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Abstract 
Tasks have been identified as playing an important role to 
knowledge workers as high-level units for organizing their 
information. TaskTracer is a task-aware desktop system that 
leverages the semi-automatic association between tasks and 
information to provide intelligent assistance to the user. 
TaskPredictor is a component that attempts to automatically 
predict the current task of the user. Our experience with 
TaskPredictor tells us that there still remain challenges to 
increasing acceptance by users. We describe our approaches 
to reduce the number of interruptions to the user, and  to 
improve the accuracy of predictions.  

Projects, Activities, and Tasks

Projects, tasks, activities, and to-do items have been 
identified as playing an important role to knowledge 
workers, i.e. computer users who create and process 
information as part of their work [2, 5, 7, 9]. These 
activities are conceptual structuring devices – they are the 
units into which a person divides their work, and the names 
associated with those units. Some tasks correspond to 
concrete projects like "Conduct user study" or "Create end 
of year report". Other tasks may be ongoing, with no start 
date, end date, or deliverables, such as "Advise students".   
More intuitively, tasks might correspond to the folders that 
you would find in a physical filing cabinet, or to a bulleted 
list that a person might write describing the projects and 
tasks for which they are responsible. To take advantage of 
tasks, a few recent task-centric solutions have been 
developed for email [4], or for desktop activity [12, 3, 16]. 
However, these systems have so far not exploited the 
support that could be provided by intelligent assistants to 
increase the productivity of knowledge workers.  

Task Prediction for Desktop Activities 

TaskTracer [8] is a system that allows users to organize 
their information by labeling them with high-level units 
that make sense to them (which we call tasks), such as 
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"teach CS534", "prepare NSF proposal B", "make travel 
arrangements for conference C".  We assume that the 
behavior of the user at the desktop is an interleaved 
timeline of different tasks and each task is associated with 
a set of resources (e.g. documents, folders, web pages, 
emails, contacts, etc.) relevant to that task. Once tasks have 
been defined, the user can indicate to the system the name 
of the current task and switch to new tasks.  TaskTracer 
records all resources that are accessed by the user and 
automatically associates them with the current declared 
task. This data can be used by machine learning 
components1 to provide intelligent assistance to the user to 
make finding and refinding information easier [6, 13].  
  These benefits assume that the data is not too noisy 
and therefore the user must let the system know when they 
have changed tasks. To reduce the cost of task switches, 
we have been working to supplement the user's manual 
task declaration with a TaskPredictor (Figure 1) that 
attempts to automatically predict the current task of the 
user [14, 15]. Our experience with TaskPredictor tells us 
that there still remain two main challenges to increasing 
acceptance by users: 1) reducing the number of 
interruptions to the user, and 2) improving the accuracy of 
predictions.  

1 The types of tasks that we typically encounter have no or 
only loosely fixed structure and are highly distinctive of 
the individual knowledge worker. A plan often has 
flexibility but the user is executing a specific structured 
activity. We are not suggesting that these two approaches 
are mutually exclusive. 

Figure 1. The TaskPredictor icon makes a prediction and 
informs the user through a balloon notification. Also 

shown are the TaskSelector to indicate tasks (on left) and 
the main TaskTracer icon (on right).



Reducing the number of interruptions 

In order to reduce the number of interruptions to the user, a 
cost-sensitive approach to task prediction and notification 
in the user interface is needed [10]. Currently, we already 
reduce the number of possible notifications made by the 
TaskPredictor through two main ways. First, we assume 
that in an unbroken segment of time in which a particular 
window has focus and the name of the document in that 
window does not change, the user is still working on the 
same task and hence we do not have to make a prediction. 
Second, to keep user costs within reason for TaskPredictor, 
we do not make a prediction for every window/document. 
We are willing to accept lower coverage in order to 
maintain high precision, because we would like to 
minimize the number of interruptions, particularly if these 
interruptions may provide wrong predictions. Thus, the 
TaskPredictor employs a probabilistic threshold for 
predicting tasks for windows/documents; if the threshold is 
not reached then notification is not made. We are currently 
exploring further options to better address user cost issues 
by exploiting task boundaries [1, 11]. 

Improving the accuracy of predictions 

One way of increasing the accuracy of predictions is by 
incorporating user feedback. TaskPredictor at the moment 
only allows the user to indicate that a prediction was wrong 
and to specify what the correct prediction should have 
been. This is just a glimpse of the rich knowledge users 
have about the correct prediction, and we would like to 
better harness the user’s knowledge to improve learning. 
 To investigate the feasibility of rich user feedback, we 
conducted a formative think-aloud study with 13 email 
users using 122 messages from the publicly available 
Enron dataset (user farmer-d). In this study [17], machine 
learning algorithms (Ripper and Naïve Bayes) sorted email 
messages into folders and explained their reasoning using 
three different simplified but faithful explanation
paradigms: Rule-based, Keyword-based, and Similarity-
based. The participants were asked to provide feedback to 
improve the pre-dictions. No restrictions were placed upon 
the form or con-tent of participants’ feedback. We 
observed and video-taped their activities and comments 
throughout the experiment, as well as collecting their work 
products, and questionnaires investigating their preferences 
and behavior. From a user perspective, we assessed the 
participants’ willingness to provide feedback, accuracy in 
doing so, and ability to understand the different 
explanations. From an algorithm perspective, we analyzed 
the participants’ feedback to determine how easily its types 
of advice could be understood and assimilated by machine 
learning algorithms.  

The system explains to the user 
We provided simplified but faithful explanations of the 
learning algorithms, which were concrete in terms of 

specific features that were visible in the current email 
message. Using these design principles, we found that 
Rule-based explanations were the most understandable and 
preferred but that a substantial number of the participants 
chose one of the other explanation paradigms as their 
favorite. This implies that machine learning systems may 
need to support multiple explanation paradigms in order to 
effectively reach all of their users.  
 The factors that contributed to participants' overall 
preference of an explanation were approval of reasoning 
soundness, clear communication of reasoning, perceived 
accuracy, and a less technical style of expression. 
Similarity-based explanations had serious 
understandability problems in our experiment.  

The user gives rich feedback to the system 
The participant corrections brought the accuracy rates for 
all paradigms to almost identical levels (71-72%). When 
the participants disagreed with the machine, participants 
were usually right, but not always (introducing some noise 
into the data). 
 Table 1 shows the results of our analysis in terms of 
what type of feedback participants made and the 
knowledge upon which it was based.  Among the feedback 
were requests for reweighting features, feature 
combinations, relational features, and even wholesale 
changes to the algorithms. Almost a third of the 
participations’ suggestions relied on knowledge of English, 
or on some knowledge that could be encoded once and 
then reused. Roughly half of the suggestions for 
improvement appear to be amenable to automated 
assimilation with existing methods.  
 The results open new questions for research on methods 
for assimilating complex user suggestions for feature 
extraction, relational features, and incorporating 

 KB-
English

KB-
common

sense 

KB-
domain

KB-
other

Total % 

1. Adjust 
weight

11 11 4 13 39 12% 

2. Select 
different 
features 
(words)

70 64 25 16 175 53% 

3. Parse or 
extract in a 
different way

7 17 10 0 34 10% 

4. Employ 
feature 
combinations

9 5 2 1 17 5% 

5. Relational 
features 

0 9 5 0 14 4% 

6. Other 3 12 4 33 52 16% 
Total 100 118 50 63 331  
% 30% 36% 15% 19%   

Table 1: Types of participants’ changes (in rows) that 
required various background knowledge (in columns). 



constraints on solutions found by learning algorithms. 
They provide evidence that machine learning systems can 
explain their reasoning and behavior to users, and that 
users in turn can provide rich, informative feedback to the 
learning system. This suggests rich user-machine 
collaboration as a promising direction for intelligent user 
interfaces to learn more effectively, by better harnessing of 
the intelligence of users. 
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