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Abstract

With the evolution of technology, the use of smart Internet-of-Things (IoT) devices, sensors,

and social networks result in an overwhelming volume of IoT data streams, generated

daily from several applications, that can be transformed into valuable information through

machine learning tasks. In practice, multiple critical issues arise in order to extract useful

knowledge from these evolving data streams, mainly that the stream needs to be efficiently

handled and processed. In this context, this thesis aims to improve the performance (in

terms of memory and time) of existing data mining algorithms on streams. We focus on the

classification task in the streaming framework. The task is challenging on streams, principally

due to the high – and increasing – data dimensionality, in addition to the potentially infinite

amount of data. The two aspects make the classification task harder.

The first part of the thesis surveys the current state-of-the-art of the classification and

dimensionality reduction techniques as applied to the stream setting, by providing an

updated view of the most recent works in this vibrant area.

In the second part, we detail our contributions to the field of classification in streams,

by developing novel approaches based on summarization techniques aiming to reduce

the computational resource of existing classifiers with no – or minor – loss of classification

accuracy. To address high-dimensional data streams and make classifiers efficient, we

incorporate an internal preprocessing step that consists in reducing the dimensionality

of input data incrementally before feeding them to the learning stage. We present several

approaches applied to several classifications tasks: Naive Bayes which is enhanced with

sketches and hashing trick, k-NN by using compressed sensing and UMAP, and also integrate

them in ensemble methods.
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Part I

Introduction and Background

1





Data stream learning is a hot research topic in Machine Learning and Data Mining, that

has motivated the development of several very efficient algorithms in the streaming setting.

Our thesis deals with the elaboration of new classification approaches based on well-known

summarization techniques. These proposed approaches make it possible to learn from –

and make predictions on – evolving data streams using small computational resources while

keeping good classification performance.

This part presents the necessary background concerning our thesis and is composed of

two chapters:

• Chapter 1 provides an overview of the context and motivation of the thesis, followed

by our principal contributions.

• Chapter 2 gives the necessary background regarding the streaming framework, its

challenges and limitations. We cover the definition of the basic concepts of the stream

context, such as the processing and summarization techniques for data streams.

In this chapter, we also review the state-of-the-art of streaming classification and

dimensionality reduction that are relevant to this thesis.

3
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Introduction

Contents

1.1 Context and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.1 Context and Motivation

Artificial Intelligence (AI) is defined as field of study in Computer Science that aims to

produce smart machines capable to mimic natural intelligence displayed by humans. The

last few decades have witnessed a tremendous pace in the pervasiveness of technology that

invades our world in all dimensions and keeps skyrocketing. This evolution includes, more

and more, systems and applications that continuously generate vast amounts of data in an

open-ended way as streams.

This incredibly huge quantity of data, derived daily from applications in AI, includes

areas such as robotics, natural language processing, and sensor analytics [1]. As an instance

application, the Internet of Things (IoT) is defined as a large network of physical devices

and sensors (objects) that connect, interact, and exchange data. IoT is a key component

of life automation, e.g., cars, drones, airplanes, and home automation. These devices will

be creating a massive quantity of big data, via real-time streams, in the near future. By

the end of 2020, 31 billion of such devices will be connected, and by 2025 this number is

5
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Figure 1.1: IoT connected devices from 2015 to 2025.

expected to grow, according to Statista1, to around 75 billion of these devices that will be in

use around the world, see Figure 1.1. Hence, methods and applications must be explored to

cope with this tremendous flow of data that exhibit the so-called “3 Vs”, volume, velocity,

and variability.

There exist different ways to treat, organize and analyze this fast generated data using

algorithms and tools from AI and data mining. Indeed, these techniques are often carried

out by automated methods such as the ones from machine learning. The latter is a

fundamental subset of AI that is based on the assumption that computer algorithms can

learn from new data and automatically improve themselves without – or with minimal

– external intervention (human intervention in general). Machine learning algorithms

are characterized by learning from observations and then, make predictions using these

observations in order to build appropriate models [2].

The success of IoT has motivated the field of data mining which consists in being able

to extract useful knowledge by automatically acquiring the hidden insights, non-trivial, in

the vast and growing sea of data made available along time. Data mining is a sub-field of

machine learning which includes tasks such as classification, regression, and clustering

that have been thoroughly studied over the last decades. However, traditional approaches

for static datasets have some limitations when applied on dynamic data streams, hence,

new approaches with novel mining techniques are necessary. In this context of IoT, mining

algorithms should be able to handle the infinite and high-velocity of IoT data streams, under

finite resources – in terms of time and space. More details on these challenges are provided

in Section 1.2.
1www.statista.com/statistics/976079/number-of-iot-connected-objects-worldwide-by-type/.
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1.2 Challenges

To convert these data into useful knowledge, we usually use machine learning algorithms

adapted for streaming data tasks, consisting of a data analysis process [3, 4]. In this context,

the data stream mining area has become indispensable and ubiquitous in many real-world

applications. Often this category of applications generates data from evolving distributions

and requires real-time – or near real-time – processing.

In the data mining field, classification is one of the most popular tasks that attempts to

predict the category of unlabeled – and unseen – observations by building a model based on

the attribute contents of the available data. The stream classification task is considered as

an active area of research in the data stream mining field, where the focus is to develop new

– or improve existing – algorithms [5]. There is a number of classifiers that are widely used in

data mining and applied in several real-world applications, such as decision trees, neural

networks, k-nearest neighbors, Bayesian networks, etc. The next chapter covers, inter alia, a

survey on the well-known and recent classification algorithms for evolving data streams.

1.2 Challenges

As mentioned above, stream classification task aims to predict labels – or classes – of

new incoming unlabeled instances from the stream while updating continuously, after

prediction, the models as the stream evolves to follow the current distribution of the data.

The online and potentially infinite nature of data streams, which raises some critical issues

and makes traditional mining algorithms fail, imposes high resource requirements to handle

the dynamic behavior of evolving distributions.

While many of the following issues are common across different data stream mining

applications, we address these issues in the context of incremental classification [6, 7, 8].

• Evolving nature of data streams. Any classification algorithm has to take into account

the considerable evolution of data and adapt to the high speed nature, because streams

often deliver observations very rapidly. Thus, algorithms must incrementally classify

recent instances.

• Processing time. A real-time algorithm should process the incoming instances as fast

as possible because the slower it is the less efficient it will be for applications that

require rapid processing.

• Unbounded memory. Due to the huge amounts and high speed of streaming data

that require an unlimited memory, any classification algorithm should have the ability

to work within memory constraint by maintaining as little as possible information

about processed instances and the current model(s).

• High-dimensional data streams. Data streams may be high-dimensional, such as

those containing text documents. For such kinds of data, distances between instances

grow very fast which can potentially impact any classifier’s performance.
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Table 1.1: Comparison between static and stream data.

Static data Stream data

Access random sequential

Number of passes multiple pass single pass

Processing time unbounded restricted

Memory usage unbounded restricted

Type of result accurate approximate

Environment static dynamic (evolving)

• Concept drift. One crucial issue when dealing with a very large stream is the fact that

the underlying distribution of the data can change at any moment, a phenomenon

known as concept drift. We direct the reader to [9] for a survey of this concept. The drift

can change the classifier results over time. To cope with the new trends of data that

must be detected at the same time as their appearance, a drift detection mechanism is

usually coupled with learning algorithms.

In the stream setting, a crucial question arises about how to process infinite data over time

while addressing the stream framework requirements with minimal costs?

These above-mentioned challenges are of special significance in the stream classifica-

tion. We notice that stream mining techniques must differ from the traditional ones for

static datasets. To handle these challenges, classification algorithms must incorporate an

incremental strategy that permits such processing requirements presented in Section 2.2.

Table 1.1 presents a comparison of environments for both static and stream data [10].

In addition to the overwhelming volume of data, its dimensionality is increasing

considerably and poses a critical challenge in many domains, such as biology (omics

data2) [11, 12] and spam email filtering [13] (classify an email as spam or not, based on

the email text content). These high-dimensional data may contain many redundant or

irrelevant features that can be reduced to a smaller set of relevant combinations extracted

from the input feature set without a significant loss of information. In order to handle such

kind of data adequately at least cost possible, a pre-processing step is imperative to filter

relevant features and therefore allow cost and resource savings with data stream mining

algorithms. To do so, synopsis or statistics can be constructed from instances in the stream

using summarization techniques (e.g., sketches by keeping frequencies of data), selecting

a part of incoming data without reducing the number of features (i.e., sampling), or by

applying dimensionality reduction (DR) to reduce the number of features. Naturally, the

choice of a suitable technique depends on the problem being solved [14].

2Omics data refer to the data from biological fields ending by -omics, e.g., genomics, metabolomics.
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Data stream

High-dimensional
data

Data stream
mining

Curse of
dimensionality

Summarization

Classification

Dimension
reduction

Data

Figure 1.2: The thesis context. A data stream mining task can be applied on infinite data
streams, a very popular task is classification. In order to alleviate the resource cost of a given
classifier, a summarization technique is sometimes used to keep synopsis information about
the stream for learning. Moreover, to overcome the curse of dimensionality, a dimensionality
reduction technique can be applied on high-dimensional data as an internal pre-processing
technique; then, the low-dimensional representation is fed to a classification task.

Our thesis purpose is motivated by the desired criteria, described above, for IoT data

stream mining. We focus mainly on the classification task and aim to develop novel

stream classification approaches to improve the performance of existing algorithms using

summarization techniques. Figure 1.2 illustrates the context of this thesis.

Dimensionality reduction, embedding, and manifold learning are names for tasks that

are similar in spirit. DR is defined as the projection of high-dimensional data into a low-

dimensional space by reducing the input features to the most relevant ones. Indeed, DR is

crucial to avoid the curse of dimensionality – which may increase the use of computational

resources and negatively affect the predictive performance of any mining algorithm. To

mitigate this drawback, several reduction techniques have been proposed, and widely

investigated, in the offline setting [15, 16] to handle high-dimensional data. However, these

techniques do not adhere to the strict computational resources requirements of the data

stream learning framework [17, 18]. More details are provided in the next chapter.

1.3 Contributions

The main research line of this thesis addresses the aforementioned issues about mining

algorithms’ performance for IoT data streams. This thesis contributes to the stream mining

field by introducing and exploring novel approaches that reduce the computational
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Contributions

Sketch-based

UMAP-kNN :
batch-incremental

k-NN using
UMAP

Chapter 6

DR-based

UMAP
Compressed

sensing
Hashing trickCount-min sketch

CS−ARF :
ensemble-based
ARF using CS

Chapter 5

CS-kNN :
k-NN and

ensemble-based
kNN using CS

Chapter 4

Sketch-NB:
a naive Bayes

approaches using
count-min sketch
and hashing trick

Chapter 3

Figure 1.3: Contributions of the thesis.

resources of existing algorithms while sacrificing a minimal amount of accuracy.

During this introductory, we divide the objective of the thesis in three main research

questions, enumerated in the following:

• Q1: How can we improve the performance of the existing classifiers in terms of

computational resources while maintaining good accuracy?

• Q2: How can we do better by dynamically adapting to high-dimensional data streams?

• Q3: How can we address concept drifts, i.e., the fact that stream distribution might

change over time?

In the following, we briefly sum up our contributions and schematize them in Figure 1.3.

• In Chapter 3, we aim to improve the performance of naive Bayes by developing three

novel approaches to make it efficient and effective with high-dimensional data.

10
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– We study an efficient data structure, called Count-Min Sketch (CMS) [19], to keep

synopsis (frequencies) of data in memory.

– We propose a new sketch-based naive Bayes that uses CMS to store information

about the infinite amount of data streams in fixed memory size for the naive

Bayes learner.

– Theoretical guarantees over the size of the CMS table are provided by extending

the guarantees of the CMS technique.

– To handle high-dimensional data, we add an online pre-processing step during

which data will be compressed using a rapid DR technique, such as the hashing

trick [20], before the learning tasks. This pre-processing task makes the approach

faster.

– We incorporate in the learning phase an adaptive strategy using ADaptive

WINdowing (ADWIN) [21], a change detector, for the entire sketch table, in order

to track drifts (change in the distribution of data over time).

• In Chapter 4, we focus on the k-Nearest Neighbors (kNN) algorithm [22]. We propose

two approaches that aim to improve the computational costs of the kNN algorithm

when dealing with high-dimensional data streams by exploring the Compressed Sensing

(CS) [23] technique to reduce the space size.

– We propose a new kNN algorithm to support evolving data stream classifica-

tion, compressed-kNN. Our main focus consists of improving kNN resource

performance by compressing input streams using the CS before applying the

classification task. This will result in a huge reduction in the computational cost

of the standard kNN.

– We provide theoretical guarantees over the neighborhood preservation before and

after projection using the CS technique. We therefore ensure that the result of the

classification accuracy to measure the performance of compressed-kNN is almost

the same as the one that would be obtained with kNN using the high-dimensional

input data.

– We also provide an ensemble technique based on Leveraging Bagging [24] where

we combine several compressed-kNN results to enhance the accuracy of a single

classifier.

• In Chapter 5, we aim to improve the performance of the new reputed ensemble-based

method, Adaptive Random Forest (ARF) [25] with high-dimensional data.

– We propose a novel ensemble approach to support high-dimensional data stream

classification which aims to enhance the resource usage of the ARF ensemble

method by reducing the dimensionality of the input data using the CS technique

internally which are afterward fed to the ensemble members.

11
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• In Chapter 6, we explore a new DR technique that has attracted a lot of attention

recently: Uniform Manifold Approximation and Projection (UMAP) [26]. We use

this technique to pre-process the data, leveraging the fact that it preserves the

neighborhood, to improve the results of the neighborhood-based algorithm, kNN.

– We propose an adaptation of UMAP for evolving data streams, i.e., a batch-

incremental manifold learning technique. Instead of applying this batch method,

UMAP, on a static dataset at once, we adapt it by using mini-batches from the

stream incrementally.

– We propose a new batch-incremental kNN algorithm for stream classification

using UMAP. The core idea is to apply the kNN algorithm on mini-batches of

low-dimensional data obtained from the pre-processing DR step.

1.4 Publications

Some of the research findings presented in this thesis have been presented at international

conferences. In the following we provide the list of currently accepted publications:

• Maroua Bahri, Silviu Maniu, Albert Bifet. “Sketch-Based Naive Bayes Algorithms for

Evolving Data Streams”. In the IEEE International Conference on Big Data (Big Data),

2018, Seattle, WA, USA.

• Maroua Bahri, Albert Bifet, Silviu Maniu, Rodrigo Fernandes de Mello, Nikolaos

Tziortziotis. “Compressed k-Nearest Neighbors Ensembles for Evolving Data Streams”.

In the 24th European Conference on Artificial Intelligence (ECAI), 2020, Santiago de

Compostela, Spain.

• Maroua Bahri, Bernhard Pfahringer, Albert Bifet, Silviu Maniu. “Efficient Batch-

Incremental Classification for Evolving Data Streams”. In the Symposium on Intelligent

Data Analysis (IDA), 2020, Lake Constance, Germany.

• Maroua Bahri, Heitor Murilo Gomes, Albert Bifet, Silviu Maniu. “CS-ARF: Compressed

Adaptive Random Forests for Evolving Data Stream Classification”. In the International

Joint Conference on Neural Networks (IJCNN), 2020, Glasgow, UK.

• Maroua Bahri, Heitor Murilo Gomes, Albert Bifet, Silviu Maniu. “Survey on Feature

Transformation Techniques for Data Streams”. In the International Joint Conference on

Artificial Intelligence (IJCAI), 2020, Yokohama, Japan.

• Maroua Bahri, João Gama, Albert Bifet, Silviu Maniu, Heitor Murilo Gomes. “Data

Stream Analysis: Foundations, Progress in Classification and Tools”. under review.
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1.5 Outline

1.5 Outline

The thesis is structured in the following parts:

• The first part includes Chapter 1 – the current chapter – and Chapter 2. In this chapter,

we introduced the motivation of the thesis subject followed by the main goals and

contributions. In Chapter 2, we introduce the fundamental concepts related to the

stream setting. We define data streams and cover the challenges imposed by their

infinite and online nature. We present the methodologies used to process these

data and survey the state-of-the-art of classification and summarization (mainly

dimensionality reduction) techniques that handle evolving data streams.

• The second part covers the main body of the thesis which includes our main

contributions. It is divided in four chapters. The order of the chapters does not

necessarily follow the chronology of the research thesis itself. Chapter 3 explores

the naive Bayes algorithm, count-min sketch technique, and the hashing trick. We

propose three algorithms that handle efficiently high-dimensional streams and detect

drifts. In Chapter 4, we focus on enhancing the computational resources of the kNN

algorithm – which is very costly in practice. We present an approach that uses the

compressed sensing, CS-kNN, to pre-process incrementally the stream before the

classification task. We proved that the neighborhood is preserved after the projection,

i.e., the accuracy is not going to be greatly impacted. We therefore used this approach

as a base learner inside the Leveraging Bagging ensemble, in order to improve accuracy

of the single CS-kNN. Following the same direction, Chapter 5 introduces a recent

ensemble-based method, ARF, that induces diversity to the ensemble members (that

are different from each other) by using different random projection matrices, one for

each ensemble member. In Chapter 6, we explore a recent dimensionality reduction

technique, UMAP. Motivated by its high-quality results, we extend UMAP to the stream

setting by adapting a batch-incremental strategy with the kNN algorithm to obtain the

UMAP-kNN approach.

• In the third part, composed of Chapter 7, we give a summary of the results achieved in

this thesis, and discuss possible future developments.

• Finally, Appendix A covers the open source frameworks that have been used to develop

and test the aforementioned contributions.
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Parts of this chapter have been the subject of the two following survey papers in separate

collaborations with Heitor Murilo Gomes1 and João Gama2:

• M. Bahri, A. Bifet, J. Gama, S. Maniu, H.M. Gomes. “Data Stream Analysis: Foundations,

Progress in Classification and Tools” [27].

• M. Bahri, A. Bifet, S. Maniu, H.M. Gomes. “Survey on Feature Transformation Tech-

niques for Data Streams” [28] accepted to the International Joint Conference on

Artificial Intelligence (IJCAI) 2020.

2.1 Introduction

In this chapter, we provide a general overview of the background of this thesis, the data

streaming setting. The problems addressed in this thesis also belong to the supervised

learning field; in short, we are studying data stream classification. Handling the challenges of

the stream setting may require sophisticated algorithms composed of multiple components,

such as a pre-processing task to reduce the dimensionality of input data, a drift detection

mechanism for concept drifts.

Other than the standard constraints of data streams, the need of more computational

resources to address further requirements arises when we deal with high-dimensional data.

Classification algorithms must be coupled with summarization techniques to be effective.

This chapter is organized as follows: In Section 2.2, we define the data stream setting

and outline the main limitations and challenges in this area. Then, we spotlight some

fundamental approaches used to keep the scalability of the stream methods, needed in

order to handle continuous and potentially infinite streams. Section 2.3 is dedicated to

the state-of-the-art in stream classification, by providing an overview of some well-known

and new classification methods. In Section 2.4, we survey the dimensionality reduction

1University of Waikato, Hamilton, New Zealand.
2University of Porto, Porto, Portugal.
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approaches designed to handle high-dimensional streaming data. We then highlight the key

benefits of using these approaches for data stream classification algorithms.

2.2 Preliminaries

In the era of IoT, applications in different domains have seen an explosion of information

generated from heterogeneous stream data sources every day. Hence, data stream mining

has become indispensable in many real-world applications, e.g., social networks, weather

forecast, network monitoring, spam emails filtering, call records, and more. As mentioned

in the previous chapter, static and streaming data are different because the dynamic and

changing environment of data streams makes them impossible to store or to scan multiple

times due to their tremendous volume [17].

Definition 2.1 (Data streams). Stream, incremental or online, data S, are defined as an

unbounded sequence of multidimensional, sporadic, and transient observations (also called

instances) made available along time. In the following, we assume that S = X1, . . . , XN , . . . ,

where each instance Xi is a vector that contains a attributes or features, denoted by Xi =

(x1
i , . . . , xa

i ) and N denotes the number of instances encountered thus far in the stream.

In Section 1.2, we presented the main research issues encountered in the streaming

framework and in this section we present some well-known manners to deal with such

constraints.

2.2.1 Processing

To cope with these requirements, we can use well-established methods such as processing

in one-pass and summarization (e.g., sampling) [6, 7, 29]. We describe them below.

• One-pass constraint. With the increasing nature of the data, it is no longer possible

to examine a stream of data efficiently by using multiple passes because of its huge

size and the inability to examine it more than once during the course of computation.

Considering this issue, results are obtained by scanning the data stream only once and

update the classification model incrementally or with the assumption that data arrive

in chunks (e.g., batch-incremental algorithms).

• Window models. Classification results can change over time with the fact that the data

change accordingly. Since scanning the stream multiple times is not allowed, therefore,

the so-called moving window techniques have been proposed to capture important

contents of the evolving stream. There exists three kinds of windows which are the

following [30]:

– Sliding window model: Whose size is fixed to keep the last incoming observa-

tions, i.e., only the most recent observations from the data stream are stored
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inside the window. As time changes, the sliding window moves over the stream

while keeping the same size. The set of the last elements (t) is considered as the

most recent one (see Figure 2.1).

The length of the window

(t)

(t-1)

(t-2)

Figure 2.1: Sliding window model.

– Landmark window model: In this model, the size of the window increases with

time starting from a predefined instance, called landmark. When a new landmark

is reached, all instance are removed and instances from the current landmark are

kept (Figure 2.2). One issue arises in a special case when the landmark is fixed

from the beginning, so the window will contain the entire stream.

(t)

(t-1)

(t-2)

The current landmark at time (t-13)

Figure 2.2: Landmark window of size 13.

– Damped window model: This model is based on a fading function that periodi-

cally modifies the weights of instances. The key idea consists in assigning a weight

to each instance from the stream, which is inversely proportional to its age, i.e.,

assign more weights to the recent arrived data. When the weight of an instance

exceeds a given threshold, it will be removed from the model (see Figure 2.3).
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Table 2.1: Window models comparison.

Window Model Definition Advantages Disadvantages

Sliding
process the last

received instances

suitable when the interest

exists only in the recent instances

ignoring part of

the stream

Landmark
process the entire

history of the stream

suitable for one-pass

classification algorithms

all the data are

equally important

Damped

(Fading)

assign weights to

instances

suitable when the old data

may affect the results

unbounded time

window

(w)

The weight

(t)

Figure 2.3: Damped window model.

Table 2.1 shows a brief description of the window models with their advantages and

drawbacks. Different classification methods can be adapted to use the above models; the

choice of the window model depends on the application needs [30].

The infinite nature of data streams makes them impossible to store due to resource

constraints. In this context, how can we keep track of instances seen so far with minimal

information loss?

2.2.2 Summarization

Instead of – or in conjunction with – the previous mentioned techniques, another approach

is to keep only a synopsis of summary of the information constructed from stream instances.

This can be achieved by either keeping a small part of the incoming or by constructing

other data structures storing a synopsis of the data. In what follows, we briefly present some

techniques.

• Sampling. Sampling methods are the most simple ones for synopsis construction

in the stream framework. Storing static datasets is simple enough. In contrast, when

dealing with large data streams, this is an impossible task. In this context, it is intuitively

reasonable to sample the stream in order to keep some “representative” instances and
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thus decrease the stream size that will be stored in memory [31]. This method is easy

conceptually and efficient to implement; however, the samples can be biased and not

too representative.

• Histograms. Histograms are widely used with static datasets but their extensions to

the stream framework is still a challenging task. Some techniques [32] have proposed

histograms for the incremental setting to handle evolving streams. However, they do

not always work because the distribution of the instances is assumed to be uniform

which is not always true.

• Sketching. Sketch-based methods are well-known for keeping small, but approximate,

synopses of data [33, 31]. They build a summary of data stream using a small amount

of memory. Among them, we cite the count-min sketch [19] which is a generalization

of bloom filters [34] used for counting items of a given item, using approximate counts

while keeping sound theoretical bounds on the counts.

• Dimensionality reduction. Dimensionality reduction (DR) is a very popular tool to

tackle high-dimensional data, another factor that makes classification algorithms

expensive. It is defined as the transformation that maps instances from a high-

dimensional space onto a lower-dimensional one while preserving the distances

between instances [16]. Thus, instead of applying the classification algorithm on

the high-dimensional data, we apply it on their small representation, in the low-

dimensional space.

2.3 Stream Supervised Learning

One of the most important tasks in data mining is classification [5].

Definition 2.2 (Classification problem). The problem of classification, a supervised learning

task, consists in one attempts to predict a class label, (y′), of some unlabeled data instance

(X ′) composed of a vector of attributes, by applying a generated model M (trained on labeled

data (X, y)) [35].

y′ = M(X ′). (2.1)

Traditionally, data mining has been performed over static datasets in the offline setting

where, for the classification task, the training process is applied on a fixed size dataset

and afford to read the input data several times. However, the dynamic and open-ended

nature of data streams has outpaced the capability of traditional classifiers, also called batch

classifiers, to be loaded into memory due to the technical requirements of the incremental

environment [36]. The difference between classifiers for statics datasets (batch classifiers)

and data stream classifiers resides in the way of how the learning and prediction are

performed. Unlike batch learning, online learning must deal with data incrementally and
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Figure 2.4: The data stream classification cycle [36].

use the one-pass processing. Moreover, and most importantly, they must use a limited

amount of time to allow analysis of each instance without delay, and a limited amount of

space to avoid storing huge amounts of data for the prediction task. Figure 2.4 illustrates the

general model of the classification process within a data stream environment taking into

account the requirements outlined above [35]:

1. The classifier receives the next training instance available from the stream (one-pass

constraint).

2. The classifier processes the instance and updates the current model quickly using only

a limited amount of memory.

3. The classifier predicts, in a first attempt, the class label of unlabeled instances and use

them later to update the model.

A multitude of classification algorithms for static datasets that have been widely studied

in the offline processing, and proved to be of limited effectiveness when dealing with evolv-

ing data streams, have been extended to work within a streaming framework [37]. A general

taxonomy divides classification algorithms into four main categories 2.5: (i) frequency-

based; (ii) neighborhood-based; (iii) tree-based; and (iv) ensemble-based classification

algorithms.
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Classification

Neighborhood-basedFrequency-based

kNN Hoeffding-treeNaive Bayes Bagging

EnsemblesTree-based

Figure 2.5: Taxonomy of classification algorithms.

2.3.1 Frequency-Based Classification

One of the most simple classifiers is Naive Bayes (NB) [38]. It uses the assumption that the

attributes are all independent of each other and w.r.t. the class label, uses Bayes’s theorem

to compute the posterior probability of a class given the evidence (the training data). This

assumption is obviously not always true in practice, yet the NB classifier has a surprisingly

strong performance in real-world scenarios. Naive Bayes is a special algorithm that needs

no adaptation to the stream setting because it naturally trains data incrementally thanks to

its simple and easy frequency-based strategy.

2.3.2 Neighborhood-Based Classification

k-Nearest Neighbors (kNN) is a neighborhood-based algorithm that has been adapted to

the data stream setting. It does not require any work during training but it uses the entire

dataset to predict the class labels for test examples. The challenge with adapting kNN to the

stream setting is that it is not possible to store the entire stream for the prediction phase.

An envisaged solution to solve this issue is to manage the examples that are remembered

so that they fit into limited memory and to merge new examples with the closest ones

already in memory. Yet, searching for the nearest neighbors still costly in terms of time and

memory [39]. Another new kNN method that has been proposed recently in the stream

framework is Self-Adjusting Memory kNN (samkNN) [40]. SamkNN uses a dual-memory

model to capture drifts in data streams by building an ensemble with models targeting

current or former concepts.

2.3.3 Tree-Based Classification

Several tree-based algorithms have been proposed to handle evolving data streams [41,

42, 43]. A well-known decision tree learner for the data streams is the Hoeffding tree

algorithm [41], also known as Very Fast Decision Tree (VFDT). It is an incremental, anytime
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decision tree induction algorithm that uses the Hoeffding bound to select the optimal

splitting attributes. However, this learner assumes that the distribution generating instances

does not change over time. So, to cope with an evolving data stream, a drift detection

algorithm is usually coupled with it. In [44] an adaptive algorithm was proposed, Hoeffding

Adaptive Tree (HAT), extending the VFDT to deal with concept drifts. It uses the ADaptive

WINdowing (ADWIN) [21], a change detector and estimator, to monitor the performance of

branches on the tree and to replace them with new branches when their accuracy decreases

if the new branches are more accurate. These algorithms require more memory as the

tree expands and grows; they also sacrifice computational speed due to the time spent in

choosing the optimal attribute to split.

2.3.4 Ensembles-Based Classification

Ensemble learning is receiving increased attention for data stream learning due to its

potential to greatly improve learning performance [25, 45]. Ensemble-based methods, used

for classification tasks, can easily be adapted to the stream setting because of their high

learning performance and their flexibility to be integrated with drift detection strategies.

Unlike single classifiers, ensemble-based methods predict by combining the predictions of

several classifiers. Several empirical and theoretical studies have shown the reasoning that

combining multiple “weak” individual classifiers leads to better predictive performance than

a single classifier [44, 46, 47], as illustrated in Figure 2.6. Ensembles have several advantages

over single classifier methods, such as: (i) robustness: they are easy to scale and parallelize;

(ii) concept drift : they can adapt to change quickly by resetting or updating current under-

performing model of the ensemble; and (iii) high-predictive performance: they therefore

usually generate more accurate concept descriptions.

An extensive review about the related work is provided in [48], and we present briefly

here the well-known and the recent ones. Online Bagging [49] is a streaming version of

Bagging [46] which generates k models trained on different samples. Different from batch

Bagging where samples are produced with replacement, online Bagging selects weighted

samples sampled from a Poisson(1) distribution. Leveraging Bagging (LB) [24] is based

on the online Bagging method. In order to increase the accuracy, LB handles drifts using

ADWIN [21], where if a change is detected, the worst classifier is erased and a new one is

added to the ensemble. LB also induces more diversity to the ensemble via randomization.

Adaptive Random Forests (ARF) [25] is a recent extension of Random Forest method to

handle evolving data streams. ARF uses Hoeffding tree as a base learner where attributes

are randomly selected during training. It is coupled with a drift detection scheme using

ADWIN on each ensemble member where we replace a tree, once a drift is detected, by an

alternate tree trained on the new concept. Streaming Random Patches (SRP) [50] is also a

novel method that combines random subspaces and bagging while using a strategy to detect

drifts similar to the one introduced in [25].
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Figure 2.6: Ensemble classifier.

One notable issue related to the ensemble-based methods with evolving data streams

is the massive computational demand (in terms of memory usage and running time).

Ensembles require more resources than single classifiers which become significantly worse

with high-dimensional data streams.

Ensemble-based methods pose a resources-accuracy tradeoff, they produce better predictive

performance than single classifiers, indeed, at the price of being more costly in terms of

computational resources.

2.4 Dimensionality Reduction

Definition 2.3 (Dimensionality reduction). Given an instance Xi which is composed of

a vector of a attributes Xi = x1
i , . . . , xa

i . The DR comprises the process of finding some

transformation function (or map) A : R
a → R

m, where m ≪ a, to be applied on each

instance Xi from the stream S as follows:

Yi = A(Xi), (2.2)

where Yi = y1
i , . . . , ym

i .

We distinguish two main different dimensionality reduction categories: (i) feature

selection which consists in selecting a subset of the input features, i.e., the most relevant

and non-redundant features, without operating any sort of data transformation [51]; and

(ii) feature transformation – also called feature extraction – which consists in constructing

from a set of input features in high-dimensional space, a new set of features in a lower
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Figure 2.7: Taxonomy of dimensionality reduction techniques.

dimensional space [52].

Feature transformation and feature selection have different processing requirements.

Despite the fact that both reductions are used to minimize an input feature space size,

feature transformation is a DR that creates a new subset – or combinations – of features by

exploiting the redundancy and noise of the input set of features, whereas feature selection

is characterized by keeping the most relevant attributes from the original set of features

present in the data without changing them.

Some recent surveys on streaming feature selection have been proposed [53, 54, 55,

56]. The major weakness of this category is that it could lead to a data loss. The latter

may happen when, unintentionally, we remove features that might be useful for a later

task (e.g., classification, visualization). In the following, we review the most crucial feature

transformation techniques that are – or can be – used in the stream framework and discuss

their similarities and differences. In what follows, we refer to feature transformation as

dimensionality reduction.

A Taxonomy of Dimensionality Reduction. In the following, we introduce DR tech-

niques that have been widely used in machine learning algorithms. These techniques

operate by transforming and using the most relevant feature combinations, in turn reducing

space and time demands; this can be crucial for applications such as classification and

visualization. Traditionally, many techniques have been proposed and thoroughly used

in the offline framework for static datasets, but these techniques cannot be used in

the streaming framework, due to the requirements imposed by the latter (e.g., one-pass

processing). Figure 2.7 shows a taxonomy that subdivides the DR techniques as follows,

data-dependent, data-independent, and graph-based transformation techniques. The data-

dependent techniques are derived from the whole data to achieve the transformation,

whereas the data-independent techniques are based on random projections and do not
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use the input data to perform the projection. Graph-based techniques are also data-

dependent that build a neighborhood graph to maintain the data structure (i.e., preserves

the neighborhood after projection).

2.4.1 Data-Dependent Techniques

Data-dependent techniques construct a projection function – or matrix – from the data.

This requires the presence of the entirety – or at least a part of – the dataset. In the streaming

context, where data are potentially infinite, the classical techniques from this category are

therefore limited, since keeping the entire data stream in memory is impractical.

Principal Components Analysis

Principal Components Analysis (PCA) is the most popular and straightforward unsupervised

technique that seeks to reduce the space dimension by finding a lower-dimensional basis

in which the sum of squared distances between the original data and their projections is

minimized, i.e. being as close as possible to zero while maximizing the variances between

the first components. Mathematically, PCA aims to find a linear mapping formed by a

few orthogonal linear combinations, also called eigenvectors or PCs, from the original

data that maximizes a certain cost function. However, PCA computes eigenvectors and

eigenvalues from a computed covariance matrix, relying on the whole dataset. This is

ineffective for streaming data since a re-estimation of the covariance matrix from scratch

for new observations is unavoidable.

In this context different variations of component analysis have been adapted to the

stream setting. For instance, Incremental PCA (IPCA) [57] focuses on how to update

the eigenvectors of images (eigenimages) based on the previous coefficients. Candid

Covariance-free Incremental PCA (CCIPCA) [58] is another extension that updates the

eigenvectors incrementally and does not need to compute the covariance matrix for each

new incoming instance (images) which makes it very fast. The main difference among these

techniques arises in how the eigenvectors are updated. On the other hand, the common

limitation concerns their application domain since both techniques deal with images as

high-dimensional vectors and have not been tested on different types of data [57, 58]. Ross,

Lim, Lin, and Yang proposed a batch-incremental PCA that deals with a set of new instances

each time a batch is complete. However, this approach is not suited for instance-incremental

learning (i.e., processing instances one by one incrementally). Mitliagkas, Caramanis,

and Jain proposed a memory-limited streaming PCA that attempts to make vanilla PCA

incremental and computation-efficient with high-dimensional data where samples are

drawn from a Gaussian spiked covariance model. A more recent work [61] proposes a single-

pass randomized PCA technique that iteratively update the subspace’s orthonormal basis

matrix within an accuracy-performance tradeoff. Yu, Gu, Li, Liu, and Li claim that this
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technique works well in many applications, albeit it has been evaluated on a single image

dataset.

The above PCA techniques apply to data stream mining algorithms to alleviate their

computation costs. For instance, Feng, Yan, Ai-ping, and Quan-yuan proposed an efficient

online classification algorithm, FIKOCFrame, that uses a PCA variant, fast iterative kernel

PCA [63], to incrementally reduce the dimensionality before classification.

Cardot and Degras proposed recently a comparative review of the incremental PCA

approaches where they provide guidance for selecting the appropriate approach based on

their accuracy and computation resources (time and memory).

Multi-Dimensional Scaling

Multi-Dimensional Scaling (MDS) [65] is a well-known unsupervised technique used

for embedding. It projects a given distance matrix into a non-linear lower-dimensional

space while preserving the similarity among instances. Nevertheless, this technique is

computationally expensive with large datasets and non-scalable because it requires the

entire data distance matrix. To cope with this issue, some incremental versions have been

proposed to alleviate the computational requirements.

Incremental MDS (iMDS) technique, proposed by Agarwal, Phillips, Daumé III, and

Venkatasubramanian, keeps some distance preservation using the so-called out of sample

mapping without the need of reconstructing the whole matrix. A more recent work by Zhang,

Huang, Mueller, and Yoo proposed a new version of MDS for high-dimensional data, named

scMDS. It is a batch-incremental technique where authors introduced a realignment matrix

for each batch to overcome the concept drift that may occur because each batch may have

a different feature bases. Nevertheless, the efficiency of this batch-incremental technique

depends on the size of the batch.

Auto-Encoder

Auto-Encoders (AEs) [68] are a family of Neural Networks (NNs) which are designed for

unsupervised learning, for learning a low-dimensional representation of a high-dimensional

dataset, where the input is the same as the output. An AE has two main components,

(i) the encoder step, during which the input data are compressed into a latent space

representation; and (ii) the decoder step where the input data are reproduced from this new

representation. Vincent, Larochelle, Bengio, and Manzagol introduced the denoising AE

(DAE), a variant of AE, that extracts features by adding perturbations to the input data and

then attempts to reconstruct the original data. Zhou, Sohn, and Lee proposed an online DAE

that adaptively uses incremental feature augmentation, depending on the already existing

features, to track drifts. However, this work does not address the convergence properties of

the training task (the hyperparameters configuration used to construct the network, e.g.,

the number of epochs) that are crucial in the stream setting.
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Unlike other algorithms, NNs naturally handle incremental learning tasks [71]. While

dealing with data streams, NNs learn by passing the data in smaller chunks (Mini-Batch

Gradient Descent) or an instance at a time (Stochastic Gradient Descent). Using this way,

each instance is going to be processed only once without being stored. The advantage

of using this kind of technique is that it is not limited to linear transformations. Non-

linearities are introduced using non-linear activation functions, NNs are therefore more

flexible. Nevertheless, this high-quality results that this family of learners offers come at the

price of slow learning speed due to the infinite nature of data and the large parameter space

needed.

Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) [72], also known as Fisher Discriminant Analysis (FDA),

is a linear transformation technique. Contrary to the techniques mentioned earlier, LDA

performs a supervised reduction that takes into account the class labels of instances by

looking for efficient discrimination of data in a way to maximize the separation of the existing

categories (class labels), while other techniques, e.g. PCA, aim at an efficient representation.

However, when dealing with evolving data streams, the set of labels of instances may be

unknown at each learning stage because new classes may appear (concept evolution) [73].

One way to cope with this issue is to update the discriminant eigenspace when a

new class arrives, as introduced in the Incremental LDA (ILDA) approach [74]. Another

streaming extension of LDA has been proposed, called IDR/QR [75]. It applies a singular

value decomposition suitable for large datasets that uses less computational cost than

ILDA. Kim, Stenger, Kittler, and Cipolla proposed an ILDA that incrementally updates the

discriminant components using a different criterion. They claim to be more efficient in

terms of time and memory than the previous approaches.

Maximum Margin Criterion

Maximum Margin Criterion (MMC) [77] is a supervised feature extractor technique based

on the same representation of LDA while maximizing a different objective function. To

overcome the limitations of MMC with streaming data, Yan, Zhang, Yan, Yang, Li, Chen,

Xi, Fan, Ma, and Cheng proposed an Incremental MMC (IMMC) approach, which infers

an online adaptive supervised subspace from data streams by optimizing the MMC and

updating the eigenvectors of the criterion matrix incrementally. Hence, the computation

of IMMC is very fast since it does not need to reconstruct the criterion matrix when new

instances arrive.

The incremental formulation of the proposed algorithm is mentioned in [78] with the

proof. A major drawback of this approach is its sensitivity to parameter setting.
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2.4.2 Data-Independent Techniques

Data-independent techniques are mainly based on the principle of random projections.

These techniques are therefore appropriate for evolving streams because they generate

the projection matrices (or functions), and transform data into a low-dimensional space,

independently from the input data.

Random Projection

Random projection is a powerful technique for dimensionality reduction that has been

widely applied with several mining algorithms for solving numerous problems [79]. RP is

based on the Johnson-Lindenstrauss (JL) Lemma 2.4.2 [80] which asserts that N instances

from a Euclidean space can be projected into a lower-dimensional space of O(log(N/ϵ2))

dimensions under which pairwise distances are preserved within a multiplicative factor of

1± ϵ [81].

Let ϵ ∈ [0, 1], S = ¶X1, ..., XN♢ ∈ R
a. Given a number m ≥ log(N/ϵ2), ∀Xi, Xj ∈ S there

is a linear map A : Ra → R
m such that:

(1− ϵ)∥Xi −Xj∥22 ≤ ∥AXi −AXj∥22 ≤ (1 + ϵ)∥Xi −Xj∥22, (2.3)

where A is a random matrix that can be generated using, e.g., a Gaussian distribution.

Hence, RP offers a computationally-efficient and straightforward way to compress the

dimensionality of input data rapidly while approximately preserving the pairwise distances

between any two instances.

Compressed Sensing

Compressed Sensing (CS), also called compressed sampling, technique based on the

principle that a data compression method has to deal with redundancy while transforming

and reconstructing data [23]. Given a sparse/high-dimensional vector X ∈ R
a, the goal of

CS is to measure Y ∈ R
m and then reconstruct X, for m≪ a, as follows:

Y = AX, (2.4)

where A ∈ R
p×d is called a measurement, (sampling, or sensing ) matrix.

The technique has been widely studied and used throughout different domains in

the offline framework, such as image processing [82], face recognition [83], and vehicle

classification [84]. The basic idea is to use orthogonal features to provably and properly

represent sparse and high-dimensional vectors X ∈ R
a as well as reconstruct them from a

small number of feature vectors Y ∈ R
m, where m≪ a. Two main concepts are crucial the

stream recovery with high probability [23]:
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Sparsity: CS exploits the fact that data may be sparse and hence compressible in a

concise representation. For an instance X with support supp(X) = ¶l : xl ̸= 0♢, we define

the ℓ0-norm ∥X∥0 = ♣supp(X)♣, so X is s-sparse if ∥X∥0 ≤ s. The implication of sparsity is

important to remove irrelevant data without much loss.

Restricted Isometry Property (RIP): A is said to respect the RIP for all s-sparse data if

there exists ϵ ∈ [0, 1] such that:

(1− ϵ)∥X∥22 ≤ ∥AX∥22 ≤ (1 + ϵ)∥X∥22, (2.5)

where X ∈ S. This property holds for all s-sparse data X ∈ R
a.

RP and CS are closely related. Random matrices (e.g., Bernoulli, Binomial, Gaussian)

are also known to satisfy the RIP with high probability if m = O(s log(a)) [85], which is

essentially a JL type condition on projections using the sensing matrix A. The difference is

mainly in terms of how big the matrix A has to be.

Hashing Trick

Hashing trick (HT) [20], also known as feature hashing, is a fact and space-efficient technique

that projects sparse instances or vectors into a lower feature space using a hash function.

Given a list of keys that represents a set of features from the input instances, it computes

then the hash function for each key, which will ensure its mapping to a specific cell of a fixed

size vector that constitutes the new compressed instance.

An important point to make is that, generally, the quality of models changes when the

size of the hash table increases. Usually, the larger the hash table size is, the better is the

model. However, an optimal point can be picked which guarantees almost perfect model,

while the output dimension size is not to be very large. The HT technique has the appealing

properties of being very fast, simple, and sparsity preserving. A significant advantage to point

out is that this technique is very memory-efficient because the output feature vector size is

limited, making it a clear candidate for using, especially for online learning on streams.

Locality Sensitive Hashing

The basic idea behind the Locality Sensitive Hashing (LSH) [86] is the application of hashing

functions which map, with high probability, similar instances (in the high-dimensional

d-space) that have the same hash code to the same bucket. I.e., if instances are phrases that

are very similar to each other, they might be different by only one or a couple of words or

even one character; hence, LSH will generate very similar, ideally, identical hash codes to

increase the probability of collision for those instances. LSH operates by partitioning the

space with hyperplanes into disjoint regions, which are spatially proximate. A particular

hyperplane is going to cut the space into two half-spaces, and arbitrarily one side is called

positive “1” and the other side negative “0”; this will help in classifying the instances for that
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dimension. The process is iterative: the first bit in the hash code of an instance is assigned

with respect to its position. Then, the process keeps cutting the space and assigning bits

the same way. Therefore, we obtain the hash codes based on the bits assigned after each

hyperplane.

There is an efficiency-computational resources tradeoff with this technique. To achieve

good accuracy, LSH requires the use of several hash functions and consequently the memory

usage increases which will slow down the reduction process and make it less suitable with

large data streams. LSH technique is used in several interesting real-word applications. For

instance, Netflix users with similar tastes in movies for recommendation systems, plagiarism

given a body of documents, LSH allows to find similar texts. Also, in classification, e.g.,

classification by topic pages with similar words where pages that have similar sets of words

are likely to be about the same topic.

2.4.3 Graph-Based Techniques

Graph-based techniques are also data-dependent techniques that start by constructing a

graph based on instance similarities and then operate on this representation.

Isometric Mapping

Isomap [87] is a manifold learning technique that can be viewed as a combination of the

principles of PCA and MDS. It starts by building a neighborhood graph on the manifold from

which a geodesic distance matrix is constructed. Isomap assumes that pairwise geodesic

distances are equal to Euclidean ones (obtained by applying the MDS on the resulting

geodesic distance matrix) in the low-dimensional space. Since it requires the computation

of pairwise distances, Isomap is thus not appropriate for the incremental setting with large

datasets.

Law, Zhang, and Jain proposed a streaming version of Isomap that updates the geodesic

distances and the coordinates incrementally. This technique is not fully incremental because

a new instance can affect the neighborhood structure and, therefore, the geodesic matrix.

Thus, there is a need to examine how this new instance interacts with the existing ones

before finding its coordinates. Another incremental Isomap, denoted S-Isomap, has been

proposed lately by Schoeneman, Mahapatra, Chandola, Napp, and Zola which does not

recompute the whole geodesic distance matrix when a new instance arrives, but only finds

its nearest neighbors (that will be used to approximate the geodesic distance between this

new observation and the others already available in the batch). This approach fails when

used to process data because it assumes that the data are weakly correlated, and thus unable

to detect when concept drift takes place.
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t-distributed Stochastic Neighbor Embedding

t-distributed Stochastic Neighbor Embedding (tSNE) [90] is one of the most prominent DR

techniques in the state-of-the-art. It is a graph-based non-linear technique proposed to

visualize high-dimensional data embedded in a lower-space (typically 2 or 3 dimensions) by

using the insight that similar instances in the high-dimensional space should be represented

by close instances in the low-dimensional space. tSNE uses a fixed parameter named

perplexity similar to the number of neighbors that controls the neighborhood size of each

node in the graph, which prevents it from preserving global data structure (only local). The

main weakness of tSNE in our context is about the scalability, i.e. to add more instances, we

need to re-run tSNE from scratch.

Uniform Manifold Approximation and Projection

Uniform Manifold Approximation and Projection (UMAP) [26] is a new manifold technique,

similar to tSNE, that has attracted much attention recently and is built upon rigorous

mathematical foundation through the Riemannian geometry. UMAP starts by constructing

open balls over all instances and building simplicial complexes. The space reduction is

obtained by finding a representation, in a lower-space, that closely resembles the topological

structure in the original space. Given the new dimension, an equivalent fuzzy topological

representation is then constructed. Afterward, UMAP optimizes it by minimizing the cross-

entropy between these two fuzzy representations [26]. In addition to being faster than tSNE,

UMAP offers also a better visualization quality by preserving more of the global structure.

Unlike tSNE [90], UMAP has no restriction on the projected space size making it useful not

only for visualization, but also as a general DR technique for mining algorithms.

2.5 Evaluation Metrics

After training the model it is crucial to validate it by evaluating the classifier and verifying

its applicability. Several methods exist and the most common method is the prequential.

The prequential evaluation [91], known also as the interleaved test-then-train evaluation,

is a popular evaluation method applied exclusively on data streams. In the prequential

evaluation, instances are used to test–or predict on– the current model before using them

to train–or update– the model. To evaluate the performance of our proposed classification

algorithms, we emphasize on three evaluation criteria that are strongly related.

1. Accuracy. The accuracy (AC) [92] of a learning algorithm is the most pertinent concern

that measures the percentage (%) of correct classified instances ci that a model makes

on a dataset, it is defined in Equation (2.6):

AC =

∑

i

ci

N
, (2.6)
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Figure 2.8: Handling data stream constraints. Traditional classification algorithms offer
exact accuracy but are expensive because they process the entire stream (that may be high-
dimensional). Sophisticated algorithms use an internal summarization technique(s) in order
to improve their performance what leads generally to an accuracy-resources tradeoff.

where N presents the total number of instances received so far from the stream.

The most accurate classifier is the one that achieves the highest accuracy and makes

few mistakes when predicting the class labels of unlabeled instances.

2. Running time. A good classification algorithm processes instances as fast as possible

once they arrive. The running time comprises any internal pre-processing (e.g.,

dimensionality reduction), learning, and prediction step as new instances arrive.

3. Memory. The memory – measured in megabytes (MB) – used by an algorithm is: (i) the

memory used to store the current model(s); and/or (ii) the memory used to store some

running statistics useful for the incremental processing of data streams.

2.6 Discussions

DR plays a significant role in the data stream mining area since it aims at keeping the most

relevant features in order to reduce the computational cost of stream mining algorithms

(Figure 2.8).

Techniques such as PCA, LDA, and MDS are the most classical ones for DR. As we

mentioned before in Section 2.7, some versions of the data-dependent techniques have
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been proposed to deal with evolving data streams. Nevertheless, this category of techniques

usually provides good accuracy when combined with stream data mining algorithms. On the

other hand, data-independent techniques are naturally adapted to the evolving environment

of data streams and do not suffer from the scalability problem. Moreover, using data-

independent techniques is extremely fast because it is performed without including the

input data content. This transformation performs as well, if not better, as data-dependent

transformation because it is less sensitive to new unseen instances and could benefit from

the infinite nature of streams. Sometimes data-independent schemes could destroy any

interpretability in the case of visualization. Thus, as illustrated in Figure 2.8, the choice of

the technique (data-dependent or data-independent) leads to an accuracy-resource tradeoff

that may depend on the problem being solved and the algorithm used (e.g., when using a

graph-based manner for visualization to preserve the neighborhood and the global structure

of data).

2.7 Conclusion

Processing data streams is a big challenge in the data mining field because of the additional

constraints created by the large volume of unbounded data. In addition to that, the high

dimensionality of data streams in some domains makes the issue more challenging in the

stream framework. In this chapter, we studied the basic notions of evolving data streams and

discussed the different processing techniques that could be used by mining algorithms to

address the the stream requirements. We provided thereafter an overview of state-of-the-art

classifiers and summarization techniques proposed in the stream setting.

In the second part of the thesis, we will detail our contributions consisting in novel

versions of some classifiers that use summarization techniques under the streaming

framework. In the next chapter, we start by presenting our new developments of the Naive

Bayes algorithm using sketching and DR techniques.
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After providing in the first part a deep overview of the literature including the concepts

used in our work, we focus now on our contributions. In this second part, the major part

of this thesis, we detail the developments that we have proposed in order to build our

classification approaches based on different summarization techniques for evolving data

streams. This part is composed of four chapters:

• Chapter 3 presents the basic concepts of the count-min sketch [19] which is used

to create our classification approach based on Naive Bayes, called SketchNB. We

attempt thereafter to increase the performance of the latter with high-dimensional

data streams using a fast dimensionality reduction technique, the hashing trick. Finally,

an approach on the data stream framework without has to address concept drifts. For

this to happen, we incorporate an efficient change detector with strong guarantees,

ADWIN [21].

• Chapter 4 explores another dimensionality reduction technique based on random

projection, compressed sensing [23], and uses it in conjunction with the k-nearest

neighbors classifier. The resulting algorithm, CS-kNN, aims to reduce memory and

time requirements. Theoretical guarantees characterizing the similarity between

the kNN neighborhoods before and after the projection are provided. To obtain

more stable predictive performance, because of the stochasticity engendered by the

compressed sensing, we use the CS-kNN approach as a base learner to the Leveraging

Bagging ensemble-based method.

• Chapter 5 presents a similar strategy to the one described in Chapter 4. We propose an

ensemble method, based on the adaptive random forest [25], which pre-processes the

input instances using multiple CS random matrices to reduce the resource usage.

• Chapter 6 remains in the context of kNN and explores a new visualization technique,

UMAP [26], that has attracted a lot of attention because of its high-quality results

and neighborhood-preservation nature. We use UMAP as a dimensionality reduction

technique in a batch-incremental manner to compress the input space size. The

output is then used with the kNN instead of using high-dimensional data. Promising

results are obtained with this batch-incremental UMAP-kNN approach because both

methods, kNN and UMAP, are based on exploring the neighborhood of instances,

using a measure of “proximity”.
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This chapter contains results from our paper [93] published at the IEEE International

Conference on Big Data, (BigData) 2018 under the title “Sketch-Based Naive Bayes Algorithms

for Data Streams” and presented as a poster at the Machine Learning Summer School

(MLSS)1 2019.

3.1 Introduction

As mentioned in Chapter 2, several algorithms have been proposed in the literature to

deal with this problem such as decision trees, naive Bayes, neural networks, or k-nearest
1https://smiles.skoltech.ru/mlss2019.
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neighbors. To cope with the evolving nature of data streams and their challenges previously

enumerated, techniques such as sketches, a class of specialized algorithms that can produce

approximate results efficiently with mathematically proven error bounds, are useful to

process infinite data using fewer resources.

The sketches are a data structure that stores the counts of categorical data, e.g., hashing a

word into a particular cell using a hash function. Naive Bayes is a frequency-based algorithm

that keeps counts about categorical data during the learning phase. Sketches and naive

Bayes could be unified together to obtain a memory-efficient naive Bayes.

In this chapter, we focus on these important challenges in classification over data streams,

by exploring the benefits of introducing a sketch technique for streams. The main focus

of this work attempts to extend the stream naive Bayes algorithm to deal with massive

data by storing data with high-quality approximations in a sketch table which allows both

fast predictions and the use of a minimal amount of space for training (which answers

Q1). We thereafter extend this first proposed approach to handle changes in the evolving

distribution using a concept drift mechanism (Q3), namely ADWIN [21]. Finally, we propose

a third contribution to the two stated algorithms that aims to address high dimensionality

(Q1 and Q2) using the hashing trick technique (HT) [20], detailed in Section 2.4.2.

The remainder of the chapter is organized as follows. In Section 3.2, we present the main

components related to our contributions. In Section 3.3, we detail our proposed approaches.

Section 3.4 discusses the different experiments performed on both artificial and real datasets.

Finally, we draw our conclusion in Section 3.5.

3.2 Preliminaries

We assume that the data stream S contains an infinite number of instances

X1, X2, . . . , XN , . . . , where each instance is a vector containing a attributes, denoted

by Xi = (x1
i , x2

i , . . . , xa
i ). We will denote by N the number of instances encountered thus far

in the stream. The classification problem consists in assigning each instance Xi to a class

cj ∈ C, where C is the set of classes.

3.2.1 Naive Bayes Classifier

One of the most often used classifiers is Naive Bayes (NB) [38]. It uses the assumption

that the attributes are all independent of each other and, w.r.t. the class label, uses Bayes’s

Theorem to compute the posterior probability of a class given the evidence (the training

data). This assumption is obviously not always true in practice, yet the NB classifier has a

surprisingly strong performance in real-world scenarios. Using Bayes’s theorem one can
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Figure 3.1: Count-min sketch of a width w and a depth d.

compute the probability of each class:

P (C ♣ A1, . . . , Aa) =
P (A1, . . . , Aa ♣ C) · P (C)

P (A1, . . . , Aa)
, (3.1)

where P (C♣A1, . . . , Aa) is the posterior probability of the target class given the attributes,

P (C) is the prior probability of the class, P (A1, . . . , Aa♣C) is the likelihood, and P (A1, . . . , Aa)

is the prior probability of attributes. Once the probabilities are computed, the class having

the highest probability is chosen as the predicted class.

The training in naive Bayes is straightforward. To compute class probabilities, we

estimate them as a fraction of the instances seen thus far, as follows:

• Estimate P (C) as the fraction of records having C = cj ,

P (C = cj) =
Count(C = cj)

N
.

• Estimate P (X = A1, ..., Aa♣C) as the fraction of records with C = cj for which X =

A1, ..., Aa,

P (X = Ai♣C = cj) =
Count(X = Ai ∧ C = cj)

Count(C = cj)
.

We use this attribute independence assumption in the following to construct our NB

approach with the Count-Min Sketch (CMS) technique.

3.2.2 Count-Min Sketch

Nowadays, applications generate data at rates and volumes that cannot be reasonably stored.

To cope with the vast scale of information, one way is to use synopsis techniques [33, 94,

95]. Among them, the CMS [19] which is a generalization of Bloom filters [34] introduced to

count items of a given type using approximate counts that are theoretically sound.
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Definition 3.1 (Count-min Sketch). CMS consists of a two-dimensional array of w · d cells

of counters, having a width w of columns, and a depth d of rows. w and d are controlled by

the approximation parameters ϵ and δ, such that, with probability 1 − δ, the approximate

counts obtained from the sketch are within an absolute error ϵ of the true counts. Each row

in d is a different hash function h1, h2, . . . , hd; each hi is used to determine in which of the w

counters on row i a count is incremented. Figure 3.1 shows the CMS table. Depending on the ϵ

and δ parameters, the CMS should be initialized using the following dimensions: d = e
ϵ

and

w = ln 1
δ

, with all cells set to 0.

Each time a new instance arrives in the data stream S, and for each attribute and class,

each hash function hi is applied and the corresponding counter (in the range 1, . . . , w) is

incremented. When an instance needs to be classified, the corresponding counts using the

same hash functions need to be retrieved, i.e., when training the classifier, one needs to

look at all cells for the attribute and the class being estimated. This is done by taking the

minimum overall values in the corresponding cells. This is because, since each cell has been

incremented each time an attribute has been seen, each cell represents an upper bound

on the actual value. Assuming a data stream with N arrivals, let qi be the true count of an

item being estimated. It has been shown in [19] that the estimated count for an item i is

at least qi since all the inserts are non-negative, and due to collisions, the counts can be

over-estimated to at most qi + ϵ ·N with probability at least 1− δ, i.e., an upper bound to the

estimate.

Little research has focused on using efficient data structures designed to reduce memory

usage, such as CMS, with standard classifiers. Kveton, Bui, Ghavamzadeh, Theocharous,

Muthukrishnan, and Sun proposed three graphical model sketches algorithms that estimate

the marginal and the joint probabilities within a Bayesian network. Authors experimented

with the special case of Bayesian networks, naive Bayes. After analyzing them, it was proved

that their proposed GMFactorSketch is the best approximation. The main idea of the

approach is to use 2a−1 sketch tables, one for each variable and one for each variable-parent

pair in the graph. Given a test example, it retrieves the approximated count for each attribute

from each corresponding sketch tables to compute the conditional probabilities and to

predict thereafter the class label. None of the above-mentioned approaches is efficient in

terms of memory with large datasets, as evidenced in our experimental Section 3.4.

3.3 Sketch-Based Naive Bayes Algorithms

Sketch-based techniques summarize massive data streams in a limited space by using

multiple hash functions to decrease the probability of having wrong counts due to collisions.

The main idea behind the sketch-based approaches is the use of the CMS technique to store

the stream for memory-efficiency during the learning phase.
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3.3.1 SketchNB Algorithm

We aim to adapt the CMS [19] to the classic naive Bayes classifier by leveraging its strong

theoretical guarantees. The independence assumption in NB means that each attribute

can be counted separately; this simplifies the learning for a large number of attributes, and

allows us to use the sketch efficiently. During the classification process, the sketch table will

be used in two steps:

• Learning : updating the sketch table for each attribute each time a new instance arrives.

• Prediction: retrieving the counts of a given instance from the CMS table, and use them

to compute the naive Bayes probability (see Equation 3.1).

Let us start by discussing the learning process using the CMS, as described in Algorithm 1.

Once an instance Xi = (x1
i , x2

i ...xa
i ) is received, the classification algorithm starts by updating

the sketch with the counts of the attributes value by inserting each of the attribute value as

⟨k, xk
i , c⟩, k ∈ [0 · · · a]. The sketch table will thus contain the counts of the attributes values,

using each of the d hash functions a times according to the number of attributes, so O(d · a)

times in total.

Figure 3.1 shows the updating process of the sketch table. We start firstly by creating the

sketch table and initializing it to zero (line 2). Given an instance Xi that belongs to a class cj ,

each attribute value xk
i is mapped to one counter in each row using the set hash functions.

Each of those counts gets incremented whenever a particular similar attribute value in

the same class is seen (ligne 5). Therefore, each of these numbers is going to be an upper

bound. Since all of them are going to be an upper bound, only the minimum can be taken

for the prediction phase using the same set of hash functions used during the update process.

Algorithm 1 Learning phase. Symbols: S = ¶X1, X2, . . .♢: labeled data stream; ϵ: epsilon; δ:
delta.

1: function UPDATESKETCH(S, ϵ, δ)
2: CMS←0 ▷ create the sketch with w · d, w =

[

e
ϵ

]

, d =
[

ln1
δ

]

3: for all Xi ∈ S do

4: for all xk
i ∈ Xi do ▷ k ∈ [1 · · · a]

5: CMS[l, hl(< k, xk
i , cj >)] +=1 ▷ l = [1 · · · d], increment the cells using d hash

functions in [1..w]
6: end for

7: end for

8: end function

Obverse that Algorithm 2 assumes that we have one stream used to present training

instances, and a stream S′ for predictions; this works by presenting, at each timestamp i, an

unlabeled instance Xi. To predict the class label, using the Equation (3.1) (line 5) and the

counts retrieved from the CMS table (line 4), we compute an estimation of the class having
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the highest probability (line 7).

Theoretical guarantees about the sketch size, w and d, are provided in the following.

Algorithm 2 Prediction phase. Symbols: S′ = ¶X1′, X2′, . . .♢: data stream; CMS: the count
min sketch.

1: function ESTIMATESKETCH(S′, CMS)
2: for all Xi′ ∈ S′ do

3: for all xk
i ′ ∈ Xi′ and cj ∈ C do ▷ k ∈ [1 · · · a]

4: count(xk
i ′)← CMS[l, hl(< k, xk

i ′, cj >)] ▷ retrieve the counts from the CMS

5: P (x1
i , . . . , xa

i ♣ cj) =
a
∏

k=1
count(xk

i ′) ▷ compute the probability

6: end for

7: pc← max
c∈C

P (x1
i ′, . . . , xa

i ′ ♣ c)

8: end for

9: end function

To determine the efficiency of the proposed SketchNB algorithm, we need to analyze

the behavior of the sketch table since we are retrieving approximate counts from it. It has

been shown that for all the inserts, the counts are non-negative and may be over-estimated

because of collisions [19]. Let fj(xk
i ) be the fractional count of the attribute value xk

i from

the instance Xi in the jth class. Its estimated fractional count is denoted by f̂j(xk
i ). The latter

has the following guarantees: fj(xk
i ) ≤ f̂j(xk

i ); and with probability at least (1− δ):

f̂j(xk
i ) ≤ fj(xk

i ) + N · a · ϵ. (3.2)

Using one sketch table with size
[

e
ϵ
× ln1

δ

]

, after the processing of N a-dimensional

instances from the stream, the counts are over-estimated to within (N · a · ϵ) of their true

values. Since we are using NB, as described in the second step of Algorithm 2, for each

incoming instance, each class cj ∈ C, and each attribute a, we are doing multiple extractions

at the same time by retrieving t = ♣C♣ · a counts, where ♣C♣ is the number of class labels:

Theorem 3.1 Given a data stream S of instances, denoted Xi, inserted in the sketch, ϵ, and

δ, with probability at least 1−∆ = (1− δ)t we have:

t
∧

k=1

(f̂j(xk
i ) ≤ fj(xk

i ) + Naϵ) = True. (3.3)

This means that we need to set the sketch according to the following setting,

δ = 1− t
√

1−∆, (3.4)
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or

d = ln
1

1− t
√

1−∆
. (3.5)

The above result will be used to set a crucial parameter to construct the sketch which is δ

in order to fix the depth of the sketch table. The obtained δ will lead to a deeper sketch that

would be able to maintain the entire stream. Consequently, we will obtain a more accurate

estimation of counts by avoiding collisions.

We would like to determine the accuracy of SketchNB algorithm. The process of this

algorithm is described in the pseudocode of Algorithm 2. The latter consists on retrieving,

from the sketch table, the fractional counts for each attribute value, so one can apply the NB

equation for each class label. In order for this to happen, we need to compute the product

of the estimated fractional counts for each hash function in [1, . . . , ln 1
δ
].

Theorem 3.2 Let ϵ′ = Naϵ, and f̂j(xk
i ) be the estimated fractional count of the attribute

value xk
i in the jth class. We have:

a
∏

k=1

f̂j(xk
i ) ≤

a
∏

k=1

(fj(xk
i ) + Naϵ). (3.6)

Then, with probability at least (1−∆),

a
∏

k=1

f̂j(xk
i ) ≤

a
∏

k=1

fj(xk
i ) +

a
∑

p=1

a!

p!(a− p)!
(ϵ′)p. (3.7)

Proof. Given an instance Xi:

f̂j(x1
i ) · f̂j(x2

i )... · f̂j(xa
i ) ≤ (fj(x1

i ) + ϵ′) · (fj(x2
i ) + ϵ′) (3.8)

... · (fj(xa
i ) + ϵ′)

= fj(x1
i )...fj(xa

i ) + fj(x1
i ) · ϵ′

+ fj(x2
i ) · ϵ′... + fj(xa

i ) · ϵ′
+ fj(x1

i ) · fj(x2
i ) · ϵ′ · · · (3.9)

Since all the frequencies are non-negative, we know that the range of possible fractional

counts is [0, 1], i.e. at most 1, thus, 1 will be an upper bound to the fractional counts. So, with

certainty we know that f̂j(xk
i ) · ϵ′ ≤ ϵ′, and any product of the estimated fractional counts is
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always less than 1. So, by applying Pascal’s triangle, we obtain:

a
∏

k=1

f̂j(xk
i ) ≤

a
∏

k=1

fj(xk
i ) + fj(x1

i ) · ϵ′+ fj(x2
i ) · ϵ′ · · ·

+ fj(xa
i ) · ϵ′+ fj(x1

i ) · fj(x2
i ) · ϵ′ · · ·

≤
a
∏

k=1

fj(xk
i ) +

a
∑

p=1

a!

p!(a− p)!
(ϵ′)p

=
a
∏

k=1

fj(xk
i ) +

a
∑

p=1

Cp
a(ϵ′)p. (3.10)

This completes the proof. □

This observation shows that, with probability 1−∆, the quantity of error due to collisions is

at worst equal to
a
∑

p=1
Cp

a(ϵ′)p. This leads to the following corollary.

Corollary 1 Let E be big epsilon and N be the number of instances seen so far from the

stream. An immediate result from Equation (3.10) is the following:

ϵ =
a
√

aNE + 1− 1

aN
, (3.11)

or

w =
eaN

a
√

aNE + 1− 1
. (3.12)

Proof. Let ϵ′ = aNϵ. After processing N a-dimensional instances from the stream, the

quantity of error caused by collisions in Theorem 3.2 must be the same as aNE according to

Theorem 3.1.

a
∑

p=1

Cp
a(aNϵ)p = aNE

C0
a(aNϵ)0 +

a
∑

p=1

Cp
a(aNϵ)p = aNE + 1

a
∑

p=0

Cp
a(aNϵ)p1a−p = aNE + 1

(aNϵ + 1)a = aNE + 1

aNϵ + 1 = a
√

aNE + 1

ϵ =
a
√

aNE + 1− 1

aN
.
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This completes the proof. □

Our proposed SketchNB algorithm possesses strong theoretical guarantees when setting the

depth and width of the sketch using Equations (3.11) and (3.4) respectively. This means that,

in order to keep the guarantees overall attributes and classes, we need to set a much deeper

and wider sketch table than for the case where we have only one counter.

Moreover, Equations (3.11) and (3.12) assume that the size of the stream is known. In

real-world scenarios, where the stream can be infinitely increasing, this means that our

sketch, along with the hash functions, will need to increase with the size of the stream.

The theoretical parameters derived by us here provide good results, but they can lead to

a relatively large sketch; in some cases, this may not be desirable due to space reasons.

We can however perform some optimizations to the space needed. The size of the stream,

N , can be too large and even infinite; instead, it can simply be a “sliding window” over

which error guarantee is provided. To achieve this, we introduce a scaling constant b to the

computations, in the following manner. First, we can set ϵ as follows:

ϵ = b ·
a
√

aNE + 1− 1

aN
,

then, we choose the width w as follows:

w =
eaN

b( a
√

aNE + 1− 1)
. (3.13)

Note that the depth d still remains the same: it depends only on the parameter ∆. It is

also necessary to point out that b > 1. When a increases, the sketch table size increases

accordingly. A higher value of b reduces the width of the sketch table. In this work, b will be

picked up experimentally.

3.3.2 AdaSketchNB Algorithm

One crucial issue when dealing with a very large stream is the fact that the underlying

distribution of the data can change at any moment, a phenomenon known as concept drift,

and we direct the reader to [9] for a survey on this concept.

A widely popular algorithm that handles concept drift is ADaptive WINdowing

(ADWIN) [21] used in a few machine learning algorithms such as Hoeffding adaptive

tree [44] and leveraging bagging [24]. The main idea of ADWIN is to maintain a variable-

length window W with the most recently seen instances with the property that the window

has the maximal length statistically consistent with the hypothesis “there has been no

change in the average value inside the window” [21].
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In our context, it is important to incorporate a change detector mechanism. We choose

ADWIN here due to its strong theoretical guarantees and good practical results.

Algorithm 3 Learning phase. Symbols: S = ¶X1, X2, . . .♢: data stream; ϵ: epsilon; δ: delta;
W : sliding window; D: change detector; α: drift threshold.

1: function UPDATEADASKETCHNB(S, ϵ, δ, W, α)
2: CMS←0 ▷ create the sketch with w · d, w =

[

e
ϵ

]

, d =
[

ln1
δ

]

3: for all Xi ∈ S do

4: for all xk
i ∈ Xi do ▷ k ∈ [1 · · · a]

5: CMS[l, hl(< k, xk
i , cj >)] +=1 ▷ l = [1 · · · d], increment the cells using d hash

functions in [1..w]
6: end for

7: if c = pc then ▷ true class = predicted class
8: W ← 1
9: else

10: W ← 0
11: end if

12: if D(α) then ▷ if a drift is detected
13: CMS← 0
14: end if

15: end for

16: end function

Against this background, we propose a second algorithm, AdaSketchNB described in

Algorithm 3, that incorporates to the SketchNB algorithm an adaptive strategy using ADWIN

change detector in the learning phase, for the entire sketch table, in order to track drifts. It

works on the data distribution by detecting the change in the class label. Given a stream S,

when a new training instance Xi arrives, we compare the predicted class label (under our

current model) and the true class label. Then, we update the sliding window W by adding 1

if this comparison holds true, 0 otherwise (lines 7 and 9). Once a change is detected in the

distribution, i.e., the newly generated instances changed from the original class distribution

of the classifier built up to now, the sketch table will be re-initialized to learn the new model,

corresponding to the new distribution (lines 12− 14). The prediction and updating phases

remain the same as the basic SketchNB algorithm.

Suppose that we have a high-dimensional data stream that we need to maintain in the

sketch. Should we extract counts a number of a times – a potentially very high number – to

predict the class label for each instance; do we also need to update the sketch a times?
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Figure 3.2: Hashing trick.

3.3.3 SketchNBHT and AdaSketchNBHT Algorithms

It is an undeniable fact that the sketches summarize massive data streams within a limited

space, but hashing trick (HT) [20] can be used for further improvements with large datasets.

The main idea behind the HT is presented in Figure 3.2, and explained in Section 2.4.2.

We propose SketchNBHT and AdaSketchNBHT algorithms that attempt to enhance the

SketchNB and the AdaSketchNB in terms of memory and processing time while maintaining

high accuracy. These approaches could perform better on high-dimensional data by

integrating the HT technique to compress down the input space dimensionality. In fact,

to make the analysis of high-dimensional and large datasets tractable, firstly, we reduce

the size of the input dimension by applying the HT technique to instances one by one,

incrementally. We obtain thereafter instances with significantly smaller dimension that will

be processed by either the estimate procedure in Algorithms 2 or 3 depending on whether

we are using SketchNBHT or AdaSketchNBHT , respectively.

A numerical representation of each instance is obtained after applying the DR using the HT

technique. So how can we update the sketch (that works with nominal data) right-after?

By applying the HT technique [20] on an input vector, we are supposed to obtain a

numerical representation which prevents it from fitting to the sketch table. Instead, we

are obtaining a binary vector by updating a cell only once, i.e., we do not increment the

cells, we just put 1 if a cell contains 0, and it remains the same if it contains already 1. Thus,

we get a discretized representation able to fit into the sketch table and also avoid wrong

values due to collisions. Then, we store the instances in the sketch table in the same way

as the SketchNB algorithm. Consequently, instead of updating a times the sketch table, we

update it henceforth only m times, where m ≪ a. In other words, the HT is treated as an
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internal pre-processing and transforming instances within the SketchNB and AdaSketchNB

algorithms. Using this manner, we guarantee that out of memory error that may occur

with standard classifiers for data streams will not happen using the hashing trick and the

sketches.

3.4 Experimental Evaluation

We conduct several experiments to assess the classification performance of the aforemen-

tioned proposals, SketchNB, AdaSketchNB , SketchNBHT , and AdaSketchNBHT algorithms.

To evaluate them, we are interested in three main dimensions; the accuracy (%) as the final

percentage of instances correctly classified, the memory (B), and the time (Sec) required to

learn and predict from data.

3.4.1 Datasets

We use 8 synthetic and 7 real world datasets on our experiments, where 5 of them contain

high-dimensional data. The synthetic datasets created using the data generators provided

by MOA [97] include drifts. In the case of real datasets, we do not know whether a drift

exists or not, but we still evaluate it using the change detector mechanism coupled with

our proposals. Table 3.1 presents a short description of each dataset, and further details are

provided in what follows.

SEA. The SEA Generator proposed by [98]. It is generated with 3 attributes and 2 decision

classes with concept drift and simulates 3 gradual drifts.

RBF . The Radial Basis Function (RBF) generator creates centroids at random positions, and

each one has a standard deviation, a weight and a class label. This dataset simulates drift by

moving the centroids with constant speed.

LED. The LED generator originates from the CART book [99] and simulates concept drifts. It

produces 24 attributes, of which 17 are irrelevant. The goal is to predict the digit displayed

on the LED display. We generate also LEDg that simulates 3 gradual drifts.

AGR. The AGRAWAL generator [100] creates data stream with 9 attributes and 2 classes. A

factor is used to change the original value of the data. AGR is used to simulate 3 gradual drift

in the generated stream.

HYP. The HYPERPLANE generator [101] used to generate streams with gradual concept

drift by changing the values of its weights. We parameterize HYP with 10 attributes and a

magnitude of change equals to 0.001.

Tweets. Tweets is a text generator that simulates sentiment analysis on tweets, where

messages can be classified into two categories depending on whether they convey positive

or negative feelings. Tweets1 and Tweets2 produce 1,000 and 10,000 attributes respectively.
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Table 3.1: Overview of the datasets.

Dataset #Instances #Attributes #Classes Type

SEA 1,000,000 3 2 Synthetic

RBF 1,000,000 10 5 Synthetic

LED 1,000,000 24 10 Synthetic

LEDg 1,000,000 24 10 Synthetic

AGR 1,000,000 9 2 Synthetic

HYP 1,000,000 10 2 Synthetic

Tweets1 10,000 1,000 2 Synthetic

Tweets2 10,000 10,000 2 Synthetic

KDD99 494,020 41 23 Real

Cover 581,012 54 7 Real

Elec 45,312 8 2 Real

Poker 829,201 10 10 Real

Enron 1,702 1,054 2 Real

IMDB 120,919 1,001 2 Real

CNAE 1,080 856 9 Real

KDD99. KDD cup’992 for network intrusion detection. This dataset contains 41 attributes

and 23 classes. It has been often used to evaluate big data streams algorithms’ performance.

Cover . The forest covertype dataset obtained from US Forest Service (USFS) Region 2

Resource Information System (RIS) data. It contains 54 attributes and 7 classes.

Elec. The Electricity market dataset described firstly by Harries and Wales. In this marked

the prices changes every 5 minutes and are affected by demand, supply, season, weather

and time. It contains two possible class labels identifying the changes of the price relative to

a moving average of the last 24h.

Poker . The Poker hand dataset consists of 829,201 instances and 10 attributes. Each instance

of the Poker-Hand dataset is an example of a hand consisting of five playing cards.

Enron. The Enron corpus dataset is a large set of email messages that was made public

during the legal investigation concerning the Enron corporation [103]. This cleaned version

of Enron consists of 1,702 instances and 1,054 attributes.

IMDB. IMDB3 movie reviews dataset was first proposed for sentiment analysis [104], where

reviews have been pre-processed, and each review is encoded as a sequence of word indexes

(integers).

CNAE . CNAE is the national classification of economic activities dataset, initially used

in [105]. It contains 1,080 instances, each of 856 attributes, representing descriptions of

2http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.
3http://waikato.github.io/meka/datasets/.
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Figure 3.3: Classification accuracy with different sketch sizes for different synthetic datasets.

Brazilian companies categorized into 9 classes. The original texts were pre-processed to

obtain the current highly sparse dataset.

Handling continuous attributes in data stream classifiers is a bit tricky; one way to deal

with this issue is to consider that the datasets will follow a series of Gaussian distributions.

We use a simpler way here to pre-process the datasets and transform all numerical attributes

into discrete attributes [106]. The discretization was performed using WEKA [107], where

each numerical attribute was discretized to an equal-width histogram having 10 bins.

3.4.2 Results and Discussions

The experiments were performed, implemented and evaluated in Java using the MOA

framework [97] and the datasets explained in Section 3.4.1.

Despite the theoretical bounds provided on the size of the sketch, we need to optimize

the sketch table parameters to allow better space usage. To do so, we use both of the

synthetic and real datasets to parameterize the sketch size for each dataset, by controlling

the parameter b. In order to fix the value of the constant b in Equation (3.13), we perform

some experiments. We set the default values for different parameters to the sketch table,

∆ = 0.1, E = 0.01 and N = 105 for Equations (3.5) and (3.12) to fix the sketch table size, and

we set the default confidence bound to ADWIN.

Figure 3.3 illustrates the appropriate width for the first 6 synthetic datasets, i.e., what is

the basic width that leads to an accurate model for each dataset. We notice that for the same

number of attributes and classes, e.g., LED and LEDg, we obtain the same width that is able
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Table 3.2: Accuracy comparison of SNB, GMS, NB, kNN, ASNB, AdNB, and HAT. Bold values
indicate the best results per dataset.

Dataset
Non-adaptive Adaptive

SNB GMS NB kNN AdSNB AdNB HAT

SEA 84.64 70.83 84.64 69.95 86.70 86.70 86.70

RBF 44.66 32.62 45.43 35.14 47.14 45.91 82.73

LED 73.94 73.82 73.94 44.02 73.90 73.90 70.87
LEDg 54.02 54.23 54.02 43.18 72.71 73.09 72.60
AGR 70.95 61.67 70.96 68.19 79.98 82.53 89.34

HYP 90.16 81.93 90.16 64.18 90.88 91.16 81.32
Tweet1 87.50 – 89.26 68.73 87.54 89.26 84.64
Tweet2 74.42 – 91.41 77.72 74.42 91.41 85.38
Syn ∅ 72.54 – 75.23 58.89 76.66 79.24 81.73

KDD99 89.72 97.43 95.51 99.69 91.17 99.59 98.93
Cover 62.08 50.69 62.86 80.07 95.80 83.17 86.56
Elec 66.64 63.90 66.53 73.89 71.70 73.31 72.48
Poker 56.81 56.43 58.84 74.98 69.22 74.58 74.73

Enron 75.50 – 77.44 95.24 84.61 85.61 91.83

IMDB 64.98 – 68.38 70.42 68.52 70.67 70.71

CNAE 56.30 – 62.13 62.13 56.30 62.13 68.80

Real ∅ 67.43 – 70.24 79.49 76.76 78.43 80.55

O. ∅ 70.16 – 72.90 68.50 76.71 78.86 81.18

to maintain the entire data stream. Therefrom we can fix the value of the constant b for each

dataset experimentally reported in Table 3.4.

Tables 3.2, 3.3 and 3.4 present the results on all datasets. We compared SketchNB (SNB)

and AdaSketchNB (AdSNB) classifiers to well-known state-of-the-art algorithms: the NB, the

kNN with k = 100, the GMFactorSketch (GMS) [96] with default parameters ϵ = 0.01, δ = 0.1.

We compared also to adaptive classifiers such as the Hoeffding Adaptive Tree (HAT) [44],

and the adaptive NB (AdNB) with ADWIN. It turns out that GMS is useless and could not

finish execution with some datasets which are marked by the cells with “–”. We observe that

the accuracy of SketchNB is almost the same when comparing to NB for all the datasets

despite the use of probabilistic counts to estimate true counts. In comparison with kNN,

we notice that SketchNB is more accurate on the whole set of datasets except the real ones.

Such difference can be explained by the independence assumption between attributes of

NB that, for some cases, does not hold true. Since GMS builds two sketch tables for each

attribute, it is obvious that it will be more memory and time consuming because we are

using only one big sketch. More than this, GMS cannot work with large datasets, e.g., Tweet1

(see Figure 3.2).

In order to simulate the proposed change detector classifier AdaSketchNB , we compare

against the AdNB and HAT approaches. In Table 3.2, on overall average, we observe that

AdaSketchNB achieves, practically, the same accuracy as AdNB whilst using a less amount
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3. Sketch-Based Naive Bayes

Table 3.3: Memory comparison of SNB, GMS, NB, kNN, ASNB, AdNB, and HAT. Bold values
indicate the best results per dataset.

Dataset
Non-adaptive Adaptive

SNB GMS NB kNN AdSNB AdNB HAT

SEA 5,568 49,312 4,880 58,280 7,832 7,704 2.48E6
RBF 18,824 226,072 18,520 100,920 19,768 20,688 3.61E6
LED 23,568 644,544 27,704 187,896 22,792 30,168 1.27E6
LEDg 23,568 644,544 27,704 187,896 22,792 30,528 623,856
AGR 19,360 201,000 12,520 92,760 14,992 15,344 3.85E6
HYP 20,624 225,952 15,248 100,824 17,264 17,568 925,600
Tweet1 569,880 – 645,456 7.52E6 582,144 647,440 1.71E6
Tweet2 6.03E6 – 6.55E6 7.5E7 6.04E6 6.39E6 1.23E7
Syn ∅ 839,598 – 912,687 1.04E7 840,600 895,121 3.38E6
KDD99 106,632 1.32E6 123,496 303,200 108,456 61,088 57,048

Cover 55,736 1.71E6 60,488 377,832 61,440 46,344 19,936

Elec 14,776 178,464 11,944 88,712 14,560 13,120 42,432
Poker 16,568 223,952 19,800 98,760 18,608 17,688 278,528
Enron 565,104 – 688,752 7.13E6 534,264 690,400 275,624

IMDB 1.41E6 – 1.57E6 7.53E6 1.37E6 1.54E6 2.91E6
CNAE 1.16E6 – 1.58E6 1.58E6 1.23E6 1.58E6 571,064

Real ∅ 474,706 – 578,263 2.44E6 554,384 563,117 593,306
O. ∅ 221,977 – 270,343 6.69E6 707,033 740,186 2.08E6

Table 3.4: Time comparison of SNB, GMS, NB, kNN, ASNB, AdNB, and HAT. Bold values
indicate the best results per dataset.

Dataset
Non-adaptive Adaptive

b
SNB GMS NB kNN AdSNB AdNB HAT

SEA 1.75 2.08 1.49 10.91 2.87 2.03 7.75 675

RBF 6.62 9.65 3.73 31.2 9.6 4.5 17.67 7,191
LED 15.9 41.03 5.67 64.21 30.79 7.28 21.08 14,692
LEDg 15.93 43.45 5.73 68.83 29.23 7.25 23.09 14,692
AGR 4.09 5.94 3.1 26.05 5.47 3.57 9.12 3,678
HYP 4.51 6.42 3.42 27.79 4.11 3.77 9.8 5,448
Tweet1 4.79 – 4.17 29.21 6.77 2.89 5.57 7,514,600
Tweet2 73.44 – 51.04 385.23 91.43 44.78 65.93 6.48E8
Syn ∅ 15.87 – 9.79 80.43 22.53 9.51 20 –
KDD99 40.02 90.75 12.78 51.66 64.42 7.86 18.11 15,074
Cover 18.92 50 7.67 64.42 32.74 7.09 19.55 59,675
Elec 0.33 0.42 0.18 1.06 0.35 0.22 0.67 4,555
Poker 6.87 12.3 2.36 22.03 11.67 11.67 7.95 4,859
Enron 0.98 – 0.63 6.07 1.29 0.62 0.97 15,340,000
IMDB 53.45 – 27.07 273.73 68.36 32.89 113.38 6,525,300
CNAE 1.38 – 0.52 0.67 2.26 0.65 1.71 7,231,800
Real ∅ 17.41 – 7.31 59,95 25.8 8.71 23.2 –
O. ∅ 16.54 – 8.63 70.87 24.06 9.14 21.49 –
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Figure 3.4: Sorted plots of accuracy, memory and time over different output dimensions

of resources (see Table 3.3). In comparison with the HAT, the gain in memory exceeds

the slight loss in accuracy. This is due to the use of, in addition to the sketch, the ADWIN

change detector and estimator [21]. To assess the benefits in terms of resources usage, we

observe the behavior of memory results is similar to the behavior of time results, i.e., when

the memory usage increases, the running time increases accordingly. For some datasets,

NB is more space-efficient than SketchNB (especially for datasets with a low number of

attributes and classes, e.g., SEA and AGR) which is quite natural as simpler learners usually

require less time for training and prediction. With large datasets (in terms of the number

of attributes and classes), for instance Tweet1 and Tweet2, SketchNB and AdaSketchNB

approaches consume fewer resources than the NB and AdNB respectively thanks to the CMS

space-saving structure. In comparison with GMS, kNN, and HAT, the proposed algorithms

are more space and time efficient.

Despite the gains exhibited with SketchNB and AdaSketchNB classifiers over different

datasets, the results are still not entirely satisfying. Therefore, we proposed SketchNBHT

(SNBHT ) and AdaSketchNBHT (ASNBHT ), a third contribution relying on pre-processing

internally instances of SketchNB and AdaSketchNB , coupled with the hashing trick [20].
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3. Sketch-Based Naive Bayes

Table 3.5: Accuracy comparison of SNBHT , GMSHT , NBHT , kNNHT , ASNBHT , AdNBHT , and
HATHT . Bold values indicate the best results per dataset.

Dataset
Non-adaptive Adaptive

SNBHT GMSHT NBHT kNNHT ASNBHT AdNBHT HATHT

Tweet1 77.99 61.84 78.80 68.04 77.99 78.80 77.53
Tweet2 79.25 74.76 79.66 75.27 79.25 79.66 78.96
Enron 70.22 – 71.69 89.54 83.14 76.11 –
IMDB 68.40 – 69.98 70.27 69.73 69.55 70.44

CNAE 58.38 53.24 64.20 47.05 58.92 64.20 62.81
O ∅ 70.85 – 72.87 70.03 73.80 73.67 –

Table 3.6: Memory comparison of SNBHT , GMSHT , NBHT , kNNHT , ASNBHT , AdNBHT , and
HATHT . Bold values indicate the best results per dataset.

Dataset
Non-adaptive Adaptive

SNBHT GMSHT NBHT kNNHT ASNBHT AdNBHT HATHT

Tweet1 3,648 1,001,109 6,817 236,328 5,472 8,801 76,896
Tweet2 3,721 1,001,109 6,817 236,328 5,545 8,801 62,404
Enron 3,619 – 7,760 265,373 4,381 9,341 –
IMDB 4,528 – 6,817 236,288 5,580 8,157 93,113
CNAE 14,133 1,001,165 19,623 236,848 15,935 21,103 23,689
O ∅ 5,930 – 9,567 242,233 7,382 11,241 –

Table 3.7: Time comparison of SNBHT , GMSHT , NBHT , kNNHT , ASNBHT , AdNBHT , and
HATHT . Bold values indicate the best results per dataset.

Dataset
Non-adaptive Adaptive

SNBHT GMSHT NBHT kNNHT ASNBHT AdNBHT HATHT

Tweet1 2.66 3.03 3.16 3.59 2.84 2.84 2.97
Tweet2 29.72 43.06 43.48 37.93 29.63 33.28 34.11
Enron 0.42 – 0.47 0.61 0.44 0.41 –
IMDB 14.59 – 13.54 25.57 14.38 13.58 14.75
CNAE 0.44 0.51 0.40 0.52 0.46 0.41 0.49
O ∅ 9.55 – 12.2 13.64 9.56 9.51 –
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Figure 3.4 presents some detailed results of these experiments with two datasets, where

each one is processed with 6 different output dimensions. We report in Tables 3.5, 3.6,

and 3.7 the overall average accuracy, memory and running time over the different values of

dimension for each dataset. For all datasets with different space dimension, the SketchNBHT

approach’s accuracy is similar to NB using a feasible amount of resources. For instance,

Figure 3.4(a) depicts the ability of SketchNBHT and AdaSketchNBHT to achieve similar

accuracy to the NB and AdNB on Tweet1, and in Figure 3.4(b) and 3.4(c) we can see that they

lead to large memory savings in lower time processing. The same behaviour is showed in

Figures 3.4 (d), (e), and (f) using the CNAE dataset. Tables 3.5, 3.6, and 3.7) show also that

SketchNBHT outperforms also GMSHT and kNNHT (excepts for accuracy with this latter).

Nevertheless, the gain in memory and time is more interesting. Also with the adaptive

classifiers, AdaSketchNBHT is more accurate than HATHT for some datasets and uses much

less memory.

3.5 Conclusion

In this chapter, we presented SketchNB, AdaSketchNB , SketchNBHT , and AdaSketchNBHT

approaches, new classifiers to handle evolving data streams and answer our main research

questions (Q1, Q2, Q3) discussed in Chapter 1. The SketchNB algorithm extends the

naive Bayes classifier using the CMS to reduce the memory needed. Then, we proposed

AdaSketchNB , an adaptive version of SketchNB to handle concept drift. Finally, we coupled

SketchNB and its adaptive version with the hashing trick technique for further gain with

high-dimensional data to obtain SketchNBHT and AdaSketchNBHT . We explained the

learning process of these classifiers using sketches showing strong theoretical guarantees.

We compared these classifiers in an extensive evaluation with well-known classifiers

showing that GMS, NB, HAT, and kNN methods are outperformed in memory by SketchNB

and AdaSketchNB with large datasets. We showed also that using the HT and CMS

techniques, the proposed SketchNBHT and AdaSketchNBHT obtain good results in terms of

classification performance (accuracy, memory and time) when compared to other state-of-

the-art classifiers.

In the following chapter, we aim to improve the performance of the kNN algorithm that

proved to be costly in terms of resources with evolving data streams by using an efficient DR

technique.
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4.1 Introduction

In the previous chapter, we noticed that the kNN is a resource-consuming algorithm,

especially with this high-dimensional data streams, because it maintains a window of the

most recent instances from the stream (Section 2.3.2). In practice, mining tasks reduce time

and space requirements while only processing combinations of relevant features out of

those redundant streams, what corresponds to data summaries generally obtained using a

DR technique.

The dimensionality reduction process inherently arises when one deals with a large number

of attributes, especially when data are sparse, in order to reduce the use of computational

resources, more precisely the memory and processing time.

To address this issue, we apply Compressed Sensing (CS) which is a feature extraction

strategy that provides theoretical lower and upper bounds on pairwise data transformation

(Section 2.4.2). This data reduction is highly relevant in the context of data stream mining

since it helps to reduce resource demands while ensuring the quality of learning (e.g.,

classification accuracy) and addressing the stream setting requirements. In this chapter, our

main focus consists in increasing the time and memory efficiency of the kNN algorithm

by compressing the input stream using an efficient DR technique (Q2), which allows us

to ensure good theoretical bounds in between the original and the adapted stream, and

therefore guaranteeing some close approximation to the accuracy that would be obtained

using the original stream (Q1).

The plan of this work is organized as follows. We present the background of this work in

Section 4.2. Afterwards, we provide the basics of the CS technique, followed by its application

in conjunction with the kNN and the ensemble-based methods for evolving data streams in

Section 4.3. Section 4.5 discusses the experimental results performed on both synthetic and

real datasets that show the efficiency of our proposals. Section 4.6 concludes this chapter.

4.2 Preliminaries

Because of the potentially infinite nature of evolving data streams and the additional cost

of high-dimensional data, classification algorithms, such as the kNN, suffer from resource

issues. One way to cope with this issue is to couple the classifier with an efficient DR

technique. The latter comprises the process of finding some transformation A : Ra → R
m,

where m≪ a, to be applied on each instance Xi from the stream S (see Equation(2.4)).

As we presented in Section 2.4.2, random projection matrices have been used in

conjunction with CS [109]. This approach applies a random linear transformation on vectors,

changing their original space and leading to significant results, outperforming PCA. For

example, given data in a 104 dimensional space, two RPs will give a perfect recovery while
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two PCA projections will only recover data with a probability equals to 2/104. In short, RP

achieves good performance with few projections whereas the PCA performance increases

linearly with the number of output dimension which makes it slower [109].

CS is a technique that has attracted a lot of attention and is based on the concept

that a data compression method has to deal with redundancy while transforming and

reconstructing data [23]. The basic idea is to use orthogonal features, i.e. complementary

features, to provably and properly represent data as well as reconstruct them from small

number of samples (measurements). CS relies on the principles that provide, with high

probability, a good data reconstruction from a limited number of incoherent and possibly

noisy measurements. Mathematically, the decompression of the data that obeys the linear

relation in Equation (2.4) consists in approximating the error by ℓ1-norm minimization that

provides a convex relaxation and when data are sparse, the recovery via ℓ1-minimization is

provably exact [110]:

arg min
x∈Rd

∥x∥1 s.t. y = Ax.

The goal is to find an efficient representation for each instance such that the sum of their

reconstruction errors is minimized. The restricted isometry property (RIP) guarantees the

proper computation of the above-mentioned recovery problem [111].

Hence, we aim to find the best tradeoff over three aspects (defined in Section 2.5): (i) the

classifier accuracy; (ii) the memory usage; and (iii) the overall processing time.

All such aspects are strongly related: the drastic reduction of time and space complexi-

ties would make our approach much faster, but one should weigh in the classification

performance – more precisely, accuracy – in the equation.

4.2.1 Construction of Sensing Matrices

Two related properties have been pointed out for the characterization of the sensing

– or sampling – matrix: the sparsity and the RIP. The latter is both a necessary and a

sufficient condition for an efficient data recovery. Randomization is a key ingredient in

the construction of most of the RIP matrices used in the CS transformation process [112]. In

what follows, we cite examples of matrices that have been used in the CS transformation

process:

• Fourier matrix is obtained by applying Fourier transform on data and thereafter

selecting uniformly at random p rows from a d dimensional Fourier matrix. However,

this transformation requires to maintain the entire dataset;

• Random Gaussian matrix is generated randomly from a Gaussian distribution having

independent and identically distributed (i.i.d) entries with zero mean and variance

one: Ai,j ∼ N (0, 1);
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• Random Bernoulli matrix has entries which are randomly sampled from a Bernoulli

distribution with equal probability: Ai,j ∈ ¶1/
√

p,−1/
√

p♢.

For the data-independent random matrices, it has been proved that any matrix A

satisfying the Johnson-Lindenstrauss Lemma (2.3) will also satisfy the RIP in CS with high

probability if m = O(s log(a)) [85] which answers intuitively the question: “how many trials

do we require to collect s different orthogonal and most interesting dimensions from a

possibilities?”. A comparison of the results obtained with these matrices and an explanation

of the choice of the matrix used in this work are provided in the following.

4.3 Compressed Classification Using kNN Algorithm

The kNN is one of the most often used algorithms that has been adapted to the stream

setting [113]. The prediction of the class label for an instance is made by taking the majority

vote of its nearest neighbors inside a fixed size sliding window3, using a defined distance

metric. Since we are keeping instances in a window, a DR is imperative to avoid the curse of

dimensionality, when dealing with high-dimensional data that could increase the use of

computational resources during prediction.

The main idea to mitigate this drawback and improve kNN’s performance is to use a simple

strategy which has the desired properties – such as CS.

We focus on the analysis of an infinite stream of instances Xi ∈ R
a from which we wish to

construct a low dimensional space R
m, where m≪ a. We assume that instances are s-sparse

in some basis, so we can use the CS with a RIP matrix and work in a lower dimension of

O(s log(a)). It is important to perform such reduction because it is related to the number of

dimensions and independent of the stream size, making it useful in applications for data

streams where the size is unknown. This transformation can lead to information loss (by

removing important attributes), except if the sensing matrix respects the RIP, then with

high probability, the information loss is minimal and the original data can be recovered.

Figure 4.1 presents the main flow of the proposed approach combining the simplicity of

kNN and the strong properties of CS to obtain the compressed kNN classifier, called CS-kNN

in the following.

Fundamentally, CS is composed of two phases: (i) the compression phase, where the data

are projected onto a low-dimensional space; and (ii) the decompression phase, where the

data are recovered. Nevertheless, the compressed nature of CS makes the paradigm a better

fit to classification than the reconstruction. In this work, we are only concerned with the first

stage, so the extracted features from the high-dimensional space are fed to kNN classifier

which predicts target class labels. This does not, however, prevent the guarantees over the

recovery to hold true.
3Streaming kNN is therefore adaptive and handles the question Q3 presented in Chapter 1.
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Figure 4.1: Compressed kNN Scheme.

Algorithm 4 Compressed kNN algorithm. Symbols: S = ¶X1, X2, . . .♢: data stream; C =
¶c1, c2, . . .♢: set of class labels; W : sliding window; k: the number of neighbors; m: the target
dimension; B: subset of W .

1: function CS-kNN(S, w, k, m)
2: Init w ← ∅
3: for all Xi ∈ S do

4: Yi ← CS(Xi) ▷ apply CS
5: for all Yj ∈W do ▷ ∀ j ̸= i
6: compute DYj

(Yi) ▷ Equation (4.2)
7: end for

8: c← max
c∈C

DB,k(Yi) ▷ Equation (4.3)

9: w ← Yi ▷ maintain the compressed Xi in W
10: end for

11: end function

Algorithm 4 shows the pseudo-code of the CS-kNN. Given an infinite data stream S and

the window size W , we apply CS on each instance Xi of the stream (lines 3-4), then we apply

kNN by computing the distance of each Yj in W with Yi (line 6) and thus report the most

frequent class label to Yi (line 8). Finally, we feed the compressed version Yi to W (line 9).

In this work, we opt to make kNN more efficient in terms of memory and speed taking

into account the online aspect of evolving data streams. Our approach consists of the

CS application on high-dimensional data obtained by compressing every new arrived

instance via solving Equation (2.4). So, we need to use an effective sampling matrix that gives

sufficiently good (or with minor loss in) accuracy and eventually leads to computational

savings. In a recent work [114], authors reviewed different sampling matrices performance

where the experiment results show that Gaussian random matrices perform nicely.
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4. Compressed k-Nearest Neighbors Classification

Table 4.1: Accuracy (%) comparison of compressed sensing with Bernoulli, Gaussian, Fourier
matrices, and the entire dataset. Bold values indicate the best results.

Dataset Bernoulli Gaussian Fourier Whole data

Tweet1 64.78 77.90 77.90 79.80
Tweet2 64.59 77.17 79.53 79.20
Tweet3 60.24 75.59 77.13 78.86
CNAE 27.04 64.59 58.49 73.33
Enron 95.88 95.97 95.91 96.18
Overall ∅ 62.51 78.24 77.79 81.58

To motivate our choice in the following, we perform experiments to assess different

sampling matrices. For this, we first generate synthetic random Bernoulli and Gaussian

matrices, and we also construct the Fourier matrices on some datasets (see the description

in Table 4.2). For each dataset, we build projections for 5 different settings of the target

dimension ¶10, 20, 30, 40, 50♢. Table 4.1 shows the results for kNN (with k = 5) along with

the overall average over the different targeting dimensions for each matrix. We notice that

with the random Bernoulli matrix, kNN performs worse on average, confirming previous

studies [114, 115], compared to the Random Gaussian and Fourier matrices which are

very close to the kNN, in terms of accuracy, using the whole data without projections.

Nevertheless, Fourier transformation relies on data, i.e., it requires the presence of all

instances which is unrealistic in the context of data streams. In [116], authors proposed a

recursive scheme for Fourier matrix with data streams which constructs successive windows

and uses the measurement in the previous window to obtain the next one. However, this

approach is expensive in terms of memory since it keeps data on windows and it is still not

as accurate as using a Gaussian matrix.

In this work, we want to use a data-independent matrix to ensure fast processing. The

experiments above suggest that we should focus on the Gaussian matrix which not only

provides good accuracy but also satisfies with high probability the RIP and therefore allows

the recovery of instances [117].

We take the sampling matrix to be such that its elements are drawn independently from

a Gaussian distribution, setting common to various CS problems [23]. The matrix A in

Equation (2.4) satisfies the RIP, so X can be recovered with minimum error from Y , i.e., Y

preserves the important information that X contains.

First, we need to bound the probability of error related to the estimated instance and its

expected value using the Hoeffding inequality. Given Xi,∀i ∈ [1, N ], where xj
i are bounded

by the interval [pj , bj ], then for any ϵ, the probability of error is upper bounded as follows:

P (♣Xi − X̂i♣ ≥ ϵ) ≤ 2 exp

(

− 2ϵ2

∑a
l=1(bl − pl)2

)

, (4.1)
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where X̂i is the reconstructed instance and N can simply be the size of a “sliding window”

over which the error guarantee is provided.

For applying the DR on instances from the original space, a good technique aims to preserves

the structure of the projected data, i.e., keep close instances together and dissimilar

instances far away as represented in the input space. The challenge is then to show that

the neighborhood of a given instance is preserved after the CS projection to ensure a good

classification performance of the kNN algorithm.

4.3.1 Theoretical Insights

To make the link between the kNN and the use of RIP matrices, we point out that the JL

Lemma 2.4.2 [80, 81] asserts that a random projection preserves the distances between pairs

of instances up to 1 ± ϵ guarantee with high probability. Similarly, the kNN algorithm is

based on a function that measures the distances between instances to predict. Thus, we aim

to provide theoretical guarantees on the connection between kNN and stream recovery by

showing that the CS transformation using Gaussian matrix preserves the distance function

and also approximately maintains the shape – in the neighborhood sense – as the original

space, based on the concept of persistent homology.

Persistent homology [118] is one of the main tools used to extract information from

topological features of a space at different scales for an effective shape description. Given a

dataset in some metric space, computing the persistent homology naturally involves nearest

neighbors since we are constructing the topological space by building open balls around

instances. In this regards, it has been shown in [119] that the persistent homology of a

distance such as in the JL Lemma (2.3) is (1± ϵ)-preserved under random projection into

m = log N/ϵ2 dimensions. The basic idea in [119] consists in preserving the radius of the

minimum enclosing open ball of data up to a factor of (1± 4ϵ).

In the following, we deal with the Euclidean distance function in both kNN and data

reconstruction guarantees. Given a window W , the distance between instances Xi and Xj is

defined as follows:

DXj
(Xi) =

√

∥Xi −Xj∥2. (4.2)

Similarly, the k-nearest neighbors distance is defined as follows:

DW,k(Xi) = min
(W

k ),Xj∈W

k
∑

j=1

DXj
(Xi), (4.3)

where
(W

k

)

denotes the subset of W of size k, i.e., the k-nearest neighbors to the instance xi

in W .

CS random matrices satisfy RIP, so we need to show that our matrix preserves the

neighborhood for kNN without significant loss through the JL Lemma (2.3). This would allow
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us to conserve distances among instances and finally ensure distance-preservation among

all neighbors. In [117], Baraniuk, Davenport, DeVore, and Wakin have indeed established

a connection between the expressions in (2.3) and (2.5), and proved that the JL lemma

implies the RIP for s-sparse data within an ϵ-multiplicative factor. A converse result has

been proved in [120] wherein matrices having the RIP respect the JL lemma, i.e., preserve

the distances in the transformation between any pairs of instances up to a (1 ± ϵ)-factor

with target dimension inO(s log(a)), where a is the input dimensionality.

4.3.2 Application to Persistent Homology

Now we want to prove, based on the aforementioned result [120] derived from Equation (2.5),

that CS preserves as well the distances between all instances up to (1± ϵ)-error and not only

distances between pairs of instances. In other words, we prove that, given a RIP matrix, the

resulting compressed instances preserve the kNN neighborhood of the data.

Theorem 4.1 Given a set of instances in a sliding window W = ¶Xi♢, i ∈ [1, N ] and ϵ ∈ [0, 1],

if there exists a transformation matrix A : Ra → R
m having the RIP, such that m = O(s log(a)),

where s is the sparsity of data, then ∀Xi ∈W :

(1− ϵ)D2
W,k(X) ≤ D2

W,k(AX) ≤ (1 + ϵ)D2
W,k(X). (4.4)

Proof. Assume that X1, X2, · · · , Xk are the k-nearest neighbors to an instance t ∈W . We

have:

(1− ϵ)∥t−Xi∥2 ≤ ∥At−AXi∥2 ≤ (1 + ϵ)∥t−Xi∥2.

By summing these inequalities k times, we obtain:

(1− ϵ)
k
∑

i=1

∥t−Xi∥2 ≤
k
∑

i=1

∥At−AXi∥2 ≤ (1 + ϵ)
k
∑

i=1

∥t−Xi∥2.

The distance of At to its k-nearest neighbors in W is minimal, so we have the lower bound

as follows:

D2
W,k(At) ≤

k
∑

i=1

∥At−AXi∥2.

For the upper bound, we have:

D2
W,k(At) ≤

k
∑

i=1

∥At−AXi∥2 ≤ (1 + ϵ)
k
∑

i=1

∥t−Xi∥2,

D2
W,k(At) ≤

k
∑

i=1

∥At−AXi∥2 ≤ (1 + ϵ)D2
W,k(t).
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Assume that Az1, Az2, · · · , Azk are the k-nearest neighbors to At, where z1, z2, · · · , zk ∈
W . So we have:

(1− ϵ)
k
∑

i=1

∥Y − zi∥ ≤
k
∑

i=1

∥At−Azi∥2 = D2
W,k(At).

Given the fact that X1, X2, · · · , Xk are the k-nearest neighbors to t, we found the lower

bound as follows:

D2
W,k(t) =

k
∑

i=1

∥t−Xi∥2 ≤
k
∑

i=1

∥t− zi∥2.

This completes the proof. □

We demonstrated that the CS-kNN has desirable geometrical properties: by achieving

homology preservation while being scale-invariant in terms of distances, it captures

the neighborhood up to some (ϵ)-divergence between the original and the compressed

instances.

4.4 Compressed kNN Ensembles

We propose another application in this framework that consists in using the CS technique

with an ensemble-based method which applies CS-kNN as a base learner under the

Leveraging Bagging (LB) [24], denoted CS-kNNLB . To increase the diversity inside the LB

ensemble method, in addition to sampling with the Poisson distribution (λ), with λ ≥ 1,

we can use several random matrices by generating a different CS matrix for each ensemble

member (CS-kNN) instead of using only one random matrix for all the learners (the case

of CS-kNNLB). We refer to the aforementioned approach in the following as Compressed

Sensing Bagging Ensemble (CSB), (CSB-kNN). The properties assessing the neighborhood

preservation proved for CS-kNN, hold also for the ensemble-based methods that uses

CS-kNN as a base learner.

4.5 Experimental Evaluation

In this section, we assess the impact of feature transformations on kNN and the ensemble

methods for data streams. In order to thoroughly evaluate our proposals, we conduct

extensive experiments using several datasets.

4.5.1 Datasets

We use 4 synthetic and 5 real-world datasets from a variety of domains. Table 4.2 presents a

short description of each dataset, and further details are provided in what follows.

Tweets. Tweets was created using the text data generator provided by MOA [97]. It simulates

sentiment analysis on tweets, where messages can be classified into two categories
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Table 4.2: Overview of the datasets.

Dataset #Instances #Attributes #Classes Type

Tweets1 1,000,000 500 2 Synthetic

Tweets2 1,000,000 1,000 2 Synthetic

Tweets3 1,000,000 1,500 2 Synthetic

RBF 1,000,000 200 10 Synthetic

CNAE 1,080 856 9 Real

Enron 1,702 1,000 2 Real

IMDB 120,919 1,001 2 Real

Spam 9,324 39,916 2 Real

Covt 581,012 54 7 Real

depending on whether they convey positive or negative feelings. Tweets1, Tweets2, and

Tweets3 produce instances of 500, 1, 000, and 1, 500 attributes, respectively.

RBF . The Radial Basis Function generator creates centroids at random positions, and each

one has a standard deviation, a weight and a class label.

CNAE . CNAE is the national classification of economic activities dataset, initially used

in [105]. Instances represent descriptions of Brazilian companies categorized into 9 classes.

The original texts were pre-processed to obtain the current highly sparse dataset.

Enron. The Enron corpus is a cleaned version of a large set of emails that was made public

during the legal investigation concerning the Enron corporation [103].

IMDB. IMDB4 movie reviews dataset was first proposed for sentiment analysis [104], where

reviews have been pre-processed, and each review is encoded as a sequence of word indexes

(integers).

Spam. The spam corpus is the result of a text mining on an online news dissemination

system which intends on creating an incremental filtering of e-mails classifying them as

spam or not [121]. Each attribute represents the presence of a word in the instance (an

e-mail).

Covt . The forest covertype dataset obtained from US Forest Service Region 2 Resource

Information System (RIS) data.

4.5.2 Results and Discussions

The experiments were implemented and evaluated in Java by extending the MOA frame-

work [37, 97]. We used the online evaluation setting for Test-Then-Train method [91], where

each instance is used first for testing and then for training.

Table 4.3 presents the results for distinct sizes of W and shows that; for shorter windows

(W = 100), the accuracy degrades, while for bigger windows the accuracy slightly increases.

4http://waikato.github.io/meka/datasets/.
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Table 4.3: Performance of kNN with different window sizes.

Accuracy (%)

W =100 W =1000 W =5000

Overall ∅ 75.48 80.33 82.44

Time (sec)

W =100 W =1000 W =5000

Overall ∅ 537.76 6592.72 20028.01

Memory (MB)

W =100 W =1000 W =5000

Overall ∅ 46.85 269.65 2000

On the other hand, the processing time and memory usage increase as well. Therefore this

parameter selection implies an accuracy-time-memory tradeoff. The following experiments

are performed with W = 1000 for kNN, because using a greater window size yields indeed

to a better accuracy but the resource consumption is more significant.

Non-Ensemble Methods

For fair comparison of the the performance of our proposed classifier, CS-kNN, we use

commonly-used techniques in the literature coupled with kNN as well; self-adjusting

memory kNN5 with the CS technique (CS-samkNN), kNN using the hashing trick (HT-

kNN), principal component analysis (PCA-kNN), and the standard kNN without projection

as well (using the entire data). The streaming kNN has two principal parameters: the number

of neighbors k and the window size W .

Tables 4.4, 4.5, and 4.6 report the final accuracies, memory consumption, and speed of

the classification task in a 40-dimensional space after the projections, based on two setups of

k = 5, 11. We choose 40 dimensions because we noticed that, starting from this size of space,

improvements are statistically insignificant as showed in Figure 4.2. The latter illustrates

a detailed comparison with five different values of output dimension (10, 20, · · · , 50) on

Tweet2 and Enron datasets.

We notice that our proposed CS-kNN approach has more accurate results (Table 4.4)

than the HT-kNN for all datasets and it is slightly outperformed by the CS-samkNN, the

standard kNN (without projection) and PCA-kNN; this quite a natural result since kNN

processes the whole data stream and PCA-kNN formally tries to find a lower-dimensional

space under which the sum of square distances – representing the error, between the original

data and its projection – is minimized. The CS-kNN is moderately less accurate than CS-

5Best paper award at ICDM 2016.
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Table 4.4: Accuracy comparison of CS-kNN, CS-samkNN, HT-kNN, PCA-kNN, and kNN over
the whole dataset.

Dataset
CS-kNN CS-samkNN HT-kNN PCA-kNN kNN

k = 5 k = 11 k = 5 k = 11 k = 5 k = 11 k = 5 k = 11 k = 5 k = 11

Tweet1 78.82 78.88 76.02 74.31 73.77 73.14 80.43 79.43 79.80 78.17
Tweet2 78.13 78.36 75.74 74.13 73.02 72.61 80.06 78.89 79.20 77.74
Tweet3 76.75 76.16 73.03 72.56 72.40 72.36 81.93 82.38 78.86 77.73
RBF 98.90 97.31 99.87 99.78 19.20 19.20 99.00 97.86 98.89 97.33
CNAE 70.00 68.70 73.77 72.19 65.00 65.28 75.83 72.08 73.33 71.48
Enron 96.02 95.65 96.23 96.06 95.76 95.48 94.59 93.18 96.18 96.00
IMDB 69.86 72.32 74.29 74.53 69.65 72.03 70.57 72.81 70.94 72.51
Spam 85.39 81.01 91.34 90.48 83.82 80.63 96.00 94.66 81.17 77.32
Covt 91.36 89.92 90.47 87.71 77.18 76.59 91.55 90.16 91.67 90.30
Overall ∅ 82.80 82.04 83.42 82.42 69.98 69.70 85.55 84.61 83.34 82.06

Table 4.5: Time comparison of CS-kNN, CS-samkNN, HT-kNN, PCA-kNN, and kNN over the
whole dataset.

Dataset
CS-kNN CS-samkNN HT-kNN PCA-kNN kNN

k = 5 k = 11 k = 5 k = 11 k = 5 k = 11 k = 5 k = 11 k = 5 k = 11

Tweet1 62.55 91.06 41.81 59.20 93.24 99.78 622.65 629.60 1198 1432
Tweet2 107.48 112.97 74.92 99.77 120.83 127.95 705.71 712.84 2029 2502
Tweet3 126.73 142.95 83.01 101.43 154.22 165.11 988.25 995.93 2864 3643
RBF 59.47 80.52 60.08 77.00 168.31 169.88 243.26 258.12 284.34 439.23
CNAE 0.87 0.92 0.56 0.63 0.95 1.02 3.97 4.14 32.19 35.04
Enron 1.58 1.63 1.31 1.57 1.81 1.90 7.21 7.28 86.08 91.99
IMDB 95.62 120.66 80.82 103.51 125.62 129.27 1686 1692 7892 8217
Spam 159.92 183.19 197.22 208.94 194.07 216.37 11329 14820 34231 35031
Covt 30.94 51.08 39.25 45.55 88.17 90.85 161.00 164.16 252.69 268.28
Overall ∅ 71.68 87.22 64.33 75.29 105.25 111.42 1749 2142 5430 5740

samkNN for some datasets containing drifts, because the latter deals with different types of

concept drift which makes it stronger facing changes in data distributions.

To assess the benefits in terms of computational resources–where small values are

desirable– Tables 4.5 and 4.6 point out the improvements of CS-kNN in terms of memory

and time against CS-samkNN, PCA-kNN, and kNN which are significant enough to justify

relatively minor losses in accuracy. In fact, the CS-samkNN algorithm maintains models

for current and past concepts which makes it memory inefficient. The PCA-kNN performs

worse, in terms of resource usage, than RP since it incrementally stores and updates the

eigenvectors and eigenvalues, confirming previous studies [109]. Our proposed approach is

also faster than the HT-kNN, although they have similar memory behavior, because both

are based on RP and do not rely on data. For some datasets such as Spam, the CS-kNN

outperforms kNN (using the whole data) simply because finding relevant combinations of
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Table 4.6: Memory comparison of CS-kNN, CS-samkNN, HT-kNN, PCA-kNN, and kNN over
the whole dataset.

Dataset CS-kNN CS-samkNN HT-kNN PCA-kNN kNN

Tweet1 2.52 8.86 2.52 3.03 34.64
Tweet2 2.52 10.48 2.52 5.97 70.97
Tweet3 2.52 10.52 2.52 8.84 103.19
RBF 2.52 10.31 2.52 8.86 13.18
CNAE 2.52 10.22 2.52 3.09 61.37
Enron 2.52 9.84 2.52 3.51 70.60
IMDB 2.52 10.28 2.52 8.81 70.65
Spam 2.52 10.57 2.52 245.22 1476.11
Covt 2.52 9.96 2.52 3.02 3.47
Overall ∅ 2.52 10,12 2.52 32.26 211.57

existing features and presenting them in a different space can help supervised models to

improve accuracy. Even if data are not sparse, CS surprisingly performs transformations on

suitable bases.

Figures 4.2(a) and 4.2(d) depict the typical tradeoff for accuracy: a small feature space

cannot properly represent data, therefore it can significantly degrade the accuracy; whereas

a higher dimensional space (e.g., 50) increases the accuracy and makes it closer to the

results with kNN. We also notice the stability of our CS-kNN, i.e., the accuracy is linearly

boosted with the target space size and converges to the accuracy of kNN. On the other

hand, CS-samkNN, HT-kNN and PCA-kNN have different behaviors, clearly illustrated in

Figure 4.2(a); this results deduce that, in practice, it may be hard to fix a proper space size.

We also show that kNN, PCA-kNN and HT-kNN are outperformed in terms of processing

time (Figures 4.2(b) and 4.2(e)) and that CS-kNN requires also less memory compared to

these baselines. For instance, with Tweet2 and Enron in Figures 4.2(c) and 4.2(f) respectively,

we observe large gains compared to kNN, PCA-kNN, and CS-samkNN algorithms, albeit our

proposal has the same memory usage as the HT-kNN because both do not rely on data. We

also observe that the behavior of memory usage is correlated to the running time trends, i.e.,

when the memory usage increases, the processing time also increases accordingly.

Ensemble Methods

We compare the proposed LB with CS-kNN as a base learner (CS-kNNLB) and the CSB-kNN

with a different CS matrix for each learner, both using 10 learners (the size of ensemble) and

k = 5, against popular ensemble methods such as the adaptive random forest (ARF) [25]

and leveraging bagging using Hoeffding tree [41] as base learner (HTreeLB), with 30 and

10 ensemble members, respectively. Tables 4.7, 4.8 and 4.9 display the performance of the

ensembles. In this evaluation, each of the ensemble member uses the same CS matrix to
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Figure 4.2: Sorted plots of accuracy, time and memory over different output dimensions.

Table 4.7: Accuracy (%) comparison of CS-kNNLB , CSB-kNN, CS-HTreeLB , and CS-ARF.

Dataset CS-kNNLB CSB-kNN CS-HTreeLB CS-ARF

Tweets1 78.94 81.80 81.35 81.53
Tweets2 78.24 81.28 80.39 80.75
Tweets3 76.06 80.40 78.59 79.54
RBF 98.90 99.68 99.24 99.25
CNAE 71.64 81.48 65.70 62.55
Enron 95.94 96.00 96.17 95.88
IMDB 70.02 74.27 74.80 74.88
Spam 86.08 90.28 90.02 89.04
Covt 91.09 91.76 88.48 88.01
Overall ∅ 82.99 86.33 83.86 83.49
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Table 4.8: Time (sec) comparison of CS-kNNLB , CSB-kNN, CS-HTreeLB , and CS-ARF.

Dataset CS-kNNLB CSB-kNN CS-HTreeLB CS-ARF

Tweets1 1130.44 1251.77 82.18 170.52
Tweets2 1449.44 1526.30 105.87 212.69
Tweets3 1668.26 1825.41 127.19 239.97
RBF 735.21 772.62 90.22 223.08
CNAE 8.99 11.02 1.80 4.66
Enron 20.07 21.92 2.11 3.78
IMDB 1552.81 1649.94 90.17 174.54
Spam 359.07 2194.93 218.16 270.15
Covt 612.62 694.02 41.69 115.3
Overall ∅ 837.43 1105.33 84.37 108.70

Table 4.9: Memory (MB) comparison of CS-kNNLB , CSB-kNN, CS-HTreeLB , and CS-ARF.

Dataset CS-kNNLB CSB-kNN CS-HTreeLB CS-ARF

Tweets1 6.16 27.13 60.71 175.71
Tweets2 6.16 28.97 66.75 177.32
Tweets3 6.16 30.80 73.89 176.92
RBF 6.16 25.96 9.91 25.90
CNAE 6.15 28.11 0.48 1.31
Enron 6.15 28.59 1.59 4.10
IMDB 6.16 28.60 5.60 18.63
Spam 5.38 151.91 5.15 10.44
Covt 6.16 24.10 4.44 11.66
Overall ∅ 6.07 41.57 25.39 66.89
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perform the reduction into 40 dimensions, except CSB-kNN which sets up a different matrix

for each member in attempt to assess the ensemble diversity impact.

Tables 4.7, 4.8 and 4.9 show, using only 10 learners, CSB-kNN performs better than the

reputed CS-ARF [25] using 30 learners (trees) on most of the datasets. We noticed that with

CSB-kNN, when the features set is large (e.g. Spam), the memory usage is relatively high.

On the other hand, for large datasets (e.g. Tweets), the CS-ARF and CS-HTreeLB require

more memory whereas our approaches use less, what makes them useful for the stream

setting. The CS-kNNLB ensemble method is the most memory efficient and even proved

competitive with CS-HTreeLB and CS-ARF. However, this is at the price of being slower. Also,

computational resources of CSB-kNN with different CS matrices increase considerably for

the sake of accuracy and diversity (in order for the ensemble to generalize well).

In conclusion, our CSB-kNN ensemble method has good overall performance compared

to competitors. We showed that our proposal can be used to classify accurately data streams

with a large number of attributes using a relatively small number of base learners, in contrast

with CS-ARF where more–or less– base trees can considerably affect the classification

performance.

4.6 Conclusion

In this chapter, we presented a scheme to enable the sliding window kNN algorithm (Q3)

to be efficient with evolving high-dimensional data streams, in terms of classification

performance and computational resources (memory and time) (Q1 and Q2 handled), after

space transformations provided by CS given its ability to ensure theoretical lower and upper

bounds on pairwise data transformations. Our first contribution in this chapter is the mix

of two main ingredients: CS and kNN, thus resulting in the CS-kNN algorithm designed to

work on evolving data streams while operating on a reduced feature space. We proposed

also an ensemble method, CSB-kNN, that uses CS-kNN as base learner under the LB, where

each ensemble member has a different CS matrix to help increasing the overall accuracy.

We showed theoretically that for the CS-kNN using Gaussian matrices, the neighborhood

distance is preserved up to some 1 ± ϵ-factor. The key idea is to show that squared kNN

distances, in the original data, are too within the same factor. Consequently, our CS-kNN

algorithm also conserves such distances.

We evaluated the proposed algorithms via extensive experiments using synthetic and

real-world datasets with different parameters. Results show the potential of the CS-kNN and

CSB-kNN algorithms to obtain close approximations to what would be obtained using the

input instances from data streams.

The following chapter will explore the ARF ensemble method and enhance its perfor-

mance using the CS technique.
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This chapter contains results from a collaboration [122] with Heitor Murilo Gomes1

published at the International Joint Conference on Neural Networks (IJCNN) 2020 under the

title “CS-ARF: Compressed Adaptive Random Forests for Evolving Data Stream Classification”.

5.1 Introduction

Streaming ensemble-based methods have become very popular thanks to their high

predictive performance and the fact that they can be used – or tested – with new learners [48].

Nevertheless, other than their sensitivity to the learning algorithm used as a base learner,

most of the existing stream ensemble methods are often expensive and time-consuming

1University of Waikato, Hamilton, New Zealand.
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when dealing with sparse and high-dimensional data streams.

Despite their good classification performance, the major drawback of ensembles is the high

computational cost exacerbating as the dimensionality of data increases.

In a recent work [25], the adaptive random forest method (ARF) was proposed to deal

with evolving data streams by extending the random forest algorithm (RF) using a concept

drift mechanism2 to deal with changes in the distribution over time (Section 2.6). However,

based on the results from the previous chapter, it appears that ARF is effective (in terms of

accuracy) but inefficient (in terms of resource usage) with high-dimensional data streams.

In attempt to improve the performance of ARF, we propose the compressed adaptive

random forest; an ensemble-based method that extends the ARF [25] to handle high-

dimensional and sparse data streams. To do so, we follow the strategy used in the

previous chapter by incorporating a DR technique, CS [23], to project the data into a

lower-dimensional space by finding useful combinations of existing attributes (Q1 and

Q2 handled). Therefore, instead of building trees using high-dimensional instances, we

will use a smaller representation of these instances that will boost the efficiency of the ARF

method.

The rest of the chapter is organized as follows. Section 5.2 discusses the details of research

issues that motivated our study. In Section 5.3, we introduce the strategy adopted with our

proposed method. Section 5.4 outlines and discusses the experimental evaluation. We finally

draw concluding remarks in Section 5.5.

5.2 Motivation

One notable issue related to the ensemble-based methods with evolving data streams is

the massive computational demand (in terms of memory and running time). Ensembles

require more resources than single classifiers which become significantly worse with high-

dimensional data streams, as mentioned in the previous chapter. To cope with this problem

without importantly affecting the predictive performance of the ARF method, we need

to incorporate an efficient DR technique that can internally and incrementally transform

high-dimensional data into a lower space before using them for the learning task.

The feature extraction task plays a critical role when dealing with high-dimensional data

and is often used in data mining and machine learning. This task consists on extracting a

subset of relevant attributes (in low-dimensional space) from a set of input attributes in

high-dimensional space [52]. This pre-processing step provides potential benefits to stream

mining algorithms, such as reducing the storage usage, decreasing the processing time, and

enhancing – or not losing much in – the prediction performance.

2The ARF method naturally handles concept drifts and embraces the question Q3.

76



5.3 Compressed Adaptive Random Forest

In this context, we aim to use the CS technique [23] that deals with redundancy while

transforming and reconstructing data. The basic idea is to use orthogonal attributes or

samples, i.e. complementary attributes, to provably and properly represent data as well as

reconstruct them from a small number of samples. More details about the basic notions of

this technique are available in Section 2.4.2.

5.3 Compressed Adaptive Random Forest

The random forest [123] is a well known ensemble-based method that is widely used in the

batch learning classification. It grows several trees while randomly selecting attributes at

each split node from an entire set of input attributes. Nonetheless, this is inapplicable on

evolving data streams because the random forest algorithm performs multiple passes to

establish bootstraps which is inappropriate in the streaming framework. For this to happen,

an adaptive random forest method [25] has been proposed to adapt random forest to work

under the streaming setting. This adaptation includes the use of: (i) an online bootstrap

process to approximate the original data explained in [25]; and (ii) a random subset of

attributes to limit the size of input set during each leaf split. To cope with concept drifts,

ARF method is coupled with a warning and drift detection operators to adapt to changes in

the data distribution over time which will lead to a superior classification performance. As

mentioned previously, the major drawback of the ensemble-based methods, and particularly

the ARF method, is the important amount of computational resources needed to deal with

high-dimensional data streams. To cope with this issue, we use an efficient technique with

relevant properties, such as CS [23, 109].

In this vein, we propose our novel approach Compressed Adaptive Random Forest,

denoted CS-ARF in the following, that combines the simplicity of the CS and the high

learning performance of the reputed ARF method for evolving data streams. Given an infinite

stream of high-dimensional instances X ∈ R
a, we wish to construct a low-dimensional

representation Y ∈ R
m, where m ≪ a and Y is the dense representation of X after the

application of the reduction using the CS projection.

We assume that all the instances X in the stream S are s-sparse to adhere to the CS

requirements and use a RIP matrix in order to transform data into lower dimensional space

of O(s log(a)) [23]. This compression space size is easy to obtain, since it depends on the

size of the input attributes, which makes it convenient for applications in the streaming

context where the total number of instances is unknown. CS is also different from RP which

satisfies the JL Lemma 2.4.2 [81] asserting that N instances from a Euclidean space can be

projected into a lower dimensional space ofO(log N/ϵ2) dimensions.

In this work, we are only concerned by the compression phase that will alleviate the need

of resources in the ARF classification task while dealing with high-dimensional streams.

So, for each tree inside our ensemble approach, CS-ARF, we apply a pre-processing step
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consisting in the CS transformation on every incoming instance via solving Equation (2.4).

Therefore, the low-dimensional representation of the current instance will be fed to the

underlying ARF ensemble member for prediction and then used to update the corresponding

model.

For the purpose of obtaining sufficiently good – or with minor loss in – accuracy

and reducing the use computational resources, we need perform projection using an

effective sensing matrix A that respects the RIP for the CS application. In this regard, recent

studies [114, 115] and Chapter 4 (Table 4.1) assessed the performance of different sensing

matrices that satisfy the restricted isometry property with high probability and showed that

the CS, using Gaussian random matrices, achieves good results in comparison with other

sensing matrices.

In the light of this, we focus on using Gaussian random matrices because of their simplicity

and data-independent nature, which is suitable to the evolving data streams nature.

Actually, we do not need the instances from the stream to achieve the projection of

high-dimensional data. Instead, we build the sensing matrix A such that its elements are

independently generated from a Gaussian distribution Ai,j ∼ N (0, 1).

Algorithm 5 shows the pseudo-code of the proposed CS-ARF approach. As explained

previously, for each ensemble member t, we apply the CS transformation by generating

a Gaussian random matrix gm (different from the ones generated for the rest of the

ensemble members) and therefore represent the current instance using e low-dimensional

representations to fed them to each of the e trees (lines 6− 8), instead of feeding the high-

dimensional instance X . Then, we predict the class label for the current compressed dense

instance Y ∈ R
m (line 9) before using it to train the trees (line 10). For more details about

the tree training task and how trees are updated, we redirect readers to the work of Gomes,

Bifet, Read, Barddal, Enembreck, Pfharinger, Holmes, and Abdessalem. To handle drifts in

the stream, the ARF method includes a warning and drift detection mechanisms, where

once a warning is detected for an ensemble member, a background tree is created (lines

11 − 13). This tree will be replaced by its corresponding background tree if this warning

signal becomes a drift (lines 14− 15).

The main novelty of our approach is in how we internally couple the CS technique with

the ARF method to deal with evolving data streams. In fact, we use several CS matrices by

generating a different Gaussian matrix for each tree in order to promote diversity inside the

ensemble and lose as little as possible in terms predictive performance.

Each ensemble member in our CS-ARF approach will be preceded by a dimensionality

reduction step that uses a different sensing matrix.

Therefore, models – or trees – are going to be different inside the CS-ARF ensemble

because of: (i) the randomization due to the generation of different Gaussian random
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Algorithm 5 CS-ARF algorithm. Symbols: S ∈ R
a: data stream; m: output dimension; e:

ensemble size; f : maximum features evaluated per split; C: change detector; B: set of
background trees; δw: warning threshold; δd: drift threshold.

1: function CS-ARF(m, e, f, δw, δd)
2: T ← CreateTrees(e)
3: G← GaussianMatrix(e, a, m) ▷ generate e random matrices
4: B ← ∅
5: for all X ∈ S do

6: (x, c)← X
7: for all t ∈ T and gm ∈ G do

8: yi ← CS(x, m, gm) ▷ project x into m-dimensions using CS
9: ĉ← predict(t, y)

10: TreeTrain(f, t, Y ) ▷ train t on the compressed Y ← (y, c)
11: if C(δw, t, Y ) then ▷ if a warning is detected
12: b← CreateTree() ▷ create a background tree
13: B(t)← b
14: end if

15: if C(δd, t, Y ) then ▷ if a drift is detected
16: t← B(t) ▷ Replace t by b
17: end if

18: end for

19: for all b ∈ B do

20: TreeTrain(f, b, Y )
21: end for

22: end for

23: end function
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Table 5.1: Overview of the datasets.

Dataset #Instances #Attributes #Classes Type

Tweets1 1,000,000 500 2 Synthetic

Tweets2 1,000,000 1,000 2 Synthetic

Tweets3 1,000,000 1,500 2 Synthetic

RBF 1,000,000 200 10 Synthetic

Enron 1,702 1,000 2 Real

IMDB 120,919 1,001 2 Real

Nomao 34,465 119 2 Real

Har 10,299 561 6 Real

ADS 3,279 1,558 2 Real

matrices; and (ii) the construction of the trees by using random subsets of attributes for

node splits.

5.4 Experimental Evaluation

In this section, we present with detail all results provided by the proposed CS-ARF method.

Then, we analyze them in order to explain the main advantages of using the CS technique.

5.4.1 Datasets

We use 4 synthetic and 5 real datasets that have been thoroughly used in the literature to

evaluate the performance of stream classifiers. Table 5.1 presents a short description of each

dataset, further details are provided in what follows.

Tweets. Tweets was created using the tweets text data generator provided by MOA [97] that

simulates sentiment analysis on tweets, where messages can be classified into two categories

depending on whether they convey positive or negative feelings. Tweets1, Tweets2, and

Tweets3 produce 1, 000, 000 instances of 500, 1, 000, and 1, 500 attributes, respectively.

RBF . The Radial Basis Function (RBF) generator provided also by MOA. It creates centroids

at random positions, and each one has a standard deviation, a weight and a class label. This

dataset simulates drift by moving the centroids with constant speed.

Enron. The Enron corpus dataset is a large set of email messages that was made public

during the legal investigation concerning the Enron corporation [103]. This cleaned version

of Enron consists of 1, 702 instances and 1, 000 attributes.

IMDB. IMDB3 movie reviews dataset was first proposed for sentiment analysis [104], where

reviews have been pre-processed, and each review is encoded as a sequence of word indexes

(integers).

3http://waikato.github.io/meka/datasets/.
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Figure 5.1: CS-ARF and ARF comparison: the CS-ARF while projecting into different
dimensions (10, 30, 50, 70, 90); the ARF with the entire datasets (all on x-axis).

Nomao. Nomao [124] is a large dataset that has been provided by Nomao Labs. It contains

data coming from several sources on the web about places (name, website, address,

localization, fax, etc· · · ).

Har . Human Activity Recognition dataset [125] built from several subjects performing daily

living activities, such as walking upstairs/downstairs, sitting, standing and laying, while

wearing a waist-mounted smartphone equipped with sensors. The sensor signals were pre-

processed using noise filters and attributes were normalized and bounded within [−1, 1].

ADS. Advertisements dataset4 is a set of possible advertisements on internet pages, where

each row represents one image tagged as ad or nonad (which are the class labels).

5.4.2 Results and Discussions

The experiments were implemented and evaluated in Java by extending the MOA frame-

work [37, 97] using the datasets described above and the online learning setting for

Interleaved Test-Then-Train method [91] for evaluation. For a fair comparison, we evaluate

the CS-ARF approach against state-of-the-art classifiers coupled with CS as a filter, where

we use one CS matrix for DR with all the ensemble members. For the state-of-the-art

classification comparison, we use Leveraging Bagging [24] (LBcs), Streaming Random

Patches [50] (SRPcs), Hoeffding Adaptive Trees [44] (HATcs), Self-Adjusting Memory kNN [40]

(SAMkNNcs), and Naive Bayes [38] (NBcs) algorithms. We include single classifiers (HAT,

SAMkNN, NB) in our comparison, because they are often used as baselines in the stream

classification. It has been proved in [25, 50] that the ensemble-based methods, LB and SRP,

are the best outperforming other ensemble classifiers using a similar set of datasets to the

one used in this work.

Parameterization: we fix k = 11 for number of neighbors in the SAMkNN algorithm.

We use a similar configuration for the HAT algorithm and Hoeffding tree (HT) – the base

4https://www.kaggle.com/uciml/internet-advertisements-data-set.
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learner for all the ensemble methods – with the grace period, the split confidence, and

subspace size set to g = 50, c = 0.01, and m = 80%, respectively. To cope with drifts, the

ensemble methods are coupled with the change detector and estimator ADWIN [21] using

the default parameters for: (i) the warning threshold δw = 0.00001; and (ii) the drift threshold

δd = 0.0001 [24, 25, 50]. We fix the ensemble size to e = 30 learners for all the ensemble-based

methods.

Figure 5.1 presents the results of the CS-ARF approach, while applying a CS transfor-

mation over all the datasets into different space sizes (10, 30, 50, 70, 90), and the vanilla ARF

method, whilst using all the input attributes of the data stream without any projection

(all on the X-axis). We notice that for almost all the datasets, the accuracy of our CS-ARF

approach is moderately affected while varying the output dimension p (Figure 5.1(a)). It

slightly improves when we increases the p, because we are using random subspaces from a

dense set of attributes and not sparse ones (with many zeros). On the other hand, the ARF

method using the original data (presented by all in the X-axis) somewhat outperforms the

CS-ARF approach for almost all datasets. This behaviour is explained by the fact that when

we use a dimensionality reduction technique we are removing attributes that may impact

the accuracy of any classifier. In contrast, Figure 5.1(b) illustrates the behavior of the memory

usage which is different in the sense that vanilla ARF, using the entire data without projection

(all), is more memory consuming than the CS-ARF approach. Figure 5.1(c) depicts the CS-

ARF processing time that increases with p and becomes slower than the ARF method. This is

due to the fact that with the CS-ARF approach, we have the additional processing of the CS

computation that increases when the CS matrix becomes larger. We highlight that this is an

accuracy-resource usage tradeoff, because for a low value of p, our approach is able to be as

accurate as the ARF method while using much smaller computational resources. Moreover,

the accuracy increases slightly when we increase the number of dimensions to reach the

accuracy of the ARF method.

Figure 5.2 shows an accuracy comparison of the CS-ARF approach against reputed state-

of-the-art algorithms, coupled with a compressed sensing filter, on the Tweet1 dataset. We

notice that our approach achieves consistently better accuracy than its competitors for

different output dimensions. Single classifiers (HATcs, SAMkNNcs, NBcs) are less accurate

than the ensemble-based methods because the latter combine the predictions of several

single “weak” classifiers and are all coupled with drift detection techniques.

Due to the stochastic nature of the CS technique and therefore our CS-ARF approach,

all the results reported in this work are an average of several runs (with different random

Gaussian matrices). Figure 5.3 depicts the standard deviation based on the accuracies

obtained over several runs for different output dimensions using Tweet3 and Har datasets

(Figure 5.3(a) and 5.3(b), respectively). For both datasets, our approach has a small standard

deviation (too close to zero), i.e. for all the runs, the accuracies obtained are close to the mean

reported in this chapter. On the other hand, a larger standard deviation is obtained with
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Figure 5.2: Accuracy comparison over different output dimensions on Tweet1 dataset.

the other algorithms showing that the classification accuracies obtained for the different

runs are farther away from the mean. This difference is explained by the fact that the

competitors use one CS matrix as an internal filter while our approach uses a different

Gaussian matrix for each ensemble member. This strategy somewhat increases the diversity

inside the ensemble and thus a better predictive performance is obtained, guaranteeing

some close approximation (with a CS perturbation ϵ) to the accuracy that would be obtained

using the original stream. Based on these results, we use p = 50 in the following, because

the standard deviation is minimal for most of the algorithms.

The results presented in Table 5.2 show the classification performance of the CS-ARF

approach against other algorithms for all datasets projected in a space of 50-dimensions

using the compressed sensing technique. We note that the CS-ARF performs the best on

most of the datasets and highlight the difference that is statistically insignificant when

outperformed by other algorithms, as reported in [50].

To assess the benefits in terms of resources – where small values are desirable – Figure 5.4

shows the memory behavior for the ensemble-based methods. This figure depicts the large

gains on almost all datasets of our approach, CS-ARF, which outperforms the LBcs and the

SRPcs methods, confirming previous studies [25, 50] that reveal the high consumption of

the LB. We also note that with small datasets, such as Enron and ADS, the CS-ARF does not

achieve a prominent gain. Indeed, with large datasets our proposed approach is efficient

which makes it highly convenient for high-dimensional data streams where the stream size

is potentially infinite, which is not the case of the Enron and ADS datasets.
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Figure 5.3: The standard deviation of the methods while projecting into different dimensions

Table 5.2: Accuracy (%) comparison of CS-ARF, LBcs, SRPcs, SAMkNNcs, and NBcs.

Dataset CS-ARF LBcs SRPcs HATcs SkNNcs NBcs

Tweets1 86.46 82.64 81.08 76.35 76.29 79.82
Tweets2 85.53 81.88 80.93 76.69 74.06 79.48
Tweets3 86.96 79.65 78.58 71.30 72.61 78.24
RBF 99.55 99.50 99.74 96.20 99.77 96.41
Enron 92.11 96.18 96.35 94.59 96.17 91.37
IMDB 74.90 74.86 74.87 74.04 74.55 74.27
Nomao 96.74 96.70 96.68 95.02 96.63 86.25
Har 88.14 88.61 88.65 80.22 82.07 81.72
ADS 98.25 99.74 99.81 98.71 98.52 89.48
Overall ∅ 89.65 88.91 88.52 84.79 85.63 84.11
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Figure 5.4: Memory (MB) comparison of the ensemble-based methods on all the datasets.

5.5 Conclusion

In this work, we presented the compressed adaptive random forest approach (handles the

Q3) to enable the ARF to be both efficient (in terms of resource usage) and effective (in terms

of classification accuracy) with high-dimensional data streams (Q1 and Q2). The CS-ARF

approach combines the CS technique, given its ability to preserve pairwise distances within

1 ± ϵ-factor, in conjunction with the strength of the reputed ARF method, that achieves

high predictive performance. Our proposed approach transforms high-dimensional data

streams, using the CS technique as an internal online pre-processing step, afterwards it uses

the corresponding obtained low-dimensional representation for the learning task using the

ARF method.

We evaluated and discussed the proposed method via extensive experiments using a

diverse set of datasets. Results showed the ability of our approach to achieve good perfor-

mance, close to what would be obtained using the original datasets without projections,

and outperform well-known state-of-the-art algorithms. We also showed that, despite its

stochastic nature, the CS-ARF approach achieves good stable accuracy, by extracting relevant

attributes from sparse data in different low-dimensional spaces, while using feasible amount

of resources.
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This chapter concerns a collaboration [126] with Bernhard Pfahringer1 published at

the Symposium on Intelligent Data Analysis (IDA) 2020 under the title “Efficient Batch-

Incremental Classification Using UMAP for Evolving Data Streams”.

6.1 Introduction

Data stream learning – or incremental learning – approaches can generally be divided into

two main branches [113]:

1University of Waikato, Hamilton, New Zealand.
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• Instance-incremental approaches that update the model with each instance as soon

as it arrives, e.g. (i) Naive Bayes [127] which uses the Bayes formula to compute

posterior probabilities; (ii) Self-Adjusting Memory kNN (samkNN) [40] which is a

streaming version of kNN [22]; and (iii) Hoeffding Adaptive Tree (HAT) [44] which

is an extension of the Hoeffding decision trees [41] to deal with concept drifts. See

Section 2.3 for more approaches.

• Batch-incremental approaches (multiple instances) which make no change/increment

to their model until a batch is completed. The main parameter to be fixed is then

the size of batches. E.g. (i) logistic regression [128] that uses a logistic function to

model a dependent variable; (ii) support vector machines [129] which builds a model

that assigns new instances into the space based on their class labels; and (iii) batch-

incremental ensemble of decision trees [130] which divides the stream into single

batches then, after learning from each batch, the ensemble combines the underlying

models to one global model.

In this chapter, we propose another attempt to improve the performance of the kNN

that consists in incorporating a batch-incremental feature transformation strategy to tackle

potentially high-dimensional and possibly infinite batches of data streams while ensuring

effectiveness and quality of learning (e.g., accuracy), which addresses the questions Q1 and

Q2. This is achieved via a new DR technique that has attracted a lot of attention recently:

Uniform Manifold Approximation and Projection (UMAP) [26](Section 2.4.3), built upon

rigorous mathematical foundation through the Riemannian geometry. As far as we know, no

incremental – streaming or online – version of UMAP exists which makes it not applicable

on very large dynamic datasets. In order for that to happen, the approach outlined in this

chapter proposes a batch-incremental strategy where we use UMAP as an internal pre-

processing step to the kNN algorithm on evolving data streams.

This chapter is organized as follows. Section 6.2 reviews the prominent related work.

Section 6.3 gives a brief background of UMAP, followed by the description of our approach.

In Section 6.4, we outline and discuss the results of experiments on diverse datasets. Finally

we draw our conclusions.

6.2 Related Work

Beyond any doubt, DR is a powerful tool in data science to look for hidden structure in

data and reduce the resources usage of learning algorithms. DR techniques facilitate the

classification task, by removing redundancies and extracting the most relevant features

in the data, and permits a better data visualization. A simple sub-taxonomy (to the one

introduced in Figure 2.7) divides these techniques into two major groups as follows: matrix

factorization and graph/neighborhood-based techniques.
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• Matrix factorization techniques require matrix computation tools, such the well-

known PCA [131]. It uses singular value decomposition and aims to find a lower-

dimensional basis by converting the data into features called principal components

by computing the eigenvalues and eigenvectors of a covariance matrix. Different

incremental versions of PCA have been developed to handle streams of data [63, 59,

58], inter alia, a batch-incremental PCA have been proposed to incrementally learn a

subspace representation using successive batches [59] (see Section 2.4.1 for details).

• Graph/Neighborhood-based techniques are leveraged in the context of DR and data

visualization by using insight that similar instances in the high-dimensional space

should be represented by close instances in the corresponding low-dimensional

space, whereas dissimilar instances should be well separated. As introduced in

Section 2.4.3, tSNE [90] converts pairwise high-dimensional Euclidean distances

between input instances into conditional probabilities P which represent matrix

of pairwise similarities. Likewise a probability distribution Q is computed describing

the similarity in the lower dimensional space after a first random projection. The

objective behind t-SNE is to find a representation in a low-dimensional space where

Q faithfully represents P . To do so, an optimization scheme is used to minimize

the difference between P and Q over all instances. In addition to the fact that it is

computationally expensive, t-SNE has some limitations while projecting in a two–or

three-dimensions. In fact, it does not preserve distances between all instances nor

density, it only preserves nearest-neighbors and can affect any density- or distance-

based algorithm and hence preserves more of the local structure than the global

structure [90].

6.3 Batch-Incremental Classification

In this section, we present a batch-incremental adaptation of the UMAP technique [26] for

the stream kNN algorithm.

6.3.1 Prior Work

Unlike tSNE [90], the UMAP [26] serves not only for visualization but also as a general DR

technique. It uses the concept of k-nearest neighbors by constructing open balls over all

instances and building simplicial complexes (Section 2.4.3).

UMAP offers better visualization quality than tSNE by preserving more of the global structure

in a shorter running time.
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To the best of our knowledge, tSNE and UMAP do not have any incremental version,

and, ultimately, both techniques are essentially transductive2 and do not learn a mapping

function from the input space. Hence, they need to process all the instances for each

new unseen observation, which prevents them from being applicable within the stream

framework.

Figure 6.1 shows the projection of CNAE dataset [105] (see Table 6.1) into 2-dimensions

with UMAP, t-SNE, and PCA in an offline/online fashions where each color represents a

label. In Figure 6.1(a), we notice that UMAP offers the most interesting visualization and

has far better local structure showing its embedding effectiveness on separating classes

clearly (9 classes), by putting similar data together, beating t-SNE and PCA (Figures 6.1(b)

and 6.1(c) respectively). The overlap in the new space, for instance with tSNE in Figure 6.1(b),

can potentially affect later classification task, notably distance-based algorithms because

properties like global distances and density may be lost in favor of preserving local structure.

On the other hand, linear transformation, such as PCA, cannot discriminate between

instances which prevents them from being represented in the form of clusters as other

algorithms (Figure 6.1(c)).

To motivate our choice in the following, we project the same dataset with these ap-

proaches using our batch-incremental strategy (more details in Section 6.3.2). Figure 6.1(d)

illustrates the change from the offline UMAP representation which is not as drastic as the

ones engendered by tSNE and PCA (Figures 6.1(e) and 6.1(f), respectively) showing their

limits on capturing information from data that arrive in a batch-incremental manner.

6.3.2 Algorithm Description

A very efficient and simple scheme in supervised learning is lazy learning [132, 133]. Since

lazy learning approaches are based on distances between every pair of instances, they

unfortunately exhibit low performance in terms of execution time. The kNN algorithm

is a well-known lazy algorithm that does not require any work during training, so it uses

the entire dataset to predict labels for test instances. However, it is impossible to store an

evolving data stream which is potentially infinite – nor to scan it multiple times – due to its

tremendous volume. To tackle this challenge, a basic incremental version of kNN has been

proposed which uses a fixed-length window that slides through the stream and merges new

arriving instances with the closest ones already in the window (Section 2.3.2). To predict

the class label for an incoming instance, we take the majority class labels of its nearest

neighbors inside the window using a defined distance metric (Equation 4.2). Since we keep

the recent arrived instances inside the sliding window for prediction, the search for the

nearest neighbors is still costly in terms of memory and time [39] and high-dimensional

2Transductive learning consists on learning on a dataset but predicting on a known set of unlabeled instances
from the same dataset.
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(a) offline: UMAP. (b) offline: tSNE. (c) offline: PCA.

(d) batch-incremental: UMAP. (e) batch-incremental: tSNE. (f) batch-incremental: PCA.

Figure 6.1: Projection of CNAE dataset in 2-dimensional space.
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data stream impose further resources.

The main idea to cope with this drawback and improve the performance of kNN consists of

using an efficient strategy which has consistent results, such as UMAP.

Since UMAP is a transductive technique, an instance-incremental learning approach

that includes UMAP does not work because the entire stream needs to be processed

whenever a new instance arrives. By doing it this way, the process will be costly and will

not respond to the streaming requirements. To alleviate the processing cost considering

the framework within which several challenges shall be respected, including the memory

constraint and the incremental behavior of data, we adopt a batch-incremental strategy.

In the following, we introduce the procedure of our novel approach, batch-incremental

UMAP-kNN.

Step 1: Partition of the stream.

During this step, we must address the major weakness of UMAP, which is its uneffectiveness

with instance-incremental manner. The basic idea is to employ a batch-incremental strategy

consisting on processing subsets of the stream. To do so, we assume that data arrive in

batches – or chunks – by dividing the stream into disjoint partitions S1, S2, · · · of size s.

Figure 6.2 shows a stream of instances divided into batches of equal size. So, instead of

having observations available one by one i.e., one at a time, they will arrive as a group of

instances simultaneously, S1, S2, . . . Sq, where Sq is the qth chunk. A simple example of data

stream is a video sequence where at each instant we have a succession of images.

X1X2X3X4 X5X6X7X8 X9X10X11X12
... Xr Xr+1Xr+2Xr+3

S1 S2 S3 Sq

∊ℝa

Figure 6.2: Stream of mini-batches.

Step 2: Data pre-processing.

We focus on the analysis of an infinite stream of high-dimensional instances Xi ∈ R
a from

which we wish to construct a low-dimensional representation Yi ∈ R
m, where m≪ a.

As mentioned before, UMAP is unable to compress data incrementally and needs to

transform more than one instance at a time because it builds a neighborhood-graph on a

set of instances and then lays it out in a lower dimensional space [26]. Thus, our proposed

approach operates on batches of the stream where a single batch Si of data is processed at a

time Ti. The two first steps in Figure 6.3 show the application of UMAP on disjoint batches.

Once a batch is complete, throughout the second step, we apply UMAP on it independently

from the batches that have been already processed, so each Si ∈ R
a will be transformed

and represented by Si ∈ R
m. This new representation is very likely devoid of redundancies,

irrelevant attributes, and is obtained by finding potentially useful non-linear combinations
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X1X2X3X4 X5X6X7X8 X9X10X11X12
... Xr Xr+1Xr+2Xr+3 ∊ℝa

Y1Y2Y3Y4 Y5Y6Y7Y8 Y9Y10Y11Y12
... Yr Yr+1Yr+2Yr+3 ∊ℝm

T1 T2 T3 Tq

Y1Y2

Y1Y2Y3

Y1Y2Y3Y4

Y1Y2Y3Y4 Y5Y6

Y1Y2Y3Y4 Y5Y6Y7

Y8
Y1Y2Y3Y4 Y5Y6Y7 ...

Y8
Y1Y2Y3Y4 Y5Y6Y7 Y9Y10Y11Y12 ... Yr Yr+1Yr+2Yr+3

kNN

Figure 6.3: Batch-incremental UMAP-kNN scheme.

of existing attributes, i.e. by repacking relevant information of the larger feature space and

encoding it more compactly.

For UMAP to learn when moving from a batch to another, we seed each chunk’s

embedding with the outcome of the previous one, i.e., match the prior initial coordinates

for instances in the current embedding to the final coordinates in the preceding one. This

will help to avoid losing the topological information of the stream and to keep stability in

successive embeddings as we transition from one batch to its successor. Afterwards, we

use the compressed representation of the high-dimensional chunk for the next step that

consists in supporting the incremental kNN classification algorithm internally.

Step 3: kNN classification.

The UMAP-kNN approach aims to decrease the computational costs of kNN on high-

dimensional data stream by reducing the input space size using the famous dimension

reduction UMAP in a batch-incremental way. Besides the prediction phase of the kNN

algorithm that is based on the neighborhood3, UMAP operates on a k-nearest graph

(topological representation) as well and optimizes the low-dimensional representation

of the data using gradient descent. One nice takeaway is that UMAP, because of its solid

theoretical backing as a manifold technique, keeps properties such as density and pairwise

3The distances between the new incoming instance and the instances already available inside the adaptive
window (Q3) are computed in order to assign it to a particular class.
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distances. Thus, it is not going to bias the performance of he neighborhood-based kNN

algorithm.

This step consists of classifying the evolving data stream, where the learning task

occurs on consecutive batches, i.e. we train incrementally kNN with instances becoming

successively available in chunk buffers after pre-processing. Figure 6.3 shows the underlying

batch-incremental learning scheme used which is built upon the divide-and-conquer

strategy. Since UMAP is independently applied to batches, so once a chunk is complete and

has been transformed in R
m, we feed the half of the batch to the sliding window and we

predict incrementally the class label for the second half (the rest of instances).

Given that kNN is adaptive, the main novelty of UMAP-kNN is in how it merges the

current batch to previous ones. This is done by adding it to the instances from previous

chunks inside the kNN window. Even if past chunks have been discarded, only some of them

have been stored and maintained while the adaptive window scrolls. Thereafter, instances

kept temporarily inside the window are going to be used to define the neighborhood and

predict the class labels for later incoming instances. As presented in Figure 6.3, the intuitive

idea to combine results from different batches is to use the half of each batch for training and

the second half for prediction. In general, due to the possibility of having often very different

successive embeddings, one would expect that this may affect the global performance of

our approach. Thus, we adopt this scheme to maintain a stability over an adaptive batch-

incremental manifold classification approach.

Algorithm 6 UMAP-kNN algorithm. Symbols: S = ¶X1, X2, . . .♢ ∈ R
a: data stream; S =

¶Y1, Y2, . . .♢ ∈ R
m: transformed data stream; s: batch size; C = ¶c1, c2, . . .♢: set of class labels;

W : sliding window; k: the number of neighbors.

1: function UMAP-kNN(S, s, w, k, m)
2: W ← ∅, j ← 0
3: for all Si ∈ S do

4: Si ←UMAP(Si,m) ▷ apply UMAP
5: W ← Si[1···

s
2

]

6: j ← s
2 + 1

7: for all Yj ∈ Si[ s
2

···s] do

8: for all Yk ∈W do ▷ ∀ k ̸= j
9: compute DYk

(Yj) ▷ Equation (4.2)
10: end for

11: c← max
c∈C

DS,k(Yj) ▷ Equation (4.3)

12: W ← Yj ▷ maintain the projected Xj , Yj , in W
13: end for

14: end for

15: end function

Algorithm 6 shows the pseudo-code of the UMAP-kNN. We start by applying UMAP

on each new incoming chunk Si. Then, we provide a dense representation of it, instead

of sparse high-dimensional one. Later, we feed the half of the transformed instances, Si,
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to the window W (line 5). Afterwards, we apply kNN on the second half of the chunk by

computing the distance between Yj and the accumulated instances inside W (lines 7− 10).

Finally, we report the most frequent class label to Yj by taking the majority vote over its

nearest neighbors and add it to the window (lines 10− 11).

6.4 Experimental Evaluation

In this section, we present a series of experiments carried out on synthetic and real datasets

to assess the classification performance of our proposal.

6.4.1 Datasets

In order to show whether the UMAP-kNN approach is capable of working in different

scenarios, we use 3 synthetic and 6 real-world high-dimensional datasets from different

scenarios that have been thoroughly used in the literature to evaluate the classification

performance of data streams classifiers. Table 6.1 presents a short description of each

dataset, and further details are provided in what follows.

Tweets. The dataset was created using the tweets text data generator provided by MOA [97]

that simulates sentiment analysis on tweets, where messages can be classified depending

on whether they convey positive or negative feelings. Tweets1,2,3 produce instances of 500,

1, 000 and 1, 500 attributes respectively.

Har . Human Activity Recognition dataset [125] built from several subjects performing

daily living activities, such as walking, sitting, standing and laying, while wearing a waist-

mounted smartphone equipped with sensors. The sensor signals were pre-processed using

noise filters and attributes were normalized.

CNAE . CNAE is the national classification of economic activities dataset [105]. Instances

represent descriptions of Brazilian companies categorized into 9 classes. The original texts

were pre-processed to obtain the current highly sparse data.

Enron. The Enron corpus dataset is a large set of email messages that was made public

during the legal investigation concerning the Enron corporation [103]. This cleaned version

of Enron consists of 1, 702 instances and 1, 000 attributes.

IMDB. IMDB movie reviews dataset was proposed for sentiment analysis [104], where each

review is encoded as a sequence of word indexes (integers).

Nomao. Nomao dataset [124] was provided by Nomao Labs where data come from several

sources on the web about places (name, address, localization, etc).

Covt . The forest covertype dataset obtained from US forest service resource information

system data where each class label presents a different cover type.
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Table 6.1: Overview of the datasets.

Dataset #Instances #Attributes #Classes Type

Tweets1 1,000,000 500 2 Synthetic

Tweets2 1,000,000 1,000 2 Synthetic

Tweets3 1,000,000 1,500 2 Synthetic

Har 10,299 561 6 Real

CNAE 1,080 856 9 Real

Enron 1,702 1,000 2 Real

IMDB 120,919 1,001 2 Real

Nomao 34,465 119 2 Real

Covt 581,012 54 7 Real

6.4.2 Results and Discussions

We compare our proposed classifier, UMAP-kNN, to various commonly-used baseline

methods in dimensionality reduction and machine learning areas. PCA [59] provided in

scikit-learn [134], which is an incremental-batch approach that updates the eigenbasis for

each batch buffer, tSNE (fixing the perplexity to 30, which is the best value as reported in [90]),

SAM-kNN (SkNN) [40]. We use HAT, a classifier with a different structure based on trees [44],

to assess its performance with the neighborhood-based UMAP. For fair comparison, we

compare UMAP-kNN against PCA and t-SNE using the same strategy proposed in this

chapter both with kNN. We compare the performance of UMAP-kNN approach with

competitor classifiers using UMAP as well and the same batch-incremental manner. Actually,

incremental kNN has two crucial parameters: (i) the number of neighbors k fixed to 5; and

(ii) the window size W , that maintains the low-dimensional data, fixed to 1000. According to

previous studies such as [39], a bigger window will increase the resources usage and smaller

size will impact the accuracy. All experiments were implemented and evaluated in Python

by extending the Scikit-multiflow framework4 [135] and scikit-learn [134] using the datasets

described in Section 6.1.

Figure 6.4(a) depicts the influence of the chunk size on the accuracy using UMAP-

kNN with some datasets. Generally, fixing the chunk size imposes the following dilemma:

choosing a small size so that we obtain an accurate reflection of the current data or choosing

a large size that may increase the accuracy since more data are available. The ideal would be

to use a batch with the maximum of instances to represent as possible the whole stream.

In practice, the chunk size needs to be small enough to fit in the main memory otherwise

the running time of the approach will increase. UMAP is a slow technique, so we choose

small chunk sizes to overcome this issue with UMAP-kNN. Based on the obtained results in

Figure 6.4(a), we fix the chunk size to 400 for an efficient tradeoff accuracy-memory.

4https://scikit-multiflow.github.io/.
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(b) varying the number of neighbors for UMAP.

Figure 6.4: Accuracy while varying the chunk size and the number of neighbors.
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Figure 6.5: Comparison of UMAP-kNN, tSNE-kNN, PCA-kNN, and kNN (with the entire
datasets) while projecting into 3 dimensions.

We investigate the behavior of a crucial parameter that controls UMAP, number of

neighbors, via the classification performance of our approach. Based on the size of the

neighborhood, UMAP constructs the manifold and focuses on preserving local and global

structures. Figure 6.4(b) shows the accuracy when the number of neighbors is varied on

diverse datasets. We notice that for all datasets, the accuracy is consistently the same with

no large differences, e.g. Har. Thanks to the batch-incremental strategy that permits for each

chunk to maintain its structure in the sliding window to support the kNN classification,

we therefore offer a stability for successive embeddings by merging them. Since large

neighborhood leads to a slower learning process, in the following we fix the number of

neighbors for UMAP to 15.

tSNE is a visualization technique, so we are limited to project high-dimensional data into

2 or 3 dimensions. In order to evaluate the performance of our proposal in a fair comparison

against each of tSNE-kNN and PCA-kNN, we project data into 3-dimensional space. We
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illustrate in Figure 6.5(a) that UMAP-kNN makes significantly more accurate predictions

beating consistently the best performing baselines (tSNE-kNN and PCA-kNN) notably with

the CNAE and tweets datasets. Figure 6.5(b) depicts the quantity of memory needed by the

three algorithms which is practically the same for some datasets. Compared to kNN that uses

the whole data without projection, we notice that UMAP-kNN consumes much less memory

whilst sacrificing a bit in accuracy because we are removing many attributes. Figure 6.5(c)

shows that our approach is consistently faster than tSNE-kNN because tSNE computes the

distances between every pair of instances to project. On the other hand, PCA-kNN is a bit

faster thanks to the simplicity of PCA in comparison with the manifold learning technique

UMAP. But with this tradeoff our approach performs good on almost all datasets.

In addition to its good classification performance in comparison with competitors, the

batch-incremental UMAP-kNN did a better job of preserving density by capturing both of

global and local structures, as shown in Figure 6.1(d). The fact that UMAP and kNN are both

neighborhood-based methods arises as a key element in achieving a good accuracy. UMAP

has not only the power of visualization but also the ability to reduce the dimensionality of

data efficiently which makes it useful as pre-processing technique for machine learning.

Table 6.2 reports the comparison of UMAP-kNN against state-of-the-art classifiers. We

highlight that our approach performs better on almost all datasets. It achieves similar

accuracies to UMAP-SkNN on several datasets but in terms of resources, the latter is slower

because of its drift detection mechanism. UMAP-kNN has a better performance than PCA-

kNN, e.g., the Tweets datasets at the cost of being slower. We also observe the UMAP-HAT

failed to overcome our approach (in terms of accuracy, memory, and time) due to the

integration of a neighborhood-based technique (UMAP) to a tree structure (HAT).

Figure 6.6 reports detailed results for Tweet1 dataset with five output dimensions.

Figure 6.6(a) exhibits the accuracy of our approach which is consistently above competitors

whilst ensuring stability for different manifolds. Figures 6.6(b) and 6.6(c) show that kNN-

based classifiers use much less resources than the tree-based UMAP-HAT. We see that

UMAP-kNN requires less time than UMAP-HAT and UMAP-SkNN to execute the stream but

PCA-kNN is fastest thanks to its simplicity. Still, the gain in accuracy with UMAP-kNN is

more significant.

6.5 Conclusion

Motivated by the high performance of UMAP proposed recently by McInnes, Healy, and

Melville, this chapter addresses the problem of high-dimensionality using UMAP applied to

the stream classification (Q2). We presented a novel batch-incremental approach for mining

data streams using the adaptive kNN algorithm (Q3). UMAP-kNN combines the simplicity

of kNN and the high performance of UMAP which is used as an internal incremental pre-
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Table 6.2: Comparison of UMAP-kNN , PCA-kNN, UMAP-SkNN, and UMAP-HAT.

Accuracy (%)

Dataset UMAP-kNN PCA-kNN UMAP-SkNN UMAP-HAT

Tweets1 75.71 69.89 75.37 66.47
Tweets2 75.16 69.21 74.40 61.27
Tweets3 71.01 70.81 70.47 66.98
Har 75.30 70.50 64.09 84.89
CNAE 76.67 67.41 75.18 40.18
Enron 92.24 93.41 91.89 91.77
IMDB 67.38 67.28 67.43 64.52
Nomao 91.92 91.13 91.63 83.75
Covt 61.29 66.73 53.08 55.43

Memory (MB)

Dataset UMAP-kNN PCA-kNN UMAP-SkNN UMAP-HAT

Tweets1 1366.71 1354.24 1373.15 2738.32
Tweets2 2530.30 2518.76 2532.95 4891.23
Tweets3 3706.99 3706.55 3722.68 7144.77
Har 311.58 310.48 312.84 381.49
CNAE 254.17 246.94 260.29 262.52
Enron 269.00 267.31 271.56 288.74
IMDB 3012.85 3013.28 3018.04 7471.64
Nomao 289.81 285.50 290.60 508.50
Covt 700.69 689.97 704.46 3788.54

Time (Sec)

Dataset UMAP-kNN PCA-kNN UMAP-SkNN UMAP-HAT

Tweets1 558.56 217.44 1396.32 2163.14
Tweets2 616.50 350.63 908.59 3453.21
Tweets3 667.43 400.62 1066.98 6273.19
Har 75.20 24.37 77.99 82.47
CNAE 8.89 4.81 13.17 19.78
Enron 12.80 9.52 17.26 32.84
IMDB 715.68 407.60 1038.77 4691.07
Nomao 248.79 20.46 327.36 228.00
Covt 2311.21 137.62 3756.41 2297.01
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Figure 6.6: Comparison of UMAP-kNN, PCA-kNN, UMAP-SkNN, and UMAP-HAT over
different output dimensions using Tweet1.

processing step to reduce the feature space of data streams (Q1). We showed that UMAP is

capable of embedding efficiently data streams within a batch-incremental strategy.

We assessed the performance of the proposed approach in an extensive evaluation

with well-known state-of-the-art algorithms considering a diverse set of datasets. We

further demonstrated that the batch-incremental approach is just as effective as the offline

approach in visualization and its classification performance significantly outperforms

reputed baselines while using reasonable resources usage.

We would like to pursue our promising approach further to enhance its run-time

performance by applying a fast dimension reduction before using of UMAP. Another area

for future work could be the use of a different mechanism, such as the application of UMAP

for each incoming data inside a sliding window. We believe that this may be slow but will be

suited for instance-incremental learning.
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The amount of data streams generated daily by active devices and sensors is considerably

increasing. Useful knowledge can be extracted from these evolving data for later decision-

making. These data streams pose however several challenges for learning algorithms,

including mainly, but not limited to, restricted resources (in terms of memory usage and

running time), high-dimensionality, and concept drift constraints.

In this thesis, we investigated the problem of evolving data stream classification while

addressing the aforementioned challenges. This chapter concludes the thesis with a

discussion on the completed work and indicates possible lines of further investigation.

7.1 Conclusions

We thoroughly analyze and present the two main problems addressed in this thesis, which

are the data stream classification and summarization, with a focus on sketching and

dimensionality reduction.

In the first step of the thesis, we defined the basic characteristics of data streams

and discussed different approaches in the research, designed to handle the challenges

of such evolving environments. During our discussion, we focused on addressing the stream
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challenges in the context of classification. In this context, we reviewed in detail the state-

of-the-art algorithms of classification and dimensionality reduction. The aim of this thesis

settled on improving current stream classifiers by developing new approaches that use DR

techniques. During the introductory part in Chapter 1, we divided our objectives in three

research questions (Q1, Q2, Q3) that were our main focus throughout our contributions.

7.1.1 Naive Bayes Classification

In Chapter 3, we studied the well-known summarization technique with promising

theoretical guarantees, CMS [19]. We adopted a strategy that allows us to compactly store

instances from the stream in a sketch table with a fixed size, during the learning phase, in

a way that the data could be easily retrieved from it for prediction using the Naive Bayes

algorithm (Q1 handled). Theoretical guarantees characterizing the size of the sketch are

provided to build the sketch table, capable to store synopsis of data without much loss in

information.

Concept drift is defined as the changes which occur in the learned model due to time-

evolving stream distributions. These changes mainly involve some fluctuations of the

underlying distributions. The occurrence of concept drifts sometimes leads to a significant

drop in the predictive performance for some classifiers. Moreover, models and partitions

need to be updated with new information, that is why the new proposed classification

algorithms dedicated to data streams are generally coupled with a drift detection mechanism.

To cope with this phenomena and address Q3, we incorporated a drift detection strategy

using ADWIN [21] to the SketchNB.

To cope with high-dimensional Q2, we added an incremental pre-processing step to the

above-mentioned SketchNB, and its adaptive version, to reduce the dimensionality of data

before storing them in the sketch table and therefore minimize the resources that would be

used for high-dimensional data. For this to happen, we used the hashing trick [20], a fast

and simple DR technique, that employs a hash function for projection.

7.1.2 Lazy learning

Valuable results have been obtained during the research of the first main contribution, where

we performed several experiments on a diverse set of datasets (including high-dimensional

data) by evaluating well-known learners – among others the kNN algorithm. In our results,

we noticed that the latter is very costly, i.e., it uses huge amounts of resources (in terms

of memory and time). These results motivated us to investigate ways to enhance the kNN

performance using successful DR techniques. In the following, we sum up the principal

contributions to the lazy learning under the streaming framework:

• In Chapter 4, we proposed an efficient kNN approach that reduces high-dimensional

data streams (Q2) using a data-independent DR technique, CS [23], before feeding
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their low-dimensional representation to the sliding window of the kNN algorithm (Q3).

This approach is indeed memory-efficient and faster than the traditional incremental

kNN because it processes low-dimensional data instead of high-dimensional data (Q1).

Linked to some geometrical properties, we theoretically proved that the neighborhood

before and after projection (using the CS technique) is preserved up some ϵ-distortion.

This means that our CS-kNN approach achieves an accuracy close to the one that

would be obtained using the input high-dimensional stream (without projection) with

the classical kNN.

• We also proposed another variation of kNN that handles high-dimensional data

streams using the UMAP [26] to reduce the input space dimension (Q2). UMAP has

no incremental version that is able to process data streams. This is because of its

transductive nature, demanding the presence of the entire data for each new incoming

observation. In this contribution (presented in Chapter 6), we proposed a batch-

incremental UMAP-kNN that pre-processes the data in a batch-incremental manner

and fed them to the kNN for prediction in an instance-incremental way. This approach

provided promising results by reducing the computational cost of the kNN while

obtaining good accuracy and being efficient in visualization (Q1).

The results of the aforementioned proposed approaches exhibited a parameterized resource-

accuracy tradeoff. In fact, small kNN sliding window – or output dimension after projection

– can significantly degrade the accuracy, whereas a large window – or space dimension – will

lead to a better predictive performance but also amplify the use of computational resources.

7.1.3 Ensembles

Several theoretical and empirical studies have shown that combining multiple individual

learners (ensembles) leads to better accuracy. There is no free lunch, ensemble-based

methods are very costly (in terms of resources) in comparison to single classifiers – this

motivated us to improve the performance of two reputed ensembles, namely the LB and

ARF methods, with high-dimensional data streams. In this context, we summarize our

ensemble-based contributions as follows:

• We proposed two LB versions that use the CS-kNN, that addresses the Q1, Q2, and Q3,

in Chapter 4. The first one, CS-kNNLB , operates using the CS-kNN as a base learner

to the LB ensemble with only one CS random matrix (as a filter) for all the ensemble

members. Thereafter, we proposed the CSB-kNN method that improves the predictive

results of the later by increasing the diversity inside the ensemble using different CS

random matrices, one for each ensemble member.

• In chapter 5, we studied a new ensemble method, the ARF, that provides good accuracy

in comparison with state-of-the-art ensembles but consumes a lot of computational
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resource. Similarly to the strategy used in the CSB-kNN, we proposed the CS-ARF

method that decreases the computational resource usage (Q1) of the adaptive random

forest (Q3) with high-dimensional data streams (Q2). We used different CS matrices,

to reduce the input dimensionality, within the different trees used in the ensemble.

7.2 Open Issues and Future Directions

The contribution results presented in this thesis open new perspectives in the stream domain

that we explored. We outline with a list of some potentially interesting research directions

that directly follow from our work.

SketchNB. In this work, we pre-processed the datasets and transformed numerical

attributes into discrete attributes using WEKA [107] because CMS works principally on

categorical data. A promising direction to fully handle numerical attributes incrementally is

to use a discretization algorithm, such as the Partition Incremental Discretization (PiD) [106]

as filter. One way to test its feasibility is to develop it as a Java implementation under the

MOA framework [97].

CS-kNN. Instead of keeping synopsis of data, the kNN algorithm maintains a window

that contains a part of the stream making the kNN slow. Thus, the ensemble-based CSB-kNN

method, that combines several CS-kNN, is also slow. We suggest that further research should

investigate how to optimize the processing time of the CSB-kNN (which already obtains

sufficiently good accuracy) and provide guarantees along the number of output dimensions.

Once the latter is fixed, we could efficiently project the data streams knowing the input

dimensions.

UMAP-kNN. We believe that our promising batch-incremental UMAP-kNN approach

could be pursued further to enhance its run-time performance by applying a fast DR before

using UMAP. Another area for future work could be to use of a different mechanism, such as

the application of UMAP on each incoming data inside a sliding window. We believe that

this may be slow but will be suited for instance-incremental learning.

Towards AutoML. There is no doubt, the proposed algorithms mentioned in this thesis

are suitable for data streams. In fact, before starting the incremental processing of the

stream, we need to fix in advance the parameter(s) for the algorithm being used (e.g., the

number of neighbors k for the kNN algorithm, the number of learners for the ensemble-

based algorithms, the output dimension m for DR techniques). However, these algorithms

are not fully automated because the generated models might change over time and decrease

the performance of the corresponding classifier. Consequently, the parameterization fixed

at the beginning might not hold for the entire stream. So how could this issue be fixed?

Auto Machine Learning (autoML) is a new topic that addresses the problem of variability

by automatic monitoring models. Some systems1 have been developed recently that allow

1https://www.automl.org/automl/.
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hyper-parameter tuning, such as AutoWeka2 and AutoSklearn3 (i.e., autoML combined

with Weka and Scikit-learn, respectivety). On the other hand, very few contributions on

AutoML for data stream monitoring are found in the literature. In this context, Veloso,

Gama, and Malheiro proposed a Self Parameter Tuning (SPT) technique that ensures a

full automation of stream modelling algorithms by continuously searching for the optimal

hyper-parameters while processing the stream. This hyper-parameterization could change

over time, depending on the current distribution of the stream.

We believe that hyper-parameters tuning and algorithms configuration have the

potential to be revolutionary for the data stream mining tasks. Finding the optimal hyper-

parameters (e.g., using SPT) for a classification algorithm is tedious, especially that the

latter is going to be used in different contexts on different streams. Thus, adjusting the

hyper-parameters of stream algorithms automatically and dynamically is a very promising

avenue.

2https://www.automl.org/automl/autoweka/.
3https://www.automl.org/automl/auto-sklearn/.
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A.1 Introduction

In this appendix, we present existing tools used in this thesis to apply machine learning to

data streams for both research and practical applications. These open-source frameworks

are designed to facilitate collaboration among research groups and allow users to implement

their own – or extend existing – algorithms, and to compare against state-of-the-art

algorithms already implemented. In the following, we present the two main data stream

mining frameworks1 used to implement and evaluate our contributions. We describe

the installation process and some implementation details used in order to test our new

classification approaches proposed throughout this thesis.

A.2 Massive Online Analysis

Massive Online Analysis (MOA)2 [97] is the most popular open source framework for data

stream analysis, implemented in Java and developed on top of WEKA [107], with a very active

1Requirements of such frameworks are introduced in Part I of the thesis.
2https://moa.cms.waikato.ac.nz/.
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community. It provides data generators (e.g, waveform, random tree, and SEA generators),

evaluation methods (e.g., prequential and interleaved test-then-train evaluations), statistics

(e.g., running time, memory), and algorithms for data mining tasks (e.g., classification,

regression, clustering) for evolving data streams. To create a new classifier, users only need

to extend an abstract class, called moa.classifiers.AbstractClassifier, and implement

the desired algorithm.

MOA can be run on Windows, Mac, and Unix/Linux systems and used through a user

interface (See Figure A.1) or a command line. A recent book [37] discusses the MOA software,

how to use it, and also includes exercises and lab sessions. In the following, we discuss the

components added concerning our contributions to the MOA framework.

Figure A.1: MOA main window.

Sketch Naive Bayes

We used the MOA framework to implement our sketch-based NB approaches that can be

run using the codes and instructions in the following GitHub repository https://github.

com/marouabahri/SketchNB. The basic SketchNB classifier is implemented, by following the

pseudo-code listed in Algorithms 1 and 2 (Chapter 3), in the file SketchNB.java placed in the

moa.classifiers package of the MOA framework. SketchNB is available from the learner

selection dialog in the MOA graphical interface (Figure A.2).

The basic parameters that can be set in the SketchNB classifier are the following:

• -d: delta to fix the depth of the sketch table.
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• -e: epsilon to fix the width of the sketch table.

• -C: constant to adjust the size of the sketch.

Figure A.2: SketchNB classifier.

The SketchNBHT uses the binary hashing trick filter implemented in the class Hash-

ingTrickFilter.java that minimizes the space size before the learning phase with the

SketchNB. This classifier, in addition to the aforementioned parameters, needs to fix the

output dimensionality after projection (see also Figure A.3):

• -d: the output dimensionality.

Figure A.3: Hashing trick filter.
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Compression-Based Algorithms

We implemented, in the file CS-Filter.java placed in the moa.streams.filters package,

the compressed sensing technique (based on Gaussian random projection) under MOA

(Figure A.4). This technique can be used in conjunction with any data mining algorithm as a

filter.

We extended the AbstractClassifier class to build our proposed CS-kNN algorithm that

uses the CS internally, i.e., there is no need to couple it with the CS-filter. All source codes

and datasets employed in our analysis are available at https://github.com/marouabahri/

CS-kNN. The main parameters that must be defined are the following:

• -k: the number of neighbors.

• -w: the maximum number of instances to store inside the sliding window.

• -d: the output dimensionality.

Figure A.4: CS-kNN algorithm.

To use the ensemble-based method, CSB-kNN, we use the LeveragingBag.java class and

select the CS-kNN as a base learner (Figure A.5). The crucial parameter that needs to be

fixed in the CSB-kNN is:

• -s: the ensemble size, i.e., the number of CS-kNN inside the ensemble.

A similar strategy has been proposed based on the adaptive random forest, CS-ARF,

where we updated the tree-based model used with ARF and coupled it with the CS technique.

The codes and datasets used to evaluate the CS-ARF are available at https://github.com/

marouabahri/CS-ARF.
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Figure A.5: CSB-kNN algorithm.

A.3 Scikit-Multiflow

Scikit-multiflow3 [135] is a new framework inspired by the popular frameworks scikit-

learn4 [134] and MOA [97] that fills the void in Python for stream learning tasks. It contains,

inter alia, stream generators, learning and evaluation methods as in MOA.

UMAP-kNN

We implemented our UMAP-kNN using the scikit-multiflow because of two reasons;

(i) the only available implementation of UMAP is in Python; and (ii) to promote this

new promising open source framework. The UMAP-kNN is implemented in the file

batchIncrementalUMAPkNN.py placed in the skmultiflow.lazy package of scikit-multiflow

framework. The materiel used in our analysis is available in the GitHub repository https:

//github.com/marouabahri/UMAP-kNN.

The parameters that need to be fixed are the following:

• -k: the number of neighbors.

• -w: the maximum number of instances to store inside the sliding window.

• -d: the output dimensionality.

3https://scikit-multiflow.github.io/.
4https://scikit-learn.org/stable/.

113

https://github.com/marouabahri/UMAP-kNN
https://github.com/marouabahri/UMAP-kNN
https://scikit-multiflow.github.io/
https://scikit-learn.org/stable/


A. Open Source Contributions

• -batch: the batch size.

Other parameters related to the UMAP technique could be changed. In fact, UMAP is a

graph-based technique, so an important parameter is the number of neighbors (n-neighbors)

that controls how UMAP neighborhood structure in the data will be (local versus global

structure) when attempting to project the data. Thus a low values of n-neighbors will lead to

a local structure preservation, while with large values, larger neighborhoods preservation

will be assured using UMAP.

A.4 Conclusion

In this appendix, we presented the two open-source software libraries for data stream mining

that we used for the implementation, evaluation, and comparison of our contributions in

this thesis. We also presented our work and specified the parameters that need to be fixed

for each algorithm. The source code and datasets used throughout the thesis are provided at

the following address https://github.com/marouabahri.
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B.1 Contexte et Motivation

Ces dernières décennies ont connu une révolution technologique omniprésente qui envahit

notre vie à toutes les échelles. Cette montée technologique vertigineuse inclut, de plus en

plus, de systèmes et d’applications qui génèrent continuellement de grandes quantités de

données connues sous le nom de flux de données. Un exemple d’application est l’Internet

des Objets (IdO) qui est défini comme un vaste réseau de dispositifs (objets) physiques et

de capteurs qui connectent, interagissent et échangent des données. L’IdO est un élément-

clé de l’automatisation du quotidien, par exemple les voitures, les drones, les avions et

la domotique. Ces dispositifs créent et continueront de créer de manière exponentielle

une quantité massive de données à cause des flux générés en temps réel. D’ici la fin de

2020, 31 milliards de tels dispositifs seront connectés dans le monde entier, et vers 2025 ce

nombre devrait augmenter à environ 75 milliards, selon Statista1. Dans ce contexte, plusieurs

méthodes et applications doivent être explorées pour faire face à ces données volumineuses

qui sont caractérisées par les 3V: volume, vélocité et variabilité.

Le succès de l’IdO est lié à sa capacité à extraire des connaissances utiles en acquérant

automatiquement les informations cachées dans le vaste volume de données générées au fil

1www.statista.com/statistics/976079/number-of-IdO-connected-objects-worldwide-by-type/.
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du temps. Les tâches typiques d’exploration de données qui ont été étudiées en profondeur

au cours des dernières années comprennent la classification, la régression et le clustering.

En effet, les approches traditionnelles proposées pour les données statiques ont certaines

limites lorsqu’elles sont appliquées aux flux de données dynamiques. Par conséquent, de

nouvelles approches et techniques d’exploration de données sont nécessaires pour traiter

les flux de données. Dans ce contexte de l’IdO, les approches d’exploration de données

devraient être capables de gérer la vitesse et l’infinité des flux de données en utilisant des

ressources limitées – en termes de temps d’exécution et de mémoire. Plus de détails sur ces

contraintes sont présentés dans la section B.2. Pour extraire des connaissances utiles de

ces données, nous utilisons généralement des algorithmes d’apprentissage automatique

adaptés au cadre incrémental des flux de données [3, 4]. Dans ce contexte, la tâche de

l’exploration de ces données est devenue indispensable dans de nombreuses applications

du monde réel. Cette catégorie d’applications génère souvent des données à partir de flux

en constante évolution et exige un traitement en temps réel.

Dans le domaine d’analyse de données, la classification est l’une des tâches les plus

utilisées. Elle tente de prédire les catégories – ou les classes – des observations non-libellées

en utilisant un modèle construit des données déjà traitées. La classification de flux est

considérée comme une application de recherche active dans le domaine de l’exploration

de flux de données, où l’accent est mis sur le développement de nouveaux algorithmes –

ou d’améliorer les algorithmes existants [5]. Il existe un certain nombre de classificateurs

qui sont largement utilisés dans l’exploration de données et sont appliqués dans plusieurs

applications réelles, telles que les arbres de décision, les réseaux de neurones, les k plus

proches voisins, les réseaux bayésiens, etc. Le Chapitre 2 couvre, entre autres, une étude de

l’état de l’art sur les algorithmes de classification pour les flux de données les plus connus et

récents.

B.2 Défis

Comme mentionné ci-dessus, la classification des flux de données vise à prédire les classes

de nouvelles instances non-libellées qui arrivent constamment. Après la prédiction, les

modèles existants vont être mis à jour continuellement au fur et à mesure de l’évolution du

flux pour suivre la distribution actuelle des données. La nature massive et potentiellement

infinie des flux, qui soulève des problèmes critiques et fait échouer les algorithmes

traditionnels d’exploration de données, impose des contraintes pour gérer convenablement

le comportement dynamique et incrémental des flux.

Bien que les contraintes suivantes soient communes entre les différentes applications

d’exploration de flux de données, nous abordons ces exigences dans le contexte de la

classification [6, 7, 8].
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• Nature évolutive des flux de données. Tout algorithme de classification doit tenir

compte de l’évolution considérable des données et s’adapter à leur nature incrémen-

tale à grande vitesse. Ainsi, les algorithmes doivent classer de manière séquentielle et

incrémentale les instances récentes.

• Temps d’exécution. Un algorithme devrait traiter rapidement les instances entrantes

provenant du flux, car plus l’algorithme est lent, moins il sera efficace pour les

applications qui nécessitent un traitement en temps réel.

• Mémoire illimitée. En raison des quantités énormes des flux qui exigent une mémoire

illimitée pour leur traitement, tout classificateur devrait avoir la capacité de fonction-

ner avec une mémoire limitée en gardant des synopsis de données sur les instances

traitées et les modèles actuels.

• Flux de données en grande dimension. Les flux de données peuvent être de grande

dimension, tels que les documents texte. Pour ce type de données, les distances entre

les instances augmentent de façon exponentielle, ce qui peut potentiellement avoir

un impact sur les performances de n’importe quel classificateur.

• Dérive conceptuelle. La distribution des données peut changer à tout moment, ce

qui induit un phénomène connu sous le nom de dérive conceptuelle ou concept drifts

en anglais. La dérive conceptuelle peut impacter les résultats du classificateur au fil

du temps, notamment sa qualité prédictive. Cependant, pour faire face aux nouvelles

directions des données qui doivent être détectées en même temps que leur apparition,

un mécanisme de détection de dérive est généralement associé aux algorithmes de

classification des flux de données. Nous dirigeons le lecteur vers [9] pour une étude

détaillée sur ce phénomène.

Dans le cadre de cette thèse, une question cruciale se pose sur la manière avec laquelle on

traite des données potentiellement infinies tout en addressant leurs défis à moindres coûts.

Ces défis susmentionnés sont d’une grande importance dans la tâche de classification

des flux. Nous remarquons que les techniques d’exploration de flux doivent être différentes

des techniques traditionnelles pour les bases de données statiques. Pour relever ces défis, les

algorithmes de classification doivent incorporer une stratégie incrémentale qui permet

d’assurer le bon déroulement du traitement des flux de données sous les contraintes

présentées dans la section 2.2. Le tableau B.1 présente une comparaison des environnements

pour les données statiques et les flux (données dynamiques) [10].

En plus du volume énorme de données, leur dimension augmente considérablement et

pose un défi notable dans de nombreux domaines, tels que la biologie (données omiques
2) [11, 12] et le filtrage des e-mails [13] (classer un e-mail comme spam ou non en fonction

2Les données omiques se réfèrent aux données biologiques se terminant par -omique, par exemple,
génomique, métabolomique.

117



B. Résumé en Français

Table B.1: Comparaison entre les données statiques et les flux.

Données statiques Flux de données

Accès aléatoire séquentiel

Nombre de passes plusieurs passes passe unique

Temps d’exécution illimité limité

Mémoire illimitée limitée

Type de résultat précis approximatif

Environnement statique dynamique

du contenu de celui-ci). Ces données de grande dimension contiennent généralement de

nombreux attributs redondants ou non-pertinents qui peuvent être réduits à un ensemble

plus petit de combinaisons pertinentes extraites de l’ensemble d’attributs d’entrée sans

perte d’informations significatives.

Afin de traiter ce type de données de manière optimale à moindre coût, une étape de

prétraitement est impérative pour filtrer les attributs pertinents et donc permettre des

économies en termes de ressources avec des algorithmes d’exploration de flux de données.

Pour ce faire, des synopsis peuvent être construits à partir d’instances de flux à l’aide des

techniques de réduction (par exemple, résumés minimalistes en conservant les fréquences

des données), en sélectionnant une partie des données entrantes sans réduire la dimension

(l’échantillonnage), ou en appliquant une technique de Réduction de Dimensionnalité (RD)

pour réduire le nombre d’attributs. Naturellement, le choix de la technique appropriée

dépend du problème à résoudre [14].

Notre objectif dans cette thèse est motivé par les critères décrits ci-dessus pour l’exploration

de flux de données. Nous concentrons principalement sur la tâche de classification et visons

à développer de nouvelles approches de classification pour améliorer les performances des

algorithmes existants en utilisant des techniques de réduction de données.

La réduction de dimensionnalité est définie comme la projection de données de haute

dimension dans un espace de basse dimension en réduisant les attributs d’entrée aux plus

pertinents. En effet, la RD est un processus crucial pour éviter la malédiction de la dimension

– qui peut augmenter l’utilisation des ressources de calcul et affecter négativement les

performances prédictives de tout algorithme d’exploration de données. Pour minimiser

ces impacts, plusieurs techniques de réduction ont été proposées et largement étudiées

dans le cadre statique [15, 16] pour gérer des données de grande dimension. Cependant, ces

techniques ne respectent pas les exigences en termes de ressources de calcul des flux de

données [17, 18]. Plus de détails sont fournis dans le Chapitre 2.
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B.3 Contributions

La préoccupation principale dans cette thèse aborde les problèmes susmentionnés qui

concernent les performances des algorithmes d’exploration des flux de données. Cette

thèse contribue à ce domaine en introduisant et en explorant de nouvelles approches

qui réduisent les ressources utilisées par les algorithmes existants tout en sacrifiant un

minimum de précision.

Au cours de cette introduction, nous divisons l’objectif de la thèse en trois questions de

recherche principales:

• Q1: Comment pouvons-nous améliorer les performances des classificateurs existants en

termes de ressources tout en conservant une bonne précision ?

• Q2: Pouvons-nous faire mieux en prétraitant dynamiquement les flux de données de

grande dimension ?

• Q3: Comment pouvons-nous traiter les dérives conceptuelles où les modèles actuels ne

sont plus représentatifs ?

Dans ce qui suit, nous résumons brièvement nos contributions:

• Dans le Chapitre 3, nous visons à améliorer les performances du classificateur

bayesien naïf en développant trois nouvelles approches pour le rendre efficace et

efficient avec des données de haute dimension.

– Nous étudions une structure de données efficace, appelée Count-Min Sketch

(CMS) [19], pour maintenir des synopsis (fréquences) de données en mémoire.

– Nous proposons un nouveau bayesien naïf, basé sur les résumés minimalises, qui

utilise CMS pour stocker des informations provenant du flux de données dans

une mémoire de taille fixe.

– Des preuves théoriques sur la taille de la table CMS sont fournies en adaptant les

garanties de la technique CMS au classificateur bayesien naïf.

– Pour gérer les données de haute dimensionnalité, nous ajoutons une étape de

prétraitement incrémentale au cours de laquelle les données seront compressées

à l’aide d’une technique de RD rapide, telle que le hachage [20].

– Nous incorporons dans la phase d’apprentissage une stratégie adaptative qui

utilise ADaptive WINdowing (ADWIN) [21], un détecteur de dérive conceptuelle,

afin de s’adapter aux changements dans la distribution.

• Dans le Chapitre 4, nous étudions l’algorithme des k plus proches voisins (kNN) [22].

Ainsi, nous proposons deux approches qui visent à améliorer les coûts de calcul de kNN
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avec les flux de données de grande dimension en explorant la technique Compressed

Sensing (CS) [23] pour réduire la taille de l’espace d’entrée.

– Nous proposons un nouvel algorithme pour la classification des flux de données,

CS-kNN. Notre objectif principal consiste à améliorer l’utilisation des ressources

de kNN en compressant les flux d’entrée à l’aide de CS avant d’appliquer la

tâche de classification. Cela entraîne une réduction considèrable en resources

(mémoire et temps d’exécution) sollicitées par kNN.

– Nous fournissons des preuves théoriques sur la préservation du voisinage avant

et après la projection en utilisant la technique CS. Par conséquent, nous nous

assurons que la performance prédictive (précision) de CS-kNN est presque la

même que celle qui aurait pu être obtenue avec le kNN standard (en utilisant les

données d’entrée de haute dimension, sans CS).

– Nous proposons également une méthode d’ensemble basée sur Leveraging

Bagging [24] où nous combinons les résultats de plusieurs CS-kNN pour améliorer

la précision d’un classificateur unique.

• Dans le Chapitre 5, nous visons à améliorer les performances de la nouvelle méthode

d’ensemble performante, Adaptive Random Forest (ARF) [25] avec les données de

haute dimension.

– Nous proposons un nouvel ensemble qui vise à minimiser l’utilisation des

ressources de la méthode ARF en réduisant la dimension des données d’entrée.

Pour cela, nous utilisons la technique CS en interne qui diminue la taille des

données ensuite les transmet aux membres de l’ensemble.

• Dans le Chapitre 6, nous explorons une nouvelle technique de RD qui a récemment

attiré beaucoup d’attention grâce à ses hautes performances: UMAP (Uniform

Manifold Approximation and Projection) [26]. Nous utilisons cette technique, qui

conserve le voisinage, pour prétraiter les données afin d’améliorer les résultats de

l’algorithme kNN, basé également sur le voisinage.

– Nous proposons une technique d’apprentissage incrémental par lots (batches):

une adaptation de UMAP pour les flux de données évolutifs. Au lieu d’appliquer

UMAP sur un ensemble de données statiques, nous l’adaptons en utilisant des

mini-batches du flux de manière incrémentale.

– Nous proposons également un nouvel algorithme incrémental par batches,

UMAP-kNN, pour la classification de flux en utilisant UMAP. L’idée principale est

d’appliquer kNN sur des mini-batches de données de petite dimension obtenues

de l’étape de prétraitement.
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Mots clés : Internet des Objets ; Flux de Données ; Apprentissage Supervisé ; Classification ; Réduction de
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Résumé : Face à cette évolution technologique

vertigineuse, l’utilisation des dispositifs de l’Internet

des Objets (IdO), les capteurs, et les réseaux so-

ciaux, d’énormes flux de données IdO sont générées

quotidiennement de différentes applications pourront

être transformées en connaissances à travers l’ap-

prentissage automatique. En pratique, de multiples

problèmes se posent afin d’extraire des connais-

sances utiles de ces flux qui doivent être gérés et

traités efficacement. Dans ce contexte, cette thèse

vise à améliorer les performances (en termes de

mémoire et de temps) des algorithmes de l’apprentis-

sage supervisé, principalement la classification à par-

tir de flux de données en évolution. En plus de leur

nature infinie, la dimensionnalité élevée et croissante

de ces flux données dans certains domaines rendent

la tâche de classification plus difficile.

La première partie de la thèse étudie l’état de l’art des

techniques de classification et de réduction de dimen-

sion pour les flux de données, tout en présentant les

travaux les plus récents dans ce cadre.

La deuxième partie de la thèse détaille nos contri-

butions en classification pour les flux de données. Il

s’agit de nouvelles approches basées sur les tech-

niques de réduction de données visant à réduire

les ressources de calcul des classificateurs actuels,

presque sans perte en précision. Pour traiter les

flux de données de haute dimension efficacement,

nous incorporons une étape de prétraitement qui

consiste à réduire la dimension de chaque donnée

(dès son arrivée) de manière incrémentale avant de

passer à l’apprentissage. Dans ce contexte, nous

présentons plusieurs approches basées sur : Baye-

sien naı̈f amélioré par les résumés minimalistes et

hashing trick, k-NN qui utilise compressed sensing

et UMAP, et l’utilisation d’ensembles d’apprentissage

également.

Title : Improving IoT Data Stream Analytics Using Summarization Techniques.

Keywords : Internet of Things ; Data Stream ; Supervised Learning ; Classification ; Dimensionality Reduction ;

Sketching.

Abstract : With the evolution of technology, the use of

smart Internet-of-Things (IoT) devices, sensors, and

social networks result in an overwhelming volume of

IoT data streams, generated daily from several appli-

cations, that can be transformed into valuable infor-

mation through machine learning tasks. In practice,

multiple critical issues arise in order to extract useful

knowledge from these evolving data streams, mainly

that the stream needs to be efficiently handled and

processed. In this context, this thesis aims to improve

the performance (in terms of memory and time) of

existing data mining algorithms on streams. We focus

on the classification task in the streaming framework.

The task is challenging on streams, principally due to

the high – and increasing – data dimensionality, in ad-

dition to the potentially infinite amount of data. The

two aspects make the classification task harder.

The first part of the thesis surveys the current state-of-

the-art of the classification and dimensionality reduc-

tion techniques as applied to the stream setting, by

providing an updated view of the most recent works in

this vibrant area.

In the second part, we detail our contributions to the

field of classification in streams, by developing novel

approaches based on summarization techniques ai-

ming to reduce the computational resource of existing

classifiers with no – or minor – loss of classification

accuracy. To address high-dimensional data streams

and make classifiers efficient, we incorporate an inter-

nal preprocessing step that consists in reducing the

dimensionality of input data incrementally before fee-

ding them to the learning stage. We present several

approaches applied to several classifications tasks :

Naive Bayes which is enhanced with sketches and ha-

shing trick, k-NN by using compressed sensing and

UMAP, and also integrate them in ensemble methods.
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