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Abstract

Background: The loss of an arm presents a substantial challenge for upper limb amputees when performing activities
of daily living. Myoelectric prosthetic devices partially replace lost hand functions; however, lack of sensory feedback
and strong understanding of the myoelectric control system prevent prosthesis users from interacting with their
environment effectively. Although most research in augmented sensory feedback has focused on real-time regulation,
sensory feedback is also essential for enabling the development and correction of internal models, which in turn are
used for planning movements and reacting to control variability faster than otherwise possible in the presence of
sensory delays.

Methods: Our recent work has demonstrated that audio-augmented feedback can improve both performance and
internal model strength for an abstract target acquisition task. Here we use this concept in controlling a robotic hand,
which has inherent dynamics and variability, and apply it to a more functional grasp-and-lift task. We assessed internal
model strength using psychophysical tests and used an instrumented Virtual Egg to assess performance.

Results: Results obtained from 14 able-bodied subjects show that a classifier-based controller augmented with
audio feedback enabled stronger internal model (p = 0.018) and better performance (p = 0.028) than a controller
without this feedback.

Conclusions: We extended our previous work and accomplished the first steps on a path towards bridging the
gap between research and clinical usability of a hand prosthesis. The main goal was to assess whether the ability
to decouple internal model strength and motion variability using the continuous audio-augmented feedback
extended to real-world use, where the inherent mechanical variability and dynamics in the mechanisms may
contribute to a more complicated interplay between internal model formation and motion variability. We concluded
that benefits of using audio-augmented feedback for improving internal model strength of myoelectric controllers
extend beyond a virtual target acquisition task to include control of a prosthetic hand.
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Background

The seemingly simple and seamless way adult humans

use their hands to grasp and manipulate objects is in fact

the result of years of training during childhood, and of a

sophisticated blend of feedforward and feedback control

mechanisms [1]. The function of such an elegant system

may be corrupted when neurological injuries interrupt the

connections between the central nervous system (CNS)

and the periphery, as in the case of upper limb amputa-

tion. In this case, myoelectric prostheses provide a so-

lution to restore hand function by partially restoring

the feedforward control mechanism [2]. This mechan-

ism is influenced by two key factors. The first factor is

the way the user intentions are decoded, which affects

the robustness of control signals driving the prosthesis’

motors. The second factor is the human understanding

of the system, which is modeled by the CNS and is

known as the internal model [3]. The ability to accur-

ately estimate the current state of the musculoskeletal

system and properly integrate information from various

sensory feedback forms to predict the future state is deter-

mined by the strength of the internal model developed [4].

For prosthesis users, this model is mismatched since their

prosthetic device properties and control are very different

from that of a normal limb, and therefore the need to

develop a new internal model or adjust the current one

is presumed.

For a representative motor task, such as grasp-and-lift,

the brain refines and updates the internal model using

multi-modal sensory feedback (tactile, visual, and auditory)

during and after the movement [5]. Unlike unimpaired in-

dividuals, myoelectric prosthesis users have to rely more

on visual feedback, which has been found to negatively

affect performance, as users spend more time monitoring

their prosthesis or the objects being manipulated [6]. This

increased dependency on visual feedback is due to the lack

of adequate sensory feedback from the prosthetic devices

[7]. This deficiency contributes to an inability of users to

fully adjust their internal model and is known to affect

overall performance [8].

To address this deficiency, researchers have investigated

ways of providing augmented sensory information using

invasive and non-invasive methods [9, 10]. Several of the

invasive methods show promise, including Targeted

Sensory Reinnervation and stimulation of sensory periph-

eral nerves [11–15]. However, many prosthesis users

prefer non-invasive methods that do not require surgical

intervention [16, 17].

Researchers have correspondingly evaluated non-inva-

sive sensory substitution methods to provide sensory in-

formation either through an alternate sensory channel

or through the natural channel but in a different modal-

ity [9]. Vibro-tactile [18, 19], mechano-tactile [20], elec-

trotactile [21–23], skin stretch [24], and auditory cues

[25] are just some of the techniques that have been de-

veloped and assessed to provide prosthesis users with

supplementary feedback. Although some studies have

shown that augmented sensory feedback had little to no

effect on performance [26], others have demonstrated

the efficacy of augmented sensory feedback in enhan-

cing motor control even for the same experimental pro-

cedure [9]. This conflict may arise in part because it is

unclear how this augmented feedback affects internal

model development and, ultimately, the performance.

One hypothesis is that feedback improves performance

through the integration of feedback in a real-time man-

ner during a movement, known as real-time regulation

[27–29]. Many studies showed promising improvement

in performance [30, 31], sense of embodiment [32], and

prosthesis incorporation [33] when using feedback for

real-time regulation; however the efficacy of the feedback

methods used, such as resolution and latency, introduces

a new challenge [34]. To overcome this challenge, Dosen

et al. [35] proposed providing electromyography (EMG)

biofeedback to the user through visual feedback. Their

results showed that users were able to exploit the aug-

mented visual biofeedback to improve their performance

in a grasping task. In a follow-up study, Schweisfurth and

colleagues [36] implemented the EMG biofeedback using

a multichannel electrotactile interface to transmit discrete

levels of myoelectric signals to users. They compared this

feedback approach to classic force feedback and found

that the electrotactile biofeedback allowed for more pre-

dictable control and improved performance. However, it is

unclear whether this improvement is driven by the use of

this feedback for real-time regulation or by the adjust-

ments made to the internal model.

Our group has recently suggested a framework that

demonstrates that the strength of the internal model is

indeed affected by feedback [37]. In the field of myoelectric

prosthesis control, we used this framework to assess the

strength of the internal model developed for able-bodied

subjects when using different myoelectric control strat-

egies. A series of tests were conducted to extract pa-

rameters that are used in this framework to compute

uncertainties in the developed internal model. One test

quantified the ability of subjects to use feedback to adapt

and modify their control signals. Other tests quantified

variability in control signals for a given controller and

variability in the provided feedback. These parameters

were used in this framework to determine a weighted

factor of the feedback that is assumed to be combined

with the internal model based on the uncertainty of the

feedback.

In a previous study [38], we noted that various types

of control strategies, in the very act of filtering bio-

logical signals (i.e., movement classification and activa-

tion thresholds), provide inherently different levels of
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visual biofeedback to the user. For instance, classification-

based control provides no visual feedback about any class

except the one it deems to be the correct class, thus denying

the user of any knowledge about partial activations of other

classes [39]. Whereas most research has focused on the

impact of those filters on the control (motor) perform-

ance of the prosthesis (see reviews [40, 41]), we demon-

strated that it also affects the ability of the person to

form an internal model. In that study, we assessed the

internal model strength and performance when using

two common myoelectric control strategies [39, 42] that

differed in the inherent feedback provided to the user,

namely: (a) regression-based control or (b) classification-

based control.

For a two DOF task, a regression-based control pro-

vides users with proportional feedback about activations

of both DOF while a classification-based control pro-

vides users with feedback about only one dominant DOF

at a time. We showed that the inclusion of information

about the smaller modulations in the secondary DOF in

regression controllers (unfiltered control signals) provided

valuable and rich information to improve the internal

model, even though it resulted in worse short-term per-

formance as measured using task accuracy and path effi-

ciency. In contrast, the inherent filter in classification-

based control, which limited the control signal variability

and thus improved the smoothness of movements, also

prevented the formation of a strong internal model. In

other words, continuous feedback-rich control strategies

may be used to improve internal model strength, but

classification-based controllers enable better immediate

performance. Intrigued by this outcome and attempting to

incorporate the benefits of both control strategies, in our

next study we combined a classification-based control

with a regression-based audio-augmented sensory feed-

back in a virtual target acquisition task [43]. Our out-

comes demonstrated that this combination enabled both

the development of a stronger internal model than the

regression-based controller and better performance than

the classification-based controller.

In the present study, we extended our previous work

by investigating the benefits of using audio-augmented

feedback when controlling a prosthetic hand. The main

goal was to assess whether the ability to decouple internal

model strength and motion variability, using the continu-

ous audio-augmented feedback, extended to real-world

use, where the inherent mechanical variability and dynam-

ics in the mechanisms as well as the user-socket interfaces

may contribute to a more complicated interplay between

internal model formation and motion variability. To ac-

complish this goal, we compared internal model strength

and performance of a classifier-based myoelectric control-

ler with and without audio-augmented feedback during a

grasp-and-lift task using a multi-degree of freedom (DOF)

research prosthetic hand [44]. We assessed the internal

model strength using psychophysical tests and used an

instrumented Virtual Egg to assess the performance

[38, 45]. Our results from 14 able-bodied subjects show

that audio-augmented feedback may indeed be used to

improve internal model strength and performance of a

myoelectric prosthesis. These improvements may in-

crease reliability and promote acceptance of prosthetic

devices by powered prosthesis users.

Methods

Classifier-based myoelectric control is considered as one

of the more advanced strategies of myocontrol [42] and

may be implemented using various pattern recognition

algorithms [46, 47]. In recent studies, we used a Support

Vector Regression (SVR) algorithm, which has been proven

to enable better performance than other algorithms, to

implement a classifier-based myoelectric control strat-

egy [38, 43]. This algorithm provided regression-based

control signals that simultaneously activated more than

1 DOF at a time, which were subsequently gated to only

allow the activation of 1 DOF at a time. In this work,

we used these same gated, i.e., classifier-based control,

signals to activate either hand open/close or thumb ad-

duction/abduction of a prosthetic hand. Building on the

classifier-based control, we implemented a novel control

strategy, namely Audio-augmented Feedback control,

which is able to effectively decouple internal model for-

mation from control variability. We relayed information

in the regression-based control signals through continu-

ous auditory cues to augment the feedback from the

classifier-based myoelectric control (Fig. 1). The amplitude

of the audio feedback was directly proportional to the

amplitude of the control signals. For each DOF, two

distinct frequencies were assigned: open/close hand had

500/400 Hz assigned and thumb adduction/abduction

had 900/800 Hz assigned.

Participants

14 healthy subjects (8 male, and 6 female; mean and stand-

ard deviation of age: 25 ± 4.5 years) participated in this

study. All participants had either normal or corrected-

to-normal vision, were right-handed, and none had earlier

experience with myoelectric pattern recognition control.

Written informed consent according to the University of

New Brunswick Research and Ethics Board and to Scuola

Superiore Sant’Anna Ethical Committee was obtained from

subjects before conducting the experiment (UNB REB

2014–019 and SSSA 02/2017).

Setup

The experimental platform consisted of a robotic hand, an

array of myoelectric sensors, a PC implementing the con-

trol strategy, headphones that conveyed audio feedback,
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and a test object instrumented with force sensors (Fig. 2).

The robotic hand was a right-handed version of the IH2

Azzurra Hand (Prensilia, IT) [44]. It consists of four fin-

gers and a thumb actuated by five motors. In the present

work, movements were limited to allow only flexion/

extension of the thumb-index-middle digits and the

abduction/adduction of the thumb. The hand included

encoders on the motors, which were under position

control based on commands sent over a serial bus from

the PC. Subjects controlled the robotic hand using iso-

metric muscle contractions sensed by an array of eight

low power multi-channel operation electrodes (30 ×

20 × 10 mm/electrode) placed around their forearm [48].

Seven subjects tested the classifier-based control without

augmented feedback (NF) and then retested with the

audio-augmented feedback (AF). The remaining subjects

tested the classifier-based control without augmented

feedback (NF) twice to test for learning effects.

The test object was an instrumented Virtual Egg (iVE).

The iVE is a rigid plastic test-object (57 × 57 × 57 mm3;

approximately 180 g) equipped with two strain gauge-

based force sensors (Strain Measurement Devices, UK,

model S215–53.3 N; each located at one of two parallel

grasping sides), able to measure grip force exerted on

the object. The iVE was programmed to virtually break

whenever the grip force was larger than a preset thresh-

old (approximately 3.1 N); this event was signaled to the

subject through a colored light on the iVE [45].

Protocol

Participants were instructed to repeatedly grip, lift, re-

place, and release the iVE at a self-selected routine

grasping speed. Specifically, their task consisted of (1)

moving their right arm to reach the iVE with the robotic

hand mounted on a bypass splint (Fig. 1), (2) contracting

their own muscles to control the robotic hand so that it

grasped the object, (3) lifting the iVE a few centimeters

above the table, (4) putting the iVE back on the table,

and, finally, (5) releasing the object by opening the hand.

During the experiment, subjects sat comfortably in

front of a computer screen and wore a set of 1000 mW

headphones (MDRZX100, Sony, JP) with the volume set

to a maximum of 52.5 ± 3 dB (they could remove them

during scheduled breaks between testing blocks). Sub-

jects used each feedback method to complete a series of

test blocks in a specific order after accomplishing a

training and familiarization block. Before the start of

each test block, subjects were given a two-minute break,

in which they could stand up, remove the headset, un-

strap the splint, and stretch if needed. The electrode

Fig. 1 Closing the control loop using audio to augment the visual feedback. Dark blue lines represent the classifier-based control signals, red lines
represent the regression-based control signals, and purple lines represent the audio feedback

Fig. 2 Subject controlling a prosthetic hand to grasp-and-lift an
instrumented virtual egg without breaking it. The prosthetic hand
is controlled using the subject’s myoelectric signals sensed by an
electrode array placed on their forearm
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array, however, was not removed for the duration of the

experiment.

The training and familiarization block consisted of 40

grasp-and-lift trials. Subjects were given verbal instruc-

tions to complete the task without breaking the iVE in

less than seven seconds after which a “Time out” text

appeared on the computer screen and the artificial hand

returned to a predetermined starting pose (Fig. 3). The

training and familiarization starting pose was with the

hand fully opened and thumb adducted (Fig. 3a). While

in the first 25 trials, subjects were shown the feedback

when the iVE broke (fragile mode), they were not given

this feedback in the last 15 trials (rigid mode). This was

done to keep subjects engaged with the task and not lose

interest during the training block. Subjects were allowed

to proceed to test blocks when they achieved at least

75% successful grasp-and-lift trials of the iVE in the

training block.

The first test block was used to test adaptation to

self-generated errors. In this block, subjects were asked

to complete 40 grasp-and-lift trials in less than five sec-

onds per trial. Adaptation rate was computed as how

much subjects adjusted their grasp trajectory from one

trial to the next based on error observed between their

actual trajectory and activating only the hand close/open

DOF, i.e., the optimal trajectory [49].

The second test block was used to measure the subject’s

perception threshold, i.e. a psychometric measure of

sensory threshold for perception of a sensory stimulus.

Subjects performed a series of two lift trials (fragile mode).

In one of the two trials, a specific stimulus was added

causing the hand to behave differently. The subjects were

then asked to identify the changed trial by pressing the “1”

or “2” key (for trial one or two) on a keyboard placed in

front of them with their other hand. The magnitude of the

added stimulus was calculated using an adaptive staircase

as a rotation in the control space in degrees (Fig. 3 in [38])

with target probability set to 0.84 [50, 51]. For instance, if

a subject was generating control signals for thumb abduc-

tion, a 90 degrees rotation in the control signal would

switch activations from thumb abduction to hand close.

Each trial lasted for four seconds and subjects were encour-

aged to take breaks between trials whenever they needed.

The final noticeable stimulus reached was recorded when

the number of reversals for this staircase reached 23 [38].

The starting pose of the prosthetic hand for the first and

second block was similar to that of the training and

familiarization block where subjects had to only activate

the hand close/open DOF to achieve this task efficiently.

The third and last test block was used to measure per-

formance. Subjects were given 20 trials to move the iVE

(fragile mode) from one side of a barrier (H: 14.5 cm x

W: 25 cm) to the other in less than 10 s per trial, similar

to the Box and Blocks test [52]. The starting pose of the

hand was adjusted to evaluate the subject’s performance

for a 2-DOF task in which subjects had to activate the

thumb adduction/abduction DOF to lower the thumb

and then activate the hand close/open DOF to grasp the

iVE properly to lift it to the other side of the barrier

(Fig. 3b). Table 1 summarizes the experimental protocol

used in this study.

Outcome measures

Internal model parameters

Similar to our previous research [38, 43], we assessed

human understanding of the myoelectric control strategy

 Test blocks 1 and 2  Test block 3 a b

Fig. 3 Hand starting pose. a Starting pose for the training and familiarization, adaptation, and JND blocks. Subjects had to only activate the thumb and
fingers flexion to grasp the object carefully without breaking it. b Starting pose for the performance test: fingers and thumb are extended, and the thumb
is abducted. Subjects had to adduct the thumb and then close the hand to grasp the object and transfer it from one side of a barrier to the other

Shehata et al. Journal of NeuroEngineering and Rehabilitation  (2018) 15:70 Page 5 of 12



for a grasp-and-lift task using the following psychomet-

ric measures:

� Adaptation rate (−β1) is a measure of feedforward

modification of the control signal from one trial to

the next [37]. For each trial in the adaptation rate

test, control signal activations in both DOFs, i.e.,

flex/extend thumb-index-middle digits and adduct/

abduct thumb, were recorded. To capture the subject’s

feedforward intent, the first 500 ms of the recorded

activations for each trial were analyzed. The target

control signal was the activation of the closing of the

prosthetic hand only (i.e., flex/extend thumb-index-

middle digits). Other activations were considered as

self-generated errors, which subjects were instructed

to minimize. The following equation was used to

compute this adaptation rate.

errornþ1− errorn ¼ β1 � errorn þ β0 ð1Þ

where error is the angle formed between the closing of

the hand activation trajectory, i.e., target, and the actual

hand activation trajectory; n is the trial number; β0 is the

linear regression constant; and −β1 is the adaptation rate.

A unity value indicates perfect adaptation, i.e., internal

model modified to perfectly compensate for errors.

� Just-noticeable-difference (JND) is a measure of the

minimum perceivable stimulus in degrees identified

by the subject when using each feedback method

[50]. A lower threshold indicated better user ability

to perceive small perturbations in the control strategy

used. This parameter was extracted from the Perception

threshold test block as the final noticeable stimulus

when the number of reversals for an adaptive

staircase reached 23.

� Internal model uncertainty (Pparam) is a measure of

the confidence of a user in the internal model they

developed for a control strategy with a certain

feedback method. This parameter was computed

using outcomes from both the first and second test

blocks [38].

Performance parameters

� Completion Rate (CR) is the percentage of the

successful transfers of the iVE from one side of the

barrier to the other without breaking it (fragile mode).

This parameter was extracted from the third test block.

� Mean Completion Time (MCT) is defined as the

time taken to successfully transfer the iVE from one

side of the barrier to the other without breaking it

(fragile mode). This parameter was also extracted

from the third test block.

� Trial submovements (TS) is the number of

submovements per trial. This parameter is calculated

as the number of zero-crossing pairs of the third

derivative of the grasp force profile per trial [53].

The number of submovements served as an indicator

of use of feedback for real-time regulation of the

grasping force [54–56]. The higher this number, the

greater the use of feedback in real-time regulation.

This parameter was extracted from the adaptation test.

Statistical analysis

The Statistical Package for the Social Science software

(SPSS v25.0, IBM, US) was used to run Levene’s test on

JND, adaptation rate, internal model uncertainty, and

performance measure results to investigate homogeneity

in variances of the data. If data variances were found to

be homogenous, we ran two-sample paired t-tests to assess

differences between these outcome measures at a signifi-

cance criterion of α = 0.05 for the two feedbacks tested. If

data variances were found to be nonhomogeneous, a Wil-

coxon signed-rank test was conducted. For the group of

subjects who tested and retested the NF controller, re-

peated measures ANOVA was used to compute intraclass

correlation coefficient (ICC) for internal model parameters

and performance parameters using a two-way mixed ef-

fects model with absolute agreement at a 95% confidence

interval to investigate the effect of prolonged exposure to a

control strategy. The confidence interval was calculated

Table 1 Summary of the experimental protocol

Task Description

Control Practice Control the prosthetic hand for two minutes – a combination of close/open the prosthetic hand and abduct/
adduct the thumb.

Training and Familiarization 25 trials of grasp-and-lift of the iVE with the breaking feedback and 15 grasp-and-lift trials without the breaking
feedback. Each trial lasted for seven seconds.

Adaptation rate test A total of 40 grasp-and-lift trials. Each trial lasted for five seconds.

Perception threshold test Grasp-and-lift the iVE in less than four seconds and identify the trial with the added stimulus in a set of two trials,
repeat this task until convergence of an adaptive staircase.

Performance test Transfer the iVE from one side of a barrier to the other 20 times in less than 10 s per transfer.
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using the standard deviation (95% CI =mean ± 1.97 × SD).

If not denoted otherwise, all numbers in the text refer to

mean ± SD.

Results

To confirm that the benefits of using audio-augmented

feedback for improving internal model strength of myo-

electric controllers extend beyond a virtual target acquisi-

tion task [43], we assessed the internal model developed

when using this audio-augmented controller and the no-

augmented feedback controller to control a prosthetic hand

for a grasp-and-lift task. In addition, short-term perform-

ance when using both controllers was evaluated.

Internal model assessment

Two psychophysical experiments were employed to evalu-

ate parameters that are used to assess internal model

strength [38]. The first experiment tested the trial-by-trial

adaptation to self-generated errors. The outcome from that

test indicated how much the internal model was modified

from one trial to the next based on error feedback.

Results from the adaptation test (first test block) proved

a statistically significant difference between subjects using

NF and AF control strategies (two paired-samples t-test

(t (6) = − 4.6), p = 0.004)). In particular, the AF control

strategy promoted a significantly higher adaptation rate

(1.2 ± 0.25) than the NF control strategy (0.75 ± 0.15)

(Fig. 4a).

The outcomes from the perception threshold test

matched with those from the adaptation test. Audio-

augmented feedback control strategy enabled a significantly

lower perception threshold (44.6 ± 10 degrees) than the

NF controller (58.5 ± 12.5 degrees) (paired samples t-test

(t (6) = 3.4, p = 0.014)) (Fig. 4b).

The adaptation rate and the JND were used to compute

the internal model uncertainty developed for each of the

tested feedback conditions. Again, the AF control strategy

promoted a lower internal model uncertainty (0.22 ± 0.11)

compared to subjects using NF control strategy (1.8 ± 0.6)

(related samples Wilcoxon signed-rank test; p = 0.018)

(Fig. 4c).

Test-retest of NF controller: Results for internal model

assessment parameters showed no significant within-

subject effect of retesting NF controller with good reliabil-

ity (ICC > 0.65). Table 2 summarizes the statistical analysis

for these results.

All in all, these results align with previous studies

[43] and confirm that audio-augmented feedback pro-

motes: (1) high adaptation rate, (2) the user’s ability to

perceive low sensory threshold and, in turn (3) a strong

internal model for a grasp-and-lift task using a pros-

thetic hand.

Performance test

The completion rate (in the last test block) proved higher

when using the AF control strategy (65 ± 12%) than when

using the NF control strategy (37.34 ± 19%) (Two paired-

sample t-test, (t (6) = − 2.87, p = 0.028) (Fig. 5). Notably,

testing of the mean completion time did not exhibit a

significant difference (MCTAF = 8.3 ± 0.74 s; MCTNF =

8.4 ± 0.65 s) (Fig. 6).

Test-retest of NF controller: Similar to the internal

model assessment parameters results, results for perform-

ance parameters showed no significant within-subject ef-

fect of retesting the NF controller with very good reliability

(ICC > 0.9, CR) and good reliability (ICC = 0.55, MCT)

(Table 2).

Submovements analysis was performed on data recorded

from only five subjects as the iVE failed to record data for

the other two subjects due to a communication error.

When using the NF control strategy, subjects changed their

grasping force during the grasp-and-lift task, though not as

much as when using AF control strategy (Fig. 7). Results

show that subjects using AF control strategy had a sig-

nificantly higher number of submovements (3.94 ± 0.12)

than subjects using NF control strategy (3.26 ± 0.17) as de-

termined by a two-sample independent t-test (t (90) = −

3.17, p = 0.002) (Fig. 8). These results suggest that

audio-augmented feedback enables better short-term per-

formance by enabling the development of a stronger in-

ternal model.

Discussion

Many studies have focused on improving performance

of myoelectric prosthesis control by providing feedback

to the user, but only a few have investigated the effect of

this feedback on the internal model, which is key to im-

proving long-term performance [57]. Due to an inability

to assess internal model strength, this effect remained

unquantified. For the first time, we used a recently de-

veloped psychophysical framework to assess the strength

of the internal model developed when using different

myoelectric prosthesis controllers [38]. In earlier work,

we demonstrated that audio-augmented feedback improves

internal model strength and the performance of myoelec-

tric prosthesis control in a virtual target acquisition task

[43]. We argued that these improvements may extend

beyond a virtual target acquisition task. In this study,

we tested the classifier-based control with and without

audio-augmented feedback for a grasp-and-lift task when

using a prosthetic hand. Our results confirm the hypoth-

esis that audio-augmented feedback enables the develop-

ment of a strong internal model and better short-term

performance when controlling a prosthetic hand for a

grasp-and-lift task.

Even when using different controllers, humans are able

to incorporate previous knowledge and experience to
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accomplish tasks [38]. To minimize this translation of

stronger internal models, all subjects in this study tested

the no-augmented feedback controller first, followed by

the augmented audio feedback controller. It could be

possible that the reduction in internal model uncertainty

for the audio-augmented controller is due, in part, to

the prolonged exposure to the control strategy and the

experiment. This possibility, however, was addressed

in this work when subjects were asked to test and re-

test the same control strategy (no-augmented feedback)

and it was concluded that there was no improvement in

adaptation rate, JND, internal model strength, or
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Fig. 4 Psychophysical test results. a Adaptation rate results showing audio-augmented feedback control strategy enabling higher adaptation to
self-generated error than the no-augmented feedback control strategy. b Perception threshold test results showing low JND value when using
the audio-augmented controller. c Internal model uncertainty (Pparam) results showing significant reduction in the internal model uncertainty
when using the audio-augmented feedback control strategy. Horizontal bars indicate statistical significant difference. NF: No-augmented Feedback.
AF: Audio-augmented Feedback

Table 2 Summary of test-retest for the Nf controller results

Outcome measure ANOVA repeated measure p ICC SEM

Adaptationrate 0.86 0.65 0.102

Just-noticeable-difference 0.21 0.65 4.4

Internal model uncertainty 0.64 0.9 0.53

Completion Rate 0.57 0.9 1.2

Mean completion time 0.47 0.55 0.16
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performance due to the repetition of the test. Conse-

quently, we argue that any improvement in those parame-

ters is due to the control strategy used and not due to

prolonged exposure.

To ensure that the continuous audio feedback was not

a distraction to the user and, in turn, did not comprom-

ise short-term performance, we assessed the short-term

performance by computing the completion rate (without

breaking the object). Outcomes, in fact, showed a signifi-

cantly better performance when subjects used the AF

compared to the NF controller, albeit both controllers

had similar completion time. The submovements ana-

lysis revealed that subjects adjusted their grasping forces

more frequently when using the AF controller than

when they used the NF controller. This finding suggests

that augmented audio feedback may not only be used

for developing internal models, but subjects’ high confi-

dence in the feedback lead to them using this feedback

for real-time regulation too. Hence, regression-based

augmented audio feedback improves both short-term

performance through real-time regulation and long-term

performance through development of strong internal

models.

Although we did not measure the cognitive load of

using audio feedback in this work, other researchers

have found that audio feedback may be used to alleviate

the cognitive burden when combined with visual feed-

back [25]. Internal model assessment results from this

study may be used to further explain how audio feedback

reduces the cognitive load. To further support our find-

ings, future work may include utilizing visual attention

measures developed in [6] to quantitatively determine the

effect of using controllers with and without feedback on

visual attention.

Although the results found in this study providing

compelling evidence that internal models can indeed be

improved using augmented feedback, they must still be

confirmed in the target population. Although we tested

only able-bodied subjects, we suspect that similar internal

model results may be found when testing amputees since

internal model assessment parameters are measures of

human behavior and understanding and not physical abil-

ity [39]. That said, performance results found here may be

0

10

20

30

40

50

60

70

80

NF AF

S
u

c
c
e
s
s
fu

l 
tr

a
n

fe
r

Fig. 5 Successful transfer rate of the instrumented virtual egg from
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scaled when testing amputees due to differences in pros-

thesis attachment, i.e., bypass vs. socket, and placement of

the surface electrode array. One might argue that the

control strategy (model) trained and used by able-bod-

ied subjects in this study will be very different than the

one trained and used by an amputee. In fact, the con-

trol model trained for every individual and for every

session is unique and tuned to that individual regard-

less of chosen location of the electrode array or muscle

mass. This trained model is driven by how individuals

contract their muscles for a given DOF model training.

The length of the residual limb available for electrode

placement and integration of sensory feedback in the

socket are indeed challenges that are not faced when

testing able-bodied subjects and must be addressed

when testing amputees. It must be noted that the use of

the audio feedback modality in this work reduces the

challenges associated with integrating sensory feedback

mechanisms within the socket.

In this study, we conducted psychophysical tests on one

DOF, i.e., closing the hand to grasp-and-lift an object,

to avoid fatigue and loss of motivation. However, we de-

signed the performance test for a two-DOF task where sub-

jects had to activate both DOFs, i.e., digits flexion/extension

and thumb adduction/abduction, to ensure that they were

able to fully control the device to achieve the task and to

collect performance results that could be compared to previ-

ous studies [38, 42, 43]. During the performance test, we no-

ticed that lifting the weight of the prosthetic hand affected

users’ ability to open the hand after grasping the object,

which affected the performance for both control strategies

tested equally. This weight effect could be avoided in future

experiments by using a tool balancer [58].

a b

Fig. 7 Progression of grasp-and-lift trials ranging from the beginning of the task (light gray) to the end of the task (dark gray). Representative data from a
single subject during adaptation rate test using (a) the no-augmented feedback control strategy (moderate grasp force changes per trial) and (b) the
audio-augmented feedback control strategy (high grasp force changes per trial). The red line in both plots shows the preset breaking force
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Fig. 8 Submovements computed from the grasp forces of successful
trials from the adaptation rate test for a sample of five subjects.
NF: No-augmented Feedback. AF: Audio-augmented Feedback
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Furthermore, some subjects reported that continuous

audio feedback may be a distraction; however, our results

show that, although subjects may not purposely focus on

integrating this feedback, they unconsciously integrate it

into their internal models. With this in mind, a new ques-

tion arises: would a task specific discrete audio feedback,

i.e., discrete beeps on contact and release of an object akin

to the Discrete Event-driven Sensory feedback Control

(DESC) principle [1, 59], be less irritating while poten-

tially enabling similar integration? This question will be

addressed in future research.

Although audio-augmented feedback showed promis-

ing results, the minimum quantity of feedback that is

useful for developing strong internal models must still

be identified, along with what quality is required for

real-time regulation. Future work informed by this study

includes: investigating the benefits of using audio feed-

back for limb-different individuals, exploring a combin-

ation of other augmented feedback that might enable an

even stronger internal model, exploring the effect of aug-

menting other feedback modalities on the internal model

strength, investigating the effect of audio-augmented

feedback control strategy for a more complex task on

the internal model strength and the performance, and,

finally, investigating the retention of internal models

developed while using the audio-augmented feedback

control strategy.

Conclusions

We extended our previous work to investigate the benefits

of using audio-augmented feedback by testing a classifier-

based control with and without this feedback for a grasp-

and-lift task when using a prosthetic hand. Results from

psychophysical and performance tests showed that audio-

augmented feedback enables the development of a strong

internal model and better short-term performance. In

addition, we concluded that audio feedback may be used

in real-time regulation of grasping forces during a grasp-

and-lift task.
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