0 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

Improving Load Balance with Flexibly
Assignable Tasks

Ali Pinar, Bruce Hendrickson

A preliminary version of this work can be found in [1].
Ali Pinar is with the Computational Research Division of Lawrence Berkeley Lab, Berkeley, CA 94720-8139. E-

mail: apinar@lbl.gov. Bruce Hendrickson is with the Discrete Algorithms and Math Sandia National Laboratories,

Albuquerque, NM 87185-1110. E-mail: bah@cs.sandia.gov.
This work was funded by the Applied Mathematical Sciences program, U.S. Department of Energy, Office

of Energy Research and performed at Sandia, a multiprogram laboratory operated by Sandia Corporation, a
Lockheed-Martin Company, for the U.S. DOE under contract number DE-AC-94A1.85000. The first author is also
supported by the Director, Office of Science, Division of Mathematical, Information, and Computational Sciences

of the U.S. Department of Energy under contract DE-AC03-765F00098.

DRAFT September 9, 2003

PINAR AND HENDRICKSON: FLEXIBLY ASSIGNABLE TASKS 1

Abstract

In many applications of parallel computing, distribution of the data unambiguously implies distri-
bution of work among processors. But there are exceptions where some tasks can be assigned to one
of several processors without altering the total volume of communication. In this paper, we study the
problem of exploiting this flexibility in assignment of tasks to improve load balance. We first model the
problem in terms of network flow and use combinatorial techniques for its solution. Our parametric search
algorithms use maximum flow algorithms for probing on a candidate optimal solution value. We describe
two algorithms to solve the assignment problem with logWr and |P| probe calls, where Wr and |P|,
respectively, denote the total workload and number of processors. We also define augmenting paths and
cuts for this problem, and show that any algorithm based on augmenting paths can be used to find an
optimal solution for the task assignment problem. We then consider a continuous version of the problem,
and formulate it as a linearly constrained optimization problem, i.e., min||A%||s, s.t. B# = d. To avoid
solving an intractable oo-norm optimization problem, we show that in this case minimizing the 2-norm
1s sufficient to minimize the co-norm, which reduces the problem to the well-studied linearly-constrained
least squares problem. The continuous version of the problem has the advantage of being easily amenable
to parallelization. Our experiments with molecular dynamics and overlapped domain decomposition ap-
plications proved the effectiveness of our methods with significant improvements in load balance. We also

discuss how our techniques can be enhanced for heterogeneous systems.

Keywords

Parallel computing, load balancing, flexibly-assignable tasks, maximum flow

I. INTRODUCTION

In many applications of parallel computing, the distribution of data among processors
implies a corresponding distribution of work. However, there are important exceptions
to this rule that arise for one of two reasons. First, some portions of the data may
be replicated on multiple processors, any of which could perform the associated work.
Second, tasks may involve multiple data items which may not all reside on the same
processor. Thus, all the interacting data will need to be combined on a single processor
before the computation can be completed. In principle, any processor could perform this
task (see, e.g. [2]), but for the purposes of this paper we will consider only those processors
owning a portion of the relevant data—other options would increase the communication

requirements.

September 9, 2003 DRAFT

2 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

Examples of such flexibly assignable work are common in scientific applications. In
molecular dynamics simulations, a force is computed between any pair of particles that
are close to each other. For large problems, these calculations are usually parallelized by
dividing the particles among the processors [3]. If two close-by particles reside on different
processors, then either processor could perform the computation.

Another example arises in finite element simulations. These calculations consist of
several computational phases, some of which are element based while others are node
based. If, for instance, the mesh is partitioned so that processors own full elements, then
nodes at the boundary between elements will be duplicated on at least two processors.
Any of these processors could perform the node based operations for these shared nodes.
If instead the mesh is partitioned by nodes, then some elements will be divided among
multiple processors. Any of these processors could be employed to perform the element
computation.

A third example comes from an important class of preconditioners known as overlapped
Schwarz domain decomposition [4], [5]. In this preconditioning scheme, processors perform
one calculation on subdomains that overlap each other, and another calculation on disjoint
subdomains. With the overlapped domains, some portions of the data are duplicated on
multiple processors. Any of these processors could perform the calculations for these
duplicated objects in the disjoint portion of the computation.

The freedom to assign work to any of several processors raises the question of how best
to exploit this flexibility. In this paper we investigate using this freedom to improve load
balance. That is, we want to give most of this flexibly assignable work to processors
that would otherwise have too little to do. More formally, we address the following task

assignment problem.

Given: A set of unit tasks and the (possibly singleton) set
of processors that can perform them.
Find: An assignment of tasks to processors that minimizes

the number of tasks assigned to the maximally loaded processor.

Despite its practical utility, to our knowledge, this problem has not been defined or

addressed previously. After providing some basic definitions in §1I, we investigate several

DRAFT September 9, 2003

PINAR AND HENDRICKSON: FLEXIBLY ASSIGNABLE TASKS 3

combinatorial approaches to address the task assignment problem in §III. Some pre-
liminary experimental results are included in an appendix, which provide evidence that

significant gains in load balance can be achieved.

Besides formulating a new and practically important problem, this paper makes several
technical contributions. First, we describe a parametric search solution that uses a stan-
dard maximum-flow solver as a probe function. This solution is simple to implement and

allows for the use of any maximum flow solver as a black box.

Our second combinatorial algorithm involves a more detailed analysis of the structure of
the problem. Specifically, we devise a maximum-flow /minimum-cut theorem for our non-
standard objective function. This result gives significant insight into the structure of the
problem, and we use it to devise an augmenting path algorithm that mimics the structure
of Ford-Fulkerson methods for maximum flows. The result is an asymptotically more
efficient approach, but one that cannot be built upon standard maximum-flow solvers. It
is also worth noting that our approach solves the problem of finding a maximum flow with

the property that the largest flow on any terminal edge is minimized.

These combinatorial algorithms are sufficient for many problems in which a serial com-
putation can determine the assignment as a preprocessing step to a parallel calculation.
However, in some instances the characteristics of the parallel computation change over
time, and the assignment must be recomputed. Our combinatorial methods are not par-
ticularly amenable to parallelization. For this reason, in §IV we present a continuous
approximation to the problem that leads to a more easily parallelized numerical approach.
The continuous approximation is closely related to the diffusion methodology widely em-
ployed for determining work transfers in dynamic load balancing [6]. We show that the
flexibly assignable work problem can be formulated as a linearly-constrained optimization
problem, i.e., min||Az||o, s.t. Bx = d. Here, the linear constraints Bx = d guarantee
that assignment of tasks is valid, and Ax is the vector of processor loads. Minimizing the
oo-norm of this vector corresponds to minimizing the maximum processor load. Being a
nonsmooth function, minimizing the co-norm is difficult. However, we are able to show
that in this context, minimizing the 2-norm is sufficient to minimize the co-norm, which

reduces the problem to the well-studied numerical kernel known as a linearly-constrained

September 9, 2003 DRAFT

4 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

least squares problem. We then show that there are efficient parallel approaches to solve
this problem. Of course, the discretized solution to the continuous approximation may
not be identical to the actual solution to the discrete problem.

The load balancing problem for heterogeneous systems is slightly different, since merely
assigning equal amounts of work to processors is not sufficient and processor speeds must
be taken into account. In § VI, we discuss how our techniques can be enhanced for such
systems, and show that by only minor modifications, all of our proposed methods can be

enhanced for load balancing for heterogeneous systems.

II. PRELIMINARIES

A flow network is defined by a directed graph G = (V, E), with a source vertex s, a
terminal vertex ¢, and a capacity for each edge (7, j), which we denote by ¢(¢, 7).

We will define a flow [to be a function f : F — Z* from edges to integers, and use
f(4,7) to denote the volume of flow along edge (7,j). A flow must satisfy the capacity
constraints on edges (i.e. f(z,7) < ¢(7,7)), and the flow conservation constraints

Yo flik)y= > f(5.i) for all i € V\ {s,t}.
(i,k)EE (ji)EE
The value of a flow |f| is defined by the flow leaving the source s,
[fl= > fls.v).
(s,0)EE
A mazimum flow (max-flow) is a flow that maximizes |f].
A flow is complete if its value is equal to the cumulative capacity of edges leaving the

source, ie., |f|= > ¢(s,v). A graph that can support a complete flow will be called a
(s,w)eE
complete-flow graph.

Given a graph G and flow f, the residual graph Gy has the same set of vertices as (¢
and all edges in & (referred to here as forward edges), plus a matching set of backward
edges that point in the opposite direction. The capacity of a forward edge is equal to its
capacity in G minus the flow assigned to that edge in f. The capacity of a backward edge
is equal to the flow on the corresponding forward edge.

In the max-flow problem, an augmenting path is defined as a path from s to ¢ along

which more flow can be pushed. The capacity of a path is defined by the minimum of the

DRAFT September 9, 2003

PINAR AND HENDRICKSON: FLEXIBLY ASSIGNABLE TASKS 5

Fig. 1. Example of an assignment graph.

capacities of its edges. Any path in Gy from s to ¢ with nonzero capacity is an augmenting
path and can be used to increase the total flow.

Finding a maximum flow is a fundamental problem in combinatorial algorithms and has
been the subject of numerous research efforts. Fundamentals of network flow algorithms
can be found in [7], [8]. In a more recent work, Goldberg and Rao give a history of
maximum-flow bounds and relevant references [9].

The assignment of tasks to processors can be modeled as a flow on a network G =
(T, P,), where each task is represented by a vertex in T, and each processor is represented
by a vertex in P. All processor-vertices are connected to the terminal ¢ by terminal edges,
and the source s is connected to all the task—vertices by source edges. Task—vertices have
assignment edges connecting them to all the processors, which the associated task can be
assigned to. The graph can be simplified by combining all vertices that have identical
sets of processor neighbors. We call such sets task groups. An example can be found in
Figure 1.

The capacity of an edge from the source to a task—vertex is defined by the size of the
corresponding task group. We will set the capacities for assignment edges and terminal
edges to be infinite. We will call this graph an assignment graph. Notice that assignment
graphs are complete—flow graphs.

Figure 1 illustrates an assignment graph. There are 7 task groups and 4 processors. vy
corresponds to a task group of 10 tasks and can be assigned to processors pg, p1, and/or ps.

Notice that some of the task groups can be assigned to only one processor. This situation

September 9, 2003 DRAFT

6 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

(o))"=
10
B——(P)
<
12

j

o
74\

Fig. 2. Example of a solution on an assignment graph.

often arises in practice, and these tasks correspond to work that can be assigned only to
a single processor.

We can consider the assignment of tasks as a flow from the task—vertices to processor—
vertices. Our objective is to find a flow that assigns all the tasks to processors while
minimizing the maximum load of any processor. We need the flow to be complete (full
capacity of source edges is used) to guarantee assignment of all the tasks. We can define
the flow problem as follows.

Given an assignment graph G = (T, P, E), find a complete flow f in G that minimizes
max f(p.). (1)

Although we define our flow problem for very specific flow graphs, the algorithms and
analysis in the following sections are valid for any complete-flow graph. For a general
graph, we would redefine P in (1) to be the set of vertices that are connected to the
terminal vertex (i.e., P = {v: (v,t) € E}). Thus, the problem we are solving is equivalent
to that of finding a maximum flow that minimizes the largest flow along any terminal
edge.

In Figure 2, a solution to an assignment problem is illustrated. Numbers on the edges
correspond to flow assignments for these edges. This assignment gives an optimal solution
where p; and py are the maximally loaded processors with 89 tasks. Out of 20 tasks of

task group vs, 11 will be performed on p; and 9 will be performed on p,.

DRAFT September 9, 2003

PINAR AND HENDRICKSON: FLEXIBLY ASSIGNABLE TASKS 7

ITI. COMBINATORIAL ANALYSIS

As outlined in §II, assignment of tasks to processors can be formulated as a flow in a
network. In this section, we will investigate the relation between classical flow problems
and the task assignment problem. First, we will discuss parametric search solutions that
use standard max-flow techniques as a probe function, and describe a polynomial time al-
gorithm for the task assignment problem. Then we will show how Ford—Fulkerson methods
can be used to solve our problem. Specifically, we will revise the definition of augmenting
paths and cuts, and show that any maximum-flow algorithm based on the Ford—Fulkerson

method can be used for the task assignment problem.

A. Parametric Search

A parametric search algorithm has two components: a probe function that determines
whether there is a solution with a cost less than a specified value, and a method to search
on the space of candidate optimal solution values. Below, we first show how standard
maximum-flow algorithms can be used as a probe function for our problem. Our cost
function is the maximum work assigned to any single processor. Then we discuss two
techniques to search the space of candidate values. The following lemma formalizes our

claim for maximum-flow algorithms being used as a probe function.

Lemma 1: There is a solution to the task assignment problem with cost < B if and
only if there exists a complete flow on the modified graph where all terminal edges have
capacity B.

Proof: Construct the assignment graph as described in §I1 and change the capacities

of all terminal edges to B. We claim that there is a solution to the task assignment
problem with cost < B if and only if the maximum flow uses the capacity of all the source
edges. Proof of this claim follows.
Sufficiency. Bounds on capacities of terminal edges guarantee that no processor is assigned
more than B units of work, and if a flow uses all the source edge capacity then all work
is assigned to processors. Moreover, the flow solution provides the corresponding task
assignments.

Necessity. Assume there is a solution to the task assignment problem where no processor

September 9, 2003 DRAFT

8 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

is assigned more than B units of work. We can use the assignments of tasks in this solution
to find a corresponding flow solution. |

To solve the task assignment problem we must find the minimal value of B for which
a max-flow solution uses all the source edge capacities. We present two algorithms for

finding this value in the following two subsections.

A.1 Bisection Search

Bisection search is a standard technique used in parametric search algorithms. It starts
with a lower and an upper bound on the optimal solution value, and discards half of the
interval by probing on the midpoint of the current bounds. This gives an e-approximation
algorithm for real-valued solutions, but finds an exact solution when the optimal solution
value is an integer, as in the case of our problem.

For the task assignment problem, the total number of tasks is an upper bound on the
cost of an assignment, and the number of tasks divided by |P| is a lower bound. Thus, a
bisection search gives the following result.

Theorem 1: If Wy is the total number of tasks, bisection search solves the task assign-

ment problem optimally with O(log W) probe calls.

A.2 Incremental Search

An incremental search starts with a lower bound for the optimal solution value and
increases it until the optimal value is found. The increments should be small to avoid
missing the optimal value, but large for efficiency. The following lemma and theorem
show how the lower bound can be increased after a failed probe call-—that is, a max-
flow problem with terminal edge capacities B in which not all the source edge capacity is
utilized.

Lemma 2: Let (u,t) be a terminal edge that is not saturated in a maximum-flow solution
f for a probe value B (i.e. f(u,t) < c(u,t) = B). Then for any probe value B’ > B, there
is a maximum-flow solution f’ in which f'(u,?) < f(u,t).

Proof: When the Ford-Fulkerson method is used to achieve an optimal solution f’
for bound B’ > B by using f as an initial solution, we can get an optimal solution with

f(u,t) < f(u,t). First, note that u is not reachable from s in G5, and increasing terminal

DRAFT September 9, 2003

PINAR AND HENDRICKSON: FLEXIBLY ASSIGNABLE TASKS 9

edge capacities does not make u reachable from s. Furthermore, v will not be reachable
while the flow is being modified via augmenting paths. Consider the first augmenting path
that will add a vertex to the set of vertices u is reachable from. Observe that such a path
should reach a vertex that can reach to u, which contradicts u’s non-reachability from s.
[|

Theorem 2: For a failed probe with terminal edge capacity B, let W, > 0 be the total
unused source edge capacity, and let K" be the number of saturated terminal edges. Then
there is no feasible solution to the task assignment problem with cost less than B4+ W, /K.
Proof: By the result of Lemma 2, additional flow cannot go to any of the unsaturated
terminal edges. In the best case, additional flow will be equally distributed among the set

of saturated terminal edges. |

Wy
K

As a result of Theorem 2, a failed probe value B can be increased to B+ 5=, as exploited

in Algorithm IncSearch.

Algorithm IncSearch
B Wi/ |P)
while not Probe(B)
Let K be the number of saturated terminal edges,
and W, be the total unused source edge capacity.

BHB—I—VKI;

return B;

The following lemma proves that Algorithm IncSearch terminates and gives a bound on
the number of probes it makes.
Lemma 3: Algorithm IncSearch terminates after at most |P| probes.

Proof: ~When a probe value is increased, if all previously saturated edges remain
saturated then the probe call will succeed. Thus, when a probe fails, at least one new
terminal edge is not saturated. That is, each failed probe decreases the number of saturated
terminal edges by at least one. |

Theorem 3: Algorithm IncSearch finds an optimal solution and makes O(|P|) probes.

September 9, 2003 DRAFT

10 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

Proof: We start with a lower bound. According to Theorem 2, increases on B are
minimal. Thus we do not miss the optimal value. Lemma 3 ensures that the algorithm
terminates after O(|P|) probes with an optimal solution. [

Notice that successive probes solve max-flow problems on the same graph in an in-
cremental manner, where only the capacities of the terminal edges increase. Thus the
previous flow solution gives a feasible solution (though not optimal) for the next flow solu-
tion, which might be exploited for efficiency. Using Ford-Fulkerson method in its simplest
way will give a complexity of O(Wy | E|) for all the probes, and thus for the algorithm.

B. Ford—Fulkerson Method

The Ford—Fulkerson method has been the basis of a number of algorithms to solve the
max—fow problem. It is built on three basic concepts: residual graphs, augmenting paths,
and cuts [7]. In this section, we will discuss how it can be adopted to the task assignment
problem. First, we will revise the definitions of augmenting paths and cuts for the task
assignment problem, then state and prove a version of the maximum-flow/minimum-cut
theorem for the task assignment problem. The result will enable any algorithm based on
the Ford-Fulkerson method to be used to solve our problem.

The generic Ford-Fulkerson method starts with a zero flow and continues to add to the
flow along augmenting paths until no augmenting paths are left. In the task assignment
problem, we will use augmenting paths to shift flow (tasks) from a maximally loaded
terminal edge (processor) to a less loaded terminal edge. Formally, an augmenting path
(pt,u,v) is a path pt in Gy that starts with the vertex u of a maximally loaded terminal
edge (u,t), ends at the vertex v of a less-loaded terminal edge (v,t), and does not go
through t. We define the capacity ¢(pt, u,v) of an augmenting path to be the minimum of
the capacities of its edges and halt of the difference between the flow on the first and last
terminal edges, rounded down to an integer,

f(uvt) — f(vvt)
2

e(pt,u,v) = min(| |,min{es(z,7): (¢,7) on pt}).

This implies that the capacity of a path between two processors whose loads differ by just
one is zero, since such an augmentation will not yield a more balanced distribution.

We can update flow assignment in the graph for edges on the path and the two terminal

DRAFT September 9, 2003

PINAR AND HENDRICKSON: FLEXIBLY ASSIGNABLE TASKS 11

edges connecting processor-vertices to the terminal to obtain a more balanced distribution,
as stated by the following lemma.

Lemma 4: Let f be the current flow, pt be an augmenting path, and ¢ > 0 be the
capacity of this path. Define f*(¢,7) for all edges as

u,t)—c ifi=u,j=1

(
flo,t)y+e¢ ifi=v,j=1
fH,5) =13 fG,j)+c¢ if (i,7)is on pt
fli,5)—c if (j,0)ison pt
fliyg) otherwise
Then f* does not change the total flow (i.e., | f*| = |f]), but decreases either the maximum

load or the number of maximally loaded terminal edges.

Proof: For the total flow to change we must decrease flow from s. This is possible
only if there is an edge (v, s) in pt, but this edge must be followed by another edge (s,u),
and thus total flow from s does not change. With the same argument, flow conservation
constraints are satisfied for all vertices. Since pt does not go through #, augmentation
will affect only two terminal edges: (u,t) and (v,t). By definition of an augmenting path,
(u,t) is a maximally loaded terminal edge, and we decrease its load. By definition of the
capacity of an augmenting path, the load of (v,?) cannot be as high as (u,t), after we
increase it. |

In traditional flow problems, a cut (S,7') in GG is defined as a partition of vertices into
S and T in which s € S and t € T. The cost of a cut is defined as the sum of capacities
of edges from S to T. The cost of a minimum cut and value of a maximum flow are
equal. A minimum cut corresponds to a bottleneck in the flow from source to terminal.
For the task assignment problem, we will define a cut as a bipartitioning (P, P,) of the
processor—vertices. The cost of a cut is defined to be the maximum load in P; when
(i) processors in P are equally loaded,
(ii) all the tasks that can be assigned to a processor in P, are assigned to processors in
P,
By “equally loaded” we mean that the loads of any two processors differ by at most one.

Cuts will help to identify a bottleneck in the problem, just as in maximum flow problems.

September 9, 2003 DRAFT

12 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

A bottleneck in our problem is a group of processors that have to perform a large set of
tasks. Unlike the maximum flow problem, cuts provide lower bounds on the cost.

With the above definitions, we have the following maximum-flow/minimum-cut theorem
for the task assignment problem.

Theorem j: The following statements are equivalent:

(1) Flow f minimizes the load of the maximally loaded processor.
(2) There is no augmenting path that decreases the maximum load in G.
(3) The maximum load is equal to the cost of a cut (P1,).
Proof:

o (1) = (2). Assume the contrary, that there exists an augmenting path to decrease the
maximum load. Then we can use this path to decrease the maximum load, thus f is not
an optimal flow.
e (2) = (3). Let P; be the set of processors with maximum load plus processors reachable
from a maximally loaded processor in GGy. The set P, contains the remaining processors.
By construction, there are no augmenting paths from P to F,. This guarantees that
all tasks between P, and P, are assigned to P, processors. Also, since there are no
augmenting paths in Gy, the loads of all processors in P; are either equal to or one less
than the maximum load. That is, the processors in P; are equally loaded.
e (3) = (1). Since all tasks which could be assigned to either P; or P, are assigned to
processors in P, the work currently assigned to processors in P must be performed by
processors in P;. The best we can do is to assign all work equally, which is guaranteed by
the first condition in the definition of a cut, so f is an optimal solution.

[|

Corollary 1: Any algorithm based on the Ford—Fulkerson method can be used to solve
the task assignment problem.

It is worth noting that although any algorithm based on the Ford-Fulkerson method
might be used to solve this problem optimally, the complexity results might vary from
those of the conventional max—flow problem.

Below, we present an algorithm AugPath, which finds an optimal solution using aug-

menting paths.

DRAFT September 9, 2003

PINAR AND HENDRICKSON: FLEXIBLY ASSIGNABLE TASKS 13

Algorithm AugPath
find a complete flow f in G}
while there is an augmenting path pt

augment flow along pt;

Theorem 5: Algorithm AugPath finds an optimal solution in O(|E|x*log |P|+ Wr)-time.
Proof: Correctness of the algorithm is implied by Corollary 1. Finding an augment-

ing path takes O(F)-time in the worst case. By Lemma 4, each augmenting path either
decreases the maximal load or the number of maximally loaded processors. This gives a
loose |P|* Wz bound on the number of augmenting paths required. A better bound is
possible however. When the maximum load is in the range [Wr/2, Wr], only one pro-
cessor might have the maximum value, and thus each augmenting path will decrease the
maximum load by one. Generally, when the maximum is in the range [Wr/(k + 1), Wr/k]
there can be at most k£ processors with the maximum load and £ augmenting paths may
be needed to decrease the maximum load. So the total number of augmenting paths can

computed as

Wr Wr k+1—4%

S O P N]

1<k<|P|-1 k k+1 1<k<|P|-1 k(k + 1)
1

1<k<|P]—1 k41

= O(Wr xlog |P|).

IN
|

IV. NUMERICAL FORMULATION

The flow formulations described above provide efficient, serial algorithms for optimizing
task assignments. Unfortunately, flow algorithms are difficult to parallelize, particularly
for large numbers of processors. In this section we describe a continuous version of the

problem and show that it reduces to a well-studied numerical computation. Although this

September 9, 2003 DRAFT

14 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

approach does not provide an integral solution, its parallelizability may make it preferable
for many applications. In spirit, our approach is similar to the widely used diffusion
methods to determine how much work to transfer between processors in dynamic load
balancing [6], [10], [11].

In our numerical formulation, each task group generates an equation. Say the task group
has m tasks in it. If the task group can be assigned to any of k processors, then there
will be & unknowns associated with the task group. Each of these unknowns xy,..., 2}
encodes the assignment of the corresponding task group to one of the processors. In a
discrete formulation we would want the z; values to be integral, but in our continuous
formulation we impose the following, weaker, set of equality and inequality constraints.

k
Z:L'i:m, and z; >0 forall 1 <7<k
i=1

The z; values can be used to encode the work assigned to each of the |P| processors.
The task group with k& potential processors will generate k& columns of length |P|. The ¢th
column is all 0’s except for a single 1 in the row number that corresponds to the processor
associated with z;. These columns can be treated as a matrix, and multiplying the =
vector by this matrix gives a |P| length vector containing the work assigned to each of the
processors.

We can continue this construction, adding variables, constraints, and work contributions
from all |T'| tasks. Letting |(Q)| denote the sum over all tasks of the number of processors

that task could be assigned to, we obtain the following problem.
min | Az||., subject to Bx =d and = >0, (2)

where A is |P| x |Q], B is |T| x |Q|, and both have only a single 1 in each column. In the
flow terminology from §II, the x vector is the assignment of a (possibly fractional) flow
to the edges from source-adjacent nodes to terminal-adjacent nodes (see Figure 1). Az is
the amount of flow into each terminal-adjacent node, Bz is the flow out of each source-
adjacent node and d is the vector of sizes of task groups. So Bx = d merely encodes the
flow preservation property for each source-adjacent node in a complete flow. The oo-norm
reflects our desire to minimize the work of the maximally loaded processor. It is worth

remarking that tasks that can be performed only by a single processor can be removed

DRAFT September 9, 2003

PINAR AND HENDRICKSON: FLEXIBLY ASSIGNABLE TASKS 15

from the variable set, reducing the size of the problem. For the example from Figure 1,

we get the following matrices in our numerical formulation.

1 70
111 10
1 78

B = 11 d=1 20
1 80
111 12

1 74

Unfortunately, the oco-norm is not smooth and so can be difficult to minimize. A similar
problem arises in the diffusion approach where a 1-norm is approximated by the smooth
alternative of a 2-norm. We will similarly choose to replace our co-norm with a 2-norm

as follows.

min ||Az||z subject to Bx =d and = >0 (3)

This formulation is an instance of what is known as a linearly-constrained least squares
problem. Unlike the diffusion methodology, in our case we lose nothing by transforming
to a smoother approximation since for our problem a solution to the two norm problem
also solves the oco-norm problem. This is shown by the following theorem.

Theorem 6: Any x that solves Problem (3) is also a solution for Problem (2).

Proof: Begin by noting that Problem (2) is identical to the flow problem from §I1I,
except that variables are continuous instead of discrete. The analysis from §III generalizes
to continuous variables in a straightforward manner, so the structure of a solution to
Problem (2) is the same as the structure of a solution to the flow formulation. Specifically,
a subset of processors (P;) will have the same maximum load (/,4,), and all tasks that

can be assigned to processors with smaller loads () have been so assigned.

September 9, 2003 DRAFT

16 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

Now let & be a solution to Problem (3). This problem has the same constraints as
Problem (2), so it shares the same space of feasible solutions. As with the solution to
Problem (2), the processors in P; will need to be assigned at least a total of | Py |l;,q, load.
It is easy to show that the contribution of these processors to the 2-norm is minimized
when all their loads are equal. Any transfer of work from processors in P, to processors
in P; will only increase the 2-norm. So a solution to Problem (3) must also be a solution
to Problem (2). [

Least squares problems are fundamental to linear algebra (see, e.g.. [12]). Constrained
least squares problems have been studied by several researchers. Of interest to us are
iterative methods that are amenable to parallelization. Note that since we are using
the continuous formulation as an approximation to a discrete problem, a low accuracy
numerical solution is sufficient.

One way to deal with linear equality constraints is the method of weighting [12]. This
method moves the equality constraints into the objective function, but severely penalizes
slack in these rows by weighting these equations. So Problem (3) is transformed to the

min 7B x — v subject to = > 0,
v A 0 ,
where 7 is a large number used to penalize slack in the equality constraints. This trans-

forms our problem to an instance of a nonnegative least squares problem,
min ||Cz — bl|y subject to « > 0.

The nonnegative least squares problem is equivalent to the following optimization problem.

min —z! Ex — ¢!
T

x subject to = >0,

where £ = CTC and ¢ = CTh. Cryer proposed the following SOR iteration for solving
nonnegative least squares problems [13],
w
:L'f"'l = max {O, :L'f - — (ci — Z eijxf"'l — Z eijxf) } ,
€:: — —
i i< iz
where w is the overrelaxation parameter. This is a standard stencil operation and requires
only local communication with neighbor processors. Hence, it is amenable to efficient

parallelization.

DRAFT September 9, 2003

PINAR AND HENDRICKSON: FLEXIBLY ASSIGNABLE TASKS 17

The least squares technique will give a non-integral solution, which needs to be dis-
cretized for task assignment. The continuous solution can be easily mapped to a feasible
solution by adjusting the assignments for each task group. Consider a group of tasks that
can be assigned to either py or p;. We can round the total assignment to py up to an
integer, and assign that many tasks to py and assign the remainder to p;. Notice that this
adjustment has only local effects and is easy to generalize for more processors. We do not

have any bounds on the impact of such rounding operations on solution quality.

V. EXPERIMENTAL RESULTS

We have applied our techniques to problems from two application domains — molecu-
lar dynamics and overlapped domain decomposition. In each case, as described in §IV
we solved the least squares formulation of the problem in serial, and used Gauss-Seidel
iterations [14] to generate a new distribution of work among processors. We define load
imbalance as (max —avg)*100/avg, where max and avg denote the maximum and average
processor load, respectively.

For the molecular dynamics application, we used data provided by Plimpton which came
from his spatial decomposition code [3]. In a molecular dynamics simulation, the work
is dominated by the number of forces that need to be computed between pairs of nearby
atoms. In this code, a bounding box encloses all the atoms, the box is divided into P
regions of equal volume and each of P processors is responsible for atoms residing within
one of the boxes. Flexibility arises when two atoms belonging to different processors are
close enough to interact. Larger interaction cutoffs and smaller regions each increase the
fraction of flexibly assignable work. If the atoms are uniformly distributed through the
bounding box (e.g. for simulations with periodic boundaries), then the load will generally
be well balanced. But for problems in which the atom distributions are inhomogeneous,
significant load imbalance arises.

We present results for two types of problems in Table I. In this table N represents the
number of particles, and F'is the total number of pairwise force computations. A simple
way to partition a set of flexibly assignable force computations is to assign half to each
of the two processors they span. The load imbalance induced by this strategy is detailed

in column ‘Initial” in the table. Column ‘Improved’ contains the load imbalance resulting

September 9, 2003 DRAFT

18 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

TABLE 1

RESULTS ON MOLECULAR DYNAMICS PROBLEMS.

Load Imbalance

Problem N F P | Initial | Improved
membrane | 7134 | 4052598 8 5.80 0.32
64 | 21.17 0.21

512 | 58.34 2.16

mixer.half.1 | 4818 | 17220 8 | 121.55 110.78
64 | 163.70 134.07

mixer.half.2 | 4818 | 17360 8 | 146.48 130.40
64 | 195.59 155.15

from the using our least squares algorithm to assign work. Clearly, our approach can result
in a significant reduction in load imbalance. It is worth noting that these are problems of

modest size, and so do not require very large numbers of processors.

Of the problems in Table I, the first comes from a biological simulation of a membrane,
in which the atomic densities are higher within the membrane than within the surrounding
fluid. For large numbers of processors we are able to reduce the load imbalance from an
initial 58% to just over 2%. The next two problems are instances of a simulation of a
rotating drum being used to mix solid particles as described in [15]. The particles fill only
a fraction of the volume of the drum, leading to significant load imbalance. Specifically,
some of the processors are responsible for regions of space that have few or no particles.
For this problem, the particles are treated as rigid bodies, and so the cutoff distances are
very short. As a consequence, there are few flexibly assignable interactions, which limits
our ability to improve load balance. Despite these inherent difficulties, we are still able to

significantly improve the overall load balance.

The second data set comes from an important class of preconditioners known as over-
lapped Schwarz domain decomposition [4], [5]. In this preconditioning scheme, processors
perform one phase of the calculation on subdomains that overlap each other, and another

phase on disjoint subdomains. To achieve high performance it is important to balance

DRAFT September 9, 2003

PINAR AND HENDRICKSON: FLEXIBLY ASSIGNABLE TASKS 19

the load of each phase. To accomplish this, we first choose a balanced set of overlapped
subdomains [4]. For the disjoint phase, we can then exploit flexibility in task assignment.
Specifically, overlapped portions of the initial decomposition correspond to duplicated
data, and any processor owning that data can perform the associated task in the disjoint
phase. Table II displays our experimental results on a set of sparse test matrices arising
from applications where overlapped subdomain preconditioners are used [4]. In this table,
N denotes the number of rows and columns of the matrix, NN Z is the number nonzeros
in the matrix, and P is the number of processors. These are all modest sized problems and
so do not require a very large number of processors. The column labeled ‘Initial” describes
the load imbalance associated with assigning the disjoint subdomains to processors. The
column labeled ‘Improved’ details the load imbalance resulting from our east squares so-
lution. The results indicate that significant improvements in load balance are achieved by
our techniques.

It is worth noting that a few Gauss-Seidel iterations are sufficient for the algorithm to
converge, and each iteration consists of a simple traversal of tasks. Thus our algorithms

are efficient and solution times are negligible.

VI. HETEROGENEOUS SYSTEMS

Discussions prior to this section were limited to homogeneous systems, where all pro-
cessors have identical execution speeds. This assumption does not hold, however for many
current parallel systems; processors are often heterogeneous, i.e., they have different pro-
cessing powers. In particular, clusters of workstations, which are very likely to have
heterogeneity, are gaining popularity, and significant research efforts are devoted to their
development. Heterogeneity of the processors might lead to load imbalance even when
all processors are assigned equal amounts of work. Varying processor speeds should be
taken into account while distributing the work to avoid processor idle times. The objective
must be to minimize the maximum completion time among all processors, as opposed to
minimizing the maximum load.

In the following sections, we will discuss how our techniques can be extended to exploit
flexibly assignable tasks to improve balance for heterogeneous processors. We define the

execution speed of a processor to be the number of unit operations it can perform in a

September 9, 2003 DRAFT

20

DRAFT

RESULTS FOR THE OVERLAPPED SUBDOMAIN PRECONDITIONERS

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

TABLE 11

Load Imbalance

Matrix N NNZ || P | Initial Improved
Braze 1344 142296 1.25 0.00
31.52 0.34

16 | 77.25 1.36

32 | 126.47 43.16

Defroll | 6001 173718 13.28 0.08
25.47 7.28

16 | 17.89 5.86

32 | 41.66 15.94

DIE3D | 9873 1723498 20.60 0.13
28.52 0.19

16 | 91.39 2.50

32 | 138.07 9.08

dday 21180 1033324 || 4 1.52 0.14
3.59 0.07

16 | 13.08 0.55

32 | 18.26 0.75

visco 23439 1136966 | 4 | 16.28 0.30
34.19 1.77

16 | 53.11 3.41

32 | 84.49 5.52

sls 36771 2702280 || 4 2.28 0.15
14.36 0.01

16 | 16.88 0.07

32 | 29.74 0.80

ocean | 143437 819186 || 4 4.92 0.21
8 9.22 1.43

16 | 17.39 3.35

32 | 41.61 6.15

September 9, 2003

PINAR AND HENDRICKSON: FLEXIBLY ASSIGNABLE TASKS 21

unit time, and use ¢; to denote the execution speed of the i1th processor.

A. Parametric Search Algorithms

To employ a parametric search algorithm from §III-A. we first need a probe function.
For heterogeneous problems we can still use a max-flow solver as a probe after minor
modifications. Here probe values will be the completion time of processors, i.e., Probe(B)
decides if there is an assignment of tasks for which all processors can complete in B units of
time. By defining the capacity of a terminal edge (u,t) as B*e,, where e, is the processing
speed of the respective processor, we can guarantee that all processors will complete in
B units. We also need all tasks to be assigned to processors, which is guaranteed by a
complete flow in the graph. Thus, a complete flow in the graph gives a feasible solution
to the task assignment problem. Similarly, a feasible assignment of tasks defines a flow on
the graph, and thus a max-flow solver can be used to determine the existence of a solution
within a specified completion time.

For the bisection algorithm from §ITI-A, a lower bound LB to start can be chosen as

the ideal completion time, where the load is distributed perfectly, i.e.,

4%
LB = —p—.
Zi:l €;
Assigning all tasks to the fastest processor will give an upper bound
4%
UB = ——(r—.
max/"| e;
=1 -1

To use incremental search, we previously increased the bound hoping that unassigned
work will be distributed evenly among active processors. We can still use the same idea,
but this time we should consider the total execution power—as opposed to the number—of
active processors. Let Ay denote the set of processors whose terminal edge is saturated in

flow f,i.e., Ay ={u: f(u,t) = c¢(u,t)}, and W, be the unused source edge capacity. Then
W,

ZuEAf eu ‘
Notice that these enhancements do not alter the complexities of the proposed algorithms.

after a failed probe value B, we can increase the bound to B +

B. Ford—Fulkerson Method

The Ford-Fulkerson method of §I11-B can be used to solve this problem for heterogeneous

processors after minor modifications of the basic definitions. We define the residual graph

September 9, 2003 DRAFT

22 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

in the same way. An augmenting path is still a path in the residual graph from the vertex
of an overloaded terminal edge to the vertex of an underloaded terminal edge, and thus
helps us to shift work from an overloaded processor to an underloaded processor to improve
balance. The capacity of a path is a function of the edge capacities on the path and the
load difference between the two processors. Edge capacities constrain how much work
can be shifted from the first processor to the last processor. After shifting load from one
processor to another, we want the execution times of two processors to be equal for better
balance. To equalize completion times of two processors, we need to shift

evf(uv t) - euf(vv t)

€y T €y

d(u,v) =

units of work from processor u to processor v, which can be achieved using simple algebra.
Considering integral assignments, the capacity of a path pt can be defined as
min([d(u,v)|,min{cs(e,7): (¢,7) on pt}) if e, > e,

c(pt,u,v) = o .
min([d(u,v)], min{cs(¢,7): (¢,7) on pt}) otherwise

The two conditions in the definition assign the extra unit of work to the faster processor.
A cut is still defined as a bipartitioning of processors (P, Py). The cost of a cut is the
maximum load among P; processors, when all tasks that can be assigned to a P, processor
are assigned to a P, processor and remaining tasks are distributed so that completion times
of P, processors are equal.
With the modified definitions, Theorem 4 still holds, so we can use any algorithm based

on augmenting paths to solve this problem.

C. Numerical Formulation

In §1V. we used the Az vector to define the loads of processors. To determine the com-
pletion time for each processor, we can use KAz, where F is a diagonal matrix with the
ith diagonal entry being the reciprocal 1/¢; of the execution speed of ith processor. Min-
imizing || F Az||. will minimize the maximum completion time among all the processors.
A 2-norm minimum solution is still sufficient for minimizing the co-norm, and the proof
is similar to that for homogeneous systems. Our numerical formulation for heterogeneous

systems still reduces to a linearly constrained least squares problem.

DRAFT September 9, 2003

PINAR AND HENDRICKSON: FLEXIBLY ASSIGNABLE TASKS 23
VII. CONCLUDING REMARKS

We have posed and addressed the problem of distributing flexibly assignable work to
processors to minimize load imbalance. This paper considers the problem in a general
form, whereas exploiting problem-specific information might yield more efficient solutions.
For instance, in the molecular dynamics application and in many other cases each task
can be assigned to one of at most two processors. We can exploit this fact to formulate
the problem as a bounded least squares problem, min ||[Az + b|| s.t. 0 < @ < u, where u
is a vector of upper bounds on decision variables. This formulation grants simpler and
more efficient solution techniques than the more general linearly-constrained least squares
formulation.

We also suggest several research directions. First, the structure of this problem may
allow specialization of flow techniques. It will be interesting to investigate if and how the
advanced techniques for max-flow problems can be suited to our problem for more efficient
combinatorial algorithms. Second, it would be helpful to generalize these techniques for
non-unit tasks. Although the general problem corresponds to number partitioning, one
can look at special cases like Cartesian partitions as in the case of molecular dynamics
applications. Finally, using these techniques in different applications will be interesting.
We keep identifying new sources of flexibly-assignable tasks, where our techniques can be

used to improve load balance.

REFERENCES

[1] Ali Pmar and Bruce Hendrickson, “Exploiting flexibly assignable work to improve load balance,” in Proc.
14th ACM Symp. Parallel Alg. Arch. (SPAA), 2002, pp. 155-163.

[2] Laxmikant Kalé, Milind Bhandarkar, and Robert Brunner, “Load balancing in parallel molecular dynamics,”
in Fifth Intl. Symp. Solving Irregularly Structured Problems in Parallel. 1998, vol. 1457 of Lecture Notes in
Computer Science, pp. 251-262, Springer—Verlag.

[3] Steve Plimpton, “Fast parallel algorithms for short-range molecular dynamics,” J. Comp. Phys., vol. 117,
pp. 1-19, 1995.

[4] Ali Pinar and Bruce Hendrickson, “Partitioning for complex objectives,” in Proc. Intl. Parallel & Distrib.
Processing Symp., 2001.

[5] B. Smith, P. Bjgrstad, and W. Gropp, Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial
Differential Equations, Cambridge University Press, Cambridge, UK, 1996.

[6] G.Cybenko, “Dynamic load balancing for distributed memory multiprocessors,” J. Parallel Distrib. Comput.,
vol. 7, pp. 279-301, 1989.

September 9, 2003 DRAFT

24

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest, Introduction to Algorithms, MIT Press and
McGraw-Hill, Cambridge, MA, 1990.

Robert Endre Tarjan, Data Structures and Network Algorithms, STAM, 1983.

Andrew V. Goldberg and Satish Rao, “Beyond the flow decomposition barrier,” J. ACM, vol. 45, pp. 783-797,
1998.

Ralf Diekmann, Andreas Frommer, and Burkhard Monien, “Efficient schemes for nearest neighbor load
balancing,” Parallel Comput., pp. 789-812, 1999.

Robert Elsasser, Burkhard Monien, and Robert Preis, “Diffusive load balancing schemes on heterogeneous
networks,” in Proc. 12th ACM Symp. Parallel Alg. Arch. (SPAA), 2000, pp. 30-38.

Ake Bjérck, Numerical Methods for Least Squares Problems, SIAM, 1996.

C. Cryer, “The solution of a quadratic programming problem using systematic overrelaxation,” SIAM J.
Control and Optimization, vol. 9, pp. 385-392, 1971.

A. Dax, “Bounded least squares problem,” ACM Trans. Math. Software, 1991.

L. Silbert, D. Ertas, G. Grest, T. Halsey, D. Levine, and S. J. Plimpton, “Granular flow down an inclined
plane: Bagnold scaling and rheology,” Phys. Rev. F, vol. 64, pp. 51302, 2001.

DRAFT September 9, 2003

