

IMPROVING JAVA SOFTWARE THROUGH
PACKAGE STRUCTURE ANALYSIS

Edwin Hautus

Compuware Europe
P.O. Box 12933
The Netherlands

edwin.hautus@nl.compuware.com

Abstract

Packages are an important mechanism to decompose
Java programs. However, because packages are defined
implicitly, it is not easy to develop a large application
with a proper package structure. This article presents a
tool that assists the programmer in developing a proper
package structure through analysis and visualization.
The tool indicates weak areas in package structures and
allows human assisted refactoring of the source code
based on the analysis. The article also introduces a new
metric that is an indicator for the quality of the package
architecture.

Keywords

Visualization, Software Re-engineering, Software
Metrics, Refactoring, Component Based Development

1. Introduction

Decomposing software systems into modules has been a
hot topic from the early days of computer science. The
benefits of a good modular decomposition were already
recognized in the early seventies: product flexibility,
comprehensibility and reduced development time [1].

The Java language allows for decomposition by means of
the package construct. Every Java class is part of a
package, and packages are hierarchically structured in a
package tree. Packages can therefore be considered to be
the modules of a Java program [2].

This paper presents the Package Structure Analysis Tool
(PASTA). PASTA analyzes the modular structure of Java
programs. The focus is on two particular aspects:
avoiding cycles in the dependency graph and layering.
Some of the problems that are found during analysis can
be fixed immediately through refactoring of the source
code from within PASTA.

2. Related Work

Many researchers have investigated the analysis and
visualization of programs for the purpose of
comprehension. Recent efforts in the area of visualizing
object-oriented programs include [3,4,5,6].

In [3], object oriented programming metrics are visualized
in graphs using node color, positioning and size. In [4],
software is visualized in 3D to assist refactoring. In [5], a
Java exploration environment based on JavaBeans is
presented. In [6], UML class diagrams are drawn based
on class metrics.

All of these efforts focus on class or method level
analysis. Perhaps because a lot of research was originally
focused on C++ and Smalltalk, Java packages have been
largely ignored. My work on the contrary focuses
specifically on packages. I think that packages are
particularly important because they are best suited to
define the high level architecture of java programs.

Headway Review and SmallWorlds are two commercial
products that allow dependencies in software to be
analyzed. These tools provide a lot of information
regarding dependencies, but they do not focus on
layering, nor do they allow for refactoring of the code.

3. Package Structure Analysis

3.1 Acyclic Dependency Principle

An important principle in object-oriented design is the
Acyclic Dependency Principle, ADP [7]. It states that:

The dependencies between packages must form no cycles.

Whether or not a program should always confirm to this
rule is a matter of purity. However, fact is that package
structures with many cycles are in general more difficult
to understand and to maintain than those that confirm to
the ADP.

3.2 Layering

A second well-known principle of system architecture is
the layered architecture [2].

Szyperski makes a distinction between strict layering and
non-strict layering [8]. In strict layering, the
implementation of one layer may only depend on the
layer directly below. In non-strict layering, any lower
layer may be used. In Java programming practice, strict
layering is uncommon.

3.3 Re-engineering ADP Packages

If a package conforms to the APD, it is possible to
reverse engineer a layering from the dependencies, using
the following definition:

The layer of a package is the maximum length of a
dependency path to a package with no dependencies.

This definition finds a layering with a maximum numbers
of layers. See Figure 1 for an example of a layout
generated by PASTA using this layering definition.

3.4 Re-engineering non-ADP Packages

Unlike the junit example shown in Figure 1, most Java
programs do not confirm to the ADP. In such cases, it

Figure 1 Layering

 for junit package
can be difficult to comprehend the intended package
structure.

A simple way to deal with cyclic package structures is to
simply ignore dependencies that are part of a cycle. This
approach will be called simple layering.

A more advanced algorithm that has been implemented
with PASTA is smart layering. Smart layering is a
heuristic algorithm to determine a layering that best
represents the intended architecture.

The smart layering of a package is defined as the simple
layering corresponding to the package graph with
undesirable dependencies removed.

A set of undesirable dependencies is chosen in such a
way that the remaining dependencies form an acyclic
graph. There are of course many possible sets of
undesirable dependencies that lead to an acyclic graph.
The advanced layering chooses a set, which has a
minimal total weight of the undesirable dependencies.

The weight of a dependency is the number of references
from one package to another. The weight is an indicator
for the amount of work that is necessary to remove this
dependency. Therefore, the smart layering algorithm
finds an estimate for the amount of work that would be
necessary to make a package structure acyclic.

Figure 2 java Simple Layering

Figure 3 java Smart Layering

3.5 Collapsed Classes Packages

It is quite common for packages to contain both sub
packages and types (classes or interfaces). If packages
and types appear in the same package, PASTA combines
the types into a collapsed classes package. Collapsed
classes packages are treated like any other sub package:
they are placed in a layer and are shown in the diagram.

3.6 The PASTA Metric

In this section, we introduce a new metric for evaluating
the quality of package structures. Packages structures with
a lot of cycles are not as good as those that conform to the
ADP. However, in some cases, cycles can be removed
more easily than in others.

We therefore use the results of the smart-layering
algorithm and define the PASTA metric for a package as:
the weight of the undesirable dependencies between the
sub packages divided by the total weight of the
dependencies between the sub packages.

The PASTA metric is an indicator for the percentage of
the software that would need to be changed in order to
make a package structure acyclic. Lower percentages are
therefore an indication for a better modular structure.

The PASTA metric for a package tree is defined as:
the weight of all desirable dependencies in all packages
divided by the total weight of the dependencies in all
packages.

An alternative definition for a package tree is to simply
take the average of the PASTA metrics for all packages.
However, the chosen definition has the advantage that
high level packages have a higher weight, which
corresponds to the idea that high level architecture is
more important than low level architecture.

I have applied the PASTA metric to a number of freely
available sources and the results are shown in Table 1.

Package PASTA Metric
junit 0%
org.apache.batik 0%
org.apache.tools.ant 1%
java 5%
org.apache.jmeter 6%
javax.swing 10%
org.jboss 11%
org.gjt.sp.jedit 18%
java.awt 20%

Table 1: PASTA metric applied

3.7 Refactoring

PASTA visualizes package structures, but also allows
changes to be made to the structure by drag and drop of
types and sub packages from one package to another.
Results are immediately shown in an updated UML
diagram, allowing for 'what if' analysis. A future version
will also allow dependencies to be reversed through the
use of interfaces and abstract factories as described in [7].

When the user is satisfied with the resulting dependency
structure, the changes can be applied to the source code.

Figure 4: the PASTA application

3.8 Case Study

I illustrate the use of PASTA by examining the JDK1.4
java package, the core package of the Java language
class library.

From Figure 2, it is clear that the java package structure
does not have a strict layering. In fact, the only package
that is not used by other packages is the sql package. It is
not possible to determine any intended layering from
Figure 2.

In Figure 3, smart layering has been applied, and it
reveals the intended layering. The arrows that point up in
Figure 3 are the undesirable dependencies that according
to the PASTA should be fixed.

The java.lang package is at the bottom. Other low level
packages are java.io and java.util The higher level
packages include java.beans, java.applet and
java.awt. This corresponds to the idea that higher layers
represent higher levels of abstraction.

The analysis reveals some unexpected dependencies. For
example, java.lang depends on java.awt. Further
analysis with PASTA shows that this is the result of two
classes: the SecurityManager in lang depends on the

AWTPermission in awt. Since AWTPermission is only
used in awt and lang, moving AWTPermission to
lang would solve this problem. AWTPermission
should of course be renamed appropriately.

Making lang independent from awt is important when
users of java want to replace awt with their own user
interface library. Note however that this fix does not solve
the problem completely, as lang still depends on awt
indirectly via other packages. Further analysis would be
necessary to achieve this, and simply moving classes from
one package to another can not solve all problems.

4. Conclusions

I have presented a tool that can assist programmers and
software architects with improving the modular structure
of their Java software.

Software architects usually have a layered architecture in
mind when designing applications. However, without
proper tool support, package structures tend to become
polluted with cyclic dependencies. I have presented an
algorithm that can recover intended layering from
polluted structures. The recovered layering also suggests
which dependencies should be fixed. Fixing can be done
partly using the tool itself with its refactoring capabilities.

The presented algorithm can also be used to calculate a
new metric for evaluating the high level modular structure
of large Java programs. The metric provides a way to
quickly evaluate the internal quality of large software
products based on their source code.

Future work includes more advanced refactoring
proposals, support for other design principles, and
integration with other tools. The tool is downloadable
from the Compuware website.

References

[1] D.L. Parnas, Carnegie-Mellon University, On the
criteria to be used in decomposing systems into modules,
Communications of the ACM, Vol. 15, No. 12, 1972, pp.
1053 - 1058

[2] M.Fowler, Reducing Coupling, IEEE Software July
August, 2001, pp. 102-105

[3] S. Demeyer, S. Ducasse and M. Lanza,, A Hybrid
Reverse Engineering Platform Combining Metrics and
Program Visualization, WCRE'99 Proceedings (6th
Working Conference on Reverse Engineering), IEEE,
October, 1999

[4] F. Steinbrückner, C. Lewerentz, Metrics Based
Refactoring, Proc.of the 5th European Conference on

Software Maintenance and Reengineering (CSMR 2001),
IEEE Computer Society Press, March 2001, pages 30 - 38

[5] M.-A. D. Storey, C. Best , J. Michaud, SHriMP
Views: An Interactive and Customizable Environment for
Software Exploration, Proc. of International Workshop on
Program Comprehension (IWPC '2001), May 2001.

[6] R. Kollman, M. Gogolla, Metric-Based Selective
Representation of UML Diagrams, Proc. 6th European
Conf. Software Maintenance and Reengineering (CSMR
2002). IEEE, Los Alamitos, 2002.

[7] R.C. Martin, Design Principles and Design Patterns,
http://www.objectmentor.com, 2000.

[8] C. Szyperski, Component Software (New York:
Addison-Wesley, New York, 1998)

