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Abstract

The increasing hardware complexity of dynamically-scheduled superscalar processors

compromise the scalability of this organization to make an efficient use of future increas

transistor budget. SMT processors, designed over a superscalar core, are therefore

concerned by this problem. This work presents and evaluates a novel processor microarchi

which combines two paradigms: simultaneous multithreading and access/execute deco

Since its decoupled units issue instructions in-order, this architecture is significantly less com

in terms of critical path delays, than a centralized out-of-order design, and it is more effectiv

future growths in issue-width and clock speed.

We investigate how both techniques complement each other. Since decoupling featu

excellent memory latency hiding efficiency, the large amount of parallelism exploited

multithreading may be used to hide the latency of functional units and keep them fully util

Our study shows that by adding decoupling to a multithreaded architecture, fewer thread

needed to achieve maximum throughput. Therefore, in addition to the obvious hard

complexity reduction, it places lower demands on the memory system. Since one of the pro

of multithreading is the degradation of the memory system performance, both in terms of

latency and bandwidth requirements, this improvement becomes critical for high miss late

where bandwidth might become a bottleneck.

Finally, although it may seem rather surprising, our study reveals that multithreading by

exhibits little memory latency tolerance. Our results suggest that most of the latency h

effectiveness of SMT architectures comes from the dynamic scheduling. On the other
- 1 -
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decoupling is very effective at hiding memory latency. An increase in the cache miss penalty

1 to 32 cycles reduces the performance of a 4-context multithreaded decoupled processor

than 2%. For the non-decoupled multithreaded processor, the loss of performance is about

Keywords: Access/execute decoupling, simultaneous multithreading, latency hiding, instruc

level parallelism, hardware complexity.

1. Introduction

The gap between the speeds of processors and memories has kept increasing in the pas

and it is expected to sustain the same trend in the near future. This divergence implies, in te

clock cycles, an increasing latency of those memory operations that cross the chip bounda

addition, processors keep on growing their capabilities to exploit parallelism by means of g

issue widths and deeper pipelines, which makes even higher the negative impact of m

latencies on performance. To alleviate this problem, most current processors devote a high f

of their transistors to on-chip caches, in order to reduce the average memory access time.

Some processors, commonly known as out-of-order processors [8, 9, 17, 19, 41], in

dynamic scheduling techniques, most of them based on Tomasulo's algorithm [35] or variati

it. These processors tolerate both memory and functional unit latencies by overlapping them

useful computations of other independent instructions, which are found by looking ahead

instruction stream, inside a limited instruction window. This is a general scheduling mecha

that dynamically extracts the instruction parallelism available in the instruction window.

As memory latency continues to grow in the future, out-of-order processors will need la

instruction windows to find independent instructions to fill the increasing number of empty i

slots, and this number will grow even faster with greater issue widths. The increase i

instruction window size will have an obvious influence on the chip area, but its major neg

impact will strike at the processor clock cycle time. As reported recently [21], the issue an

bypass logic, and also - although to a less extent - the renaming circuitry, are in the critica

that determines the clock cycle time. In their analysis, the authors of that study state that the
- 2 -
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function of these networks increases quadratically with the issue width and window le

Furthermore, since wire delays remain constant as feature sizes shrink, these latencies w

scale down in future process technologies. According to these results, some authors have r

proposed several superscalar architectures which address the clock cycle problem by parti

critical components of the architecture and/or providing less complex scheduling mechanis

15, 21, 24, 31, 42]. These architectures follow different partitioning strategies and imple

different instruction issue schemes, either in-order or out-of-order.

This work focuses on a particular partitioning paradigm called access/execute decou

Decoupling was first proposed for early scalar architectures to provide them with dual issue

limited form of dynamic scheduling that has low complexity and is especially oriented to tole

memory latency. Typically, a decoupled access/execute architecture [2, 7, 11, 23, 27, 28, 3

splits, either statically or dynamically, the instruction stream into two. The access strea

composed of those instructions involved in the fetch of data from memory, while the exe

stream is formed by the instructions that consume these data and perform the actual compu

These streams execute in different processing units, which are called Access Processor (A

Execute Processor (EP) respectively in this paper. Although each processing unit

instructions in-order, both units are allowed to run asynchronously one with respect to the

As far as the AP manages to go ahead of the EP, data from memory is effectively prefetche

the appropriate buffering storage, so that the EP consumes it without getting stalled.

One of the main arguments for the decoupled approach is the reduced issue logic comp

In this model, several instructions per cycle are issued in-order within each processing unit. S

decoupled architecture adapts to higher memory latencies by scaling much simpler structure

an out-of-order, i.e. scaling at a lower hardware cost, or conversely scaling at a higher degre

similar cost. Therefore, we believe that decoupled access/execute architectures can

progressively interest as far as issue width and memory latency keep on growing and dem

larger instruction windows, because these trends will make it worth trading issue complexi

clock speed.
- 3 -
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On the other hand, simultaneous multithreading [37, 38] has been shown to be an eff

technique to boost ILP. In this paper, we analyze its potential when implemented on a deco

processor core. We present a multithreaded architecture where each thread executes in

execute decoupled mode. That is, after being decoded, each instruction is dynamically s

either to the AP or to the EP processing units, and the instructions of a given thread in

processing unit are issued in-order. All the threads are active simultaneously and they comp

the issue slots in each processing unit, so that instructions from different contexts can be iss

the same cycle. For the rest of this paper we will refer to it either as simultaneous multithre

or simply multithreading, for short.

We show in this paper that multithreading by itself, i.e. without dynamic scheduling suppo

little effective to hide a high memory latency. Instead, decoupling provides an excellent me

latency tolerance. Therefore, the combination of decoupling and mulithreading takes advant

their best features: while decoupling is a simple but effective technique for hiding a high me

latency with less issue logic complexity than out-of-order, multithreading provides eno

parallelism to hide the latency of the functional units and to keep them busy. In add

multithreading also contributes to hide memory latency when a program decouples b

However, since decoupling hides most memory latency, few threads are needed to ke

functional units busy and achieve a near-peak issue rate. This is an important result,

decreasing the number of threads reduces the memory pressure produced by the large co

working sets, which has been reported to be a major bottleneck in multithreading architec

and reduces the hardware cost and complexity.

The rest of this paper is organized as follows. Section 2 describes a single-threaded dec

architecture. In Section 3 the latency hiding effectiveness of decoupling is evaluated. Sec

describes and evaluates the proposed multithreaded decoupled architecture. Finally, in Se

we summarize the main conclusions.
- 4 -
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2. Overview of a Single-Threaded Decoupled Architecture

In this section it is described the single-threaded decoupled architecture that will be ass

throughout the rest of the paper (Figure 1). Its main architectural parameters are summar

Table 1. Later on, in Section 4 it is described the multithreaded decoupled architecture,

consists of some extensions of this model.

Parameter AP EP

Fetch, Decode/Rename width up to 4 instructions

Issue width 2 2

Branch predictor bimodal, 2K 2-bit counters

IQ size 4 48

SAQ size 32

Functional units count 2 2

Functional units latency 1 4

Physical Registers 64 96

L1 I-cache infinite

L1 D-cache 64 KB, direct mapped, write-back, 32 byte lines, 1 cycle
hit time, 16 primary outstanding misses, 2 R/W ports

L2 off chip cache infinite, 16 cycles hit time, 16 bytes/cycle bus bandwidth

Table 1: Default single-threaded architecture parameters

L1 Data Cache

AP EP

Store
Address
Queue

Figure 1: Scheme of the single-threaded decoupled processor

Decode & Rename

Issue
Queue

Reg.
File

Reg.
File

Map Table
Register

I - Fetch
- 5 -
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The single-threaded decoupled architecture fetches instructions from a single stream (i

single PC). Then, the program is dynamically split into two streams, which are dispatched t

superscalar, in-order issue, decoupled processing units: the Access Processing unit (AP)

Execute Processing unit (EP), each having separate physical register files, functional un

datapaths. Precise exceptions are supported by means of a reorder buffer, a graduation mec

and a register renaming map table [12, 29].

The fetch logic fetches 4 instructions per cycle (or up to the first taken branch), and it inc

a bimodal branch predictor with 2K 2-bit counters [26] updated at branch resolution. After b

decoded and renamed, up to 4 instructions of any kind are dispatched to the AP or to th

according to their data type, i.e. integer and memory instructions are dispatched to the AP

FP instructions are sent to the EP, which is the same approach as that of other dec

processors like the ZS-1[28] or the MIPS R8000[11]. Although this rather simplistic dyna

partitioning scheme mostly benefits numerical programs, it still provides a basis for our s

which is mainly focused on the latency hiding potential of decoupling and its synergy

multithreading. Recent studies [3, 22, 25] have proposed other alternative partitioning sch

that address the decoupling of integer codes, but they are not considered here. The instr

dispatched to the EP are buffered into a long 48-entry FIFO Issue Queue (IQ) while

dispatched to the AP are put in a small 4-entry FIFO queue. If the target queue for a dispa

instruction is full, the dispatch stalls. The 48-entry IQ in the EP provides enough storage to

the AP to run ahead of the EP without blocking the dispatch.

In each processing unit, 2 instructions per cycle are issued in-order, to the functional unit

are general purpose and fully pipelined. To better exploit the parallelism between the AP an

EP, the instructions can issue and execute speculatively beyond up to four unresolved br

(like the MIPS R10000 [41] or the PowerPC 620 [19]). This feature may become sometimes

factor to enable the AP to slip ahead of the EP. After having their address calculated, stor

held in the Store Address Queue (SAQ) for disambiguation until they graduate, allowing

matching loads to bypass stores. Whenever a matching pair is found, the data from the p
- 6 -
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store is immediately forwarded to the load if it is available. Otherwise, the load is put aside

this data is forwarded to it, without blocking the pipeline.

In many decoupled processors ([2, 20, 28] among others) data fetched from memo

buffered into a load data queue. In these architectures, either the compiler or the dispatch

must generate a duplicate of the load instruction for the EP, to read the operand from the loa

queue head and copy it to a register. Since we found in preliminary experiments (not shown

that such code duplication would significantly reduce performance, it is avoided by impleme

dynamic register renaming. That is, data fetched from memory is written into a physical re

rather than a data queue, eliminating the need for copying. It is also a convenient way to m

the disordered completion of loads when a lockup-free cache is present. Duplication of cond

branch instructions, also used in [28] to communicate branch outcomes between processin

is not needed if the processor includes support for control speculation and recovery, and

identify the instructions to squash in case of a misprediction.

The primary data cache is on-chip, with 2 R/W ports [32], direct-mapped, 64 KB sized, w

32 byte line length, write-allocate, and it implements a write-back policy to minimize off-chip

traffic. It is a lockup-free cache, with its Miss Status Hold Registers [16] modelled similarly to

MAF of the Alpha 21164 [5]. It can hold up to 16 outstanding (primary) misses to different lin

each capable to merge up to 4 (secondary) misses per pending line. We assume that L1

misses always hit in an infinite multibanked off-chip L2 cache, and they have a 16-cycle la

plus any penalty due to the contention of the L1-L2 bus, which is modelled in detail. This is a

128-bit wide data bus, operating at full processor frequency, thus capable to deliver 16 byt

cycle, like that of the R10000 (the bus is busy during 2 cycles for each line that is fetche

copied back).

3. The Latency Hiding Effectiveness of Decoupling

Since the interest of decoupling is closely related to its ability to hide memory latency wit

resorting to other more complex issue mechanisms, we have first quantified such ability for a
- 7 -
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range of L2 cache latencies, from 1 to 256 cycles. Other similar studies on decoupled ma

have been reported before [1, 7, 13, 18, 27, 28, 30, 39, 40], but they did not incorporate tech

like store-load forwarding, control speculation or lockup-free caches. We have evaluated a s

threaded decoupled architecture as described in Section 2, with all the architectural para

shown in Table 1. However, for these experiments, the sizes of all the architectural queue

physical register files are scaled up proportionally to the L2 latency (e.g., when doubling th

latency from 16 to 32 cycles, we doubled also the sizes of the IQ in EP, the SAQ, the ROB, an

number of outstanding misses and renaming registers). Of course, such scaling -especia

register file- may have implications in the cycle time that should be handled by considering

partitioned layouts [21], but the concern of this study is about exploiting access/exe

parallelism to tolerate memory latency.

3.1. Experimental Framework

The experiments consisted of a set of trace driven cycle-by-cycle simulations of the SPEC

benchmark suite [34], fed with theirref input data sets. The programs were generated with

Compaq f77 compiler applying full optimizations, for an AlphaStation 600 5/266. The traces

obtained by instrumenting the binaries with the ATOM tool [33]. Since the simulator is very s

due to the detail of the simulations, we run only a portion of 100 M (million) instructions of e

benchmark, after skipping an initial start-up phase. To determine the length of this initial po

to discard we compared the instruction-type frequencies of such a fragment, starting at dif

initial points, with the frequencies measured in a full run. We found that the start-up phase h

the same length for all the benchmarks: about 5000 M instructions for 101.tomcatv

103.su2cor; 1000 M for 104.hydro2d and 146.wave5; and less than 100 M for the rest.

The simulator assumes an infinite I-cache. Notice that I-cache miss ratios for SPEC FP

usually very low, so this approximation introduces a small perturbation. Due to the trace-d

nature of the simulator, branch mispredictions are modelled by stalling the fetch until the bra

resolved, and therefore cache pollution effects are not taken into account. In contrast, hand
- 8 -
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load and store misses is accurately modelled cycle by cycle to reflect the MAF-like behaviou

availability of the L1-L2 bus and the time when line-refill and copy-back transactions gain ac

to the L2 cache, and when they complete. Besides this, for higher accuracy, the L1 cache ta

not updated immediately at tag probe time, but at the time the line replacement actually

place.

3.2. Results

Load miss latency is hidden by overlapping it with useful computations, and also with

latency of subsequent misses, provided that these computations does not need the missi

This overlapping is naturally achieved for decoupled loads (FP loads, in our implementa

when the AP runs far enough ahead of the EP. On the other hand, the latency of two in

missing loads (not decoupled by our implementation) may also overlap if the two loads

scheduled prior to their first uses. However, since the AP schedules the issue of integer loa

order, their latency overlapping depends entirely on the static scheduling.

The anticipation of the AP is lost due to the so called “loss of decoupling” events: the AP s

caused by integer load misses fall into this category, but it also includes several contro

memory data dependences that force the AP and the EP to synchronize [2, 36]. For instanc

dependence synchronization occurs in some particle-in-cell codes likewave5 where data

generated by the EP is used by the AP to compute array indices. Control depen

synchronization is caused by mispredicted conditional branches, especially those of FP bra

since they completely drain the pipeline. Codes with many such events are said to have

decoupling behavior.

The non-hidden memory latency can be measured as the number of stall cycles that a loa

causes. For this purpose, in addition to the IPC, we have measured the average “perceived”

of integer and FP load misses separately. We define the perceived latency of a load as the

of stall cycles that it causes to the first instruction Id that uses its data. That is, the number of cycl

between the time Id is first considered for issue (when it reaches the head of the Issue Queue
- 9 -
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the time the memory operand is actually delivered (a similar definition is found in [2]).

simulator measures the perceived latency of every load by identifying and timestamping its

register. The average perceived latency of hits and misses depends on the miss ratio. In c

the average perceived latency of load misses does not depend on the miss ratio but it only d

on whether the anticipation or decoupling of the AP over the EP is large enough to hid

latency, and therefore this metric characterizes the “decoupling behavior” of each program.

Figure 2-a and Figure 2-b depict the perceived load miss latency for FP and integer

respectively. As shown in Figure 2-a, except forfpppp, more than 96% of the FP load miss latenc

is always hidden. Figure 2-b shows thatfpppp, su2cor, turb3d andwave5are the programs with

the highest perceived integer load miss latency. Notice that, as discussed above, intege

misses have quite high perceived latencies, because these loads are not decoupled (their de

instructions are also executed in the AP), so their latency tolerance relies exclusively o

scheduling ability of the compiler.

The most appropriate approach to measure the latency tolerance of an architecture

analysing the impact of memory latency on performance, and it depends on both the num

load misses and their average penalty. Figure 2-c shows the load miss ratios for the configu

at both ends of the considered latency range: 1 and 256 cycles. Note that in some cas

increase of L2 latency increases substantially the miss ratio, due to the late updates of

cache, because, after a pending miss, subsequent loads to the same line are more likely to

new misses. These new misses do not necessarily increase the number of requests to the L

if the hardware can merge them in a single request.

Figure 2-d shows the IPC loss of each configuration, relative to the 1-cycle L2 latency

and their absolute IPC values are tabulated in Table 2. We can see in Figure 2-d that fortomcatv,

swim, mgrid, appluandapsi, in spite of having substantial miss ratios, their performance is har

degraded, due to their good decoupling behavior. In addition, programs likefppppor turb3dwith a

quite bad decoupling behavior, are also little performance degraded due to their extreme
- 10 -
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Figure 2-a:  Perceived miss latency of FP loads Figure 2-b: Perceived miss latency of Integer loads.

Figure 2-c: Miss Ratios of Loads and Stores, when
L2 latency is either 1 or 256 cycles.

Figure 2-d: Impact of latency on performance (loss
relative to the 1-cycle L2 latency case).

Latency 1 16 32 64 128 256

tomcatv 2.11 2.10 2.11 2.10 2.10 2.09

swim 3.54 3.53 3.53 3.51 3.51 3.48

su2cor 2.70 2.63 2.54 2.35 2.00 1.53

hydro2d 1.91 1.86 1.79 1.52 1.14 0.76

mgrid 3.44 3.42 3.47 3.46 3.46 3.45

applu 2.07 2.04 2.07 2.09 2.08 2.06

turb3d 2.58 2.57 2.56 2.53 2.47 2.32

apsi 1.83 1.81 1.81 1.81 1.78 1.73

fpppp 2.36 2.34 2.32 2.26 2.14 1.93

wave5 2.17 2.14 2.07 1.90 1.59 1.20

Table 2: IPCs for several L2 latencies
- 
11 -
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miss ratios. On the other hand, the most performance degraded programs are those with bo

perceived miss latencies and significant miss ratios:hydro2d, wave5 andsu2cor.

To summarize, performance is very little affected by the L2 latency when either it ca

hidden efficiently (well decoupled programs liketomcatv, swim, mgrid, appluandapsi), or when

the miss ratio is low (fppppandturb3d), but it is seriously degraded for programs that lack bo

features (su2cor, wave5andhydro2d). On our decoupled architecture implementation the hidd

miss latency of FP loads depends on the degree of program decoupling, while that of intege

relies exclusively on the static instruction scheduling.

4. A Multithreaded Decoupled Architecture

In the experiments of the previous section, we also analysed the causes that prevent the E

filling the issue slots, and found that the latency of the functional units caused more wasted

slots (30% to 25% of the issue slots, for L2 latencies of 1 to 256 cycles) than the memory la

(3% to 20%), and it was the most important source of wasted issue slots. In other words

observation suggests that the in-order issue policy imposed to the EP has little tolerance

multicycle latency of the EP functional units.

Simultaneous multithreading (SMT) is a dynamic scheduling technique that incre

processor throughput by exploiting thread level parallelism. Multiple simultaneously a

contexts compete for issue slots and functional units. Previous studies of SMT assumed s

dynamic instruction scheduling mechanisms [4, 10, 37, 38, among others] other than decou

In this paper, we analyze its potential when implemented on a decoupled processor, i.e each

context executes in a decoupled mode as described in the previous section. We still refer

simultaneous, although there are obvious substantial differences from the original SMT, bec

retains the key concept of issuing from different threads during a single cycle. Since decou

provides excellent memory latency tolerance, and multithreading supplies enough amou

parallelism to remove the remaining stalls, we expect important synergistic effects

microarchitecture which combines these two techniques. In this section we present and ev
- 12 -
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the performance and memory latency tolerance of the multithreaded decoupled access/e

architecture, and we analyze the mutual benefits of both techniques, especially when th

latency is large.

4.1. Architecture Overview

Our proposal is a multithreaded decoupled architecture (Figure 3). That is, each thread exec

a decoupled mode, sharing the functional units and caches with other threads. The multith

decoupled architecture is based on the decoupled design described in Section 2 and Table

some extensions: it can run up to 6 independent threads and issue up to 8 instructions per c

at the AP and 4 at the EP) to 8 functional units. The L1 lockup-free data cache is augmente

ports. The fetch and decode stages - including branch prediction and register map tables - a

register files and queues - including the ROB, the issue queues, and the SAQ - are replica

each context. The issue logic, functional units and the data cache are shared by all the th

There is no thread communication mechanism other than memory, since in this work we co

only independent threads.

L1 Data Cache

AP EP

Store
Address
Queues

Figure 3: Scheme of the multithreaded decoupled processor

Issue
Queues

Reg.
Files

Reg.
Files

Map Tables
Register Decode & Rename I-Fetch
- 13 -
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In our model, all the threads are allowed to compete for each of the 8 issue slots each

and priorities among them are determined in pure round-robin order (similar to thefull

simultaneous issuescheme reported in [38]). Each cycle, only two threads have access to t

cache, and each of them can fetch up to 8 consecutive instructions (up to the first taken br

The chosen threads are those with fewer instructions pending to be dispatched (similar to th

2.8 with I-COUNT schemes, reported in [37]).

4.2. Experimental Evaluation

The multithreaded decoupled simulator is fed witht different traces, corresponding tot

independent threads. The trace of every thread is built by concatenating the first 10 m

instructions of the 10 traces used in the previous section - each thread using a dif

permutation - thus totalling 100 million instructions per thread. In this way, all threads h

different traces but balanced workloads, similar miss-ratios, etc.

4.3. Wasted Issue Slots

Figure 4 shows the breakdown of wasted issue slots when varying the number of threads fro

6. Each cycle, the number of wasted issue slots is recorded, along with the cause that preven

individual thread from filling them, obtaining a per thread issue slot breakdown. These resul

then averaged among the running threads to obtain the graphs of Figure 4. The main caus

make a thread lose an issue slot are having the issue queue empty (labelledempty IQ), and having

any operand unavailable either because it is the result of a previous load (labelledmemory latency)

or an instruction other than a load (labelledFU’s latency).

The first column in Figure 4 represents the case with a single thread, and it shows th

major bottleneck is caused by the EP functional units latency, in accordance with similar re

observed on the single threaded decoupled architecture (mentioned at the beginning of Sec

When two more contexts are added, the multithreading mechanism reduces drastically thes

in both units, and produces a 2.31 speed-up (from 2.68 IPC to 6.19 IPC). Since the AP func
- 14 -
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units are nearly saturated (90.7%) for 3 threads, negligible additional speed-ups are obtai

adding more contexts (6.65 IPC is achieved with 4 threads).

Notice that although the AP almost achieves its maximum throughput, the EP functional

do not saturate due to the load imbalance between the AP and the EP. Therefore, the effectiv

performance is reduced by 17%, from 8 IPC to 6.65 IPC. This problem could be addressed

different choice of the number of functional units in each processor unit, but this is beyon

scope of this study.

Another important remark is that when the number of threads is increased, the com

working set is larger, and the miss ratios increase progressively, putting greater demands

external bus bandwidth. On average, this results in more pending misses, thus increasi

effective load miss latency, and increasing the EP stalls caused bymemory latency(see rightmost

graph of Figure 4). On the other hand, the AP stalls due to integer load misses, which can

reduced by decoupling, as discussed in Section 3, are almost eliminated by multithreadin

memory latencyin the leftmost graph of Figure 4).
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Figure 4: AP (left) and EP (right) issue slots breakdown for the multithreaded decoupled architecture.
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4.4. Latency Hiding Effectiveness

Multithreading and decoupling are two different approaches to tolerate memory latency. We

run some experiments, similar to those of Section 3, to reveal the separate contributio

decoupling and multithreading to the latency hiding effect. We have quantified the lat

tolerance for two multithreaded architectures, both having from 1 to 4 contexts: a multithre

decoupled processor, and a degenerated version of it where the issue queues are disab

similar to a pure in-order multithreaded architecture. Such non-decoupled architecture ha

register renaming to support out of order completion of non-blocking misses and to pro

precise exceptions. Notice that, therefore, it may still hide some memory latency by overla

the execution of non-blocking misses with subsequent instructions, including other misses.

These two architectures have similar complexity, except for the number of physical reg

required per thread. However, this number does not grow -in fact it decreases- when the num

contexts increases, since each has its own register file. Therefore, the register file access tim

expected to determine the processor cycle time. Other structures that have similar comple

both architectures, will more likely stay in the critical path. We have thus considered cycle

implications as a second order factor to compare them, and performance is given in terms o

A further complexity analysis, while important, is beyond the scope of this paper.

Figure 5-a shows the average perceived load miss latency when varying L2 latency from

256 cycles, for the 8 configurations (combinations of 1 to 4 threads with/without decoupling)

definition of perceived latency given in Section 3 is slightly modified for a multithrea

architecture to express the same notion of memory latency tolerance: the latency perceive

load is the number of cycles where an instruction that uses its value cannot issue and it cau

issue slot to be wasted (not filled by any other thread). That is, if a load use is at the hea

thread’s issue queue, but all the issue slots in a cycle are successfully filled with instructions

other threads, this cycle does not add to the load perceived latency. Figure 5-b show

corresponding relative performance loss (with respect to the 1-cycle L2 latency) of each of
- 16 -
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configurations. Notice that performance loss compares the impact of memory latency on th

for each architecture, rather than their absolute performance.

Several conclusions can be drawn from these graphs. First, we can observe in Figure 5

the average perceived load miss latency is quite low when decoupling is enabled (less

cycles, for a L2 latency of 256 cycles) but it is much higher when decoupling is disabled, a

may only be hidden by overlapping instructions from other threads. Second, although it may

rather surprising, multithreading does not improve significantly the average perceived
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Figure 5-a: Average perceived load miss latency
of individual threads.

Figure 5-b: Latency tolerance: performance loss is
relative to the 1-cycle L2 latency case

Figure 5-c: Contribution of decoupling and
multithreading to performance.
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latency: there are less than 3 cycles difference in the perceived latency for 1 and 4 threads

non-decoupled processor, and less than 1.5 cycles in the decoupled processor. Although

more threads increases the opportunity to fill some empty issue slots, there are very few add

cases when all of them are filled, which is the condition needed in our definition to conside

the memory latency is not perceived by a stalled load use instruction. Moreover, the little la

hiding provided by the additional threads is almost offset by the increase of the miss ratio (d

the larger combined working set) which produces longer bus contention delays.

Third, when the L2 memory latency is increased from 1 cycle to 32 cycles, it is show

Figure 5-b that the decoupled multithreaded architecture experiences performance drops

than 3.6% (less than 1.5%, with 4 threads), while the performance degradation observed

non-decoupled configurations is greater than 23%. Even for a huge memory latency of 256 c

the performance loss of all the decoupled configurations is lower than 39% while it is greate

79% for the non-decoupled configurations. Fourth, multithreading provides some addi

latency tolerance improvements, especially in the non-decoupled configurations, but it is

lower than the latency tolerance provided by decoupling.

Some other conclusions can be drawn from Figure 5-c, which shows the IPC for

configuration. While having more threads raises the performance curves, decoupling make

flatter. In other words, while the main effect of multithreading is to provide more throughpu

exploiting thread level parallelism, the major contribution to memory latency tolerance, whi

related to the slope of the curves, comes from decoupling, and this is precisely the specifi

that decoupling plays in this hybrid architecture.

4.5. Hardware Context Reduction and the External Bus Bandwidth Bottleneck

Multithreading is a powerful mechanism that highly improves the processor throughput, but

a cost: it needs a considerable amount of hardware resources. We have run some experime

illustrate how decoupling reduces the hardware context requirements. We have measur

performance of several configurations having from 1 to 8 contexts, both with a decou
- 18 -
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multithreaded architecture and a non-decoupled multithreaded architecture (see Figure 6-a)

the decoupled configuration achieves the maximum performance with just 3 or 4 threads, th

decoupled configuration needs 6 threads to achieve similar IPC ratios.

One of the traditional claims of the multithreading approach is its ability to sustain a

processor throughput even in systems with a high memory latency. Since hiding a longer la

may require a higher number of contexts and, as it is well known, this has a strong negative i

on the memory performance, the reduction in hardware context requirements obtaine

decoupling may become a key factor when L2 memory latency is high. To illustrate this, we

run the previous experiment for a L2 memory latency of 64 cycles. As shown in Figure 6-b, w

the decoupled architecture achieves the maximum performance with just 4 or 5 threads, th

decoupled architecture cannot reach similar performance with any number of threads, bec

would need so many that they would saturate the external L2 bus: the average bus utiliza

89% with 12 threads, and 98% for 16 threads. Moreover, notice that the decoupled archit

requires just 3 threads to achieve about the same performance as the non-decoupled arch

with 12 threads. Thus, decoupling significantly reduces the amount of parallelism requir

reach a certain level of performance.
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Figure 6-a: Decoupling reduces the
number of hardware contexts

Figure 6-b: Maximum performance without decoupling canno
be reached due to external bus saturation.
t
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The previous result suggests that the external L2 bus bandwidth is a potential bottleneck

kind of architectures. To further describe its impact, we have measured the performance a

utilization of several configurations having from 1 to 6 hardware contexts, for three diffe

external bus bandwidths of 8, 16 and 32 bytes/cycle. Results are shown in Figure 7-

Figure 7-b. For an 8 bytes/cycle bandwidth, the bus becomes saturated when more than 3

are running, and performance is degraded beyond this point.

To summarize, decoupling and multithreading complement each other to hide memory la

and increase ILP with reduced amounts of thread-level parallelism and low issue logic comp

5. Summary and Conclusions

In this paper we have analyzed how access/execute decoupling improves the latency tolera

simultaneous multithreading. A multithreaded decoupled architecture aims at taking advant

the latency hiding effectiveness of decoupling, and the potential of multithreading to exploit

We have analyzed the most important factors that determine its performance and the syne

effect of both paradigms. From this study we have drawn the following conclusions.

First, multithreading alone has good tolerance for short latencies, like those of functional

since these stalls are almost eliminated when 5 threads are running (for a 16 cycle L2 late

Figure 7-a: IPC, for several bus bandwidths Figure 7-b: External L2 bus utilization, for several
bus bandwidths
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threads achieve 93% utilization of the functional units of the AP, which results in a throughp

6.35 IPC). But we show also that it suffers an important performance degradation caused b

memory latencies: when L2 latency is increased from 1 to 32 or more cycles, the IPC dr

higher than 23% in the best case (4 threads).

Second, we have demonstrated that access/execute decoupling is a dynamic schedulin

that performs quite well in the specific task of tolerating a long memory latency, either alone

conjunction with multithreading: we have found that, when L2 latency is increased from 1 to 3

more cycles, the IPC drop is always lower than 3.6%, and it is quite independent of the num

threads. Furthermore, even for a huge L2 latency of 256 cycles and 4 threads, the a

perceived latency of a load miss is less than 6 cycles.

Hence, we conclude that multithreading is quite effective to increase ILP but rather limite

hide memory latency. Therefore, to tolerate long latencies it is needed some sort of dy

scheduling, and decoupling is an excellent alternative. Of course, out-of-order could do it as

but its issue logic has a much higher complexity, which may have implications in the cycle t

Third, in a decoupled multithreaded architecture maximum performance is reached with

few threads: for a 16 cycle L2 latency, 6.19 IPC is achieved with just 3 threads, and 6.65 IPC

4 threads. On the other hand, more threads are needed to reach a similar level of performan

in-order architecture: it achieves 6.35 IPC with 5 threads, and 6.49 IPC with 6 threads

number of simultaneously active threads supported by the architecture has a significant imp

the hardware chip area (e.g. number of registers and instruction queues) and complexity (e

instruction fetch and issue logic) and consequently in clock cycle.

Reducing the number of threads reduces the number of cache conflicts, and also preve

saturation of the external bus bandwidth, which is usually one of the potential bottlenecks

multithreaded architecture. We have shown that, in the assumed architecture, the bus ban

becomes a bottleneck when the miss latency is 64 cycles if decoupling is disabled, and pr

the processor from achieving the maximum performance with any number of threads.
- 21 -
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In summary, we can conclude that decoupling and multithreading techniques complemen

other to exploit instruction level parallelism and to hide memory latency. This partic

combination obtains its maximum performance with few threads, has a reduced issue

complexity, and it is hardly performance degraded by a wide range of L2 latencies. All t

features make it a promising alternative for future increases in clock speed and issue width
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