4 selectivity 0.0625 (b) Bit-case 10 selectivity 0.001 (c) Bit-case 17 selectivity 0.001

(d) Bit-case 4 selectivity 0.125 (e) Bit-case 10 selectivity 0.1 (f) Bit-case 17 selectivity 0.1

Figure 6: Throughput (x-axis: the number of worker threads)

Figure 7: Average CPU usage

bound by profiling the micro-benchmark using Intel® VTune® [3].
Fig. 8 shows that most of the memory bandwidth bound is relieved
by offloading the scan operations. When performing AVX2 imple-
mentation on CPU, all the data in the value ID array should be read
and the results are written back. However, AxDIMM acceleration
reduces the data transfer, relieving the memory bandwidth bound.

Figure 8: Memory bandwidth bound

5.4 Overall Analysis
Through our experiments above, we confirm that the data-intensive
operations can be optimized via near-memory processing. The per-
formance improvement comes from (1) the dedicated hardware
implementation of DBA engines and (2) full exploitation of the
internal bandwidth of the memory subsystem larger than the mem-
ory bandwidth in the host CPU. The results show that AxDIMM

Improving In-Memory Database Operations with Acceleration DIMM (AxDIMM) DaMoN’22, June 13, 2022, Philadelphia, PA, USA

acceleration can save most of all CPU usage and memory band-
width usage for the scan operations. Thus, the relieved host CPU
power and memory bandwidth usage will be utilized for other data-
base workloads resulting in overall performance improvement in
IMDBMSs.

6 DISCUSSION
This section addresses our insights from this work, and describes
the limitations of the current implementation of AxDIMM and how
we can rectify them in the future.

6.1 Feasibility of Near-Memory Acceleration
This work implements the scan operations within AxDIMM to show
that the offloading of expensive database operations to AxDIMM
can relieve the memory bandwidth bound between host CPUs and
memory devices, and save the computing power of host CPUs. We
believe offloading to AxDIMM can be applied to any data-intensive
operation which causes the memory bandwidth bound and con-
sumes much computing power, such as (de)compression of the
bit-packed data, or building a hash table. Besides the data-intensive
operations, compute-intensive operations accessing a large volume
of data are also good candidates. For example, operations with ad-
vanced compression schemes, matrix multiplications, and other ML
operations [18] can be accelerated in AxDIMM.

6.2 Limited Gate Count and Frequency in
FPGA

The current implementation of AxDIMM is built on a custom FPGA
board. Because of the limited gate count and the limited frequency,
only three DBA engines working at 200 MHz are implemented,
consuming about 79% of FPGA resources. It is these limitations
that restrict the performance of acceleration. If we could resolve
these issues by applying ASIC technology in the next phase, much
higher performance improvement is expected, thanks to more par-
allelism available from the increased number of DBA engines and
the reduced latency from the higher working frequency.

6.3 Cache Coherency Limitation
As another limitation of near-memory processing in AxDIMM,
Section 3.1.5 explains the cache coherency issue with regard to the
output result buffer. When AxDIMM writes the results into the
output results buffer, some data in the cache can be incoherent.
Thus, we use the write combine cache policy to avoid it. In addition
to the result buffer, we also need to take care of the input data of
the scan operations. When the host CPU writes data, some portion
of the data may reside in the cache but not in the AxDIMMmemory.
Therefore, it must be flushed by the application before AxDIMM
acceleration is invoked. In this work, cache flush and memory
barrier instructions are used when data is written to the AxDIMM
memory.

Recently, new memory interfaces like CXL are proposed to sup-
port these cache coherency issues. CXL type 2 uses the CXL.cache
protocol, supporting cache coherency between host and CXL de-
vices as well as CXL.memory and CXL.io. If DBA engines are imple-
mented with CXL type 2, these cache coherency issues are resolved.
CXL also enables concurrent accesses by the host CPU and the

DBA engines because the memory controllers are located within
the CXL memory devices, resulting in memory access scheduling
capability within the CXL devices.

When the data is updated by the host CPU, AxDIMM does not
care data modification while one processing unit accesses the spe-
cific memory area because data consistency is assured in the same
way of the existing DBMS such as a locking mechanism.

7 RELATEDWORK
GPU can perform database operations exploiting its massive paral-
lelism. The group-by and aggregation operations can be offloaded
to GPU in a hash-based manner [17]. However, this approach can-
not avoid data movement from the host DRAM to GPU memory.
Adaptive work placement [16] proposes a way to select a right
computing unit to improve the overall performance in a hetero-
geneous computing environment consisting of CPUs and GPUs.
Shanbhag et. al. [33] analyze the performance gain on GPU and
show that operations like selection, projection, and sort, have a
good speedup that is nearly equal to the bandwidth ratio. To over-
come performance, a tiled-based execution model is proposed using
GPU’s memory to store workload set directly instead of using GPU
as a coprocessor.

Offloading expensive operations to FPGAs is widely accepted
in the database area as well. Lasch et. al. [20] implement a compu-
tationally expensive re-pair compression algorithm in an FPGAs
using OpenCL. Mohsen et. al. [27] show that FPGA implementation
of binary packing can efficiently saturate PCIe bus bandwidth and
achieve a better compression ratio than CPU execution. Memory-
accessible FPGAs like an FPGA-embedded hybrid system [24] and
Xeon+FPGA heterogeneous [13, 14, 35] architecture can offload the
database operations to FPGAs attached in the same interconnect
with CPUs. In these approaches, there is no explicit data copy to
FPGAs because the coherency in the interconnect can move the
data in the memory to the offloading device in the on-demand
manner, but the data movement is still required. Recently, Alonso
et. al. [7] develop a near-memory processing using an ARM-based
server and FPGAs with the cache coherence protocol integrated
with an open-source database, but it is in its early stage to measure
the performance of data-intensive analysis queries.

Near-memory processing uses computing power in the near-
memory devices to mitigate bandwidth bottleneck between CPUs
and memory devices, improving performance and energy consump-
tion. Boromand et. al. [8] analyze the impact of processing-in-
memory (PIM) performing part of the computation close to memory.
Recently, MCN (Memory Channel Network) architecture [6] has
been proposed to develop a DIMM-based memory channel network
with MCN DIMMs, buffered DIMM with a small processor, to give
the host computer the illusion that MCN DIMMs are connected
through an Ethernet interface.

SIMD instructions for vector processing unit are widely used
in the database operations to accelerate performance. First, Will-
halm et. al. [39, 40] uses SIMD instructions when scanning column
vectors with various predicates, such as range predicate and in-
list predicate. Second, Sitaridi et. al. [37] uses SIMD instructions
for optimized string matching against regular expressions. Third,

DaMoN’22, June 13, 2022, Philadelphia, PA, USA Donghun Lee, et al.

Mula et. al. [28] proposes an improved vectorized approach for the
population count using AVX2.

8 CONCLUSION
As one of the disaggregated computing approaches to resolving
the memory bottleneck issue in IMDBMSs, we introduced a near-
memory acceleration scheme called Acceleration DIMM (AxDIMM).
Since data-intensive operations can be processed within AxDIMM,
it reduces CPU resource consumption as well as memory bandwidth
usage.

3 DBA engines are implemented on the custom FPGA board
with the standard DIMM-compatible interface to conduct the scan
operations against the data in the AxDIMM memory. The applica-
tion, such an IMDBMS, accesses the memory space of AxDIMM
uisng the mmap function without any additional device driver and
calls the offloading APIs provided by the AxDIMM library. The
implemented scan operations read the bit-packed compressed data,
evaluate the range or inlist predicates, and write the filtered results
to the result buffer.

Our experiments showed a significant improvement in AxDIMM,
up to 6.8x latency and throughput compared to SIMD (AXV2) im-
plementation on CPU. What’s more, its profiling results showed
that most of the CPU usage and the memory bound was eliminated
with AxDIMM. The results are quite promising, since AxDIMM has
a smaller number of computing units (3 DBA engines) and a slower
working frequency (200 MHz) than the host CPU.

Even with these promising results of disaggregated memory
computing, we also observed a few important architectural limita-
tions in our near-memory processing approach, such as concurrent
accesses by both host CPUs and DBA engines and cache coherency.
Fortunately, new memory interfaces like CXL would be a good solu-
tion to overcome these issues. As our next research topic, we’d like
to implement DBA offloading in CXL memory devices and evaluate
whether or not CXL can actually resolve the existing architectural
limitations. Furthermore, we will extend our approach to include a
CXL-based memory pooling system.

REFERENCES
[1] 1998. Write Combining Memory Implementation Guidelines. https://download.

intel.com/design/PentiumII/applnots/24442201.pdf
[2] 2021. Direct Access for files. https://www.kernel.org/doc/Documentation/

filesystems/dax.txt
[3] 2021. Intel® VTune™ Profiler. https://www.intel.com/content/www/us/en/

developer/tools/oneapi/vtune-profiler.html
[4] 2021. Mmap Allocator. https://github.com/johannesthoma/mmap_allocator
[5] 2021. Process Page Table. https://www.kernel.org/doc/Documentation/vm/

pagemap.txt
[6] Mohammad Alian, Seung Won Min, Hadi Asgharimoghaddam, Ashutosh Dhar,

Dong Kai Wang, Thomas Roewer, Adam McPadden, Oliver O’Halloran, Deming
Chen, Jinjun Xiong, Daehoon Kim, Wen-mei Hwu, and Nam Sung Kim. 2018.
Application-transparent Near-memory Processing Architecture with Memory
Channel Network. In Proceedings of the 51st Annual IEEE/ACM International Sym-
posium onMicroarchitecture (Fukuoka, Japan) (MICRO-51). IEEE Press, Piscataway,
NJ, USA, 802–814. https://doi.org/10.1109/MICRO.2018.00070

[7] Gustavo Alonso, Timothy Roscoe, David Cock, Mohsen Ewaida, Kaan Kara,
Dario Korolija, David Sidler, and Zeke Wang. 2020. Tackling Hardware/Software
co-design from a database perspective. In CIDR.

[8] Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun,
and etc. 2018. Google Workloads for Consumer Devices: Mitigating Data Move-
ment Bottlenecks. In Proceedings of the Twenty-Third International Conference
on Architectural Support for Programming Languages and Operating Systems
(Williamsburg, VA, USA) (ASPLOS ’18). ACM, New York, NY, USA, 316–331.
https://doi.org/10.1145/3173162.3173177

[9] Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun,
Eric Shiu, Rahul Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy
Ranganathan, et al. 2018. Google workloads for consumer devices: Mitigating
data movement bottlenecks. In Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and Operating
Systems. 316–331.

[10] Fabrice Devaux. 2019. The true processing in memory accelerator. In 2019 IEEE
Hot Chips 31 Symposium (HCS). IEEE Computer Society, 1–24.

[11] Ashutosh Dhar, Sitao Huang, Jinjun Xiong, Damir Jamsek, Bruno Mesnet, Jian
Huang, Nam Sung Kim, Wen-mei Hwu, and Deming Chen. 2019. Near-memory
and in-storage FPGA acceleration for emerging cognitive computing workloads.
In 2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). IEEE, 68–75.

[12] Franz Färber, NormanMay,Wolfgang Lehner, Philipp Große, Ingo Müller, Hannes
Rauhe, and Jonathan Dees. 2012. The SAP HANA Database–An Architecture
Overview. IEEE Data Eng. Bull. 35, 1 (2012), 28–33.

[13] Z. István, D. Sidler, and G. Alonso. 2016. Runtime Parameterizable Regular
Expression Operators for Databases. In 2016 IEEE 24th Annual International
Symposium on Field-Programmable Custom Computing Machines (FCCM). 204–
211. https://doi.org/10.1109/FCCM.2016.61

[14] Kaan Kara, Jana Giceva, and Gustavo Alonso. 2017. FPGA-Based Data Partitioning.
In Proceedings of the 2017 ACM International Conference on Management of Data
(Chicago, Illinois, USA) (SIGMOD ’17). Association for Computing Machinery,
New York, NY, USA, 433–445. https://doi.org/10.1145/3035918.3035946

[15] Tomas Karnagel, Dirk Habich, and Wolfgang Lehner. 2017. Adaptive work place-
ment for query processing on heterogeneous computing resources. Proceedings
of the VLDB Endowment 10, 7 (2017), 733–744.

[16] Tomas Karnagel, Dirk Habich, and Wolfgang Lehner. 2017. Adaptive Work
Placement for Query Processing on Heterogeneous Computing Resources. Proc.
VLDB Endow. 10, 7 (March 2017), 733–744. https://doi.org/10.14778/3067421.
3067423

[17] Tomas Karnagel, Renè Müller, and Guy M. Lohman. 2015. Optimizing GPU-
accelerated Group-By and Aggregation.. In ADMS@VLDB, Rajesh Bordawekar,
Tirthankar Lahiri, Bugra Gedik, and Christian A. Lang (Eds.). 13–24. http:
//dblp.uni-trier.de/db/conf/vldb/adms2015.html#KarnagelML15

[18] Liu Ke, Xuan Zhang, Jinin So, Jong-Geon Lee, Shin-Haeng Kang, Sukhan Lee,
Songyi Han, Yeongon Cho, Jin Hyun Kim, Yongsuk Kwon, et al. 2021. Near-
Memory Processing in Action: Accelerating Personalized Recommendation with
AxDIMM. IEEE Micro (2021).

[19] Robert Lasch, Suleyman S Demirsoy, Norman May, Veeraraghavan Ramamurthy,
Christian Färber, and Kai-Uwe Sattler. 2020. Accelerating re-pair compression us-
ing FPGAs. In Proceedings of the 16th International Workshop on Data Management
on New Hardware. 1–8.

[20] Robert Lasch, Suleyman S. Demirsoy, Norman May, Veeraraghavan Rama-
murthy, Christian Färber, and Kai-Uwe Sattler. 2020. Accelerating Re-Pair
Compression Using FPGAs. In Proceedings of the 16th International Workshop
on Data Management on New Hardware (Portland, Oregon) (DaMoN ’20). As-
sociation for Computing Machinery, New York, NY, USA, Article 8, 8 pages.
https://doi.org/10.1145/3399666.3399931

[21] Donghun Lee, Andrew Chang, Minseon Ahn, Jongmin Gim, Jungmin Kim, Jaemin
Jung, Kang-Woo Choi, Vincent Pham, Oliver Rebholz, Krishna Malladi, et al. 2020.
Optimizing Data Movement with Near-Memory Acceleration of In-memory
DBMS.. In EDBT. 371–374.

[22] Sukhan Lee, Shin-haeng Kang, Jaehoon Lee, Hyeonsu Kim, Eojin Lee, Seungwoo
Seo, Hosang Yoon, Seungwon Lee, Kyounghwan Lim, Hyunsung Shin, et al. 2021.
Hardware Architecture and Software Stack for PIM Based on Commercial DRAM
Technology: Industrial Product. In 2021 ACM/IEEE 48th Annual International
Symposium on Computer Architecture (ISCA). IEEE, 43–56.

[23] Nusrat Jahan Lisa, Annett Ungethüm, Dirk Habich, Wolfgang Lehner, Tuan DA
Nguyen, and Akash Kumar. 2018. Column Scan Acceleration in Hybrid CPU-
FPGA Systems.. In ADMS@ VLDB. 22–33.

[24] Nusrat Jahan Lisa, Annett Ungethüm, Dirk Habich, Wolfgang Lehner, Tuan
D. A. Nguyen, and Akash Kumar. 2018. Column Scan Acceleration in Hybrid
CPU-FPGA Systems. In International Workshop on Accelerating Analytics and
Data Management Systems Using Modern Processor and Storage Architectures,
ADMS@VLDB 2018, Rio de Janeiro, Brazil, August 27, 2018. 22–33. http://www.
adms-conf.org/2018-camera-ready/habich_adms2018.pdf

[25] Clemens Lutz, Sebastian Breß, Steffen Zeuch, Tilmann Rabl, and Volker Markl.
2020. Pump up the volume: Processing large data on GPUs with fast interconnects.
In Proceedings of the 2020 ACM SIGMOD International Conference on Management
of Data. 1633–1649.

[26] Mahmoud Mohsen, Norman May, Christian Färber, and David Broneske. 2020.
Fpga-accelerated compression of integer vectors. In Proceedings of the 16th Inter-
national Workshop on Data Management on New Hardware. 1–10.

[27] Mahmoud Mohsen, Norman May, Christian Färber, and David Broneske. 2020.
FPGA-Accelerated Compression of Integer Vectors. In Proceedings of the 16th
International Workshop on Data Management on New Hardware (Portland, Oregon)
(DaMoN ’20). Association for Computing Machinery, New York, NY, USA, Article
9, 10 pages. https://doi.org/10.1145/3399666.3399932

https://download.intel.com/design/PentiumII/applnots/24442201.pdf
https://download.intel.com/design/PentiumII/applnots/24442201.pdf
https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://github.com/johannesthoma/mmap_allocator
https://www.kernel.org/doc/Documentation/vm/pagemap.txt
https://www.kernel.org/doc/Documentation/vm/pagemap.txt
https://doi.org/10.1109/MICRO.2018.00070
https://doi.org/10.1145/3173162.3173177
https://doi.org/10.1109/FCCM.2016.61
https://doi.org/10.1145/3035918.3035946
https://doi.org/10.14778/3067421.3067423
https://doi.org/10.14778/3067421.3067423
http://dblp.uni-trier.de/db/conf/vldb/adms2015.html#KarnagelML15
http://dblp.uni-trier.de/db/conf/vldb/adms2015.html#KarnagelML15
https://doi.org/10.1145/3399666.3399931
http://www.adms-conf.org/2018-camera-ready/habich_adms2018.pdf
http://www.adms-conf.org/2018-camera-ready/habich_adms2018.pdf
https://doi.org/10.1145/3399666.3399932

Improving In-Memory Database Operations with Acceleration DIMM (AxDIMM) DaMoN’22, June 13, 2022, Philadelphia, PA, USA

[28] Wojciech Muła, Nathan Kurz, and Daniel Lemire. 2016. Faster Population Counts
Using AVX2 Instructions. Computer Journal 61 (11 2016). https://doi.org/10.
1093/comjnl/bxx046

[29] Hasso Plattner. 2009. A common database approach for OLTP and OLAP us-
ing an in-memory column database. In Proceedings of the 2009 ACM SIGMOD
International Conference on Management of data. 1–2.

[30] Hasso Plattner. 2014. The impact of columnar in-memory databases on enter-
prise systems: implications of eliminating transaction-maintained aggregates.
Proceedings of the VLDB Endowment 7, 13 (2014), 1722–1729.

[31] Iraklis Psaroudakis, Florian Wolf, Norman May, Thomas Neumann, Alexan-
der Böhm, Anastasia Ailamaki, and Kai-Uwe Sattler. 2014. Scaling up mixed
workloads: a battle of data freshness, flexibility, and scheduling. In Technology
Conference on Performance Evaluation and Benchmarking. Springer, 97–112.

[32] Anil Shanbhag, Samuel Madden, and Xiangyao Yu. 2020. A study of the funda-
mental performance characteristics of GPUs and CPUs for database analytics. In
Proceedings of the 2020 ACM SIGMOD international conference on Management of
data. 1617–1632.

[33] Anil Shanbhag, Samuel Madden, and Xiangyao Yu. 2020. A Study of the Funda-
mental Performance Characteristics of GPUs and CPUs for Database Analytics. In
Proceedings of the 2020 ACM SIGMOD International Conference on Management of
Data (Portland, OR, USA) (SIGMOD ’20). Association for Computing Machinery,
New York, NY, USA, 1617–1632. https://doi.org/10.1145/3318464.3380595

[34] David Sidler, Zsolt István, Muhsen Owaida, and Gustavo Alonso. 2017. Accelerat-
ing pattern matching queries in hybrid CPU-FPGA architectures. In Proceedings

of the 2017 ACM International Conference on Management of Data. 403–415.
[35] David Sidler, Zsolt István, Muhsen Owaida, and Gustavo Alonso. 2017. Ac-

celerating Pattern Matching Queries in Hybrid CPU-FPGA Architectures. In
Proceedings of the 2017 ACM International Conference on Management of Data
(Chicago, Illinois, USA) (SIGMOD ’17). ACM, New York, NY, USA, 403–415.
https://doi.org/10.1145/3035918.3035954

[36] Vishal Sikka, Franz Färber, Wolfgang Lehner, Sang Kyun Cha, Thomas Peh,
and Christof Bornhövd. 2012. Efficient transaction processing in SAP HANA
database: the end of a column store myth. In Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data. 731–742.

[37] Evangelia Sitaridi, Orestis Polychroniou, and Kenneth A. Ross. 2016. SIMD-
accelerated Regular Expression Matching. In Proceedings of the 12th International
Workshop on Data Management on New Hardware (San Francisco, California)
(DaMoN ’16). ACM, New York, NY, USA, Article 8, 7 pages. https://doi.org/10.
1145/2933349.2933357

[38] ThomasWillhalm, Ismail Oukid, IngoMüller, and Franz Faerber. 2013. Vectorizing
Database Column Scans with Complex Predicates.. In ADMS@ VLDB. 1–12.

[39] ThomasWillhalm, Ismail Oukid, IngoMüller, and Franz Faerber. 2013. Vectorizing
Database Column Scans with Complex Predicates. In ADMS@ VLDB. 1–12.

[40] ThomasWillhalm, Nicolae Popovici, Yazan Boshmaf, Hasso Plattner, and etc. 2009.
SIMD-scan: Ultra Fast In-memory Table Scan Using On-chip Vector Processing
Units. Proc. VLDB Endow. 2, 1 (Aug. 2009), 385–394. https://doi.org/10.14778/
1687627.1687671

https://doi.org/10.1093/comjnl/bxx046
https://doi.org/10.1093/comjnl/bxx046
https://doi.org/10.1145/3318464.3380595
https://doi.org/10.1145/3035918.3035954
https://doi.org/10.1145/2933349.2933357
https://doi.org/10.1145/2933349.2933357
https://doi.org/10.14778/1687627.1687671
https://doi.org/10.14778/1687627.1687671

	Abstract
	1 Introduction
	2 Scan Operations in IMDBMS
	2.1 Behavior
	2.2 Performance Characterization

	3 AxDIMM Design for Scan Operations
	3.1 Hardware Architecture
	3.2 Software Stack

	4 Experiments
	4.1 System Setup
	4.2 Configurations
	4.3 Procedure

	5 Evaluation
	5.1 Latency Test Results
	5.2 Throughput Scalability
	5.3 CPU Usage and Memory Bandwidth Bound
	5.4 Overall Analysis

	6 Discussion
	6.1 Feasibility of Near-Memory Acceleration
	6.2 Limited Gate Count and Frequency in FPGA
	6.3 Cache Coherency Limitation

	7 Related Work
	8 Conclusion
	References

