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Abstract

Due to the rapid growth of information available about individual patients, most physicians

suffer from information overload and inefficiencies when they review patient information in

health information technology systems. In this paper, we present a novel hybrid dynamic

and multi-collaborative filtering method to improve information retrieval from electronic

health records. This method recommends relevant information from electronic health rec-

ords to physicians during patient visits. It models information search dynamics using a

Markov model. It also leverages the key idea of collaborative filtering, originating from Rec-

ommender Systems, for prioritizing information based on various similarities among physi-

cians, patients and information items. We tested this new method using electronic health

record data from the Indiana Network for Patient Care, a large, inter-organizational clinical

data repository maintained by the Indiana Health Information Exchange. Our experimental

results demonstrated that, for top-5 recommendations, our method was able to correctly

predict the information in which physicians were interested in 46.7% of all test cases. For

top-1 recommendations, the corresponding figure was 24.7%. In addition, the new method

was 22.3% better than the conventional Markov model for top-1 recommendations.

Introduction

When shoppers consider buying something on Amazon, they often benefit from a section

called “Products related to this item.” These recommendations, generated by a method called

Collaborative Filtering (CF) [1], suggest items of potential interest based on what other cus-

tomers have viewed and/or purchased. Often, these suggestions are useful and lead to addi-

tional purchases: McKinsey has estimated that 35 percent of purchases on Amazon come from

these product recommendations [2]. By contrast, when physicians search an electronic health
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record (EHR) for information about a patient, the EHR does not suggest potentially useful

information. Instead, it forces the physician to go through a manual, cumbersome and labori-

ous process of searching for and retrieving information anew for every patient every time.

In this paper, we present a novel method for recommending information items when physi-

cians search for patient information in EHRs. To the best of our knowledge, our method is the

first designed to recommend search terms to physicians during patient visits in order to facili-

tate clinical decision-making.

The literature most relevant to our work addresses Recommender Systems, a research area

that originated in computer science. Top-N recommender systems, which recommend the

top-N items that are most likely to be preferred or purchased by users, have been used in a

variety of applications in e-commerce. The top-N recommendation methods can be broadly

classified into two categories [1]. The first is neighborhood-based collaborative filtering meth-

ods [3], which recommend items based on the searches of similar users. The second is model-

based methods, particularly latent factor models, which learn latent individual user and item

factors, and determine user preferences using those factors. Hybrid methods [4] have also

been developed to integrate these two types of methods. Recent recommendation methods

also include deep learning-based approaches [5], in which user preferences, item characteris-

tics and user-item interactions are learned in deep architectures.

Dynamic recommender systems have been developed to recommend items or information

of interest over time. Popular techniques include latent factor transition approaches [6] and

Markov models [7] that model the transitions among latent factors that capture preferences;

state space approaches [8, 9] that model the transitions among different states over time; and

point processes [10] and other statistical models [11] that learn probabilities of future events.

Recently, recommendation methods have also been used to recommend and prioritize

healthcare information, due to the rapid growth of information available about individual

patients and the need for personalized healthcare [12]. Health recommender systems [13, 14]

and recommender systems in health informatics [15] have been applied in several areas. Pub-

lished work includes recommender systems for tailored health communications [16–18],

home medical products [19], personalized recipes [20] and health-related content (e.g., videos,

websites, educational materials) [21–23], among others. Additional applications include rec-

ommending physicians to patients for specific diseases [24, 25]; medications [26, 27] and

therapies [28]; and nursing care plans [29]. However, these studies have primarily used infor-

mation from sources other than the EHR, such as the Web and published research. The use

of recommendations in EHR systems to facilitate clinical decision support has so far been

limited.

The main problem with applying recommender systems to EHRs is that, in EHR systems,

users do not explicitly rate items as they do on e-commerce and other sites. So, a different

mechanism is needed to generate recommendations-specifically, how to identify the next

search term for a physician regarding an individual patient. The method we developed to

address this need is theDynamic andmulti-Collaborative Filtering (DmCF) method. The pur-

pose of this paper is to describe the DmCF and report the results of our study to test it using

EHR data.

The DmCF is based on two key ideas: collaborative filtering, which prioritizes items based

on the searches of similar physicians regarding similar patients; and dynamic modeling, which

predicts items of interest based on how physicians search for information over time. In the

name of our method, dynamic refers to information retrieval patterns over time, i.e., the order

in which different items are searched. (Since searching involves submitting a search term, we

use the terms “search term,” “information item,” and “item” interchangeably.) In addition,

Multi-collaborative filtering (mCF) refers to the fact that we integrate multiple types of

PLOS ONE Collaborative filtering for electronic health records

PLOSONE | https://doi.org/10.1371/journal.pone.0255467 August 5, 2021 2 / 24

Funding: XN IIS- 1855501, IIS-1827472, National

Science Foundation, https://www.nsf.gov XN, TS

1R01LM012605-01A1, National Institute of Health,

https://www.nih.gov The funders had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript. The

funder provided support in the form of salaries for

authors XN, ZR and TS, but did not have any

additional role in the study design, data collection

and analysis, decision to publish, or preparation of

the manuscript. The specific roles of these authors

are articulated in the ‘author contributions’ section.

The current commercial affiliations of EB and ZR

did not play any roles in the study.

Competing interests: The work was done when ZF

and EB were with the Indiana University – Purdue

University Indianapolis, and when ZR was with the

Ohio State University. After finishing the work, ZF

moved to the University of Illinois at Chicago; EB

moved to Defense Finance and Accounting Service;

and ZRmoved to Hyperscience. The current

commercial affiliations of EB and ZR do not alter

our adherence to PLOS ONE policies on sharing

data and materials. There are no competing

interests.

https://doi.org/10.1371/journal.pone.0255467
https://www.nsf.gov
https://www.nih.gov


similarities (e.g., physician similarities, patient similarities and information similarities) to

score items of potential interest. The DmCFmethod models information retrieval dynamics

using a first-order Markov Chain (MC) and combinesMC transition probabilities withmCF

scores to produce final scores for items to be recommended. The DmCFmethod then recom-

mends the items with the highest scores to physicians.

In the study reported in this paper, we tested the DmCF on a dataset from the Indiana Net-

work for Patient Care (INPC) to determine its effectiveness. We found that the method was

successful. For top-1 recommendations (in which only the single highest-scored item is recom-

mended), our results showed that the DmCF correctly recommended useful information

22.3% more often than didMCmodels. For top-5 recommendations, the DmCF correctly pre-

dicted the information in which physicians were interested in 46.7% of all test cases.

Our paper thus makes the following contributions:

• We described our development of theDmCF, a novel hybrid dynamic and multi-collaborative

filtering method to recommend information items in the EHR to physicians. TheDmCF com-

bines collaborative filtering (which prioritizes recommended items based on the items similar

physicians have searched for with similar patients) with dynamic modeling (which predicts

items of interest based on the order in which physicians have searched for items over time).

• We conducted a set of comprehensive experiments using EHR data and demonstrated that

the DmCF performed significantly better than conventional collaborative filtering-based and

Markov-based methods.

• We therefore tackled the problems of identifying and prioritizing the most relevant informa-

tion items from a large of collection of EHR data to save time and effort for physicians and

facilitate their clinical decision-making.

Methods: Framework of the DmCF

This study was approved by the Indiana University IRB (Protocol # 1612682149 “Supporting

information retrieval in the ED through collaborative filtering”). In developing the DmCF, we

wanted a system that would score potential recommended search terms based on combining

the following two criteria:

• which terms the physician has already searched for regarding the patient; and

• which terms similar physicians have searched for on similar patients.

The first criterion assumes that past behavior of physicians is a reasonable approximation

of the standard of care [30, 31] and that their future behavior follows the same standard of

care. Based on this assumption, future search terms can be inferred from previously searched

terms and their order. The second criterion considers patient similarities and physician simi-

larities. The underlying concept is that patients have commonalities and that similar patients

stimulate similar information retrieval patterns by physicians. Likewise, physicians share traits

that result in similar search patterns on patients. For instance, search patterns generated by

members of the same medical specialty are likely to resemble each other more than those gen-

erated by members of different specialties.

In the description of our method, a physician is denoted as y, a patient as p, and a search

term as t (Table 1). A sequence of search terms that a physician y searches for on patient p dur-

ing visit v is represented as

~Tðy; p; vÞ ¼ ftv1 ! tv2 ! � � � ! tvk jy; pg; ð1Þ
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where tvk is the k-th search term during visit v. Additional visits of the same patient with the

same physician produce additional search sequences. The physician for whom we recommend

search terms is referred to as the target physician. The corresponding patient is the target

patient. A set of physicians/patients similar to the target physician y/target patient p is denoted

as SyðyÞ/SpðpÞ, respectively. A set of search terms similar to a particular search term t is

denoted as StðtÞ. Terms are “similar” if they have been searched for on similar patients.

Patients are “similar” if physicians search for similar terms regarding them. The size of a set S

is denoted as |S|. Additional symbols will be introduced as they are used.

Our DmCFmethod combines search dynamics and multiple similarities to recommend

search terms. Fig 1 presents the overall framework of the DmCF. The method consists of two

scoring components. The first incorporates search dynamics through a first-order Markov

Chain [32]. The score of a potential recommendation based on this scoring component is

denoted as ScoreDYN. The second component scores search terms based on similarities via

multi-collaborative filtering. The score of a potential recommendation based on this similar-

ity-based scoring component is denoted as ScoreCF. Thus, the DmCF scores a potential search

term t for a physician y on a patient p after a sequence of searches ~Tðy; p; vÞ (Eq 1) as a linear

combination of ScoreDYN and ScoreCF, that is,

Scoreðtj~Tðy; p; vÞÞ ¼ ð1� aÞ � Score
DYN

ðtj~Tðy; p; vÞÞ þ a � Score
CF
ðtj~Tðy; p; vÞÞ; ð2Þ

where α 2 [0, 1] is a weighting parameter.

In this paper, if a score is generated from a certain method X, a superscript X is included in

the score notation (e.g., ScoreX, ScoreX
DYN

or ScoreX
CF
). In general, a superscript X indicates an

associated method X. All possible terms are first scored using the scoring function in Eq 2. A

higher score represents a higher possibility that a term will be searched next. The terms are

sorted based on their scores in decreasing order and the top-N (e.g., N = 5) scored terms are

recommended. If one of the recommended terms is then searched for by the physician receiv-

ing the recommendations, the term is considered relevant, and the prioritization of such infor-

mation is correct. The first-order Markov Chain-based scoring and the multi-collaborative

filtering-based scoring are discussed in the next sections. Table 2 lists all methods used in this

paper.

First-order Markov Chain-based scoring—foMC

Markov Chains (MCs) [32] are a fundamental dynamic modeling scheme based on the Mar-

kovian assumption. The Markovian assumption states that each event in a sequence of events

(e0, e1, e2, � � �, et−1, et) is only dependent on a small set of previous consecutive events but inde-

pendent of any earlier events. AnMCmodels a sequence of events so that each of the events

Table 1. Notations.

notation description

y / p / t / v a physician/patient/term/visit

~Tðy; p; vÞ a search term sequence of y on p during visit v

SyðyÞ a set of physicians similar to y

SpðpÞ a set of patients similar to p

StðtÞ a set of terms similar to t

https://doi.org/10.1371/journal.pone.0255467.t001
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Fig 1. Overall framework of theDmCF.

https://doi.org/10.1371/journal.pone.0255467.g001
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follows the Markovian assumption. The Markovian assumption is statistically represented as

Pðetje0; e1; e2; � � � ; et�1
Þ ¼ Pðetjet�k; � � � ; et�2

; et�1
Þ;

where P(et|E) is the probability of observing event et given the previous event sequence E. The

number of previous events that et depends on (i.e., k in P(et|et−k, � � �, et−2, et−1)) defines the

order of theMC. A first-order MC is a specialMC in which each event depends on only its

immediate precursor.MCs have been demonstrated to be very effective in modeling, approxi-

mating, and analyzing real-life sequences [32].

We use a first-orderMarkov Chain (foMC) as the dynamic method to simulate the

sequence of terms that a physician y searches for on a patient p during a visit. For a sequence

~Tðy; p; vÞ ¼ ftv1 ; tv2 ; � � � ; tvk jy; pg, foMC calculates a dynamics-based score ScorefoMC
DYN

of a

potential search term t after tvk as the transition probability from tvk to t, that is,

Score
foMC
DYN

ðtj~Tðy; p; vÞÞ ¼ PðtjtvkÞ; ð3Þ

where PðtjtvkÞ is the transition probability from tvk to t in a first-orderMC. The transition

probability P(tj|ti) from term ti to term tj in a first-orderMC is calculated as the ratio of the

total frequency of transitions from ti to tj over the total frequency of all transitions from ti to

any term, that is,

PðtjjtiÞ ¼
X

~T ðy;p;vÞ

hðti ! tjj~Tðy; p; vÞÞ

2

4

3

5

�

X

~T ðy;p;vÞ

X

ðti!tkÞ2~T ðy;p;vÞ

hðti ! tkj~Tðy; p; vÞÞ

2

4

3

5; ð4Þ

where ðti ! tkÞ 2 ~Tðy; p; vÞ represents that (ti! tk) is in ~Tðy; p; vÞ, hðti ! tjj~Tðy; p; vÞÞ is the

frequency of transitions from ti to tj in ~Tðy; p; vÞ. Thus, ScorefoMC
DYN

as in Eq 3 is not specific to a

particular physician or patient, but corresponds to information retrieval patterns manifesting

themselves across all physicians and patients.

Multi-collaborative filtering-based scoring

Collaborative filtering (CF) is a popular technique in Recommender Systems [1] for recom-

mending items to a target user. The fundamental idea of CF is that “similar users like similar

items.” User-based CFmethods first identify users similar to the target user, and then recom-

mend items that are preferred by users who are similar to the target user. Item-based CFmeth-

ods first identify items similar to the target user’s preferred items, and then recommend these

items to the target user. Thus, CFmethods heavily depend on the calculation of user similarity

and item similarity. A typical way to calculate user similarity is to represent each user using

her preference profile over items and to use this item preference profile to identify similar

users. Likewise, a typical way to calculate item similarity is to represent each item using its

Table 2. Notations for methods used in the study.

notation method description

DmCF dynamic and multi-collaborative filtering method

foMC first-order markov chain-based scoring method

ypCF physician-patient-similarity-based CF scoring method

TptCF transition-involved patient-term-similarity-based CF scoring method

simP2Y patient-first similarity identification

simY2P physician-first similarity identification

https://doi.org/10.1371/journal.pone.0255467.t002
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preference profile across users, and use this user preference profile to identify similar items.

The user similarity function and item similarity function in CF are often pre-defined, and thus

recommendations based on similarities can be easily interpreted. CF is particularly powerful

when user and item data are sparse, which is often the case in real-life applications. CF is also

well-known for its scalability on large-scale problems, particularly when user similarity and

item similarity can be calculated trivially in parallel.

Physician-patient-similarity-based CF scoring—ypCF. The CFmethod we developed

generates search term recommendations based on similar physicians and patients. This

method first identifies similar physicians and similar patients, and then scores terms searched

by similar physicians on similar patients (each process is described below). This method is

referred to as physician-patient-similarity-based Collaborative Filtering (ypCF).

Identifying similar physicians and similar patients. We developed two approaches to identi-

fying sets of similar physicians and sets of similar patients, depending on which set is identified

first: the patients or the physicians. In the first approach, we first identify patients who are sim-

ilar with respect to the terms that physicians have searched on them. We group these patients

into the set of “similar patients.” Then, we assign the physicians who searched for at least one

common term between target patient p and the set of similar patients to the set of “similar phy-

sicians.” In the second approach, we first identify physicians who have searched for common

terms across their patients. We group these physicians into the set of “similar physicians.”

Then, we identify patients who share at least one search term with the target patient among

similar physicians. These patients are then assigned to the set of “similar patients.”

Patient-first similarity identification—simP2Y. The first approach first identifies a set of

patients similar to the target patient p. Based on this set, a set of physicians similar to the target

physician y is generated. This approach is denoted as simP2Y(i.e., from Patients to phYsicians).

In simP2Y, the set of patients similar to the target patient p is represented as

S
P2Y

p ðpÞ ¼ fp
1
; � � � ; pkp jpg; ð5Þ

and is composed of the top-kpmost similar patients to target patient p. Given SP2Y

p ðpÞ, a set of

physicians similar to the target physician y is represented as

S
P2Y

y ðyjpÞ ¼ fy
1
; � � � ; yky jS

P2Y

p ðpÞg; ð6Þ

and generated as follows: First, physicians who have searched for at least one term on one or

more patients in SP2Y

p ðpÞ that was also searched on p are identified. The top-kymost similar

physicians to y are then assigned to SP2Y

y ðyjpÞ (physician-physician similarity will be discussed

later in Section Similarity Calculation).

Physician-first similarity identification—simY2P. The second approach first identifies a set

of physicians similar to the target physician y, and then, based on these similar physicians,

identifies a set of similar patients. This approach is denoted as simY2P(i.e., from phYsicians to

Patients). In simY2P, the set of similar physicians is represented as

S
Y2P

y ðyÞ ¼ fy
1
; � � � ; yky jyg; ð7Þ

and includes the top-kymost similar physicians to y. Based on SY2P

y ðyÞ, a set of patients similar

to the target patient p, denoted as

S
Y2P

p ðpjyÞ ¼ fp
1
; � � � ; pkp jS

Y2P

y ðyÞg; ð8Þ

PLOS ONE Collaborative filtering for electronic health records

PLOSONE | https://doi.org/10.1371/journal.pone.0255467 August 5, 2021 7 / 24

https://doi.org/10.1371/journal.pone.0255467


is identified as patient p’s top-kpmost similar patients on whom physicians in SY2P

y ðyÞ have

searched for at least one term they have also searched for on p.

Collaborative filtering in ypCF. From SyðyÞ and SpðpÞ (either S
P2Y

p ðpÞ and SP2Y

y ðyjpÞ, or

S
Y2P

y ðyÞ and SY2P

p ðpjyÞ), a set of physician-patient-term triplets, denoted as

S
ypCF

ypt ðSyðyÞ;SpðpÞÞ ¼ fhyi; pj; tkijyi 2 SyðyÞ; pj 2 SpðpÞ; tk 2 ~Tðyi; pj; vlÞ; 8vlg, is

constructed. That is, SypCFypt ðSyðyÞ;SpðpÞÞ includes all hyi, pj, tki triplets such that physician

yi 2 SyðyÞ has searched for term tk for patient pj 2 SpðpÞ. Thus, for a sequence

~Tðy; p; vÞ ¼ ftv1 ; tv2 ; � � � ; tvk jy; pg, the score Score
ypCF
CF of a potential search term t is calculated

as follows:

Score
ypCF
CF ðtj~Tðy; p; vÞÞ ¼ �f ðhy; p; �iÞþ

X

hy0 ;p0 ;ti2S
ypCF
ypt

f̂ ðy0; p0; tÞ � simyðy; y
0Þ � simpðp; p

0Þ

�

X

y0 ;p0 :

9hy0;p0;ti2S
ypCF
ypt

simyðy; y
0Þ � simpðp; p

0Þ; ð9Þ

where �f ðhy; p; �iÞ ¼
X

t:hy;p;ti2S
ypCF
ypt

f ðhy; p; tiÞ=
X

t:hy;p;ti2S
ypCF
ypt

1 and f̂ ðhy0; p0; tiÞ ¼ f ðhy0; p0; tiÞ �

�f ðhy0; p0; �iÞ; f ðhy0; p0; tiÞ is the frequency of the triplet hy0, p0, ti (i.e., how many times y0

searches for t on p0 in total); �f ðhy; p; �iÞ is the average frequency of all possible terms that y

searches for on p; f̂ ðhy; p; �iÞ is the centered frequency for hy, p, �i (i.e., shifted by �f ðhy; p; �iÞ) in

order to reduce bias from searches with different frequencies; and simy(y, y
0) and simp(p, p

0)

are the similarity between y and y0, and the similarity between p and p0, respectively. The con-

cept behind the scoring scheme in Eq 9 is that the possibility that y searches for t on p after a

sequence of searches is the aggregation of 1). the average possibility of y searching for any arbi-

trary search term (i.e., the first term in Eq 9), and 2). the possibility that similar physicians

search for t on similar patients (i.e., the second term in Eq 9). ScoreypCFCF scores on all possible

terms of physician y on patient p are calculated using Eq 9 and sorted in decreasing order; the

top-N scored terms are recommended for y on p.

Transition-involved patient-term-similarity-based CF scoring—TptCF. The order in

which a physician searches for terms potentially indicates a diagnostic process. Therefore,

the search order deserves additional consideration. We developed a new patient-term-simi-

larity-based CF scoring method that involves the transitions among search terms. Patient

similarities and term similarities are considered in this method, which is different from those

in ypCF(i.e., physician similarities and patient similarities in ypCF). This method is referred

to as Transition-involved patient-term-similarity-based Collaborative Filtering, denoted as

TptCF.

TptCF aggregates the transitions from the last search term in a sequence ~Tðy; p; vÞ (Eq 1) to

the next search term for all similar patients. Specifically, TptCFidentifies a set of patients SpðpÞ

similar to the target patient p and a set of terms StðtvkÞ similar to the last search term tvk in

~Tðy; p; vÞ. The set StðtvkÞ contains the terms with term-term similarity to tvk above a threshold

β. Then TptCF looks into what terms physicians search for on patients in SpðpÞ after they have

searched for a similar term in StðtvkÞ. The underlying assumption is that similar patients stim-

ulate similar patterns of search sequences. Thus, the score ScoreTptCF
CF

of a next potential search
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term t is calculated as follows:

Score
TptCF
CF

ðtj~Tðy; p; vÞÞ ¼

X

p02SpðpÞ

f
simpðp; p

0Þ
X

p002SpðpÞ

simpðp; p
00Þ
�

X

t02Stðtvk
Þ

gðt0 ! tjp0Þsimtðtvk ; t
0Þ

X

t002Stðtvk
Þ

gðt00 ! tjp0Þ
g;

ð10Þ

where g(t0 ! t|p0) is the frequency of transitions from term t0 to term t for patient p0 from all

possible searches on p0, and simtðtvk ; t
0Þ is the term-term similarity between tvk and t

0. Similarly

as in ypCF, ScoreTptCF
CF

scores for all possible terms of physician y on patient p are calculated

using Eq 11 and sorted in decreasing order; the top-N scored terms are recommended for y

on p.

Similarity calculation

Key to our method of multi-collaborative filtering-based scoring is to calculate similarities

among physicians, patients and terms, respectively. To do so, we represent physicians

and patients using vectors of search term frequencies, and terms using vectors of patient

frequencies.

Physician-physician similarities—simy. We first represent each physician y using a vector

of search term frequencies, denoted as v. Each dimension of v corresponds to a term, and the

value in each dimension of v is the total frequency that the corresponding term has been

searched by y. Note that the frequency is aggregated across all patients that y has searched on.

This representation scheme is very similar to the bag-of-word representation in text mining

[33]. Given the representation, the similarity between two physicians y and y0 is calculated as

the cosine similarity between vy and vy0, that is,

simyðy; y
0Þ ¼ cos ðvy; vy0Þ: ð11Þ

The concept is that the search term distribution indicates physician specialty and expertise,

and physicians of similar specialties and expertise are considered similar.

Patient-patient similarities—simp. Similar to physicians, each patient is represented using

a vector of term frequencies, denoted as u. Each dimension of u corresponds to a term, and

the value in each dimension of u is the total frequency the corresponding term has been

searched for by all physicians. The term distribution likely represents the health history of the

patient and thus may be a reasonable patient representation. Given that representation, the

similarity between two patients p and p0 is calculated as the cosine similarity between up and

up0, that is,

simpðp; p
0Þ ¼ cos ðup;up0Þ: ð12Þ

Term-term similarities—simt. Each term t is represented using a vector of patient frequen-

cies, denoted as w. Each dimension in w corresponds to a patient, and the value in each dimen-

sion of w is the total frequency that term t is searched for by all physicians. The term-term

similarity between terms t and t0 is calculated as the cosine similarity between wt and wt0, that

is,

simtðt; t
0Þ ¼ cos ðwt;wt0Þ: ð13Þ

The underlying assumption is that if two terms are frequently searched for on the same patient

together, they are either identical or similar in their meaning (i.e., synonymous or closely
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related), relate to a common medical phenomenon (e.g., “EKG” and “Troponin” can both

relate to “myocardial infarction”), or represent co-occurrence of medical concepts (i.e., co-

morbidities).

Methods: Testing the DmCFmethod

Data set

The data used to test the DmCFmethod came from the Indiana Network for Patient Care

(INPC). The INPC is Indiana’s health information exchange and offers physicians access to

the most complete, cross-facility virtual electronic patient records in the nation. Implemented

in the 1990s, the INPC collects data from over 140 Indiana hospitals, laboratories, long-term

care facilities, and imaging centers. We extracted the INPC search logs generated between 01/

24/2013 and 09/24/2013. The Total column in Table 3 summarizes the extracted INPC dataset.

Between 01/24/2013 and 09/24/2013, 2,121 physicians performed 69,770 searches on 13,819

patients using 9,781 unique search terms.

Physicians often conduct multiple, sequential searches on the same patient during a visit,

generating a search sequence. Fig 2 presents the distribution of sequence lengths in the dataset.

With an average of 2.885 search terms, search sequences were typically very short. Fig 3 pres-

ents the distribution of the number of unique search terms for each patient. On average, 3.85

unique search terms were searched for on each patient. The short sequences and small number

of unique search terms per patient make the recommendation problem difficult, because the

available data are very sparse. It is difficult to learn transition patterns in sequences that are

very short. Unfortunately, the data sparsity issue is not unique to the INPC; most EHR systems

are not designed to facilitate searches initiated by physicians—they typically display the entire

patient record without any prioritization [34–37]. Our method has the advantage of enabling

the prioritization of information items that should be displayed instead of all information

items.

Experimental protocols and evaluation metrics

We used the following experimental protocol to evaluate our method using the INPC dataset.

All search sequences were split at the same cutoff date. All searches before the cutoff date con-

stituted the training set, all searches after the cutoff date the test set. The models were trained

Table 3. INPC data set used in study: Total and by cutoff periods.

Variable Total CUTOFF (06/26/2013) CUTOFF (07/18/2013) CUTOFF (08/15/2013) CUTOFF (09/03/2013)

train test train test train test train test

#p 13,819 6,669 587 8,471 624 10,852 472 12,014 372

#y 2,121 1,267 126 1,542 147 1,818 126 1,948 105

#t 9,781 5,334 665 6,550 654 7,952 532 8,657 461

#~T 24,183 10,385 648 13,677 692 18,166 535 20,492 414

lenð~TÞ 69,770 28,789 2,568 38,553 2,506 51,272 1,831 58,146 1,482

lenð~TÞ=#p 5.049 4.317 4.375 4.551 4.016 4.725 3.879 4.840 3.984

lenð~TÞ=#~T 2.885 2.772 3.963 2.819 3.621 2.822 3.422 2.837 3.580

#p is the number of patients; #y is the number of physicians; #t is the number of terms; #~T is the number of sequences; lenð~TÞ is total length of sequences; lenð~TÞ=#p is

average length of sequences per patient; and lenð~TÞ#=~T is average length of sequences. In the CUTOFF columns, train is the number of sequences in the training set,

while test is the number of sequences in the test set. The train and test columns do not add up to the total because patients without sequences in the training set were not

used for testing. Patients with sequences in the training but not in the test set were used for training, however.

https://doi.org/10.1371/journal.pone.0255467.t003
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using only the training set. For example, the transition probabilities (Eq 4) were constructed

only using search sequences and terms in the training set, and the various similarities (Eqs 11,

12 and 13) were calculated only from the training set. This protocol is referred to as cutoff

cross validation (CUTOFF). Fig 4 shows the CUTOFF experimental protocol.

We used four cutoff dates (06/26/2013, 07/18/13, 08/15/2013 and 09/03/2013) to generate

four sets of training and test data (Table 3) (the time span was specifically 2013-01-24 08:58:26

to 2013-09-24 12:58:32). These cutoff dates were selected to obtain sufficient data for training

and testing. We used all search terms involved in calculating similarities. The CUTOFF setting

models how we would evaluate performance in the real world where all data up to a certain

Fig 2. Distribution of INPC sequence length.

https://doi.org/10.1371/journal.pone.0255467.g002

Fig 3. Distribution of INPC # unique terms per patient.

https://doi.org/10.1371/journal.pone.0255467.g003

Fig 4. CUTOFF experimental protocol.

https://doi.org/10.1371/journal.pone.0255467.g004
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time point are used to generate a prediction that is then evaluated using the next event.

However, a shortcoming of CUTOFF is that if the cutoff date is set early, many late search

sequences will not have anything before the cutoff date in the training set; if the cutoff date is

set late, many early search sequences may not have terms after the cutoff date as testing terms.

Sequences that do not have testing terms are still used to train models. Sequences that do not

have training terms are not used in either model training or testing. Thus, the total number of

training and testing cases is usually smaller than the entire dataset, as Table 3 shows. For those

sequences that had terms after the cutoff date, only the first term after the cutoff date was used

for testing and evaluation.

We measured method performance using Hit-Rate at N (HR@N). N is the number of rec-

ommended terms. A “hit” occurs when the clinician searches for a term contained in the set of

recommended terms. HR@N is the percentage of sequences that have a hit. For example,

assume that a physician has searched for “CT scan” and “cMRI.” Our method suggests “echo-

cardiography,” “troponin,” and “urine.” If the physician searches for “troponin” next, we have

a hit @3 (that is, the term that is searched next is among the top-3 recommendations). The

higher the HR@N value, the more of the recommendations are correct. The maximum of HR

is 1. HR is a popular metric in evaluation of ranking methods [3, 38, 39].

We used Python 2.7.10 to implement all algorithms and conducted all experiments on a

Lenovo NeXtScale nx360 M5 server equipped with two 12-core Intel Xeon E5-2680 v3 CPUs

and Linux OS.

Results

Overall performance

We compared the methods foMC, ypCF, TptCF and DmCF, as well as their variations, in our

experiments. We performed a grid search to identify the parameters that result in the best per-

formance of each method for five values of HR@N (N = 1, 2, 3, 4 and 5). Table 4 shows the best

performance of each method for the cutoff date 08/15/2013. The best performance of each

method with respect to a specific HR@N varied given the set of parameters. For example, in

Table 4, the row

jDmCF � ypCF simP2Y 0:2 1 1 � 0:247 0:357 0:426 0:441 0:464 j

shows that the method DmCF-ypCF, with simP2Y as the method to identify similar physicians

and α = 0.2, jSpj ¼ 1 and jSyj ¼ 1, achieved an HR@1 value 0.247, the best HR@1 value this

method was able to achieve (therefore, 0.247 is bolded). With the same parameters, this

method achieved 0.357, 0.426, 0.441, and 0.464 at HR@2, 3, 4, and 5, respectively. HR@3 and

HR@4 outperformed allmethods with all possible parameters (therefore 0.426 and 0.441 are

underlined).

As an example, for a particular physician y who searched for “CT scan” and “cMRI” for a

particular patient p, simP2Y identified one similar patient who was diagnosed with cardiovas-

cular disease and one similar physician who had a major role in caring for this patient. Based

on the search history of the similar physician for the similar patient, DmCF-ypCF recom-

mended 5 terms: “echocardiography,” “troponin,” “cholesterol,” “stroke,” and “lipid panel.”

These recommendations are highly related to cardiovascular disease. The ground truth in the

test set shows that physician y then searched for “troponin.” This resulted in a hit and demon-

strated the effectiveness of DmCF-ypCF in this case.

Best method:DmCF-ypCF with simP2Y. Overall, DmCF-ypCF with simP2Y was the best

method because it outperformed all other methods on 4 of the 5 performance measures (i.e.,
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HR@2 = 0.363, HR@3 = 0.426, HR@4 = 0.441, and HR@5 = 0.467) (Table 4). With parameters

α = 0.2, jSpj = 1 (i.e., with only 1 similar patient) and jSyj ¼ 1 (i.e., with only 1 similar physi-

cian), DmCF-ypCF with simP2Y outperformed the simple foMC at 22.3%, 20.2%, 26.0%,

16.7%, and 18.1% on HR@1, HR@2, HR@3, HR@4, and HR@5, respectively. The second best

method was ypCF with simP2Y because it had better overall results than the rest of the meth-

ods. With parameters jSpj ¼ 1 and jSyj ¼ 1, ypCF with simP2Y outperformed the simple

foMC at 22.3%, 20.2%, 26.0%, 16.7%, and 18.1% on HR@1, HR@2, HR@3, HR@4, and HR@5,

respectively (e.g., in terms of HR@1, the improvement was 0.247/0.202—1 = 22.3%). It is nota-

ble that although ypCF was significantly better than foMC, the best DmCF-ypCF with simP2Y

had a weight α = 0.2 on the ypCF scoring component, but a larger weight 1-α = 0.8 on the

foMC scoring component, as Eq 2 defines. This indicates the importance of search dynamics

in recommending the next search terms. It is also notable that the optimal method (DmCF-

ypCF with simP2Y) required only a very small number of similar patients (Sp ¼ 1) and physi-

cians (Sy ¼ 1) to perform well. This demonstrates the effectiveness of DmCF-ypCF in

Table 4. Overall performance of all methods for CUTOFF 8/15/2013.

method sim α jSpj jSyj β HR@1 HR@2 HR@3 HR@4 HR@5

foMC - - - - - 0.202 0.297 0.338 0.378 0.393

ypCF simP2Y - 1 1 - 0.249 0.355 0.406 0.417 0.428

- 50 2 - 0.215 0.336 0.393 0.424 0.441

- 100 2 - 0.222 0.342 0.393 0.422 0.443

simY2P - 1 1 - 0.262 0.292 0.305 0.310 0.320

- 1 10 - 0.254 0.329 0.350 0.368 0.378

- 2 5 - 0.237 0.312 0.357 0.372 0.381

- 3 20 - 0.230 0.312 0.355 0.381 0.393

- 10 1 - 0.211 0.273 0.336 0.374 0.398

TptCF - - 160 - 0.1 0.213 0.279 0.303 0.322 0.331

- - 480 - 0.9 0.189 0.290 0.320 0.340 0.355

- - 480 - 0.1 0.200 0.284 0.329 0.355 0.378

- - 500 - 0.1 0.200 0.282 0.327 0.357 0.379

DmCF-ypCF simP2Y 0.2 1 1 - 0.247 0.357 0.426 0.441 0.464

0.5 1 1 - 0.245 0.363 0.422 0.439 0.464

0.2 100 2 - 0.226 0.351 0.404 0.430 0.467

simY2P 0.5 3 5 - 0.254 0.329 0.353 0.379 0.426

0.1 3 2 - 0.230 0.346 0.366 0.402 0.432

0.1 1 20 - 0.230 0.331 0.391 0.424 0.447

0.1 1 1 - 0.222 0.331 0.383 0.430 0.447

0.2 1 1 - 0.222 0.323 0.378 0.426 0.449

DmCF-TptCF - 0.8 60 - 0.4 0.228 0.307 0.335 0.359 0.379

- 0.7 40 - 0.1 0.213 0.312 0.348 0.376 0.398

- 0.8 200 - 0.1 0.213 0.303 0.353 0.376 0.400

- 0.6 5 - 0.1 0.209 0.297 0.344 0.383 0.406

- 0.1 1 - 0.1 0.200 0.310 0.346 0.381 0.413

The column “sim” corresponds to similarity identification methods; α is the weight on CF component in DmCF; jSpj is the number of similar patients; jSyj is the

number of similar physicians; and β is the similarity threshold to identify similar terms. The HR (Hit-Rate) columns show percentages of sequences that had a “hit” (a

search term in the recommended terms) for 1, 2, 3, 4, and 5 recommended terms. The best performance of each method under each metric is in bold. The best overall

performance of all methods under each metric is underlined.

https://doi.org/10.1371/journal.pone.0255467.t004
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identifying the most relevant information and leveraging such information for recommenda-

tions. Table 5 presents examples of recommendations generated by DmCF-ypCF with simP2Y

for 5 clinicians on 5 patients.

Comparison of DmCF-TptCF andDmCF-ypCF. The DmCF-TptCFmethod was slightly

better than foMC (Table 4). With parameters α = 0.1, jSpj ¼ 1 and β = 0.1, DmCF-TptCF out-

performed foMC at -1.0%, 4.4%, 2.4%, 0.8%, and 5.1% on HR@1, HR@2, HR@3, HR@4, and

HR@5, respectively. However, DmCF-TptCF was significantly worse than DmCF-ypCF with

simP2Y. The difference between DmCF-TptCF and DmCF-ypCF is that, in DmCF-ypCF, the

similarity-based scoring component (i.e., ypCF) does not consider search dynamics and only

looks at terms that have been searched by similar physicians on similar patients, regardless of

how such search terms transition to the search term of interest, while TptCF considers such

transitions. The performance difference between DmCF-TptCF and DmCF-ypCF indicates

that the transition information captured in TptCFmay overlap with that captured in foMC (a

component in the DmCF). Thus, combining the transition information does not lead to sub-

stantial performance gains. On the other hand, the information captured by ypCFmethods

could be complementary to that in foMC, and thus integration of ypCF and foMC in DmCF-

ypCF resulted in significant performance improvement.

Comparison of simP2Y and simY2P. Within DmCF-ypCF, simP2Y performed slightly

better than simY2P. The simP2Ymethod first identifies patients similar to the target patient,

and then identifies physicians similar to the target physician based on the identified similar

patients. The simY2Pmethod reverses this order, identifying similar physicians first, then sim-

ilar patients. The fact that simP2Y outperformed simY2P in DmCF-ypCF indicates that when

physician search dynamics are considered viaMC, identifying similar patients is more impor-

tant than identifying similar physicians. In addition, similar physicians should be identified on

the basis of those similar patients. A possible explanation for this observation may be that a

more focused and homogeneous group of patients similar to the target patient is critical to

complement theMC information, asMC already considers all patients and all physicians (Eq

4). Another reason could be that since physicians often see many patients with different dis-

eases, high physician similarity may be due to common patients they have but who are differ-

ent from the target patient. If such physicians are first selected (e.g., in simY2P), similar

patients identified from these physicians might be very different from the target patient. How-

ever, when, as in ypCF, information about patients and physicians is not considered, a diverse

set of physicians and patients might be beneficial. This may explain why in ypCF, simY2P actu-

ally outperformed simP2Y slightly.

Comparison of ypCF and TptCF. When we compare ypCF and TptCF in Table 4, it is

notable that ypCF was significantly better than TptCF, even though TptCF used more patients

similar to the target patient (i.e., larger jSpj) to achieve best performance. In TptCF, only terms

Table 5. Top-5 recommendation examples generated byDmCF-ypCF with simP2Y.

training sequence top-5 recommendations

blood type, rh blood bank, EKG

EKG, BMP, troponin hgb, blood, drug screen, glucose, a1c

EKG, HGBA1C, EF, a1c, HGB, pace implant, EG, cancer, ejection fraction, port

dc, echo, cardiac cath cardiology, troponin, EKG, blood, MRI

cad, echo, nstemi, troponin echo, cardiac, catheter, EKG, blood

Recommendations that the clinician actually searches for, that is, a “hit” are in bold.

https://doi.org/10.1371/journal.pone.0255467.t005
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that are similar to the term of interest and also from similar physicians and patients are consid-

ered in calculating the scores (Eq 10). However, in ypCF, all terms from similar physicians and

patients are used. The improved performance of ypCF compared to that of TptCFmay indicate

that using more possible terms could benefit recommendations. On the other hand, both

foMC and TptCF consider term transitions, while TptCF considers term transitions only

among similar terms on similar patients. The experimental results show that TptCF performed

worse than foMC. This may indicate that if term transition is a major factor in determining

next search term, transitions from more diverse patients should be integrated.

Parameter study. Figs 5–9 show HR@1, HR@2, HR@3, HR@4, and HR@5 of DmCF-

ypCF with simP2Y over different α values (Eq 2) when jSyj ¼ 1 and jSpj ¼ 1 (i.e., the jSyj and

jSpj values resulting in the best performance for DmCF-ypCF with simP2Y), respectively. We

conducted this analysis to test the effect of α parameter and thus the CF component on the per-

formance of term scoring (Eq 2). As the weight α increased from 0, and, as a result, the CF

component became more prominent in term scoring, the performance of the DmCF in terms

of HR@1 and HR@2 generally increased. This demonstrates the effect of the CF scoring com-

ponent in the DmCF. As α increased further, the performance in general first became better

and then worse (except that the HR@1 performance reached its best at α = 1). This indicates

that the dynamic scoring and CF scoring components in the DmCF play complementary roles

in generating recommendations, and thus combining them results in better recommendation

performance than either method alone.

Fig 5. HR@1 over α values.

https://doi.org/10.1371/journal.pone.0255467.g005

Fig 6. HR@2 over α values.

https://doi.org/10.1371/journal.pone.0255467.g006
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Overall performance of all methods for other cutoff dates

We also analyzed the performance of all methods for cutoff dates 06/26/2013, 07/18/2013, and

09/03/2013, respectively (Tables 6–8). Overall, DmCF-ypCF performed best compared to the

other methods for various cutoff dates. The comparative performance demonstrated by the

different methods for the cutoff date 08/15/2013 remained very similar to that of the other cut-

off dates. Note that as more recent cutoff dates increased the size of the training sets (Table 3),

Fig 9. HR@5 over α values.

https://doi.org/10.1371/journal.pone.0255467.g009

Fig 7. HR@3 over α values.

https://doi.org/10.1371/journal.pone.0255467.g007

Fig 8. HR@4 over α values.

https://doi.org/10.1371/journal.pone.0255467.g008
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the performance of each method decreased. For example, the performance of the foMC

method decreased progressively as the cutoff progressed. This may be due to the increasing

heterogeneity among patients when more patients are available in the system.

Similarity analysis

Figs 10 and 11 show the distribution of non-zero physician-physician similarities (simy) and

patient-patient similarities (simp), respectively. For simy, 5.65% of physician-physician similar-

ities were non-zero, and 80.98% of the non-zero similarities were less than or equal to 0.2. For

simp, 2.65% of the patient-patient similarities were non-zero, and 77.05% of the non-zero simi-

larities were less than or equal to 0.5. Specifically, there were some patients who were very sim-

ilar to each other (i.e., the peaks in Fig 11 on larger simp values). This explains the advantage

of simP2Y over simY2P (Table 4), because the more patients have a higher simp value in refer-

ence to the target patient, the more relevant information the DmCF can identify from these

patients.

Table 6. Overall performance of all methods for CUTOFF 06/26/2013.

method sim α jSpj jSyj β HR@1 HR@2 HR@3 HR@4 HR@5

foMC - - - - - 0.205 0.313 0.341 0.369 0.381

ypCF simP2Y - 4 1 - 0.261 0.366 0.380 0.383 0.383

- 50 1 - 0.259 0.377 0.398 0.414 0.418

- 100 1 - 0.250 0.373 0.403 0.418 0.431

simY2P - 2 3 - 0.302 0.350 0.364 0.369 0.372

- 3 1 - 0.287 0.370 0.397 0.414 0.421

- 5 1 - 0.279 0.360 0.401 0.423 0.437

- 10 1 - 0.262 0.349 0.397 0.421 0.444

TptCF - - 200 - 0.1 0.207 0.312 0.335 0.347 0.349

- - 220 - 0.1 0.204 0.313 0.343 0.350 0.353

- - 320 - 0.1 0.199 0.313 0.347 0.361 0.370

- - 380 - 0.1 0.194 0.312 0.346 0.356 0.372

DmCF-ypCF simP2Y 0.3 4 1 - 0.262 0.387 0.415 0.437 0.449

0.1 20 1 - 0.253 0.377 0.420 0.449 0.458

0.2 20 1 - 0.258 0.381 0.420 0.449 0.460

simY2P 0.6 3 10 - 0.262 0.370 0.407 0.438 0.455

0.4 3 1 - 0.219 0.380 0.409 0.440 0.469

0.2 3 4 - 0.227 0.375 0.417 0.441 0.463

0.2 2 3 - 0.216 0.363 0.412 0.451 0.463

0.1 5 1 - 0.228 0.373 0.417 0.443 0.475

DmCF-TptCF - 0.7 5 - 0.1 0.215 0.310 0.352 0.381 0.392

- 0.9 220 - 0.1 0.207 0.324 0.356 0.373 0.383

- 0.8 10 - 0.1 0.208 0.312 0.360 0.384 0.394

- 0.6 10 - 0.1 0.211 0.321 0.355 0.386 0.395

- 0.5 10 - 0.1 0.208 0.318 0.353 0.381 0.397

The column “sim” corresponds to similarity identification methods; α is the weight on CF component in DmCF; jSpj is the number of similar patients; jSyj is the

number of similar physicians; and β is the similarity threshold to identify similar terms. The HR (Hit-Rate) columns show percentages of sequences that had a “hit” (a

search term in the recommended terms) for 1, 2, 3, 4, and 5 recommended terms. The best performance of each method under each metric is in bold. The best overall

performance of all methods under each metric is underlined.

https://doi.org/10.1371/journal.pone.0255467.t006
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Fig 12 presents the distribution of non-zero term-term similarities (simt). For simt, only

0.28% of term-term similarities are non-zero, and 78.36% of the non-zero similarities are less

than or equal to 0.3.

Discussion

Our method DmCF is unique and significantly different from prior recommendation methods

in health informatics applications [13, 14]. The major difference is that our methods are

designed to recommend items from the EHR for physicians. Thus, our methods can facilitate

clinical decision-making in the context of EHR usage and have the potential to directly impact

healthcare outcomes. Almost all other published methods are intended for use outside of EHR

systems, for example, to recommend healthy diets [20] or health educational content using

non-EHR information [23]. While designed with the general purpose of helping improve

health behaviors, they are targeted at patients, not healthcare providers. While they can impact

health outcomes, they cannot do so by improving clinical decision-making of providers. In

addition, our methods use EHR data including clinical variables that much more directly

Table 7. Overall performance of all methods for CUTOFF 07/18/2013.

method sim α jSpj jSyj β HR@1 HR@2 HR@3 HR@4 HR@5

foMC - - - - - 0.210 0.292 0.325 0.341 0.348

ypCF simP2Y - 5 1 - 0.267 0.347 0.358 0.364 0.366

- 50 1 - 0.262 0.358 0.379 0.395 0.400

- 100 1 - 0.257 0.358 0.384 0.402 0.412

- 100 2 - 0.237 0.342 0.380 0.396 0.413

simY2P - 2 3 - 0.289 0.337 0.353 0.357 0.358

- 1 100 - 0.283 0.345 0.353 0.357 0.358

- 10 1 - 0.240 0.325 0.379 0.410 0.426

TptCF - - 260 - 0.1 0.210 0.286 0.301 0.312 0.329

- - 300 - 0.1 0.207 0.289 0.305 0.318 0.329

- - 380 - 0.1 0.208 0.288 0.309 0.324 0.341

- - 420 - 0.1 0.208 0.288 0.308 0.325 0.340

DmCF-ypCF simP2Y 0.2 5 1 - 0.267 0.364 0.393 0.403 0.426

0.1 50 1 - 0.256 0.355 0.396 0.415 0.428

0.2 100 1 - 0.253 0.360 0.396 0.413 0.431

simY2P 0.5 2 3 - 0.251 0.347 0.387 0.408 0.426

0.4 2 4 - 0.250 0.351 0.392 0.413 0.431

0.5 5 4 - 0.228 0.341 0.397 0.419 0.441

0.2 5 1 - 0.228 0.335 0.389 0.423 0.436

0.5 10 4 - 0.212 0.315 0.384 0.412 0.447

DmCF-TptCF - 0.8 5 - 0.1 0.218 0.292 0.332 0.351 0.367

- 0.8 300 - 0.1 0.215 0.305 0.328 0.345 0.351

- 0.6 5 - 0.1 0.217 0.302 0.340 0.355 0.364

- 0.5 5 - 0.1 0.215 0.302 0.338 0.357 0.364

- 0.3 1 - 0.1 0.208 0.292 0.331 0.354 0.367

The column “sim” corresponds to similarity identification methods; α is the weight on CF component in DmCF; jSpj is the number of similar patients; jSyj is the

number of similar physicians; and β is the similarity threshold to identify similar terms. The HR (Hit-Rate) columns show percentages of sequences that had a “hit” (a

search term in the recommended terms) for 1, 2, 3, 4, and 5 recommended terms. The best performance of each method under each metric is in bold. The best overall

performance of all methods under each metric is underlined.

https://doi.org/10.1371/journal.pone.0255467.t007
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Table 8. Overall performance of all methods for CUTOFF 09/03/2013.

method sim α jSpj jSyj β HR@1 HR@2 HR@3 HR@4 HR@5

foMC - - - - - 0.193 0.271 0.304 0.331 0.365

ypCF simP2Y - 10 1 - 0.261 0.326 0.345 0.355 0.355

- 20 1 - 0.261 0.329 0.353 0.365 0.367

- 100 1 - 0.246 0.324 0.374 0.399 0.406

simY2P - 1 1 - 0.278 0.329 0.350 0.365 0.365

- 2 3 - 0.271 0.336 0.360 0.379 0.384

- 10 1 - 0.234 0.304 0.372 0.391 0.406

- 5 1 - 0.242 0.331 0.362 0.396 0.408

- 10 20 - 0.222 0.300 0.360 0.389 0.413

TptCF - - 180 - 0.1 0.184 0.246 0.271 0.290 0.304

- - 320 - 0.1 0.179 0.266 0.295 0.309 0.326

- - 500 - 0.1 0.174 0.261 0.312 0.338 0.353

DmCF-ypCF simP2Y 0.2 10 1 - 0.263 0.336 0.377 0.389 0.411

0.1 10 1 - 0.261 0.338 0.377 0.389 0.411

0.1 100 1 - 0.234 0.331 0.382 0.411 0.425

0.2 100 1 - 0.246 0.331 0.382 0.408 0.428

simY2P 0.4 3 2 - 0.242 0.319 0.355 0.386 0.423

0.4 2 1 - 0.234 0.343 0.384 0.391 0.418

0.3 3 2 - 0.234 0.336 0.389 0.396 0.423

0.2 4 5 - 0.220 0.333 0.374 0.403 0.425

0.1 2 2 - 0.208 0.312 0.362 0.391 0.435

DmCF-TptCF - 0.8 40 - 0.1 0.208 0.292 0.326 0.348 0.374

- 0.8 20 - 0.1 0.198 0.292 0.321 0.345 0.379

- 0.9 460 - 0.1 0.181 0.271 0.338 0.365 0.382

- 0.9 480 - 0.1 0.184 0.271 0.333 0.367 0.382

- 0.1 5 - 0.1 0.198 0.278 0.319 0.350 0.389

The column “sim” corresponds to similarity identification methods; α is the weight on CF component in DmCF; jSpj is the number of similar patients; jSyj is the

number of similar physicians; and β is the similarity threshold to identify similar terms. The HR (Hit-Rate) columns show percentages of sequences that had a “hit” (a

search term in the recommended terms) for 1, 2, 3, 4, and 5 recommended terms. The best performance of each method under each metric is in bold. The best overall

performance of all methods under each metric is underlined.

https://doi.org/10.1371/journal.pone.0255467.t008

Fig 10. Physician-physician similarity distribution.

https://doi.org/10.1371/journal.pone.0255467.g010
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describe patients’ health conditions than website and other information used by other recom-

mendation methods. Thus, our methods can provide tailored and accurate recommendations

highly relevant to individual patients. Given that there are no similar methods to those we

developed, we have no baseline methods for purposes of comparison. Instead, we implemented

foMC, ypCF and TptCFmodels for comparison. The results reported in Tables 4, 6–8 demon-

strate that our new methods significantly outperformed the other methods.

Our method is general and not designed for a particular disease. The reason is that our

method is data-driven. When there are similar patients with the same disease in an EHR sys-

tem, our method is able to identify such patients and their physicians, and calculate recom-

mendations correspondingly. Disease-specific information is implicitly embedded in the

patient data, and therefore we do not need to tailor our method to a disease manually. As dis-

ease symptoms change over time, the dynamic modeling component of our method can adapt

to the emerging information that physicians most recently searched for. In addition, when

identifying similar patients or physicians, our method can use the most recent information to

find the most similar patients at a specific point in time. In the long term, we will evaluate our

method on multiple diseases, particularly those with changing symptoms. To better adapt to

different diseases and their dynamics, we will integrate more disease-specific knowledge in the

method in the future so the recommendations can be more disease-specific.

Fig 11. Patient-patient similarity distribution.

https://doi.org/10.1371/journal.pone.0255467.g011

Fig 12. Term-term similarity distribution.

https://doi.org/10.1371/journal.pone.0255467.g012
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In evaluating our method, we did not employ metrics, such as precision, recall, accuracy,

area under curve (AUC), and mean squared errors (MSE), that are commonly used to evaluate

regression or classification methods. This is primarily because these metrics are not suitable

for our recommendation problems. We do not have the ground truth for recommendation

scores, and therefore, metrics such as MSE and AUC are not applicable. For Recommender

Systems, the top-ranked (e.g., top 5) are far more important than the remaining recommenda-

tions. After all, it is not likely that users will click on the 100-th or 1,000-th recommendation.

This is particularly true for physicians, who have limited time to review recommendations.

Therefore, in healthcare, only the performance of the very top recommendations is a practi-

cally meaningful measurement. Thus, unlike in regression and classification problems, preci-

sion, recall and accuracy should be calculated only on a few top recommendations to evaluate

performance. The Hit-Rate at Nmetric we used is very close to precision and recall in recom-

mendation research. HR@Nmeasures precision but only among top-N recommendations, not

the conventional precision for the entire recommendation list. Physicians search only for a sin-

gle next term at a time, so there is only one true positive for each instance of a recommenda-

tion, and thus recall will have just two possible values: 1 (i.e., a hit) or 0 (i.e., a miss). HR@N

already encapsulates recall. Accuracy is not suited to our context because high accuracy can be

easily achieved by recommending all search terms. However, such recommendations are not

useful at all. Hit-Rate is much more tailored to directly evaluating the performance of top-

ranked recommendations than regression and classification-based evaluation metrics. It is a

very popular metric for Recommender Systems [3, 38, 39]. A detailed discussion on evaluation

metrics for ranking and recommendation problems is available in Gunawardana and Shani

[40] and Charu [41].

Since we developed the DmCF, we have implemented and evaluated an additional method

termedHybrid Collaborative FilteringMethod forHealthcare (HCFMH) [42].HCFMH was

inspired by the DmCF to integrate different collaborative filtering components. It uses more

complicated modeling to learn the relations between physicians and terms, and patients and

terms, respectively, which may not be observable directly from data. Due to the stronger learn-

ing power,HCFMH is able to achieve even better performance than that of the DmCF in terms

HR@k. However, the DmCF remains very competitive and still outperforms HCFMH in terms

of HR@1 (i.e., the hit rate at the top-1 recommendations).

To date, we have evaluated our method using historical data and measured how effective it

is in recommending items that have been subsequently selected by clinicians. To understand

and measure the utility of our method in the real world, it is critical to evaluate it with clini-

cians in practice. In the near future, we will implement our method in the Web viewer for the

INPC. We are currently recruiting clinicians to test and evaluate our method in clinical prac-

tice. We will report on this evaluation with users once our study is completed.

In this study, we focused on accurately identifying and prioritizing the most relevant infor-

mation items among structured data in EHRs. We have not yet leveraged associated informa-

tion, such as unstructured clinical notes or the biomedical literature, to support prioritization.

Using such information may help our recommendations become more targeted and could

improve clinical decision-making. Integrating additional information sources would require

integration across multiple, heterogeneous information types, such as EHRs, genomics, imag-

ing, and natural language [43, 44]. It would also be necessary to understand the semantics of a

search, clinical notes, and literature; conduct causal inference [45]; estimate the relations

between an information item and potential evidence; perform uncertain quantification [46];

and characterize the likelihood of the evidence, among many other related issues. Exploiting

these opportunities is beyond the scope of this paper, but constitutes important future research

that we plan to pursue.
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Conclusion

In this paper, we described and evaluated a new dynamic and multi-collaborative filtering

method DmCF to recommend search terms for physicians that are relevant to their individual

patients. The DmCFmethod combines a dynamic first-order Markov Chain model and a

multi-collaborative filtering model in order to score search term recommendations. The col-

laborative filtering model leverages key ideas developed in Recommender Systems research,

and uses patient similarities, physician similarities, and term similarities to score search term

recommendation candidates. The findings of our study suggest that the linear combination of

dynamic-based and multi-collaborative filtering-based scoring can produce high-quality rec-

ommendations that can predict, with top hit rates of approx. 45%, which terms physicians are

most interested in. That means that there is an almost 1 in 2 chance that our algorithm cor-

rectly predicts the next term.
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