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Improving kriging surrogates of high-dimensional design

models by Partial Least Squares dimension reduction

Mohamed Amine Bouhlel1 · Nathalie Bartoli2 · Abdelkader Otsmane1 ·

Joseph Morlier3

Abstract Engineering computer codes are often compu-

tationally expensive. To lighten this load, we exploit new

covariance kernels to replace computationally expensive

codes with surrogate models. For input spaces with large

dimensions, using the kriging model in the standard way

is computationally expensive because a large covariance

matrix must be inverted several times to estimate the param-

eters of the model. We address this issue herein by con-

structing a covariance kernel that depends on only a few

parameters. The new kernel is constructed based on infor-

mation obtained from the Partial Least Squares method.

Promising results are obtained for numerical examples with

up to 100 dimensions, and significant computational gain is

obtained while maintaining sufficient accuracy.
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Symbols and notation

Matrices and vectors are in bold type.

Symbol Meaning

det Determinant of a matrix

| · | Absolute value

R Set of real numbers

R
+ Set of positive real numbers

n Number of sampling points

d Dimensions

h Number of principal components retained

x 1 × d vector

xj j th element of a vector x

X n × d matrix containing sampling points

y n × 1 vector containing simulation of X

x(i) ith training point for i = 1, . . . , n

(a 1 × d vector)

w(l) d × 1 vector containing X weights given by

the lth PLS iteration for l = 1, . . . , h

X(0) X

X(l−1) Matrix containing residual of inner

regression of (l − 1)st PLS iteration for

l = 1, . . . , h

k(·, ·) Covariance function

N (0, k(·, ·)) Distribution of a Gaussian process with

mean function 0 and covariance function

k(·, ·)
xt Superscript t denotes the transpose

operation of the vector x
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1 Introduction and main contribution

In recent decades, because simulation models have striven

to more accurately represent the true physics of phenom-

ena, computational tools in engineering have become ever

more complex and computationally expensive. To address

this new challenge, a large number of input design variables,

such as geometric representation, are often considered.

Thus, to analyze the sensitivity of input design variables or

to search for the best point of a physical objective under

certain physical constraints (i.e., global optimization), a

large number of computing iterations are required, which

is impractical when using simulations in real time. This is

the main reason that surrogate modeling techniques have

been growing in popularity in recent years. Surrogate mod-

els, also called metamodels, are vital in this context and

are widely used as substitutes for time-consuming high-

fidelity models. They are mathematical tools that approxi-

mate coded simulations of a few well-chosen experiments

that serve as models for the design of experiments. The

main role of surrogate models is to describe the underly-

ing physics of the phenomena in question. Different types

of surrogate models can be found in the literature, such

as regression, smoothing spline (Wahba and Craven 1978;

Wahba 1990), neural networks (Haykin 1998), radial basis

functions (Buhmann 2003) and Gaussian-process modeling

(Rasmussen and Williams 2006).

In this article, we focus on the kriging model because it

estimates the prediction error. This model is also referred

to as the Gaussian-process model (Rasmussen and Williams

2006) and was presented first in geostatistics (see, e.g.,

Cressie 1988 or Goovaerts 1997) before being extended

to computer experiments and machine learning (Schonlau

1998; Sasena 2002; Jones et al. 1998; Picheny et al. 2010).

The kriging model has become increasingly popular due to

its flexibility in accurately imitating the dynamics of com-

putationally expensive simulations and its ability to estimate

the error of the predictor. However, it suffers from some

well-known drawbacks in high dimension, which may be

due to multiple causes. For starters, the size of the covari-

ance matrix of the kriging model may increase dramatically

if the model requires a large number of sample points. As

a result, inverting the covariance matrix is computation-

ally expensive. The second drawback is the optimization

of the subproblem, which involves estimating the hyper-

parameters for the covariance matrix. This is a complex

problem that requires inverting the covariance matrix sev-

eral times. Some recent works have addressed the draw-

backs of high-dimensional Gaussian processes (Hensman

et al. 2013; Damianou and Lawrence 2013; Durrande et al.

2012) or the large-scale sampling of data (Sakata et al.

2004). One way to reduce CPU time when constructing a

kriging model is to reduce the number of hyper-parameters,

but this approach assumes that the kriging model exhibits

the same dynamics in all directions (Mera 2007).

Thus, because estimating the kriging parameters can be

time consuming, especially with dimensions as large as 100,

we present herein a new method that combines the krig-

ing model with the Partial Least Squares (PLS) technique to

obtain a fast predictor. Like the method of principle compo-

nents analysis (PCA), the PLS technique reduces dimension

and reveals how inputs depend on outputs. PLS is used in

this work because PCA only exposes dependencies between

inputs. Information given by PLS is integrated in the covari-

ance structure of the kriging model to reduce the number

of hyper-parameters. The combination of kriging and PLS

is abbreviated KPLS and allows us to build a fast krig-

ing model because it requires fewer hyper-parameters in its

covariance function; all without eliminating any input vari-

ables from the original problem. In general, the number

of kriging parameters is equal to the number of dimension

which is reduced to at maximum 4 parameters with our

approach.

The KPLS methods is used for many academic and

industrial verifications, and promising results have been

obtained for problems with up to 100 dimensions. The

cases used in this paper do not exceed 100 input vari-

ables, which should be quite sufficient for most engi-

neering problems. Problems with more than 100 inputs

may lead to memory difficulties with the toolbox Scikit-

learn (version 0.14), on which the KPLS method is

based.

This paper is organized as follows: Section 2 summarizes

the theoretical basis of the universal kriging model, recall-

ing the key equations. The proposed KPLS model is then

described in detail in Section 3 by using the kriging equa-

tions. Section 4 compares and analyzes the results of the

KPLS model with those of the kriging model when applied

to classic analytical examples and some complex engineer-

ing examples. Finally, Section 5 concludes and gives some

perspectives.

2 Universal kriging model

To understand the mathematics of the proposed methods, we

first review the kriging equations. The objective is to intro-

duce the notation and to briefly describe the theory behind

the kriging model. Assume that we have evaluated a cost

deterministic function at n points x(i) (i = 1, . . . , n) with

x(i) =
[

x
(i)
1 , . . . , x

(i)
d

]

∈ B ⊂ R
d ,

and we denote by X the matrix [x(1)t , . . . , x(n)t ]t . For sim-

plicity, B is considered to be a hypercube expressed by



the product between intervals of each direction space, i.e.,

B =
∏d

j=1[aj , bj ], where aj , bj ∈ R with aj ≤ bj for

j = 1, . . . , d . Simulating these n inputs gives the outputs

y = [y(1), . . . , y(n)]t with y(i) = y(x(i)) for i = 1, . . . , n.

We use ŷ(x) to denote the prediction of the true function

y(x) which is considered as a realization of a stochastic pro-

cess Y (x) for all x ∈ B. For the universal kriging model

(Roustant et al. 2012; Picheny et al. 2010), Y is written as

Y (x) =
m

∑

j=1

βjfj (x) + Z(x), (1)

where, for j = 1, . . . , m, fj is a known independent basis

function, βj ∈ R is an unknown parameter, and Z is a ran-

dom variable defined by Z(x) ∼ N (0, k), with k being

a stationary covariance function, also called a covariance

kernel. The kernel function k can be written as

k(x, x′) = σ 2r(x, x′) = σ 2rxx′ ∀ x, x′ ∈ B, (2)

where σ 2 is the process variance and rxx′ is the correla-

tion function between x and x′. However, the correlation

function r depends on some hyper-parameters θ and it is

considered to be known. We also denote the n × 1 vector as

rxX = [rxx(1) , . . . , rxx(n)]t and the n × n covariance matrix

as R = [rx(1)X, . . . , rx(n)X].

2.1 Derivation of prediction formula

Under the hypothesis above, the best linear unbiased predic-

tor for y(x), given the observations y, is

ŷ(x) = f(x)t β̂ + rt
xXR−1

(

y − Fβ̂
)

, (3)

where f(x) = [f1(x), . . . , fm(x)]t is the m × 1 vector of

basis functions, F =
[

f(x(1)), . . . , f(x(n))
]t

is the n × m

matrix, and β̂ is the vector of generalized least-square

estimates of β = [β1, . . . , βm]t , which is given by

β̂ =

⎡

⎢

⎣

β̂1

...

β̂m

⎤

⎥

⎦
=

(

FtR−1F
)−1

FtR−1y. (4)

Moreover, the universal kriging model provides an esti-

mate of the variance of the prediction, which is given by

s2(x) = σ̂ 2
(

1 − rt
xXR−1rxX

)

, (5)

with

σ̂ 2 = 1

n

(

y − Fβ̂
)t

R−1
(

y − Fβ̂
)

. (6)

For more details of the derivation of the prediction for-

mula, see, for instance, Sasena (2002) or Schonlau (1998).

The theory of the proposed method has been expressed

in the same way as for the universal kriging model. The

numerical examples in Section 4 use the ordinary kriging

model, which is a special case of the universal model, but

with f(x) = {1} (and m = 1). For the ordinary kriging

model, (3), (4), and (6) are then replaced by the equations

given in Appendix A.

Note that the assumption of known covariance with

known hyper-parameters θ is unrealistic in reality. For

this reason, the covariance function is typically chosen

from among a parametric family of kernels. Table 12 in

Appendix B gives some examples of typical stationary

kernels. The number of hyper-parameters required for the

estimate is typically greater than (or equal to) the number

of input variables. In this work, we use in the following a

Gaussian exponential kernel:

k(x, x′) = σ 2
d

∏

i=1

exp
(

−θi

(

xi − x′
i

)2
)

∀ θi ∈ R
+.

By applying some elementary operations to existing ker-

nels, we can construct new kernels. In this work, we use

the property that the tensor product of covariances is a

covariance kernel in the product space. More details are

available in Rasmussen and Williams (2006), Durrande

(2011), Bishop (2007), Liem and Martins (2014).

2.2 Estimation of hyper-parameters θ

The key point of the kriging approximation is how it esti-

mates the hyper-parameters θ , so its main steps are recalled

here, along with some mathematical details.

One of the major challenges when building a kriging

model is the complexity and difficulty of estimating the

hyper-parameters θ , in particular when dealing with prob-

lems with many dimensions or with a large number of

sampling points. In fact, using (3) to make a kriging pre-

diction requires inverting an n × n matrix, which typically

has cost of O
(

n3
)

, where n is the number of sampling

points (Braham et al. 2014). The hyper-parameters are esti-

mated using maximum likelihood (ML) or cross validation

(CV), which are based on observations. Bachoc compared

the ML and CV techniques (Bachoc 2013) and concluded

that, in most cases studied, the CV variance is larger. The

ML method is widely used to estimate the hyper-parameters

θ ; it is also used in this paper. In practice, the following

log-ML estimate is often used:

log -ML(θ) = −1

2

[

n ln(2πσ 2) + ln(det R(θ))

+(y − Fβ)tR(θ)−1(y − Fβ)/σ 2
]

. (7)

Inserting β̂ and σ̂ 2 given by (4) and (6), respectively,

into the expression (7), we get the following so-called



concentrated likelihood function, which depends only on the

hyper-parameters θ :

log-ML(θ) = −1

2
[n ln σ̂ 2 + ln det R(θ)]

= −1

2

[

n ln

(

1

n
(y − F(FtR−1F)−1FtR−1y)t

×R−1(y − F(FtR−1F)−1FtR−1y)

)

+ ln det R

]

. (8)

To facilitate reading, R(θ) has been replaced by R in the last

line of (8).

Maximizing (8) is very computationally expensive for

high dimensions and when using a large number of sam-

ple points because the (n × n) matrix R(θ) in (8) must be

inverted. The maximization problem is often solved using

genetic algorithms (see Forrester and Sobester 2008 for

more details). In this work, we use the derivative-free opti-

mization algorithm COBYLA that was developed by Powell

(1994). COBYLA is a sequential trust-region algorithm that

uses linear approximations for the objective and constraint

functions.

Figure 1 recalls the principal stages of building a kriging

model, and each step is briefly outlined below:

1. The user must provide the initial design of experiments

(X, y) and the parametric family of the covariance

function k.

2. To derive the prediction formula, the kriging algorithm

assumes that all parameters of k are known.

Fig. 1 The main steps for building an ordinary kriging model

3. Under the hypothesis of the kriging algorithm, we

estimate hyper-parameters θ from the concentrated like-

lihood function given by (8) and by using the COBYLA

algorithm.

4. Finally, we calculate the prediction (3) and the asso-

ciated estimation error (5) after estimating all hyper-

parameters of the kriging model.

3 Kriging model combined with Partial Least

Squares

As explained above, maximizing the concentrated likeli-

hood (8) can be time consuming when the number of

covariance parameters is large, which typically occurs in

large dimension. Solving this problem can be acceler-

ated by combing the PLS method and the kriging model.

The θ parameters from the kriging model represent the

range in any spatial direction. Assuming, for instance,

that certain values are less significant for the response,

then the corresponding θi (i = 1, . . . , d) will be very

small compared to the other θ parameters. The PLS

method is a well-known tool for high-dimensional prob-

lems and consists of maximizing the variance by projecting

onto smaller dimensions while monitoring the correlation

between input variables and the output variable. In this way,

the PLS method reveals the contribution of all variables—

the idea being to use this information to scale the θ

parameters.

In this section we propose a new method that can be used

to build an efficient kriging model by using the informa-

tion extracted from the PLS stage. The main steps for this

construction are as follows:

1. Use PLS to define weight parameters.

2. To reduce the number of hyper-parameters, define a

new covariance kernel by using the PLS weights.

3. Optimize the parameters.

The key mathematical details of this construction are

explained in the following.

3.1 Linear transformation of covariance kernels

Let x be a vector space over the hypercube B. We define a

linear map given by

F : B −→ B ′,
x 	−→ [α1x1, . . . , αdxd ] ,

(9)

where α1, . . . , αd ∈ R and B ′ is a hypercube included

in R
d (B ′ can be different from B). Let k be an

isotropic covariance kernel with k : B ′ × B ′ → R.

Since k is isotropic, the covariance kernel k(F (·), F (·))



depends on a single parameter, which must be estimated.

However, if α1, . . . , αd are well chosen, then we can

use k(F (·), F (·)). In this case, the linear transformation

F allows us to approach the isotropic case (Zimmerman

and Homer 1991). In the present work, we choose

α1, . . . , αd based on information extracted from the PLS

technique.

3.2 Partial Least Squares

The PLS method is a statistical method that finds a linear

relationship between input variables and the output vari-

able by projecting input variables onto a new space formed

by newly chosen variables, called principal components

(or latent variables), which are linear combinations of

the input variables. This approach is particularly useful

when the original data are characterized by a large num-

ber of highly collinear variables measured on a small

number of samples. Below, we briefly describe how the

method works. For now, suffice it to say that only the

weighting coefficients are central to understanding the new

KPLS approach. For more details on the PLS method,

please see Helland (1988), Frank and Friedman (1993),

Alberto and González (2012).

The PLS method is designed to search out the best

multidimensional direction in X space that explains the

characteristics of the output y. After centering and scaling

the (n × d)-sample matrix X and the response vector y, the

first principal component t(1) is computed by seeking the

best direction w(1) that maximizes the squared covariance

between t(1) = Xw(1) and y:

w(1) =
{

arg max
w

wtXtyytXw

such that wtw = 1.
(10)

The optimization problem (10) is maximized when

w(1) is the eigenvector of the matrix XtyytX correspond-

ing to the eigenvalue with the largest absolute value;

the vector w(1) contains the X weights of the first com-

ponent. The largest eigenvalue of problem (10) can be

estimated by the power iteration method introduced by

Lanczos (1950).

Next, the residual matrix from X = X(0) space and from

y = y(0) are calculated; these are denoted X(1) and y(1),

respectively:

X(1) = X(0) − t(1)p(1),

y(1) = y(0) − c1t(1),
(11)

where p(1) (a 1 × d vector) contains the regression coeffi-

cients of the local regression of X onto the first principal

component t(1), and c1 is the regression coefficient of the

local regression of y onto the first principal component t(1).

Fig. 2 Upper left shows

construction of two principal

components in X space. Upper

right shows prediction of y(0).

Bottom left shows prediction of

y(1). Bottom right shows final

prediction of y



The system (11) is the local regression of X and y onto the

first principal component.

Next, the second principal component, which is orthog-

onal to the first, can be sequentially computed by replacing

X by X(1) and y by y(1) to solve the system (10). The

same approach is used to iteratively compute the other

principal components. To illustrate this process, a simple

three-dimensional (3D) example with two principal compo-

nents is given in Fig. 2. In the following, we use h to denote

the number of principal components retained.

The principal components represent the new coordinate

system obtained upon rotating the original system with axes,

x1, . . . , xd (Alberto and González 2012). For l = 1, . . . , h,

t(l) can be written as

t(l) = X(l−1)w(l) = Xw(l)
∗ . (12)

This important relationship is used for coding the method.

The following matrix W∗ = [w(1)
∗ , . . . , .w

(h)
∗ ] is obtained

by Manne (1987):

W∗ = W
(

PtW
)−1

,

where W = [w(1), . . . , w(h)] and P = [p(1)t , . . . , p(h)t ].
The vector w(l) corresponds to the principal direc-

tion in X space that maximizes the covariance of

X(l−1)ty(l−1)y(l−1)tX(l−1). If h = d, the matrix W∗ =
[w(1)

∗ , . . . , w
(d)
∗ ] rotates the coordinate space (x1, . . . , xd) to

the new coordinate space (t (1), . . . , t (d)), which follow the

principal directions w(1), . . . , w(d).

As mentioned in the introduction, the PLS method

is chosen instead of the PCA method because the

PLS method shows how the output variable depends on

the input variables, whereas the PCA method focuses

only on how the input variables depend on each other.

In fact, the hyper-parameters θ for the kriging model

depend on how each input variable affects the output

variable.

3.3 Construction of new kernels for KPLS models

Let B be a hypercube included in R
d . As seen in the previ-

ous section, the vector w
(1)
∗ is used to build the first principal

component t(1) = Xw
(1)
∗ , where covariance between t(1)

and y is maximized. The scalars w
(1)
∗1 , . . . , w

(1)
∗d can then

be interpreted as measuring the importance of x1, . . . , xd ,

respectively, for constructing the first principal component

where its correlation with the output y is maximized. How-

ever, we know that the hyper-parameters θ1, . . . , θd (see

Table 12 in Appendix B) can be interpreted as measuring

how strongly the variables x1, . . . , xd , respectively, affect

the output y. Thus, we define a new kernel kkpls1 : B×B →

R given by k1(F1(·), F1(·)) with k1 : B × B → R being an

isotropic stationary kernel and

F1 : B −→ B,

x 	−→
[

w
(1)
∗1 x1, . . . , w

(1)
∗d xd

]

. (13)

F1 goes from B to B because it only works for the new

coordinate system obtained by rotating the original coor-

dinate axes, x1, . . . , xd . Through the first component t(1),

the elements of the vector w
(1)
∗ reflect how x depends

on y. However, such information is generally insufficient,

so the elements of the vector w
(1)
∗ are supplemented by

the information given by the other principal components

t(2), . . . , t(h). Thus, we build a new kernel kkpls1:h sequen-

tially by using the tensor product of all kernels kkplsl , which

accounts for all this information in only a single covariance

kernel:

kkpls1:h(x, x′) =
h

∏

l=1

kl(Fl (x) , Fl(x
′)), (14)

with kl : B × B → R and

Fl : B −→ B

x 	−→
[

w
(l)
∗1x1, . . . , w

(l)
∗dxd

]

.
(15)

If we consider the Gaussian kernel applied with this pro-

posed approach, we get

k(x, x′) = σ 2
h

∏

l=1

d
∏

i=1

exp

[

−θl

(

w
(l)
∗i xi − w

(l)
∗i x′

i

)2
]

,

∀ θl ∈ [0, +∞[.
Table 13 in Appendix B presents new KPLS kernels based

on examples from Table 12 (also in Appendix B) that con-

tain fewer hyper-parameters because h ≪ d. The number of

principal components is fixed by the following leave-one-

out cross-validation method:

(i) We build KPLS models based on h = 1, then

h = 2, . . . principal components.

(ii) We choose the number of components that minimizes

the leave-one-out cross-validation error.

The flowchart given in Fig. 3 shows how the information

flows through the algorithm, from sample data, PLS algo-

rithm, kriging hyper-parameters, to final predictor. With the

same definitions and equations, almost all the steps for con-

structing the KPLS model are similar to the original steps

for constructing the ordinary kriging model. The exception

is the third step, which is highlighted in the solid-red box in

Fig. 3. This step uses the PLS algorithm to define the new

parametric kernel kkpls1:h as follows:

a. initialize the PLS algorithm with l = 1;

b. if l 
= 1, compute the residual of X(l−1) and y(l−1) by

using system (11);



Fig. 3 Main steps for

constructing KPLS model. The

solid-red box (step 3 relative to

PLS) is what differentiates this

approach from the ordinary

kriging approach

c. compute X weights for iteration l;

d. define a new kernel kkpls1:h by using (14);

e. if the number of iterations is reached, return to step 3,

otherwise continue;

f. update data considering l = l + 1.

Note that, if kernels kl are separable at this point, the

new kernel given by (14) is also separable. In particular, if

all kernels kl are of the exponential type (e.g., all Gaussian

exponentials), the new kernel given by (14) will be the same

type as kl . The proof is given in Appendix C.

4 Numerical examples

We now present a few analytical and engineering examples

to verify the proper functioning of the proposed method.

The ordinary kriging model with a Gaussian kernel pro-

vides the benchmark against which the results of the

proposed combined approach are compared. The Python

toolbox Scikit-learn v.014 (Pedregosa et al. 2011) is used

to implement these numerical tests. This toolbox provides

hyper-parameters for the ordinary kriging. The computa-

tions were done on an Intel® Celeron® CPU 900 2.20

GHz desktop PC. For the proposed method, we com-

bined an ordinary kriging model with a Gaussian ker-

nel with the PLS method with one to three principal

components.

4.1 Analytical examples

We use two academic functions and vary the characteristics

of these test problems to cover most of the difficulties faced

in the field of substitution models. The first function is g07

(Michalewicz and Schoenauer 1996) with 10 dimensions,

Fig. 4 A two-dimensional Griewank function over the interval

[−600, 600]



Table 1 Number of data points used for latin hypercube design for the

Griewank test function

d = 2 d = 5 d = 7 d = 10 d = 20 d = 60

n = 70 n = 100 n = 200 n = 300 n = 400 n = 800

which is close to what is required by industry in terms of

dimensions,

yg07(x) = x2
1 + x2

2 + x1x2 − 14x1 − 16x2

+(x3 − 10)2 + 4(x4 − 5)2 + (x5 − 3)2

+2(x6 − 1)2 + 5x2
7 + 7(x8 − 11)2

+2(x9 − 10)2 + (x10 − 7)2 + 45,

−10 ≤ xi ≤ 10, fori = 1, . . . , 10.

For this function, we use experiments based on a latin

hypercube design with 100 data points to fit models.

The second function is the Griewank function (Regis and

Shoemaker 2013), which is used because of its complexity,

as illustrated in Fig. 4 for the two-dimensional (2D) case.

The function is

yGriewank(x) =
d

∑

i=1

x2
i

4000
−

d
∏

i=1

cos

(

xi√
i

)

+ 1,

−600 ≤ xi ≤ 600, for i = 1, . . . , d.

Two types of experiments are done with this function. The

first is defined over the interval [−600, 600] and has varying

dimensions (2, 5, 7, 10, 20, 60). This experiment serves to

verify the effectiveness of the proposed approach in both

low and high dimensions. It is based on the latin hypercube

design and uses n data points to fit models, as mentioned in

Table 1.

Fig. 5 A two-dimensional Griewank function over the interval [−5, 5]

Table 2 Results for g07 function in ten dimensions with 100-point

latin hypercube

Surrogate Error (%) CPU time

Ordinary kriging 0.013 5.14 s

KPLS (1 component) 0.014 0.11 s

KPLS (2 components) 0.0015 0.43 s

KPLS (3 components) 0.0008 0.44 s

The second type of experiment is defined over the inter-

val [−5, 5], where the Griewank function is more complex

than for the first type of experiment (cf. Figs. 4 and 5).

Over this reduced interval, experiments are done with 20

and 40 dimensions (20D and 40D) and with 50, 100, 200,

and 300 sampling points. To analyse the robustness of

the method, ten experiments, each with a different latin

hypercube design, are used for this case.

To compare the three approaches (i.e., the g07 function

and the Griewank function of the intervals [−600, 600] and

[−5, 5]), 5000 random points are computed and the results

are stored in a database. The following relative error is used

to compare the performance of the ordinary kriging model

with the KPLS model:

Error = ||Ŷ − Y||2
||Y||2

100, (16)

where || · ||2 represents the usual L2 norm, and Ŷ and Y are

the vectors containing the prediction and the real values of

random points, respectively. The CPU time required to fit

models is also noted (“h” refers to hours, “min” refers to

minutes, and “s” refers to seconds).

4.1.1 Comparison with g07 function

The results listed in Table 2 show that the proposed

KPLS surrogate model is more accurate than the ordinary

kriging model when more than one component is used.

Using just one component gives almost the same accu-

racy as the ordinary kriging model. In this case, only a

single θ hyper-parameter from the space correlation needs

be estimated compared to ten θ hyper-parameters for the

Table 3 Griewank function in two dimensions with 70-point latin

hypercube over the interval [−600, 600]

Surrogate Error (%) CPU time

Ordinary kriging 5.50 0.09 s

KPLS (1 component) 7.23 0.04 s

KPLS (2 components) 5.50 0.10 s



Table 4 Griewank function in five dimensions with 100-point latin

hypercube over the interval [−600, 600]

Surrogate Error (%) CPU time

Ordinary kriging 0.605 0.55 s

KPLS (1 component) 0.635 0.12 s

KPLS (2 components) 0.621 0.31 s

KPLS (3 components) 0.623 0.51 s

ordinary kriging model. Increasing the number of com-

ponents improves the accuracy of the KPLS surrogate

model. Whereas the PLS method treats only linearly related

input and output variables, this example shows that the

KPLS model can treat nonlinear problems. This result is

not contradictory because (23) shows that the KPLS model

is equivalent to the kriging model with specific hyper-

parameters.

4.1.2 Comparison with complex Griewank function

over interval [−600, 600]

Table 3 compares the ordinary kriging model and the KPLS

model in two dimensions.

If two components are used for the KPLS, we expect

to obtain the same accuracy and time cost for the two

approaches because the difference between the two mod-

els consists only of a transformation of the search-space

coordinates when a Gaussian kernel is used (the space in

which the θ hyper-parameters exist). In this case, the KPLS

model with only one component degrades the accuracy of

the solution.

Tables 4, 5, and 6, show the results for 5, 7, and 10

dimensions, respectively.

Varying the number of principal components does

not significantly affect the accuracy of the model. The

gain in computation time does not appear upon increas-

ing the number of principal components: the computa-

tion time is reduced when we use the KPLS model.

Upon increasing the number of principal components, the

CPU time for constructing the KPLS model increases but

Table 5 Griewank function in seven dimensions with 200-point latin

hypercube over the interval [−600, 600]

Surrogate Error (%) CPU time

Ordinary kriging 0.138 3.09 s

KPLS (1 component) 0.141 0.25 s

KPLS (2 components) 0.138 0.52 s

KPLS (3 components) 0.141 0.94 s

Table 6 Griewank function in ten dimensions with 300-point latin

hypercube over the interval [−600, 600]

Surrogate Error (%) CPU time

Ordinary kriging 0.052 21 s

KPLS (1 component) 0.033 0.6 s

KPLS (2 components) 0.035 2.41 s

KPLS (3 components) 0.034 3.58 s

still remains lower than for ordinary kriging. For these

three examples, the combined approach with only one

PLS component offers sufficient accuracy with a CPU

time reduced 35-fold for 10 dimensions (i.e., 21 s for

the ordinary kriging model and 0.6 s for the combined

model).

In the 20-dimension (20D) example (Table 7), using

KPLS with only one principal component leads to a poor

relative error (10.15 %) compared with other models. In this

case, two principal components are required to build the

combined model. The CPU time remains less than that for

the ordinary kriging model (11.7 s vs 107 s).

The results in Table 8 for the KPLS model with 60 dimen-

sions (60D) show that this model is faster than the ordinary

kriging model. Compared with the kriging model, the CPU

time is reduced 42-fold when one principal component is

used and over 17-fold when three principal components are

used.

Thus, for the Griewank function over the interval

[−600, 600] and at the highest dimensions, the majority of

the results obtained for the analytical examples are better

when using the KPLS model than when using the ordi-

nary kriging model. The proposed method thus appears

interesting, particularly in terms of saving CPU time while

maintaining good accuracy.

4.1.3 Comparison with complex Griewank function

over interval [−5, 5]

As shown in Fig. 4, the Griewank function looks like

a parabolic function. This is because, over the interval

Table 7 Griewank function in 20 dimensions with 400-point latin

hypercube over the interval [−600, 600]

Surrogate Error (%) CPU time

Ordinary kriging 0.35 107 s

KPLS (1 component) 10.15 1.16 s

KPLS (2 components) 0.003 11.7 s

KPLS (3 components) 0.002 16.23 s



Table 8 Griewank function in 60 dimensions with 800-point latin

hypercube over the interval [−600, 600]

Surrogate Error (%) CPU time

Ordinary kriging 11.47 293 s

KPLS (1 component) 7.4 6.88 s

KPLS (2 components) 6.04 12.57 s

KPLS (3 components) 5.23 16.82 s

[−600, 600], the cosine part of the Griewank function

does not contribute significantly compared with the sum of

x2
i /4000. This is especially true given that the cosine part

is a product of factors each of which is less than unity. If

we reduce the interval from [−600, 600] to [−5, 5], we can

see why the Griewank function is widely used as a multi-

modal test function with a very rugged landscape and a large

number of local optima (see Fig. 5). Compared with the

interval [−600, 600], the opposite happens for the interval

[−5, 5]: the “cosine part” dominates; at least for moderate

dimensions where the product contains few factors. For this

case, which seems very difficult, we consider 20 and 60

input variables. For each problem, ten experiments based on

the latin hypercube design are built with 50, 100, 200, and

300 sampling points. The mean and the standard error are

given in Tables 14 and 15 in Appendix D. To better visu-

alize the results, boxplots are used to show CPU time and

the relative error RE given by Figs. 7, 8, 9, 10 and 11 in

Appendix D.

For 20 input variables and 50 sampling points, the KPLS

model gives a more accurate solution than the ordinary krig-

ing model, as shown in Fig. 7a. The rate of improvement

with respect to the number of sampling points is less for

the KPLS model than for the kriging model (cf. Fig. 7b–d).

Nevertheless, the results shown in Fig. 8 indicate that the

KPLS model leads to an important reduction in CPU time

for the various number of sampling points.

Similar results occur for the 60D Griewank function

(Fig. 9). The mean RE obtained with the ordinary krig-

ing model improves from approximately 1.39 to 0.65 %

upon increasing the number of sampling points from 50

to 300 (cf. Fig. 9a, d). However, a very important reduc-

tion in CPU time is obtained, as shown in Fig. 10. The

CPU time required for the KPLS model is hardly visible

because it is much, much less than that required by the

ordinary kriging model. We thus show in Fig. 11 the CPU

time required by the KPLS model alone to show the dif-

ferent CPU times required for the various configurations

(KPLS1, KPLS2, and KPLS3). For Griewank function over

the interval [−5, 5], the KPLS method seems to perform

well when the number of observations is small compared

to the dimension d. In this case, the standard separable

covariance function for the ordinary kriging model is almost

impossible to use because the number of parameters to be

estimated is too large compared with the number of observa-

tions. Thus, the KPLS method seems more efficient in this

case.

4.2 Industrial examples

The following engineering examples are based on results

of numerical experiments done at SNECMA on multidisci-

plinary optimization. The results are stored in tables.

Aerospace turbomachinery consists of numerous blades

that transfer energy between air and the rotor. The disks with

compressor blades are particularly important because they

must satisfy the dual criteria of aerodynamic performance

and mechanical stress. Blades are mechanically and aero-

dynamically optimized by searching parameter space for an

aerodynamic shape that ensures the best compromise that

Fig. 6 Example of 2D cut of

blade (c is chord; CG is gravity

center; β1 is angle for BA; β2 is

angle for BF; Ep is maximum

thickness)



satisfies a set of constraints. The blade, which is a 3D entity,

is first divided into a number of radial 2D profiles whose

thickness is a given percentage of the distance from the hub

to the shroud (see Fig. 6).

A new 3D blade is constructed by starting with the

2D profiles and then exporting them to various meshing

tools before analyzing them in any specific way. The cal-

culation is integrated into the Optimus platform (Noesis

Solutions 2009), which makes it possible to integrate mul-

tiple engineering software tools (computational structural

mechanics, computational fluid dynamics, . . . ) into a single

automated work flow. Optimus, which is an industrial soft-

ware package for screening variables, optimizing design,

and analyzing the sensitivity and robustness, explores and

analyzes the results of the work-flow to optimize product

design. Toward this end, it uses high-fidelity codes or a

reduced model of these codes. It also exploits a wide range

of approximation models, including the ordinary kriging

model.

Input variables designate geometric hyper-parameters at

different percent height and outputs are related to aerody-

namic efficiency, vibration criteria, mechanical stress, geo-

metric constraints, and aerodynamic stress. Three numerical

experiments are considered:

(i) The first experiment is denoted tab1 and contains 24

input variables and 4 output variables. It has 99 train-

ing points and 52 validation points. The outputs are

denoted y1, y2, y3, and y4.

(ii) The second experiment is denoted tab2 and contains

10 input variables and only 1 output variable. It has

1295 training points and 500 validation points.

(iii) The third experiment is denoted tab3 and contains

99 input variables and 1 output variable. It has 341

training points and 23 validation points.

Table 10 Results for tab2 experiment data (10 input variables, 1 out-

put variable y1) obtained by using 1295 training points, 500 validation

points, and error given by (16)

10D Surrogate Error (%) CPU time

tab2 Kriging 5.37 1 h 30 min

KPLS1 5.07 11.69 s

KPLS2 5.02 1 min 22 s

KPLS3 5.34 7 min 34 s

“Kriging” refers to the ordinary kriging optimus solution and

“KPLSh” refers to the KPLS model with h principal components

Points used in tab1, tab2, and tab3 come from previ-

ous computationally expensive computer experiments done

at SNECMA, which means that this separation between

training points and verification points was imposed by

SNECMA. The goal is to compare the ordinary kriging

model that is implemented in the Optimus platform with

the proposed KPLS model. The relative error given by (16)

and the CPU time required to fit the model are reported in

Tables 9–11.

The relative errors for the four models are very simi-

lar: the KPLS model results in a slightly improved accuracy

for the solutions y1, y2, y4 from tab1, y1 from tab2, and

y1 from tab3 but degrades slightly the solution y3 from

tab1. The main improvement offered by the proposed model

relates to the time required to fit the model, particularly for

a large number of training points. Table 10 shows that, with

only one principal component, the CPU time is drastically

reduced compared with the Optimus model. More precisely,

for tab2, the ordinary kriging model requires 1 h 30 min

whereas the KPLS1 model requires only 11 s and pro-

vides better accuracy. In addition, the results for KPLS2 and

Table 9 Results for tab1 experiment data (24 input variables, 4 output variables y1, y2, y3, y4) obtained by using 99 training points, 52 validation

points, and the error given by (16)

24D Surrogate y1 y2 y3 y4

Error (%) CPU Error (%) CPU Error (%) CPU Error (%) CPU

time time time time

tab1 Kriging 0.082 8 s 4.45 8.4 s 8.97 8.17 s 6.27 8.12 s

KPLS1 0.079 0.12 s 4.04 0.11 s 10.35 0.18 s 5.67 0.11 s

KPLS2 0.079 0.43 s 4.06 0.69 s 10.33 0.42 s 5.67 0.19 s

KPLS3 0.079 0.82 s 4.05 0.5 s 10.41 1.14 s 5.67 0.43 s

“Kriging” refers to the ordinary kriging Optimus solution and “KPLSh” refers to the KPLS model with h principal components



Table 11 Results for tab3 experiment data (99 input variables, 1 out-

put variable y1) obtained by using 341 training points, 23 validation

points, and error given by (16)

99D Surrogate Error (%) CPU time

tab3 Kriging 0.021 20 min 02 s

KPLS1 0.19 46.6 s

KPLS2 0.03 2 min 15 s

KPLS3 0.02 4 min 56 s

“Kriging” refers to the ordinary kriging optimus solution and

“KPLSh” refers to the KPLS model with h principal components

KPLS3 models applied to a 99D problem are very promising

(see Table 11).

One other point of major interest for the proposed method

is its natural compatibility with sequential enrichment tech-

niques such as the efficient global optimization strategy (see

Jones et al. 1998).

4.3 Dimensional limits

This project is financed by SNECMA and most of their

design problems do not exceed 100 input variables. In addi-

tion, the toolbox Scikit-learn (version 0.14) may have mem-

ory problems when a very large number of input variables

is considered. Thus, problems with more than 100 input

variables are not investigated in this work. However, by opti-

mizing memory access and storage, this limit could easily be

increased.

5 Conclusion and future work

Engineering problems that require integrating surrogate

models into an optimization process are receiving increasing

interest within the multidisciplinary optimization commu-

nity. Computationally expensive design problems can be

solved efficiently by using, for example, a kriging model,

which is an interesting method for approximating and

replacing high-fidelity codes, largely because these mod-

els give estimation errors, which is an interesting way to

solve optimization problems. The major drawback involves

the construction of the kriging model and in particular the

large number of hyper-parameters that must be estimated in

high dimensions. In this work, we develop a new covari-

ance kernel for handling this type of higher-dimensional

problem (up to 100 dimensions). Although the PLS method

requires a very short computation time to estimate θ , the

estimate is often difficult to execute and computationally

expensive when the number of input variables is greater

than 10. The proposed KPLS model was tested by apply-

ing it to two analytic functions and by comparing its results

to those tabulated in three industrial databases. The com-

parison highlights the efficiency of this model for up to

99 dimensions. The advantage of the KPLS models is not

only the reduced CPU time, but also in that it reverts to the

kriging model when the number of observations is small rel-

ative to the dimensions of the problem. Before using the

KPLS model, however, the number of principal components

should be tested to ensure a good balance between accuracy

and CPU time.

An interesting direction for future work is to study

how the design of the experiment (e.g., factorial) affects

the KPLS model. Furthermore, other verification functions

and other types of kernels can be used. In all cases stud-

ied herein, the first results with this proposed method

reveal significant gains in terms of computation time while

still ensuring good accuracy for design problems with up

to 100 dimensions. The implementation of the proposed

KPLS method requires minimal modifications of the clas-

sic kriging algorithm and offers further interesting advan-

tages that can be exploited by methods of optimization by

enrichment.
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Appendix A: Equations for ordinary kriging model

The expression (3) for the ordinary kriging model is trans-

formed into (see Forrester and Sobester 2008)

y(x) = β̂ + rt
xXR−1

(

y − 1β̂
)

, (17)

where 1 denotes an n-vector of ones and

β̂ = (1tR−11)−11tR−1y. (18)



In addition, (6) is written as

σ̂ 2 = 1

n

(

y − 1β̂
)t

R−1
(

y − 1β̂
)

. (19)

Appendix B: Examples of kernels

Table 12 presents the most popular examples of stationary

kernels. Table 13 presents the new KPLS kernels based on

the examples given in Table 12.

Appendix C: Proof of equivalence kernel

For l = 1, . . . , h, kl are separable kernels (or a

d-dimensional tensor product) of the same type, so

∃ φl1, . . . , φld such that

kl

(

x, x′) =
d

∏

i=1

φli(Fl (x)i , Fl

(

x′)
i
), (20)

Table 12 Examples of commonly used stationary covariance functions

Covariance Expression Hyper-parameters θ Number of

functions hyper-parameters

to estimate

Generalized exponential σ 2
d
∏

i=1

exp(−θim
pi

i ) (θ1, . . . , θd , p1, . . . , pd ) 2d

Gaussian exponential σ 2
d
∏

i=1

exp(−θim
2
i ) (θ1, . . . , θd ) d

Matern 5
2

σ 2
d
∏

i=1

(

1 +
√

5θimi + 5
3
θ2
i m2

i

)

exp(−
√

5θimi) (θ1, . . . , θd ) d

Matern 3
2

σ 2
d
∏

i=1

(

1 +
√

3θimi

)

exp(−
√

3θimi) (θ1, . . . , θd ) d

The covariance functions are written as functions of the ith component mi = |xi − x′
i | with θi ≥ 0 and pi ∈ [0, 2] for i = 1, . . . , d

Table 13 Examples of KPLS covariance functions

Covariance functions Expression Hyper-parameters θ Number of

hyper-parameters

to estimate

Generalized exponential σ 2

h
∏

l=1

d
∏

i=1

exp
[

−θl

(

m
(l)
i

)pl
]

(θ1, . . . , θh, p1, . . . , ph) 2h ≪ 2d

Gaussian exponential σ 2

h
∏

l=1

d
∏

i=1

exp

[

−θl

(

m
(l)
i

)2
]

(θ1, . . . , θh) h ≪ d

Matern 5
2

σ 2

h
∏

l=1

d
∏

i=1

[

1 +
√

5θlm
(l)
i + 5

3
θ2
l

(

m
(l)
i

)2
]

exp
(

−
√

5θlm
(l)
i

)

(θ1, . . . , θh) h ≪ d

Matern 3
2

σ 2

h
∏

l=1

d
∏

i=1

(

1 +
√

3θlm
(l)
i

)

exp
(

−
√

3θlm
(l)
i

)

(θ1, . . . , θh) h ≪ d

The covariance functions are written as functions of the ith component m
(l)
i = |w(l)

∗i (xi − x′
i)| with θl ≥ 0 and pl ∈ [0, 2] for l = 1, . . . , h



where Fl(x)i is the ith coordinate of Fl(x). If we insert (20)

in (14) we get

kkpls1:h(x, x′) =
h

∏

l=1

kl(Fl (x) , Fl

(

x′))

=
h

∏

l=1

d
∏

i=1

φli(Fl (x)i , Fl

(

x′)
i
)

=
d

∏

i=1

h
∏

l=1

φli(Fl (x)i , Fl

(

x′)
i
)

=
d

∏

i=1

ψi

(

xi, x′
i

)

, (21)

with

ψi

(

xi, x′
i

)

=
h

∏

l=1

φli(Fl (x)i , Fl

(

x′)
i
),

corresponding to an one-dimensional kernel. Hence,

kkpls1:h is a separable kernel. In particular, if we consider a

generalized exponential kernel with p1 = · · · = ph = p ∈
[0, 2], we obtain

ψi

(

xi, x′
i

)

= σ
2
d exp

(

−
h

∑

l=1

θl

∣

∣

∣
w

(l)
∗i

∣

∣

∣

p ∣

∣xi − x′
i

∣

∣

p

)

= σ
2
d exp

(

−ηi

∣

∣xi − x′
i

∣

∣

p)

, (22)

with

ηi =
h

∑

l=1

θl

∣

∣

∣
w

(l)
∗i

∣

∣

∣

p

.

We thus obtain

kl

(

x, x′) = σ 2
d

∏

i=1

exp
(

−ηi

∣

∣xi − x′
i

∣

∣

p)

. (23)

Appendix D: Results of Griewank function in 20D

and 60D over interval [−5, 5]

In Tables 14 and 15, the mean and standard deviation (std)

of the numerical experiments with the Griewank function

are given for 20 and 60 dimensions, respectively. To better

visualize the results, boxplots are used in Figs. 7–11.

Table 14 Results for Griewank function in 20D over interval [−5, 5]

Surrogate Statistic 50 points 100 points 200 points 300 points

Error (%) CPU time Error (%) CPU time Error (%) CPU time Error (%) CPU time

Kriging Mean 0.62 30.43 s 0.43 40.09 s 0.15 120.74 s 0.16 94.31 s

std 0.03 9.03 s 0.04 11.96 s 0.02 27.49 s 0.06 21.92 s

KPLS1 Mean 0.54 0.05 s 0.53 0.12 s 0.48 0.43 s 0.45 0.89 s

std 0.03 0.007 s 0.03 0.02 s 0.03 0.08 s 0.03 0.02 s

KPLS2 Mean 0.52 0.11 s 0.48 1.04 s 0.42 1.14 s 0.38 2.45 s

std 0.03 0.05 s 0.04 0.97 s 0.04 0.92 s 0.04 1 s

KPLS3 Mean 0.51 1.27 s 0.46 3.09 s 0.37 3.56 s 0.35 3.52 s

std 0.03 1.29 s 0.06 3.93 s 0.03 2.75 s 0.06 1.38 s

Ten trials are done for each test (50, 100, 200, and 300 training points)

Table 15 Results for Griewank function in 60D over interval [−5, 5]

Surrogate Statistic 50 points 100 points 200 points 300 points

Error (%) CPU time Error (%) CPU time Error (%) CPU time Error (%) CPU time

Kriging Mean 1.39 560.19 s 1.04 920.41 s 0.83 2015.39 s 0.65 2894.56 s

std 0.15 200.27 s 0.05 231.34 s 0.04 239.11 s 0.03 728.48 s

KPLS1 Mean 0.92 0.07 s 0.87 0.10 s 0.82 0.37 s 0.79 0.86 s

std 0.02 0.02 s 0.02 0.007 s 0.02 0.02 s 0.03 0.04 s

KPLS2 Mean 0.91 0.43 s 0.87 0.66 s 0.78 2.92 s 0.74 1.85 s

std 0.03 0.54s 0.02 1.06 s 0.02 2.57 s 0.03 0.51 s

KPLS3 Mean 0.92 1.57 s 0.86 3.87 s 0.78 6.73 s 0.70 20.01 s

std 0.04 1.98 s 0.02 5.34 s 0.02 10.94 s 0.03 26.59 s

Ten trials are done for each test (50, 100, 200, and 300 training points)



Fig. 7 RE for Griewank

function in 20D over interval

[−5, 5]. Experiments are based

on the 10 latin hypercube design

Fig. 8 CPU time for Griewank

function in 20D over interval

[−5, 5]. Experiments are based

on the 10 latin hypercube design



Fig. 9 RE for Griewank

function in 60D over interval

[−5, 5]. Experiments are based

on the 10 latin hypercube design

Fig. 10 CPU time for Griewank

function in 60D over interval

[−5, 5]. Experiments are based

on the 10 latin hypercube design



Fig. 11 CPU time for Griewank

function in 60D for only KPLS

models over interval [−5, 5].
Experiments are based on the 10

latin hypercube design
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