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Abstract—Intention decoding is an indispensable procedure
in hands-free human-computer interaction (HCI). Conventional
eye-tracking system using single-model fixation duration possibly
issues commands ignoring users’ real expectation. In the current
study, an eye-brain hybrid brain-computer interface (BCI) in-
teraction system was introduced for intention detection through
fusion of multi-modal eye-track and ERP (a measurement derived
from EEG) features. Eye-track and EEG data were recorded
from 64 healthy participants as they performed a 40-min cus-
tomized free search task of a fixed target icon among 25 icons.
The corresponding fixation duration of eye-tracking and ERP
were extracted. Five previously-validated LDA-based classifiers
(including RLDA, SWLDA, BLDA, SKLDA, and STDA) and the
widely-used CNN method were adopted to verify the efficacy of
feature fusion from both offline and pseudo-online analysis, and
optimal approach was evaluated through modulating the training
set and system response duration. Our study demonstrated that
the input of multi-modal eye-track and ERP features achieved
superior performance of intention detection in the single trial
classification of active search task. And compared with single-
model ERP feature, this new strategy also induced congruent
accuracy across different classifiers. Moreover, in comparison
with other classification methods, we found that the SKLDA
exhibited the superior performance when fusing feature in offline
test (ACC=0.8783, AUC=0.9004) and online simulation with
different sample amount and duration length. In sum, the current
study revealed a novel and effective approach for intention
classification using eye-brain hybrid BCI, and further supported
the real-life application of hands-free HCI in a more precise and
stable manner.

Index Terms—Single trial classification, eye-tracking, eye-
brain-computer interface, event related potential, EEG
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HANDS-free human-computer interaction (HCI) draws
growing attention considering its convenience in various

environments. As an efficient input modality in HCI, eye-gaze
system was proposed in 1980s [1], [2]. By the use of eye-
tracker, selection is typically achieved through gazing on the
target item for a specific period. Traditional eye-tracking sys-
tem is straightforward to implement, ensuring short calibration
time [3] and faster target acquisition [4]. However, unexpected
command was possibly issued when using the standalone eye-
gaze system, leading to the Midas-touch problem [5], [6]. Sys-
tem cannot distinguish the spontaneous fixation from intended
selection when dwelling time indeed exceeds the threshold.
Besides, it is also inapplicable to adapt the threshold of dwell
time to various ecological scenarios, so that the processing
time of the user to the stimulus may overrun occasionally.
Thus, in order to overcome this problem, other forms of input
signals were introduced to assist the eye-gaze HCI system
in intention decoding, such as special eye saccade and other
physical movements [7]. But such additional motor activities
will induce extra mental workload and distract the execution
of main task, as well as being inconvenient to the disabled.
Therefore, in order to enhance the fluency and robustness of
the system, a natural and intuitive input and decoding approach
is necessary.

Brain-computer interface (BCI) establishes a direct com-
munication channel from brain signals [8], which can be used
to detect the ongoing cognition, such as mental fatigue [9],
emotion state [10] as well as intention [11]–[13]. This tech-
nology has been proposed to decode the cognitive informa-
tion implicitly from users’ mind, without additional interrup-
tion to the primary task [14]. Among the signal acquisition
techniques of BCI, electroencephalography (EEG) has been
widely adopted due to its numerous advantages in temporal
resolution, usability and cost. As one of the most popular
characteristics in EEG analysis, event-related potential (ERP)
is generated by the neuron sensitive to the specified stimulus
or events and broadly used to capture cognitive or sensory
process [15]. Generally, ERP includes several time-locked
components (i.e. N170, a negative waveform at around 170
ms post-stimulus; P300, a positive waveform at around 300
ms post-stimulus, etc.) that correspond to particular cognition
states [16], which can serve as natural biomarkers of the user’s
intention of interaction. This special characteristic of ERP
has been evaluated for device control [17], target and error
detection [18], [19], and so on. As a potential substitute for
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the “click” operation in HCI system, accumulating evidences
confirmed that, when an intention of item selection emerged,
negative potentials could be detected during conscious dwell
time in the central [17] and parietal [20], [21] electrodes. One
of the most popular paradigm in the EEG-based HCI research
is P300 speller, which utilizes the uncommon event (flash of
the target character) to induce P300 wave and decode user’s
intention [19]. As for the free visual search task, Kaunitz et al
found that when subjects detected the target among distractors,
a robust sensory component of fixation event-related potentials
emerged, and a single-trial analysis could differentiate the type
of stimulus based on EEG signals [22]. Devillez et al also
observed a P300 component for fixation of the target natural
scene compared with the free viewing without any target [23].

In sum, the constituents of ERP contain abundant infor-
mation towards personal intention and accompany gaze-based
control intuitively in free search task, which can serve as
the feature for distinguishing the intended selection from
involuntary fixation. As a result, a combination of ERP and the
eye-gaze input system could be complementary and provides
more robust interaction experience. Accumulating evidence
indicate that this hybrid BCI can satisfy the need for speed
and accuracy simultaneously, overcoming the Midas-Touch
problem of eye-tracker and inter-person variability of BCI
protocol. For example, Kalika et al fused the eye-gaze data into
a P300 speller pipeline and reported an improved classification
accuracy and declined flash number for character spelling [24].
Choi et al utilized the gaze position to contract a 12 × 12
character matrix into a 3 × 3 one, and highlighted this smaller
navigation area to enhance the decoding performance of P300
speller [25]. However, to the best of our knowledge, most
hybrid BCI researches about the free visual search task only
focus on the decoding of EEG signal, or take the EEG and eye-
tracking for separate control purposes. Few of them attempted
to analyze these two modalities in parallel and fuse them as
input for intention classification.

This research gap inspired our study to find out whether the
alliance of input data from eye-tracker and BCI could facilitate
the performance of intention detection in single-trial classifi-
cation for active search task. Specifically, a self-designed HCI
paradigm was proposed in which participants were required to
search and identify a target icon among a total of 25 icons for
each trial. We analyzed the fixation duration of each stimuli
and corresponding ERP components, and these two inputs
served as features for Target/Non-target classification. In the
previous studies, LDA was extensively used for ERP detection
owing to the satisfactory performance and simplicity [26],
[27], while it also accompanied with the disadvantages of
high noise sensitivity, poor inter-person generalization and
the need of large training sample [28]. Therefore, multiple
improved LDA classifiers (including RLDA, SWLDA, BLDA,
SKLDA, and STDA) with divergent edges were adopted for
evaluating their performance in this task. And CNN, the most
prevalent deep learning framework in the study of BCI [29],
was also taken for comparison. Our study demonstrated that
the fusion of concurrent ERP and fixation duration induced
a superior performance over single feature in target intention
decoding among all classifiers. Pseudo-online validation was

further conducted to explore the proper amount of training
set, response time of the system and optimal classification
approach, so as to provide additional support for the practical
application in various real-life HCI scenarios.

II. METHODS AND MATERIALS

A. Subjects
The study sample consisted of 70 university students (male

/ female = 35 / 35) from the Zhejiang University, China.
All participants were aged between 17 and 29 years (mean
age = 22.4 ± 2.3 years) and reported normal or corrected-to-
normal vision. Participants with chronic illness, sleep disorder,
childhood history of ADHD, and long-term medication history
were excluded during pre-screened telephone interview. Prior
to the experiment date, the included subjects were required
to obtain a full night of sleep (> 7 hours) for continuous
2 nights to minimise the effect of prior sleep restriction
on neurobehavioral functions. Subjects consuming caffeine
or alcohol, or undertaking strenuous exercise for 24 hour
preceding the study were rescheduled. The study was approved
by the Institutional Review Board of Zhejiang University and
all participants signed informed consent prior to participation.

B. Experimental Protocol
The experimental protocol was a typical target identification

task that was customized using C programming language (Fig.
1). Specifically, participants were requested to search for a
target icon among multiple non-target icons as quick and
accurate as possible. A total of 25 icons were presented on
a screen (1920 × 1080 pixels) with the background color was
set at [R, G, B] = [192, 192, 192], which were arranged in 5
× 5. The experimental interface is shown in (Fig. 2). The size
of each icon was set at 24 × 24 pixels, corresponding to a
field of view (FOV) of 0.67◦ × 0.67◦. The horizontal/vertical
distance between each pair of adjacent icons was set at 100
pixels. If an icon was highlighted, its size would be enlarged
to 1.5 times of the original size (i.e., 36 × 36 pixels, FOV =
1◦ × 1◦. During the target searching, a certain icon which the
participants gazed at and the surrounding eight icons would
be highlighted (Fig. 2).

In the experiment, a predefined target icon (60 × 60 pixels,
FOV = 1.67◦ × 1.67◦) was initially presented for 3 s. A black
fixation was presented for 1 s, indicating the start of each
experimental trial. Then, after a 0.8 s of a blank screen, the
search interface was presented with a randomly assigned 5
× 5 icon pattern and a timer was started. The cursor was
hidden at the moment. Participants were required to search the
target icon within 5 s in the search interface. The mouse cursor
appeared on the screen after finishing the 5 s searching period.
Meanwhile, all the icons on the display were masked with a
dotted line. The participant was requested to move the cursor
to the location of the masked target icon and click to confirm
the selection. The program would proceed to the next trial
starting with a black fixation. A short period of break (i.e., 5
s) was introduced after completing 15 trials while a long period
of break (i.e., 10 s) was introduced after completing 30 trials.
For each participant, a total of 240 trials were administrated
and the entire experiment lasted approximately 40 min.
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Fig. 1. A schematic diagram of the experimental protocol. (a) The setup of the experiment. EEG data was obtained from 64-channel BP system and eye-
tracking data was collected by using EyeLink 1000 Plus system. (b) Each participant performed a 40-min target identification experiment, where the participant
was asked to search the target icon as quick and accurate as possible and memorize and identify its location in the response period.

Fig. 2. Sample screenshots of visual target identification interface for two
random trials. The icons surrounding the target icon as highlighted with a red
box were enlarged to facilitate the identification.

C. Data Acquisition and Preprocessing

The EyeLink 1000 Plus eye-tracking system (model: SR
Research, Ottawa, Canada) was used to record the eye-tracking
data. The sample rate was set at 1000 Hz. The participants
were seated 60 cm from the monitor with a FOV of 13.86◦

×13.86◦) using a chin support. Prior to the experiment, the
eye-tracking system was calibrated for each participant. EEG
data was recorded from a 64-channel EEG system (model:
BrainAmp DC, Brain Products Gmbh, Gilching, Germany)
according to the international 10-20 system. In addition, hor-
izontal and vertical electrooculograms (EOG) were recorded
on the lateral to the outer canthi (HEOG) as well as above
and below (VEOG) the right eye. Electrode impedance was
kept below 10 kΩ throughout the whole experiment. Anti-
aliasing was achieved with a band-pass filter (0.5 − 100 Hz)
and additionally a 50 Hz notch filter was applied to avoid main
interferences. Raw EEG and EOG signals were digitized at a

sampling rate of 500 Hz using FCz as the reference. Two
subjects were excluded due to data recording issues.

In the analyzsis of eye-tracking data, we used the 100×100
px area centered on each icon as an area of interest (AOI)
of the icon. When a fixation falled in an AOI including non-
target icon, this fixation was classified as the fixation of the
non-target icon; while a fixaiton falled in an AOI including
target icon, this fixation was classified as the fixation of the
target icon. The fixation duration was calculated by summing
up the duration of all fixations in the AOI.

A standard EEG preprocessing pipeline was adopted here,
which included FIR band-pass filtering (1 − 40 Hz), re-
referencing to the average of all electrodes and ocular artifacts
removal by removing the most correlated components to
the EOG signals through independent component analysis
(ICA) [30]. All preprocessing steps were performed using cus-
tomized codes and the EEGLAB toolbox [31] in Matlab 2017b
(The MathWorks Inc, US). Greater details of the preprocessing
steps could be found in our previous studies [10].

The channel selection were based upon results in [26],
which has been shown the optimal balance between classifi-
cation performance and least number of electrodes. Here, Fz,
Cz, Pz, Oz, P3, P4, PO7 and PO8 electrodes were included
for the following classification. To extract features for target
and non-target responses, the continuous EEG signals were
segmented to 500 ms epochs with baseline correction by 100
ms interval before the icon presentation. Afterward each epoch
was down-sampled to 32 Hz, that is 16 points for each channel
and 128 points in total for all 8 channels.
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D. Classification Algorithms
Several widely-used algorithms that were popular in the

studies of ERP-BCI were adopted in the current work to assess
the classification performance [32], [33], including regularized
linear discriminant analysis (RLDA) [34], Stepwise linear dis-
criminant analysis (SWLDA) [35], Bayesian linear discrimi-
nant analysis (BLDA) [36], Shrinkage linear discriminant anal-
ysis (SKLDA) [37], Spatial-Temporal discriminant analysis
(STDA) [38], and Convolutional neural network (CNN) [39].
These algorithms were selected to cover the common cat-
egories of method for ERP-BCI, that is, concatenation of
temporal points and spatial channels (RLDA, SWLDA, BLDA,
SKLDA), adoption of spatial-temporal samples (STDA), and
deep learning approach (CNN).

1) Regularized LDA: RLDA, a regularized version of LDA,
is a popular technique for dimensionality reduction and feature
extraction. It was originally introduced to solve the small
sample size problem. The performance of RLDA technique
depends upon the choice of the regularization parameter. In the
current work, the regularization parameter was estimated using
a deterministic approach according to [40]. This approach
avoids the use of the heuristic cross-validation procedure for
parameter estimation and improves the computational effi-
ciency. Here the amount of regularization was set as λ = 0.01.

2) Stepwise LDA: SWLDA, another regularized version of
LDA, has been shown to be superior in the case of small
sample size due to its implementation of combined forward
and backward stepwise analysis to select suitable features in
the discriminant model. Briefly, model estimation for SWLDA
is conducted in a greedy manner by iteratively inserting and
removing features from the model based upon statistical tests
until the maximal number of active variable is reached or no
additional features satisfy the entry/removal criteria. Here, the
criteria was set as pins = 0.1 and prem = 0.15 as recommended
in [41].

3) Bayesian LDA: BLDA is a probabilistic method that
based upon Bayesian regression and has been shown to out-
perform the original LDA method when only a small number
of training sets was obtained or strong noise contamination
in the data [42]. According to [36], the neurophysiological
and experimental priors are employed explicitly by modeling
the trial-level covariance and the weight vector covariance
of LDA explicitly as linearly separable components with
the relative contribution of each component is controlled by
the hyperparameters that could be estimated via Restricted
Maximum Likelihood.

4) Shrinkage LDA: Through adjusting the extreme eigen-
values of the covariance matrix towards the average eigen-
value, SKLDA improves the traditional LAD when using
insufficient training samples. For high-dimensional data with
only a few data points given (i.e., EEG data), the estimation for
a covariance matrix may become imprecise, which may lead to
a systematic error: large eigenvalues of the original covariance
matrix are estimated too large, and small eigenvalues are esti-
mated too small. Of note, shrinkage is a common remedy for
compensating the systematic bias of the estimated covariance
matrices and shrinkage parameter for high-dimensional feature
spaces. In the current work, the shrinkage parameter was

set at 0.1 according to [43]. For details of SKLDA and its
interpretation could be found in [33]

5) Spatial-Temporal Discriminant Analysis: STDA is a
multiway extension of the LDA that tries to maximize the
discriminant information between target and nontarget classes
through finding two projection matrices from spatial and tem-
poral dimensions collaboratively. Unlike the abovementioned
different versions of LDA method where data were concate-
nated as input, through incorporating the spatial and temporal
information, STDA reduces the feature dimensionality in the
discriminant analysis and decreases the number of required
training samples [38].

6) Convolutional Neural Network: CNN was initially used
in computer vision and has gained substantial interest in BCI
most recently for its superior performance. In this research, a
five-layer CNN was developed for EEG pattern detection. The
input of the network was a 2D space-time EEG signal with a
size of 8 × 16. It was followed by two paired layers, with each
pair comprised a convolutional layer with batch normalization
and a max-pooling layers. In the first convolutional layer, we
utilized 32 kernels with a size of 1 × 5 for time domain
convolution. While the second was used for spatial domain
convolution, containing 32 kernels with a size of 8 × 1, which
equaled the number of EEG electrodes. After each convolution
process, a ReLU function was employed for non-linearization.
For max-pooling layers, they both utilized a pooling filter
size of 1 × 2 to reduce computational complexity. After
dropout process with a dropout rate of 0.3, the output of
max-pooling layer was applied to two fully connected layer
comprising 64 and 2 neurons respectively. In the decision
step, the classification probability is determined by softmax
function.

E. Offline Classification

In order to demonstrate that fusion of EEG and eye-tracker
data would lead to superior performance in comparison with
single EEG or eye-tracker modality, classification was initially
performed using only EEG or eye-tracker data. Specifically,
fixation duration corresponding to extracted epoch of one
gaze was initially estimated and selected as input for LDA
classifier as a benchmark. For EEG data, a 0 − 500 ms epoch
after a gaze was cut out and selected as input for the offline
classification. Of note, one trial might have multiple target
and non-target samples (corresponding to the search for target)
with the number of non-target samples larger than that of target
samples. A cross-validation approach was initially employed
to assess the performance of classifiers under different number
of training samples using a reformatted balance data. Specifi-
cally, the training set (Target:Non-target = 1:1) was designed
using sample number from 30 to 420 with a step of 30, while
the testing set was randomly selected from the remaining
samples and maintained a Target:Non-target = 1:1 fashion
with a maximum amount. Of note, the same training and
testing samples were applied on all classification algorithms
to allow for fairness comparison. This procedure was repeated
for 10 times, and the average area under curve (AUC) of the
receiver operating characteristic (ROC) curves was computed
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for the quantitative comparisons. Then, a separate 10-fold
cross-validation approach was applied on the real data (on
average, Target:Non-target ≈ 1:2.3) to demonstrated that the
fusion of multi-modal features induced a superior performance
over single feature.

F. Pseudo-online Validation

1) Online Classification: A pseudo-online analysis was
performed to validate the feasibility and practicability of
implementing the decoding algorithm based upon our analysis
framework. As at least 240 trials were performed for each
subject in the experiment, the samples within the first 80
trials were utilized as training set whereas the remaining data
were considered as testing set for assessing the performance
of online classification. To avoid the imbalance of the sample
amount between two classes in the training set and for the
convenience of result analysis in the testing set, the number of
the target and non-target classes was set to equal respectively.
Of note, fixation duration longer than 500 ms would be
redefined as 500 ms to ensure same duration of EEG data.

2) Epoch threshold: As it has been mentioned previously,
gaze fixation duration was defined as the duration post a gaze
for either target or non-target and EEG data between 0 −
500 ms was used as threshold for data extraction and the
following classification. In order to assess the influence of
different threshold on the classification, we have also used
300 ms to 800 ms with a step of 50 ms as threshold for the
epoch extraction. For instance, for a predefined threshold (e.g.,
400 ms), gaze fixation duration above the threshold would be
redefined as the threshold value and the EEG data between 0 −
400 ms would be used as input. Besides, the number of training
trials was also put into consideration as a factor contributing to
online performance. In detail, the samples within the first 20
to 100 trials with a step of 10 trials were regarded as training
set, while the remaining were used for testing. The ratio of
Target and Non-target was rearranged to 1:1 in both training
and testing set as well.

III. RESULTS

A. Behavioral Performance

Data from four participants were excluded for signs of poor
motivation on the task, likely due to boredom experienced
during the target identification experiment. Threshold for signs
of poor motivation on the task was set if the error rate of the
participant was 1 S.D. lower than the group average. Our final
dataset thus consisted 64 participants (male / female = 29 /
35) and the following classification was conducted on these
participants. Overall, the remaining participants performed the
experiment well, as indicated by the relatively high detection
rate (mean ± S.D. = 98.12% ± 1.33%). We had performed
additional statistical analysis to assess the gender effect and
found insignificant difference between males and females (t62
= 0.084, p = 0.933).

B. Characteristics of ERPs

The characteristics of ERPs were first analyzed and com-
pared between target and non-target stimulus. Fig. 3 shows the
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Fig. 3. Distributions of different ERP characteristics of Target and Non-target
from a randomly-selected subject.

temporal and spatial differences between two kinds of ERPs
for a randomly-selected subject. Specifically, the discriminant
ERP features between target and non-target were restricted
to the occipital areas post-stimulus. Hence, these evident
differences between target and non-target serve as salient
underlying features for the following classification algorithms.
Moreover, the observed posterior differences were in line with
the findings in [26] and justify the selection of the EEG
channels (i.e., Fz, Cz, Pz, Oz, P3, P4, PO7 and PO8 in this
work) for the classification algorithms.
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TABLE I
OFFLINE CLASSIFICATION PERFORMANCE ACROSS DIFFERENT ALGORITHMS

Algorithms EEG Fusion
Accuracy AUC Accuracy AUC

RLDA 0.7793 ± 0.0403 0.8007 ± 0.0599 0.8802 ± 0.0551 0.9104 ± 0.0547
SWLDA 0.7754 ± 0.0382 0.7908 ± 0.0617 0.8761 ± 0.0534 0.9072 ± 0.0565
BLDA 0.6716 ± 0.0504 0.7933 ± 0.0632 0.7954 ± 0.0910 0.9066 ± 0.0573
SKLDA 0.7225 ± 0.0503 0.7838 ± 0.0615 0.8783 ± 0.0603 0.9004 ± 0.0608
STDA 0.7652 ± 0.0367 0.7789 ± 0.0583 0.8740 ± 0.0544 0.9049 ± 0.0568
CNN 0.7854 ± 0.0403 0.8053 ± 0.0622 0.8772 ± 0.0535 0.9028 ± 0.0512

Note: Values are presented as mean ± S.D., Fusion indicates features from EEG and eye-tracker
were fused to obtain the Accuracy and AUC.
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Fig. 5. (a) Accuracy and (b) AUC for multiple classifiers of each subject.
The subject was sorted by the ascending of classification performance based
upon the eye-tracker model.

C. Offline Classification

In the offline classification, we first assessed the perfor-
mance of classifiers under different number of training sam-
ples. In line with previous study [32], we found that the
classification performance was monotonically increased with
the number of training samples (Fig. 4). We then assessed
the classification performance when using features from eye-
track and EEG data respectively. When using eye-track fea-
ture, we obtained the classification accuracy of 0.8527 ±
0.0638 and the AUC of 0.8734 ± 0.0746 that was served
as benchmark. However, the classification performance across
different algorithms using only EEG data is significantly lower
than the benchmark probably due to the large inter-individual
differences in single-trial EEG characteristics (Table I). More-
over, we found that through employing the features from both
eye-track and EEG data, the classification performance was
significantly improved and exhibited a superior performance
compared to the benchmark for most of the subjects (Fig.
5). Further interrogation of the classification performance
across six methods, we found BLDA exhibited relatively low
accuracy in the fusion manner. Hence, the remaining five
methods (i.e., RLDA, SWLDA, SKLDA, STDA, and CNN)
were selected for the following pseudo-online validation.
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Fig. 6. Distribution of (a) Accuracy and (b) AUC across employed methods
that exhibited different performance under number of training trials and
durations of fixation. The gray surface indicated the performance when only
using eye-tracking data that consider as the benchmark.

D. Pseudo-Online Classification

The performance of the pseudo-online classification was
shown in (Table II). Again, we first obtained the performance
benchmark from eye-track data (accuracy = 0.8277 ± 0.0862
and AUC = 0.9035 ± 0.0760). Similar to the offline results,
the classification performance with single EEG feature was
significantly lower than the benchmark for all methods. Al-
though the performance was greatly improved by adding eye-
tracker feature into classification, only SKLDA obtained both
higher accuracy (0.8454 ± 0.0868) and higher AUC (0.9171
± 0.0614) in a single-trial classification time of 2.3343 ±
0.0306 ms. Of note, the performance of CNN was significantly
lower than the other four methods with a longer classification
time. Following validation was therefore only performed on
the remaining four methods.

To investigate how the number of training trials and the
duration of fixation influence the pseudo-online classification
performance, the distribution of accuracy and AUC with
different settings for these four selected classifiers was shown
in (Fig. 6). The rendered surface represented the classifi-
cation performance obtained with fusion features, while the
gray surface indicated the performance when only using eye-
tracking data that consider as the benchmark. Similar to
the offline results, the performance of all methods improved
monotonically with increasing number of training trials. In
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TABLE II
CLASSIFICATION PERFORMANCE ACROSS DIFFERENT ALGORITHMS DURING ONLINE VALIDATION

Algorithms EEG Fusion
Accuracy AUC Time (ms) Accuracy AUC Time (ms)

RLDA 0.6550 ± 0.0560 0.7125 ± 0.0692 3.3722 ± 0.0544 0.8419 ± 0.0879 0.8890 ± 0.0778 3.2570 ± 0.0464
SWLDA 0.6466 ± 0.0535 0.7061 ± 0.0669 2.3832 ± 0.0243 0.8388 ± 0.0910 0.8858 ± 0.0820 2.3198 ± 0.0326
SKLDA 0.6595 ± 0.0558 0.7624 ± 0.0513 2.3773 ± 0.0348 0.8454 ± 0.0868 0.9171 ± 0.0614 2.3343 ± 0.0306
STDA 0.6543 ± 0.0568 0.7123 ± 0.0674 3.2896 ± 0.0687 0.8410 ± 0.0855 0.8914 ± 0.0791 3.2217 ± 0.0287
CNN 0.6592 ± 0.0557 0.7215 ± 0.0661 5.2227 ± 0.1007 0.7293 ± 0.0941 0.8426 ± 0.0790 6.2242 ± 0.0983

Note: Time indicates the duration for single-trial classification.

contrast, the classification performance exhibited a complex
dependent level for the setting of fixation duration, i.e., the
best performance was not always obtained using long fixation
duration. Among the four methods, only SKLDA exhibited
superior classification performance in most of the settings
compared to the benchmark.

IV. DISCUSSION

In this study, we revealed an explicitly improved perfor-
mance with the fusion of ERP and eye-tracking data in
the single trial classification of free search task, both in
offline and online analysis. Our previous research proved the
effectiveness of block highlight display (BHD) eye-controlled
technique [44], which was further validated by the high target-
detection rate in the performance of active search paradigm in
this study. The ERP components were also demonstrated in
different spatial (occipital area) and temporal (100 and 300
ms) characteristics between target and non-target detection.
Six widely-used classifiers were employed to verify the ef-
fectiveness of the hybrid BCI system. In the offline analysis,
the classification approach with multi-modal inputs of fixation
duration and ERP significantly outperformed the method with
single-modal brain/eye features. Besides, the multiple versions
of LDA approach, except for BLDA, were proved effective in
the single-trial classification, showing a superiority in solving
such problem with relatively simple inputs than sophisticated
neural network structure. As for the online validation, we
found the fused feature still provided a robust performance,
while different classification approaches exhibited divergent
adaptability towards limited number of samples and response
time. And SKLDA ranked the top among all LDA classifiers
from both the accuracy and application efficiency.

In the offline analysis, we observed that the fused feature
provided a much higher accuracy and AUC in the 10-fold
classification. When ERP was taken as the only feature, the
classification performance of different classifiers was scattered.
Although ERP signal could reflect cognitive processes with
a high temporal resolution, its low amplitude and sensitivity
to various artifacts made it hard to be extracted stably and
also varied across different subjects. This was consistent with
previous findings that the prediction performance using ERP
was mixed in different studies. Specifically, SKLDA was
proposed for single-trial classification of ERP-based BCI by
Blankertz et al. [33], suggesting superior performance over
ordinary LDA and SWLDA. Zhang developed STDA and

demonstrated its superiority among several forms of LDA
methods (LDA, SWLDA and SKLDA) in ERP classifica-
tion [38]. In our study, we found that among the LDA-
based classifiers, RLDA outperformed other methods with an
accuracy of 0.7793 and BLDA ranked the last with an accuracy
of 0.6716. As the most popular deep learning method in ERP-
related studies [29], CNN also has an exceptional performance
with the top accuracy of 0.7854. Briefly, the performance of
classifier varied across different studies and datasets for ERP-
based classification.

However, when ERP and eye-tracker data were collectively
adopted for classification input in the present study, the per-
formance of divergent classifiers was greatly improved than
only taking single-model ERP or eye-track feature. Besides, it
was interesting to find that the accuracy and AUC of different
classification algorithms became similar. In our experiment
protocol, fixation duration tended to be higher when partic-
ipants gazed on the target icon, consonant with the practical
scenarios. The eye-tracker ensures a high temporal and spatial
accuracy towards the gazing time and position, indicating
a robust measure of underlying cognitive processes based
on eye movement-related variables, such as fixation duration
and saccade [45]. Therefore, compared with the single ERP
signal, the fuse of fixation duration from eye-tracker provided
a relatively stable criterion towards cognitive states without
large inter-subject variability, so that the input formulation
was highly adaptable and the prediction performance tended
to be similar across different algorithms. On the other hand,
when compared with the single fixation duration, the accuracy
was also improved by feature fusing, which demonstrated that
ERP was associated with ongoing intention of target selection
to enhance the recognition performance of traditional eye-
tracking system. Among different classification approaches,
the performance of RLDA, SKLDA, SWLDA and STDA
were close with the accuracy of 0.8802, 0.8783, 0.8761 and
0.8740 respectively. In addition, in the 10-fold offline analysis,
CNN ranked the second when fusing eye and brain features,
which was possibly due to the abundant training sample and
unlimited processing time. When training set was massively
cut down, most LDA-based classifiers outperformed CNN
with fused feature. Furthermore, in the profile of classification
performance with increasing training sample, we found that the
SKLDA, STDA, SWLDA and RLDA provided an improving
and robust accuracy for the fusion approach, and SKLDA was
extraordinarily outstanding over other classifiers under various
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scale of training set.
According to the review of Lotte et al, LDA is one of

the most prevalent forms of classifiers for EEG-based BCI,
especially for online and real-time processing [28]. The online
analysis in the present study further validated the improvement
effect of feature fusion in the selected classification algorithms.
Notably, we tested the practicability of the hybrid system by
modulating the amount of training set and the length of every
input sample (i.e. system response time). Firstly, consistent
with offline analysis, the accuracy and AUC maintained at a
high level when 80 trials were taken for training and decreased
with the contraction of training set. The amount of training
sample determined the initial calibration time of the system
and were directly related to the interaction convenience, but an
extremely small training set, like 20 trials, also deteriorated the
classification performance immensely. In addition, in order to
investigate the effect of system response time to the decoding
of interaction intention, we truncated the length of fixation
duration and corresponding ERP epoch of each sample, for the
sake of simulating different response time for intention recog-
nition of the hybrid system and evaluating the classification
performance. The accuracy and AUC declined when response
duration decreased, with a slight slope from 800 ms to 400 ms
and a substantial drop below 400 ms. From the perspective of
eye-tracking data, using a shorter recognition time was harder
to distinguish the intended selection from other conditions,
such as long processing time towards stimulus for participants.
Previous study showed that the dwell time of novices was
typically between 450 and 1000 ms in gaze typing tasks,
and decreased to 282 ms after repeated training [46]. In
other eye selection related ERP studies, the fixation duration
were usually set in a long threshold, such as 1000ms [18]
or 2000ms [14]. Considering no pre-training was performed
on our subjects, a proper recognition threshold above 400 ms
could ensure a more accurate performance. From the aspect
of ERP, it was obvious to find out that shorter EEG epoch
after stimulus comprising less ERP components. Given that
the predominate ERP was concentrated on the 100ms and
300 ms as shown in (Fig. 3), the epoch less than 400ms
might induce the loss of crucial information especially when
latency shift happened in P300 wave. However, the superiority
of the fused feature was still observed compared with single
fixation duration across the whole range of system response
time (300 to 800 ms) as long as considerable training set was
implemented. Single eye-tracker was natural to use and could
reach a decent accuracy without much training, but only by
a few calibrations, the fusion of ERP and fixation duration
could outperform the former. Besides, consistent with offline
analysis, SKLDA still maintained the best performance for the
fused feature among all classification methods, showing the
largest area over single eye-tracker classification performance
in (Fig. 5), and a relatively less requirement of training set
and response duration for the outperformance. Previous study
proved that SKLDA remained effective when training set was
insufficient [33], so that it was practical to be utilized in real-
time scenarios. As for the computational time, we found that
the single-trial process time was associated with the length
of input signal, especially in RLDA. And the classifiers of

SKLDA and SWLDA required less computation cost in the
practical applications.

In the present study, some factors should be considered
when interpreting our results. Firstly, only young and healthy
university students were included as the sample to test our
protocol. But there is evidence suggesting that the performance
of LDA declined largely for the ERP classification of the
severely disabled in real-life applications [27]. Further study
could extend the diversity of subjects to verify the robustness
of fused features. Secondly, in the design of present interaction
interface, the icons were arranged isolated and regularly with
rigid distance as an array, to which the users would be
accustomed with the progress of experiment. A real ecological
application was supposed to display arbitrary targets, which
provided a more oddball stimuli to the user and elicited stable
ERP responses. At the same time, the stimulus was expressed
in images in this study, while other type of interaction item,
like words, was associated with different predominant ERP
components [45]. Future study could introduce different forms
of selection target to test the generalization of the hybrid
system. In addition, this study observed a relatively limited
increase of performance by fusing eye and ERP compared
with single eye-tracker signal as the feature. Considering the
computational complexity, only the time domain wave was
taken from ERP in our pipeline. Other features could also be
explored to overcome the shortcomings in ERP characteristics
and optimize the performance of the hybrid interaction system
for single trial classification.

V. CONCLUSION

In the current study, we introduced an eye-brain hybrid BCI
interaction system and assessed the performance in a cus-
tomized free visual search paradigm. In comparison with the
single-model EEG or eye-track features, the proposed hybrid
BCI system achieved better performance in both offline and
online conditions. Furthermore, practical validation across six
widely used classification methods showed that the SKLDA
method could maintain superior performance under condition
with few training set and fast response time. In sum, our study
shed new insights on the approach of hands-free HCI and
provided novel and practical solution to the intention detection
in the real-world scenarios.
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[7] O. Špakov and P. Majaranta, “Enhanced gaze interaction using simple
head gestures,” in Proceedings of the 2012 ACM Conference on Ubiq-
uitous Computing, 2012, pp. 705–710.

[8] X. Gao, Y. Wang, X. Chen, and S. Gao, “Interface, interaction, and intel-
ligence in generalized brain–computer interfaces,” Trends in Cognitive
Sciences, 2021.

[9] B. T. Jap, S. Lal, P. Fischer, and E. Bekiaris, “Using eeg spectral
components to assess algorithms for detecting fatigue,” Expert Systems
with Applications, vol. 36, no. 2, pp. 2352–2359, 2009.

[10] G. N. Dimitrakopoulos, I. Kakkos, Z. Dai, H. Wang, K. Sgarbas,
N. Thakor, A. Bezerianos, and Y. Sun, “Functional connectivity analy-
sis of mental fatigue reveals different network topological alterations
between driving and vigilance tasks,” IEEE Transactions on Neural
Systems and Rehabilitation Engineering, vol. 26, no. 4, pp. 740–749,
2018.

[11] J. Atkinson and D. Campos, “Improving bci-based emotion recognition
by combining eeg feature selection and kernel classifiers,” Expert
Systems with Applications, vol. 47, pp. 35–41, 2016.

[12] H. Qi, Y. Xue, L. Xu, Y. Cao, and X. Jiao, “A speedy calibration method
using riemannian geometry measurement and other-subject samples on a
p300 speller,” IEEE Transactions on Neural Systems and Rehabilitation
Engineering, vol. 26, no. 3, pp. 602–608, 2018.

[13] Y. Si, F. Li, K. Duan, Q. Tao, C. Li, Z. Cao, Y. Zhang, B. Biswal, P. Li,
D. Yao et al., “Predicting individual decision-making responses based
on single-trial eeg,” NeuroImage, vol. 206, p. 116333, 2020.

[14] T. O. Zander and C. Kothe, “Towards passive brain–computer interfaces:
applying brain–computer interface technology to human–machine sys-
tems in general,” Journal of Neural Engineering, vol. 8, no. 2, p. 025005,
2011.

[15] S. A. Hillyard and M. Kutas, “Electrophysiology of cognitive process-
ing,” Annual Review of Psychology, vol. 34, no. 1, pp. 33–61, 1983.

[16] M. D. Rugg and M. G. Coles, “The erp and cognitive psychology:
Conceptual issues.” in Electrophysiology of mind: Event-related brain
potentials and cognition (pp. 27–39). Oxford University Press, 1995.

[17] M. Li, W. Li, L. Niu, H. Zhou, G. Chen, and F. Duan, “An event-related
potential-based adaptive model for telepresence control of humanoid
robot motion in an environment cluttered with obstacles,” IEEE Trans-
actions on Industrial Electronics, vol. 64, no. 2, pp. 1696–1705, 2016.

[18] J. Protzak, K. Ihme, and T. O. Zander, “A passive brain-computer
interface for supporting gaze-based human-machine interaction,” in
International Conference on Universal Access in Human-Computer
Interaction. Springer, 2013, pp. 662–671.

[19] E. Donchin, K. M. Spencer, and R. Wijesinghe, “The mental prosthesis:
assessing the speed of a p300-based brain-computer interface,” IEEE
Transactions on Rehabilitation Engineering, vol. 8, no. 2, pp. 174–179,
2000.

[20] G. F. Potts, M. Liotti, D. M. Tucker, and M. I. Posner, “Frontal and
inferior temporal cortical activity in visual target detection: Evidence
from high spatially sampled event-related potentials,” Brain Topography,
vol. 9, no. 1, pp. 3–14, 1996.

[21] J. R. Wiersema, J. J. van der Meere, and H. Roeyers, “Developmental
changes in error monitoring: an event-related potential study,” Neuropsy-
chologia, vol. 45, no. 8, pp. 1649–1657, 2007.

[22] L. N. Kaunitz, J. E. Kamienkowski, A. Varatharajah, M. Sigman, R. Q.
Quiroga, and M. J. Ison, “Looking for a face in the crowd: fixation-
related potentials in an eye-movement visual search task,” NeuroImage,
vol. 89, pp. 297–305, 2014.

[23] H. Devillez, N. Guyader, and A. Guérin-Dugué, “An eye fixation–related
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parameters as a feature for eeg-based brain–computer interfaces,” Neural
Networks, vol. 22, no. 9, pp. 1313–1319, 2009.

[38] Y. Zhang, G. Zhou, Q. Zhao, J. Jin, X. Wang, and A. Cichocki, “Spatial-
temporal discriminant analysis for erp-based brain-computer interface,”
IEEE Transactions on Neural Systems and Rehabilitation Engineering,
vol. 21, no. 2, pp. 233–243, 2013.

[39] H. Cecotti and A. Graser, “Convolutional neural networks for p300
detection with application to brain-computer interfaces,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 33, no. 3,
pp. 433–445, 2010.

[40] A. Sharma and K. K. Paliwal, “A deterministic approach to regularized
linear discriminant analysis,” Neurocomputing, vol. 151, pp. 207–214,
2015.

[41] D. J. Krusienski, E. W. Sellers, F. Cabestaing, S. Bayoudh, D. J. McFar-
land, T. M. Vaughan, and J. R. Wolpaw, “A comparison of classification
techniques for the p300 speller,” Journal of Neural Engineering, vol. 3,
no. 4, p. 299, 2006.

[42] U. Hoffmann, J.-M. Vesin, T. Ebrahimi, and K. Diserens, “An efficient
p300-based brain–computer interface for disabled subjects,” Journal of
Neuroscience Methods, vol. 167, no. 1, pp. 115–125, 2008.
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