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Abstract

We explore two solutions to the problem of

mistranslating rare words in neural machine

translation. First, we argue that the standard

output layer, which computes the inner prod-

uct of a vector representing the context with all

possible output word embeddings, rewards fre-

quent words disproportionately, and we pro-

pose to fix the norms of both vectors to a con-

stant value. Second, we integrate a simple lex-

ical module which is jointly trained with the

rest of the model. We evaluate our approaches

on eight language pairs with data sizes ranging

from 100k to 8M words, and achieve improve-

ments of up to +4.3 BLEU, surpassing phrase-

based translation in nearly all settings.1

1 Introduction

Neural network approaches to machine translation

(Sutskever et al., 2014; Bahdanau et al., 2015; Lu-

ong et al., 2015a; Gehring et al., 2017) are appeal-

ing for their single-model, end-to-end training pro-

cess, and have demonstrated competitive perfor-

mance compared to earlier statistical approaches

(Koehn et al., 2007; Junczys-Dowmunt et al.,

2016). However, there are still many open prob-

lems in NMT (Koehn and Knowles, 2017). One

particular issue is mistranslation of rare words. For

example, consider the Uzbek sentence:

Source: Ammo muammolar hali ko’p, deydi

amerikalik olim Entoni Fauchi.

Reference: But still there are many problems, says

American scientist Anthony Fauci.

Baseline NMT: But there is still a lot of problems,

says James Chan.

At the position where the output should be Fauci,

the NMT model’s top three candidates are Chan,

1The code for this work can be found at
https://github.com/tnq177/improving_lexical_

choice_in_nmt

Fauci, and Jenner. All three surnames occur in

the training data with reference to immunologists:

Fauci is the director of the National Institute of

Allergy and Infectious Diseases, Margaret (not

James) Chan is the former director of the World

Health Organization, and Edward Jenner invented

smallpox vaccine. But Chan is more frequent in

the training data than Fauci, and James is more

frequent than either Anthony or Margaret.

Because NMT learns word representations in

continuous space, it tends to translate words that

“seem natural in the context, but do not reflect

the content of the source sentence” (Arthur et al.,

2016). This coincides with other observations that

NMT’s translations are often fluent but lack accu-

racy (Wang et al., 2017b; Wu et al., 2016).

Why does this happen? At each time step, the

model’s distribution over output words e is

p(e) ∝ exp
(

We · h̃ + be

)

where We and be are a vector and a scalar depend-

ing only on e, and h̃ is a vector depending only

on the source sentence and previous output words.

We propose two modifications to this layer. First,

we argue that the term We · h̃, which measures how

well e fits into the context h̃, favors common words

disproportionately, and show that it helps to fix the

norm of both vectors to a constant. Second, we add

a new term representing a more direct connection

from the source sentence, which allows the model

to better memorize translations of rare words.

Below, we describe our models in more de-

tail. Then we evaluate our approaches on eight

language pairs, with training data sizes ranging

from 100k words to 8M words, and show improve-

ments of up to +4.3 BLEU, surpassing phrase-

based translation in nearly all settings. Finally, we

provide some analysis to better understand why

our modifications work well.
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ha-en tu-en hu-en

untied embeddings 17.2 11.5 26.5

tied embeddings 17.4 13.8 26.5

don’t normalize h̃t 18.6 14.2 27.1

normalize h̃t 20.5 16.1 28.8

Table 1: Preliminary experiments show that tying target

embeddings with output layer weights performs as well

as or better than the baseline, and that normalizing h̃ is

better than not normalizing h̃. All numbers are BLEU

scores on development sets, scored against tokenized

references.

2 Neural Machine Translation

Given a source sequence f = f1 f2 · · · fm, the

goal of NMT is to find the target sequence e =

e1e2 · · · en that maximizes the objective function:

log p(e | f ) =

n
∑

t=1

log p(et | e<t, f ).

We use the global attentional model with gen-

eral scoring function and input feeding by Lu-

ong et al. (2015a). We provide only a very brief

overview of this model here. It has an encoder,

an attention, and a decoder. The encoder converts

the words of the source sentence into word em-

beddings, then into a sequence of hidden states.

The decoder generates the target sentence word by

word with the help of the attention. At each time

step t, the attention calculates a set of attention

weights at(s). These attention weights are used to

form a weighted average of the encoder hidden

states to form a context vector ct. From ct and

the hidden state of the decoder are computed the

attentional hidden state h̃t. Finally, the predicted

probability distribution of the t’th target word is:

p(et | e<t, f ) = softmax(Woh̃t + bo). (1)

The rows of the output layer’s weight matrix Wo

can be thought of as embeddings of the output vo-

cabulary, and sometimes are in fact tied to the em-

beddings in the input layer, reducing model size

while often achieving similar performance (Inan

et al., 2017; Press and Wolf, 2017). We verified

this claim on some language pairs and found out

that this approach usually performs better than

without tying, as seen in Table 1. For this reason,

we always tie the target embeddings and Wo in all

of our models.

3 Normalization

The output word distribution (1) can be written as:

p(e) ∝ exp
(

‖We‖ ‖h̃‖ cos θWe,h̃
+ be

)

,

where We is the embedding of e, be is the e’th

component of the bias bo, and θWe,h̃
is the angle

between We and h̃. We can intuitively interpret the

terms as follows. The term ‖h̃‖ has the effect of

sharpening or flattening the distribution, reflect-

ing whether the model is more or less certain in a

particular context. The cosine similarity cos θWe,h̃

measures how well e fits into the context. The bias

be controls how much the word e is generated; it

is analogous to the language model in a log-linear

translation model (Och and Ney, 2002).

Finally, ‖We‖ also controls how much e is gen-

erated. Figure 1 shows that it generally correlates

with frequency. But because it is multiplied by

cos θWe,h̃
, it has a stronger effect on words whose

embeddings have direction similar to h̃, and less

effect or even a negative effect on words in other

directions. We hypothesize that the result is that

the model learns ‖We‖ that are disproportionately

large.

For example, returning to the example from

Section 1, these terms are:

e ‖We‖ ‖h̃‖ cos θWe,h̃
be logit

Chan 5.25 19.5 0.144 −1.53 13.2

Fauci 4.69 19.5 0.154 −1.35 12.8

Jenner 5.23 19.5 0.120 −1.59 10.7

Observe that cos θWe,h̃
and even be both favor the

correct output word Fauci, whereas ‖We‖ favors

the more frequent, but incorrect, word Chan. The

most frequently-mentioned immunologist trumps

other immunologists.

To solve this issue, we propose to fix the norm

of all target word embeddings to some value r.

Followingthe weight normalization approach of

Salimans and Kingma (2016), we reparameterize

We as r
ve

‖ve‖ , but keep r fixed.

A similar argument could be made for ‖h̃t‖: be-

cause a large ‖h̃t‖ sharpens the distribution, caus-

ing frequent words to more strongly dominate rare

words, we might want to limit it as well. We com-

pared both approaches on a development set and

found that replacing h̃t in equation (1) with r
h̃t

‖h̃t‖
indeed performs better, as shown in Table 1.
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Figure 1: The word embedding norm ‖We‖ generally

correlates with the frequency of e, except for the most

frequent words. The bias be has the opposite behavior.

The plots show the median and range of bins of size

256.

4 Lexical Translation

The attentional hidden state h̃ contains informa-

tion not only about the source word(s) correspond-

ing to the current target word, but also the con-

texts of those source words and the preceding con-

text of the target word. This could make the model

prone to generate a target word that fits the context

but doesn’t necessarily correspond to the source

word(s). Count-based statistical models, by con-

trast, don’t have this problem, because they sim-

ply don’t model any of this context. Arthur et al.

(2016) try to alleviate this issue by integrating a

count-based lexicon into an NMT system. How-

ever, this lexicon must be trained separately using

GIZA++ (Och and Ney, 2003), and its parameters

form a large, sparse array, which can be difficult to

store in GPU memory.

We propose instead to use a simple feedforward

neural network (FFNN) that is trained jointly with

the rest of the NMT model to generate a target

word based directly on the source word(s). Let fs

(s = 1, . . . ,m) be the embeddings of the source

words. We use the attention weights to form a

tokens vocab layers

×106 ×103 num/size

ta-en 0.2/0.1 4.0/3.4 1/512

ur-en 0.2/0.2 4.2/4.2 1/512

ha-en 0.8/0.8 10.6/10.4 2/512

tu-en 0.8/1.1 21.1/13.3 2/512

uz-en 1.5/1.9 29.8/17.4 2/512

hu-en 2.0/2.3 27.3/15.7 2/512

en-vi 2.1/2.6 17.0/7.7 2/512

en-ja (BTEC) 3.6/5.0 17.8/21.8 4/768

en-ja (KFTT) 7.8/8.0 48.2/49.1 4/768

Table 2: Statistics of data and models: effective number

of training source/target tokens, source/target vocabu-

lary sizes, number of hidden layers and number of units

per layer.

weighted average of the embeddings (not the hid-

den states, as in the main model) to give an aver-

age source-word embedding at each decoding time

step t:

f ℓt = tanh
∑

s

at(s) fs.

Then we use a one-hidden-layer FFNN with skip

connections (He et al., 2016):

hℓt = tanh(W f ℓt ) + f ℓt

and combine its output with the decoder output to

get the predictive distribution over output words at

time step t:

p(yt | y<t, x) = softmax(Woh̃t + bo +Wℓhℓt + bℓ).

For the same reasons that were given in Sec-

tion 3 for normalizing h̃t and the rows of Wo
t , we

normalize hℓt and the rows of Wℓ as well. Note,

however, that we do not tie the rows of Wℓ with

the word embeddings; in preliminary experiments,

we found this to yield worse results.

5 Experiments

We conducted experiments testing our normaliza-

tion approach and our lexical model on eight lan-

guage pairs using training data sets of various

sizes. This section describes the systems tested

and our results.

5.1 Data

We evaluated our approaches on various language

pairs and datasets:
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• Tamil (ta), Urdu (ur), Hausa (ha), Turkish

(tu), and Hungarian (hu) to English (en), us-

ing data from the LORELEI program.

• English to Vietnamese (vi), using data from

the IWSLT 2015 shared task.2

• To compare our approach with that of Arthur

et al. (2016), we also ran on their English to

Japanese (ja) KFTT and BTEC datasets.3

We tokenized the LORELEI datasets using the

default Moses tokenizer, except for Urdu-English,

where the Urdu side happened to be tokenized us-

ing Morfessor FlatCat (w = 0.5). We used the

preprocessed English-Vietnamese and English-

Japanese datasets as distributed by Luong et al.,

and Arthur et al., respectively. Statistics about our

data sets are shown in Table 2.

5.2 Systems

We compared our approaches against two baseline

NMT systems:

untied, which does not tie the rows of Wo to the

target word embeddings, and

tied, which does.

In addition, we compared against two other base-

line systems:

Moses: The Moses phrase-based translation sys-

tem (Koehn et al., 2007), trained on the same data

as the NMT systems, with the same maximum sen-

tence length of 50. No additional data was used

for training the language model. Unlike the NMT

systems, Moses used the full vocabulary from the

training data; unknown words were copied to the

target sentence.

Arthur: Our reimplementation of the discrete lex-

icon approach of Arthur et al. (2016). We only

tried their auto lexicon, using GIZA++ (Och and

Ney, 2003), integrated using their bias approach.

Note that we also tied embedding as we found it

also helped in this case.

Against these baselines, we compared our new

systems:

fixnorm: The normalization approach described in

Section 3.

fixnorm+lex: The same, with the addition of the

lexical translation module from Section 4.

2https://nlp.stanford.edu/projects/nmt/
3http://isw3.naist.jp/~philip-a/emnlp2016/

5.3 Details

Model For all NMT systems, we fed the source

sentences to the encoder in reverse order during

both training and testing, following Luong et al.

(2015a). Information about the number and size

of hidden layers is shown in Table 2. The word

embedding size is always equal to the hidden layer

size.

Following common practice, we only trained on

sentences of 50 tokens or less. We limited the vo-

cabulary to word types that appear no less than 5

times in the training data and map the rest to UNK.

For the English-Japanese and English-Vietnamese

datasets, we used the vocabulary sizes reported in

their respective papers (Arthur et al., 2016; Luong

and Manning, 2015).

For fixnorm, we tried r ∈ {3, 5, 7} and selected

the best value based on the development set per-

formance, which was r = 5 except for English-

Japanese (BTEC), where r = 7. For fixnorm+lex,

because Wsh̃t+Wℓhℓt takes on values in [−2r2, 2r2],

we reduced our candidate r values by roughly a

factor of
√

2, to r ∈ {2, 3.5, 5}. A radius r = 3.5

seemed to work the best for all language pairs.

Training We trained all NMT systems with

Adadelta (Zeiler, 2012). All parameters were ini-

tialized uniformly from [−0.01, 0.01]. When a gra-

dient’s norm exceeded 5, we normalized it to 5. We

also used dropout on non-recurrent connections

only (Zaremba et al., 2014), with probability 0.2.

We used minibatches of size 32. We trained for 50

epochs, validating on the development set after ev-

ery epoch, except on English-Japanese, where we

validated twice per epoch. We kept the best check-

point according to its BLEU on the development

set.

Inference We used beam search with a beam

size of 12 for translating both the development

and test sets. Since NMT often favors short trans-

lations (Cho et al., 2014), we followed Wu et al.

(2016) in using a modified score s(e | f ) in place

of log-probability:

s(e | f ) =
log p(e | f )

lp(e)

lp(e) =
(5 + |e|)α

(5 + 1)α

We set α = 0.8 for all of our experiments.

Finally, we applied a postprocessing step to re-

place each UNK in the target translation with the
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source word with the highest attention score (Lu-

ong et al., 2015b).

Evaluation For translation into English, we re-

port case-sensitive NIST BLEU against deto-

kenized references. For English-Japanese and

English-Vietnamese, we report tokenized, case-

sensitive BLEU following Arthur et al. (2016)

and Luong and Manning (2015). We measure

statistical significance using bootstrap resampling

(Koehn, 2004).

6 Results and Analysis

6.1 Overall

Our results are shown in Table 3. First, we ob-

serve, as has often been noted in the literature, that

NMT tends to perform poorer than PBMT on low

resource settings (note that the rows of this table

are sorted by training data size).

Our fixnorm system alone shows large

improvements (shown in parentheses) rela-

tive to tied. Integrating the lexical module

(fixnorm+lex) adds in further gains. Our

fixnorm+lex models surpass Moses on all tasks

except Urdu- and Hausa-English, where it is 1.6

and 0.7 BLEU short respectively.

The method of Arthur et al. (2016) does im-

prove over the baseline NMT on most language

pairs, but not by as much and as consistently as

our models, and often not as well as Moses. Un-

fortunately, we could not replicate their approach

for English-Japanese (KFTT) because the lexical

table was too large to fit into the computational

graph.

For English-Japanese (BTEC), we note that,

due to the small size of the test set, all systems

except for Moses are in fact not significantly dif-

ferent from tied (p > 0.01). On all other tasks,

however, our systems significantly improve over

tied (p < 0.01).

6.2 Impact on translation

In Table 4, we show examples of typical trans-

lation mistakes made by the baseline NMT sys-

tems. In the Uzbek example (top), untied and

tied have confused 34 with UNK and 700, while

in the Turkish one (middle), they incorrectly out-

put other proper names, Afghan and Myanmar, for

the proper name Kenya. Our systems, on the other

hand, translate these words correctly.

The bottom example is the one introduced in

Section 1. We can see that our fixnorm approach

does not completely solve the mistranslation is-

sue, since it translates Entoni Fauchi to UNK UNK

(which is arguably better than James Chan). On

the other hand, fixnorm+lex gets this right. To

better understand how the lexical module helps in

this case, we look at the top five translations for

the word Fauci in fixnorm+lex:

e cos θWe,h̃
cos θW l

e,hl
be + bl

e logit

Fauci 0.522 0.762 −8.71 7.0

UNK 0.566 −0.009 −1.25 5.6

Anthony 0.263 0.644 −8.70 2.4

Ahmedova 0.555 0.173 −8.66 0.3

Chan 0.546 0.150 −8.73 −0.2

As we can see, while cos θWe,h̃
might still be con-

fused between similar words, cos θW l
e,hl

signifi-

cantly favors Fauci.

6.3 Alignment and unknown words

Both our baseline NMT and fixnorm models suf-

fer from the problem of shifted alignments noted

by Koehn and Knowles (2017). As seen in Figure

2a and 2b, the alignments for those two systems

seem to shift by one word to the left (on the source

side). For example, nói should be aligned to said

instead of Telekom, and so on. Although this is not

a problem per se, since the decoder can decide

to attend to any position in the encoder states as

long as the state at that position holds the informa-

tion the decoder needs, this becomes a real issue

when we need to make use of the alignment infor-

mation, as in unknown word replacement (Luong

et al., 2015b). As we can see in Figure 2, because

of the alignment shift, both tied and fixnorm in-

correctly replace the two unknown words (in bold)

with But Deutsche instead of Deutsche Telekom.

In contrast, under fixnorm+lex and the model of

Arthur et al. (2016), the alignment is corrected,

causing the UNKs to be replaced with the correct

source words.

6.4 Impact of r

The single most important hyper-parameter in our

models is r. Informally speaking, r controls how

much surface area we have on the hypersphere

to allocate to word embeddings. To better under-

stand its impact, we look at the training perplex-

ity and dev BLEUs during training with differ-

ent values of r. Table 6 shows the train perplexity

and best tokenized dev BLEU on Turkish-English

for fixnorm and fixnorm+lex with different val-

ues of r. As we can see, a smaller r results in
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untied tied fixnorm fixnorm+lex Moses Arthur

ta-en 10.3 11.1 14 (+2.9) 15.3 (+4.2) 10.5 (−0.6) 14.1 (+3.0)

ur-en 7.9 10.7 12 (+1.3) 13 (+2.3) 14.6 (+3.9) 12.5 (+1.8)

ha-en 16.0 16.6 20 (+3.4) 21.5 (+4.9) 22.2 (+5.6) 18.7 (+2.1)

tu-en 12.2 12.6 16.4 (+3.8) 19.1 (+6.5) 18.1 (+5.5) 16.3 (+3.7)

uz-en 14.9 15.7 18.2 (+2.5) 19.3 (+3.6) 17.2 (+1.5) 17.1 (+1.4)

hu-en 21.6 23.0 24.0 (+1.0) 25.3 (+2.3) 21.3 (−1.7) 22.7 (-0.3)†

en-vi 25.1 25.3 26.8 (+1.5) 27 (+1.7) 26.7 (+1.4) 26.2 (+0.9)

en-ja (BTEC) 51.2 53.7 52.9 (-0.8)† 51.3 (−2.6)† 46.8 (−6.9) 52.4 (−1.3)†

en-ja (KFTT) 24.1 24.5 26.1 (+1.6) 26.2 (+1.7) 21.7 (−2.8) —

Table 3: Test BLEU of all models. Differences shown in parentheses are relative to tied, with a dagger (†) indicating

an insignificant difference in BLEU (p > 0.01). While the method of Arthur et al. (2016) does not always help,

fixnorm and fixnorm+lex consistently achieve significant improvements over tied (p < 0.01) except for English-

Japanese (BTEC). Our models also outperform the method of Arthur et al. on all tasks and outperform Moses on

all tasks but Urdu-English and Hausa-English.

input Dushanba kuni Hindistonda kamida 34 kishi halok bo’lgani xabar qilindi .
reference At least 34 more deaths were reported Monday in India .
untied At least UNK people have died in India on Monday .
tied It was reported that at least 700 people died in Monday .
fixnorm At least 34 people died in India on Monday .
fixnorm+lex At least 34 people have died in India on Monday .

input Yarın Kenya’da bir yardım konferansı düzenlenecek .
reference Tomorrow a conference for aid will be conducted in Kenya .
untied Tomorrow there will be an Afghan relief conference .
tied Tomorrow there will be a relief conference in Myanmar .
fixnorm Tomorrow it will be a aid conference in Kenya .
fixnorm+lex Tomorrow there will be a relief conference in Kenya .

input Ammo muammolar hali ko’p , deydi amerikalik olim Entoni Fauchi .
reference But still there are many problems , says American scientist Anthony Fauci .
untied But there is still a lot of problems , says James Chan .
tied However , there is still a lot of problems , says American scientists .
fixnorm But there is still a lot of problems , says American scientist UNK UNK .
fixnorm+lex But there are still problems , says American scientist Anthony Fauci .

Table 4: Example translations, in which untied and tied generate incorrect, but often semantically related, words,

but fixnorm and/or fixnorm+lex generate the correct ones.

hu-en
244 244 (0.599) document (0.005) By (0.003) by (0.002) offices (0.001)
befektetéseinek investments (0.151) investment (0.017) Investments (0.015) all (0.012) investing (0.003)
kutatás-fejlesztésre research (0.227) Research (0.040) Development (0.014) researchers (0.008) development (0.007)

tu-en
ifade expression (0.109) expressed (0.061) express (0.056) speech (0.024) expresses (0.020)
cumhurbaşkanı President (0.573) president (0.030) Republic (0.027) Vice (0.010) Abdullah (0.008)
Göstericiler protesters (0.115) demonstrators (0.050) Protesters (0.033) UNK (0.004) police (0.003)

ha-en
(0.469) cholera (0.003) EOS (0.001) UNK (0.001) It (0.001)

Wayoyin phones (0.414) wires (0.097) mobile (0.088) cellular (0.064) cell (0.061)
manzonsa Prophet (0.080) His (0.041) Messenger (0.015) prophet (0.010) his (0.009)

Table 5: Top five translations for some entries of the lexical tables extracted from fixnorm+lex. Probabilities are

shown in parentheses.
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(a) tied (b) fixnorm

(c) fixnorm+lex (d) Arthur et al. (2016)

Figure 2: While the tied and fixnorm systems shift attention to the left one word (on the source side), our

fixnorm+lex model and that of Arthur et al. (2016) put it back to the correct position, improving unknown-word re-

placement for the words Deutsche Telekom. Columns are source (English) words and rows are target (Vietnamese)

words. Bolded words are unknown.
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system r train ppl dev BLEU

fixnorm

3 3.9 13.6

5 2.5 16.1

7 2.3 14.4

fixnorm+lex

2 4.2 12.3

3.5 2.0 17.5

5 1.4 16.0

Table 6: When r is too small, high train perplexity

and low dev BLEU indicate underfitting; when r is too

large, low train perplexity and low dev BLEU indicate

overfitting.

worse training perplexity, indicating underfitting,

whereas if r is too large, the model achieves better

training perplexity but decrased dev BLEU, indi-

cating overfitting.

6.5 Lexicon

One byproduct of lex is the lexicon, which we

can extract and examine simply by feeding each

source word embedding to the FFNN module and

calculating pℓ(y) = softmax(Wℓhℓ+bℓ). In Table 5,

we show the top translations for some entries in

the lexicons extracted from fixnorm+lex for Hun-

garian, Turkish, and Hausa-English. As expected,

the lexical distribution is sparse, with a few top

translations accounting for the most probability

mass.

6.6 Byte Pair Encoding

Byte-Pair-Encoding (BPE) (Sennrich et al., 2016)

is commonly used in NMT to break words into

word-pieces, improving the translation of rare

words. For this reason, we reran our experi-

ments using BPE on the LORELEI and English-

Vietnamese datasets. Additionally, to see if our

proposed methods work in high-resource scenar-

ios, we run on the WMT 2014 English-German

(en-de) dataset,4 using newstest2013 as the devel-

opment set and reporting tokenized, case-sensitive

BLEU on newstest2014 and newstest2015.

We validate across different numbers of BPE

operations; specifically, we try {1k, 2k, 3k} merge

operations for ta-en and ur-en due to their small

sizes, {10k, 12k, 15k} for the other LORELEI

datasets and en-vi, and 32k for en-de. Using BPE

results in much smaller vocabulary sizes, so we do

not apply a vocabulary cut-off. Instead, we train on

4https://nlp.stanford.edu/projects/nmt/

an additional copy of the training data in which all

types that appear once are replaced with UNK, and

halve the number of epochs accordingly. Our mod-

els, training, and evaluation processes are largely

the same, except that for en-de, we use a 4-layer

decoder and 4-layer bidirectional encoder (2 lay-

ers for each direction).

Table 7 shows that our proposed methods also

significantly improve the translation when used

with BPE, for both high and low resource lan-

guage pairs. With BPE, we are only behind Moses

on Urdu-English.

7 Related Work

The closest work to our lex model is that of

Arthur et al. (2016), which we have discussed al-

ready in Section 4. Recent work by Liu et al.

(2016) has very similar motivation to that of our

fixnorm model. They reformulate the output layer

in terms of directions and magnitudes, as we do

here. Whereas we have focused on the magni-

tudes, they focus on the directions, modifying the

loss function to try to learn a classifier that sepa-

rates the classes’ directions with something like a

margin. Wang et al. (2017a) also make the same

observation that we do for the fixnorm model, but

for the task of face verification.

Handling rare words is an important problem

for NMT that has been approached in various

ways. Some have focused on reducing the num-

ber of UNKs by enabling NMT to learn from a

larger vocabulary (Jean et al., 2015; Mi et al.,

2016); others have focused on replacing UNKs by

copying source words (Gulcehre et al., 2016; Gu

et al., 2016; Luong et al., 2015b). However, these

methods only help with unknown words, not rare

words. An approach that addresses both unknown

and rare words is to use subword-level informa-

tion (Sennrich et al., 2016; Chung et al., 2016;

Luong and Manning, 2016). Our approach is dif-

ferent in that we try to identify and address the

root of the rare word problem. We expect that our

models would benefit from more advanced UNK-

replacement or subword-level techniques as well.

Recently, Liu and Kirchhoff (2018) have shown

that their baseline NMT system with BPE already

outperforms Moses for low-resource translation.

However, in their work, they use the Transformer

network (Vaswani et al., 2017), which is quite dif-

ferent from our baseline model. It would be in-

teresting to see if our methods benefit the Trans-
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tied fixnorm fixnorm+lex

ta-en 13 15 (+2.0) 15.9 (+2.9)

ur-en 10.5 12.3 (+1.8) 13.7 (+3.2)

ha-en 18 21.7 (+3.7) 22.3 (+4.3)

tu-en 19.3 21 (+1.7) 22.2 (+2.9)

uz-en 18.9 19.8 (+0.9) 21 (+2.1)

hu-en 25.8 27.2 (+1.4) 27.9 (+2.1)

en-vi 26.3 27.3 (+1.0) 27.5 (+1.2)

en-de (newstest2014) 19.7 22.2 (+2.5) 20.4 (+0.7)

en-de (newstest2015) 22.5 25 (+2.5) 23.2 (+0.7)

Table 7: Test BLEU for all BPE-based systems. Our models significantly improve over the baseline (p < 0.01) for

both high and low resource when using BPE.

former network and other models as well.

8 Conclusion

In this paper, we have presented two simple yet

effective changes to the output layer of a NMT

model. Both of these changes improve transla-

tion quality substantially on low-resource lan-

guage pairs. In many of the language pairs we

tested, the baseline NMT system performs poorly

relative to phrase-based translation, but our sys-

tem surpasses it (when both are trained on the

same data). We conclude that NMT, equipped with

the methods demonstrated here, is a more viable

choice for low-resource translation than before,

and are optimistic that NMT’s repertoire will con-

tinue to grow.

Acknowledgements

This research was supported in part by University

of Southern California subcontract 67108176 un-

der DARPA contract HR0011-15-C-0115. Nguyen

was supported in part by a fellowship from the

Vietnam Education Foundation. We would like to

express our great appreciation to Sharon Hu for

letting us use her group’s GPU cluster (supported

by NSF award 1629914), and to NVIDIA corpo-

ration for the donation of a Titan X GPU. We also

thank Tomer Levinboim for insightful discussions.

References

Philip Arthur, Graham Neubig, and Satoshi Nakamura.
2016. Incorporating discrete translation lexicons
into neural machine translation. In Proc. EMNLP.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proc. ICLR.

Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the properties
of neural machine translation: Encoder-decoder ap-
proaches. In Proceedings of SSST-8, Eighth Work-
shop on Syntax, Semantics and Structure in Statisti-
cal Translation.

Junyoung Chung, Kyunghyun Cho, and Yoshua Ben-
gio. 2016. A character-level decoder without ex-
plicit segmentation for neural machine translation.
In Proc. ACL.

Jonas Gehring, Michael Auli, David Grangier, Denis
Yarats, and Yann N. Dauphin. 2017. Convolutional
sequence to sequence learning. arXiv:1705.03122.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O.K.
Li. 2016. Incorporating copying mechanism in
sequence-to-sequence learning. In Proc. ACL.

Caglar Gulcehre, Sungjin Ahn, Ramesh Nallapati,
Bowen Zhou, and Yoshua Bengio. 2016. Pointing
the unknown words. In Proc. ACL.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proc. CVPR.

Hakan Inan, Khashayar Khosravi, and Richard Socher.
2017. Tying word vectors and word classifiers: A
loss framework for language modeling. In Proc.
ICLR.

Sébastien Jean, Kyunghyun Cho, Roland Memisevic,
and Yoshua Bengio. 2015. On using very large tar-
get vocabulary for neural machine translation. In
Proc. ACL-IJCNLP.

Marcin Junczys-Dowmunt, Tomasz Dwojak, and Hieu
Hoang. 2016. Is neural machine translation ready
for deployment? A case study on 30 translation di-
rections. In Proc. IWSLT .

Philipp Koehn. 2004. Statistical significance tests for
machine translation evaluation. In Proc. EMNLP.

342



Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, et al. 2007. Moses: Open source
toolkit for statistical machine translation. In Proc.
ACL.

Philipp Koehn and Rebecca Knowles. 2017. Six chal-
lenges for neural machine translation. In Proc.
Workshop on Neural Machine Translation.

Angli Liu and Katrin Kirchhoff. 2018. Context models
for oov word translation in low-resource languages.
In Proceedings of AMTA 2018, vol. 1: MT Research
Track. AMTA.

Weiyang Liu, Yandong Wen, Zhiding Yu, and Meng
Yang. 2016. Large-margin softmax loss for convo-
lutional neural networks. In Proc. ICML.

Minh-Thang Luong and Christopher D. Manning.
2015. Stanford neural machine translation systems
for spoken language domain. In Proc. IWSLT .

Minh-Thang Luong and Christopher D. Manning.
2016. Achieving open vocabulary neural machine
translation with hybrid word-character models. In
Proc. ACL.

Minh-Thang Luong, Hieu Pham, and Christopher D.
Manning. 2015a. Effective approaches to attention-
based neural machine translation. In Proc. EMNLP.

Thang Luong, Ilya Sutskever, Quoc Le, Oriol Vinyals,
and Wojciech Zaremba. 2015b. Addressing the rare
word problem in neural machine translation. In
Proc. ACL-IJCNLP.

Haitao Mi, Zhiguo Wang, and Abe Ittycheriah. 2016.
Vocabulary manipulation for neural machine trans-
lation. In Proc. ACL.

Franz Josef Och and Hermann Ney. 2002. Discrimina-
tive training and maximum entropy models for sta-
tistical machine translation. In Proc. ACL.

Franz Josef Och and Hermann Ney. 2003. A systematic
comparison of various statistical alignment models.
Computational Linguistics 29(1).

Ofir Press and Lior Wolf. 2017. Using the output
embedding to improve language models. In Proc.
EACL.

T. Salimans and D. P. Kingma. 2016. Weight Normal-
ization: A Simple Reparameterization to Accelerate
Training of Deep Neural Networks. ArXiv e-prints .

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proc. ACL.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In NIPS 27.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems. pages 6000–6010.

Feng Wang, Xiang Xiang, Jian Cheng, and Alan L.
Yuille. 2017a. Normface: L2 hypersphere em-
bedding for face verification. In Proceedings of
the 25th ACM international conference on Multi-
media. ACM. https://doi.org/https://doi.
org/10.1145/3123266.3123359.

Xing Wang, Zhengdong Lu, Zhaopeng Tu, Hang Li,
Deyi Xiong, and Min Zhang. 2017b. Neural
machine translation advised by statistical machine
translation. In Proc. AAAI.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, et al. 2016. Google’s neural machine
translation system: Bridging the gap between human
and machine translation. arXiv:1609.08144.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals.
2014. Recurrent neural network regularization.
arXiv:1409.2329.

Matthew D. Zeiler. 2012. ADADELTA: An adaptive
learning rate method. arXiv:1212.5701v1.

343


