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Abstract
The minimum weight vertex cover (MWVC) prob-
lem is an important combinatorial optimization
problem with various real-world applications. Due
to its NP hardness, most works on solving MWVC
focus on heuristic algorithms that can return a good
quality solution in reasonable time. In this work,
we propose two dynamic strategies that adjust the
behavior of the algorithm during search, which
are used to improve a state of the art local search
for MWVC named FastWVC, resulting in two
local search algorithms called DynWVC1 and Dyn-
WVC2. Previous MWVC algorithms are evaluated
on graphs with random or hand crafted weights. In
this work, we evaluate the algorithms on the vertex
weighted graphs that obtained from an important
real world problem, the map labeling problem.
Experiments show that our algorithm obtains better
results than previous algorithms for MWVC and
maximum weight independent set (MWIS) on these
real world instances. We also test our algorithms
on massive graphs studied in previous works, and
show significant improvements there.

1 Introduction
The minimum weight vertex cover problem (MWVC), an
extension of the minimum vertex cover problem (MVC), is
a well-known combinatorial optimization problem. Given a
graph G, a vertex cover is a subset of vertices that contains at
least one incident vertex of each edge. The MVC problem is
to find a vertex cover with the minimum size. When extended
to MWVC, each vertex in G has a positive weight, and the
task is to find a vertex cover with the smallest total weight.
The MWVC problem has been applied to various real-world
problems. In particular, with the rise of dynamic digital maps,
the dynamic map labeling problem has attracted more and
more attention [Been et al., 2006; 2010; Liao et al., 2016;
Barth et al., 2016]. This problem can be naturally encoded as
the Maximum Weight Independent Set problem (MWIS), and
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can also be directly solved by MWVC algorithms, as vertex
cover and independent set are two complementary concepts
in graphs.

MVC is an NP-hard problem. Moreover, it is NP-hard
to be approximated within any factor smaller than 1.3606
[Dinur and Safra, 2005]. Therefore, it is generally not
efficiently solvable. Most studies on MVC focus on heuristic
algorithms, which return solutions of acceptable quality in
reasonable time. Heuristic MVC algorithms are usually based
on local search, including the widely acknowledged state of
the art algorithm NuMVC [Cai et al., 2013]. Recently, there
is increasing interest in solving MVC on massive graphs.
Since the introduction of FastVC [Cai, 2015], several local
search algorithms have been proposed for solving MVC on
massive graphs, and the latest state of the art is established by
improved versions of FastVC [Cai et al., 2017].

Most studies on solving MWVC are devoted to heuris-
tic algorithms to find near-optimal solutions in reasonable
time. The ideas used in these algorithms include ant colony
[Shyu et al., 2004; Tuba and Jovanovic, 2009; Jovanovic
and Tuba, 2011], simulated annealing [Voß and Fink, 2012]
and asymmetric game [Tang et al., 2017]. A tabu search
algorithm named Multi-Start Iterated Tabu Search (MS-ITS)
[Zhou et al., 2016] achieved state-of-the-art performance on
a broad range of small and middle sized benchmarks. As for
solving MWVC on massive graphs, two recent local search
algorithms DLSWCC [Li et al., 2016] and FastWVC [Li et
al., 2017] made significant improvements, where FastWVC
performs better.

MWVC are related to Maximum Weight Clique Problem
(MWCP) on the complementary graphs. Recently, there
has been significant progress in solving MWCP on sparse
massive graphs [Wang et al., 2016; Cai and Lin, 2016;
Jiang et al., 2017]. But these algorithms may not be ef-
ficient to find an MWVC in these graphs, because finding
the MWVC is equivalent to finding the MWC in the very
dense complement graphs, which also motivates dedicated
approaches for MWVC.

Although it is interesting to evaluate MWVC algorithms
on massive graphs, a drawback of the current evaluations
of MWVC algorithms is that the weights are hand crafted
or randomly generated, and do not have real meanings in
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applications. Indeed, this drawback has been pointed out in
evaluations of MWCP algorithms [McCreesh et al., 2017].
It is more desirable to evaluate MWVC algorithms on real
application benchmarks, where both the graphs and weights
are transferred from real world problems. In this work, we
evaluate our algorithms on instances arisen from the map
labeling problem — an important problem in digital maps.
To show the robustness of our algorithms, we also evaluate
them on massive sparse graphs used in previous works.

Our algorithm is built upon a baseline local search algorith-
m that is abstracted and modified from FastWVC [Li et al.,
2017], which maintains the validity of the candidate solution
at the end of each iteration. To improve the algorithm, we
propose two dynamic strategies, both of which are used in
choosing vertex to be removed. The first one combines
two heuristics that use different scoring functions. This
is different from previous algorithms, which use only one
scoring function during the search. The cooperation of the
two heuristics are controlled by a parameter that counts the
number of non-improving steps w.r.t. solution quality. By
using this dynamic strategy, we develop a new local search
algorithm named DynWVC1. Experiments show that Dyn-
WVC1 outperforms previous heuristic MWVC algorithms on
both map labeling graphs and massive graphs.

The second idea is a dynamic strategy for deciding the
number of removed vertices. Previous studies mainly remove
one vertex in the removing phase of each local search step,
FastWVC suggests to remove two vertices. This strategy
produces more uncovered edges and thus makes the search
region larger. As it turns out, this two-removal strategy
has a significant contribution to the good performance of
FastWVC. However, the degrees of vertices vary a lot, and
removing two vertices might still be not sufficient if the
two selected vertices have small degrees. We suggest to
remove one more vertex if the total degree of the two removed
vertices is not large enough. This idea is related to ideas of ex-
ploring large neighborhoods, including k-swap in local search
for unweighted vertex cover [Katzmann and Komusiewicz,
2017], and (k − 1, k)-swap for unweighted independent set
[Andrade et al., 2012]. However, in our strategy, this is
decided dynamically, according to a criterion on the total de-
gree of removed vertices. We improve DynWVC1 using this
strategy, leading to the DynWVC2 algorithm. DynWVC2
further improves DynWVC1 on massive sparse graphs and is
currently the best MWVC algorithm on these sparse graphs.

The reminder of this paper is organized as follows. Section
2 presents basic definitions. Section 3 presents the baseline
algorithm. Section 4 introduces the dynamic strategy that
combines two heuristics to choose vertex to remove, as well
as the DynWVC1 algorithm. Section 5 explains the dynamic
strategy that determines the number of vertices to remove,
and presents the DynWVC2 algorithm. Experiment results
are shown in Section 6. Section 7 gives concluding remarks.

2 Preliminaries
2.1 Basic Definitions and Notation
For a weighted graph G = (V,E), V is the set of vertices,
E is the set of edges, and each vertex v ∈ V has a positive

weight w(v). Each edge consists of two vertices, which are
called endpoints of the edge. Two vertices are neighbors if
they belong to the same edge, N(v) = {u ∈ V |(u, v) ∈ E}
is the set of neighbors of v, and degree(v) = |N(v)|. For a
vertex set S, N(S) =

⋃
v∈S N(v).

A candidate solution is a subset of V. An edge is covered
by a candidate solution if at least one of its endpoints belongs
to it. The current candidate solution is denoted as C, and we
use w(C) to denote the total weight of vertices in C. Further,
we use sv = {1, 0} to denote the state of a vertex. If v ∈ C,
then sv = 1, and we call v a covering vertex. If v /∈ C, then
sv = 0 and we call v an uncovering vertex. The age of a
vertex, denoted as age(v), is the number of steps that have
happened since v last changed its state.

A vertex cover of a graph is a subset of V that covers
all edges, and an independent set is a subset of V where
no two vertices are neighbors. A vertex set S is a vertex
cover of G if and only if V \ S is an independent set of
G. The MWVC problem is to find a vertex cover C∗ such
thatw(C∗) is minimum, which is equivalent to the Maximum
Weight Independent Set (MWIS) problem, i.e., seeking for an
independent set with the largest weight.

2.2 Scoring Functions
As with most local search algorithms for MVC and MWVC,
our algorithms also use an edge weighting mechanism. Each
edge e ∈ E is associated with a positive number edge w(e)
as its weight. The cost of C, denoted by cost(C), is the total
weight of edges uncovered by C.

The change of cost caused by changing the state of a vertex
v is denoted as dscore(v), i.e.,

dscore(v) = cost(C)− cost(C ′),

where C ′ is the candidate solution after changing the state of
v, that is, if v ∈ C, C ′ = C\{v}, otherwise C ′ = C ∪ {v}.
We have dscore(v) > 0 if v /∈ C and dscore(v) 6 0 if
v ∈ C.

Two scoring functions gain and loss are used to measure
how much contribution (or damage) a vertex will make to
the solution by changing its state, considering both edge
weighting mechanism and vertex weights. They are formally
defined as

gain(v) =
dscore(v)

w(v)
, v /∈ C

loss(v) =
|dscore(v)|

w(v)
, v ∈ C

Most local search algorithms for MWVC keep the can-
didate solution valid at the end of each step. Suppose in a
step, a vertex v is removed, making some edges uncovered,
then some vertices are added to cover those edges to keep the
candidate solution valid. Based on this observation, a scoring
function for vertices in C is as follows [Zhou et al., 2016].

valid score(v) =
∑

u∈Vr(v)

w(u)− w(v), for v ∈ C
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where Vr(v) denotes the set of adjacent uncovering ver-
tices of v.

The BMS (Best from Multiple Selection) heuristic is used
to choose a good-quality element from a large set [Cai, 2015].
It randomly picks k elements and returns the best one w.r.t.
some criterion. Our algorithms utilize the BMS heuristic,
and parameter k is always set to 50, which guarantees the
returned vertex is among the top 10% w.r.t. the criterion with
a probability greater than 0.99, as proved in [Cai, 2015].

2.3 Map Labeling Problem
Map labeling is a research area in cartography and computa-
tional geometry. Components in a graph such as geographic
places and points of interests should be labeled in order to be
meaningful to the users. Map labeling involves the selection
and placement of labels in maps and one constraint is that
two labels should not overlap each other. The problem of
eliminating label conflicts and maximizing the importance
of labels displayed can be modeled as the Maximum Weight
Independent Set (MWIS) problem [Barth et al., 2016]. More
specifically, for static graphs, each label can be viewed as
a vertex, each vertex is assigned a weight based on its
importance, there is an edge between two vertices if they
overlap each other. For dynamic graphs, the set of labels
displayed changes over time based on operations such as
zooming, panning and rotating. Therefore, [a, b]l, which
denotes label l displays in time interval [a, b], is viewed as
a vertex, each vertex is assigned a weight based on the weight
of its label and the length of its time interval. Two vertices
are connected by an edge if they conflict with each other.
The purpose of maximizing the overall display time of labels
can be viewed as finding an independent set that has the
maximum weight, which is equal to finding a vertex cover
with the minimum weight.

3 Baseline Algorithm
In this section, we introduce a baseline algorithm. We pro-
pose a local search framework for MWVC, and then present
the important heuristics adopted in our baseline algorithm.

3.1 A New Local Search Framework for MWVC
We introduce a local search algorithmic framework for
MWVC (Algorithm 1). This framework is abstracted from
FastWVC and is modified to make it more efficient.

An initial vertex cover C is firstly generated by a procedure
Construct. Then the algorithm enters the local search process.
Each step consists of a removing phase and an adding phase.
In removing phase, vertices are removed by the RemoveVer-
tices function (line 5). In adding phase, vertices are added to
C until it becomes a vertex cover again. After that, redundant
vertices are detected and removed (line 10). If the newly
found solutionC is better than the best found solutionC∗,C∗
is updated to C. At the end of the algorithm, C∗ is returned.

A remark on the way to add vertices: All uncovered edges
are incident to at least one removed vertex in the removing
phase of this step. So, in order to make C valid again, the
vertices to be added must be in the set N(R), where R is the
set of removed vertices in this step. In our algorithm, adding
vertices are selected from N(R).

Algorithm 1: A Local Search Framework for MWVC
Input: A vertex weighted graph, the cutoff time
Output: A vertex cover of G

1 begin
2 C ← Construct();
3 C∗ ← C;
4 while elapsed time < cutoff do
5 RemoveV ertices(C);
6 R← {the vertices removed in this step};
7 while some edge is uncovered by C do
8 choose a vertex v from N(R);
9 C ← C ∪ {v};

10 remove redundant vertices from C;
11 if w(C) < w(C∗) then C∗ ← C;

12 return C∗;

3.2 Construct Function
Our baseline algorithm employs the construct function in
FastWVC. Specifically, the function consists of two phases:
a repeated extending phase and a shrinking phase. The
extending phase generates k vertex covers and returns the
best one according to BMS heuristic. Each vertex cover is
constructed by scanning an uncovered edge each time and
adding the endpoint with the greater gain value. Different
random scanning orders are used so that the k vertex covers
are different, and the best one among them is handed to the
shrinking phase, where redundant vertices are removed.

3.3 RemoveVertices Function
Another important function in the local search framework is
the RemoveVertices function. For our baseline algorithm, we
adopt the one in FastWVC. Two vertices are removed. Firstly,
a vertex with the minimum loss value is selected and removed
from C. Then, the second vertex to remove is selected by
using the BMS heuristic w.r.t. the loss value.

4 DynWVC1 Algorithm
We propose two dynamic strategies to improve the baseline
algorithm, both strategies focus on the RemoveVertices func-
tion. This section presents the first strategy, as well as the
resulting algorithm improved by it (called DynWVC1).

4.1 Choosing Scoring Functions Dynamically
Vertex selection heuristic is critical in local search algorithms
for MWVC. To select vertices to remove from C, various
scoring functions have been proposed. Two effective scoring
functions are loss and valid score introduced in Section 2.

The loss and valid score functions have essentially differ-
ent impact on the behavior of the algorithm. Vertex selection
using loss function is an “exploratory” selection; in other
words, there is a good chance that such a selected vertex is
good for solution quality, but we can not be certain of that.
Different from “exploratory” vertex selection, valid score is
a “deterministic” one, that is, we can know exactly whether
the removal of a vertex will have a positive effect on solution
quality. For example, if the valid score value of a vertex
is negative, it means that, if we remove this vertex and add
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Algorithm 2: DynamicChoose(no improve, α)
Input: parameter no improve and α
Output: a vertex to be removed

1 begin
2 if no improve < α then
3 choose a vertex u with minimum valid score from C,

breaking ties in favor of the oldest one;
4 else
5 choose a vertex u with small loss from C according to

BMS strategy,breaking ties in favor of the oldest one;
6 no improve← 0;

7 return u;

its adjacent uncovering vertices, we can get a vertex cover
with lower cost than the current one. However, just like other
deterministic heuristics, local search using valid score alone
easily gets trapped in local optima.

We propose a dynamic vertex selection strategy, which
consists of a primary vertex scoring function and a secondary
scoring function. The primary function is valid score and
the secondary is loss. We put the implementation of this
strategy into a function called DynamicChoose (Algorithm
2), which is used to select the second removing vertex. The
parameter no improve denotes the number of iterations in
which the valid score function fails to decrease the weight of
vertex cover. If no improve is smaller than a predetermined
parameter α, a vertex with the smallest valid score will be
removed; if no improve achieves α, which means valid score
loses its effectiveness for a good number of steps, then
the secondary function loss is activated to pick the vertex
according to BMS heuristic, in the same way as FastWVC.
In both cases, ties are broken by preferring the oldest vertex.

The no improve is initialized as 0 at the beginning of the
algorithm. When the solution found in this iteration is no
better than the solution in last iteration, it shows that the
removing vertex selected by valid score does not contribute
well to the solution quality, then no improve is increased by
1. Each time using the secondary function, no improve is
reset to 0, so that DynamicChoose switches back to the main
scoring function.

The intuition of this strategy is to make valid score and loss
complement each other. The valid score chooses the most
valuable removed vertex in the current step, and when it loses
effectiveness, the loss function guides the search to a new area
and creates more valuable vertices for valid score to select.

4.2 Description of DynWVC1 Algorithm
We use the DynamicChoose function to improve the baseline
algorithm, leading to a local search algorithm named Dyn-
WVC1 (Algorithm 3). In the beginning, the initial vertex
cover C is generated by the construct function as shown in
the baseline algorithm. Edge weights are all initialized as 1.
Then, gain of vertices in V \ C, loss and valid score of
vertices in C are calculated. Parameter no improve is set to
0. We use C∗ and C ′ to denote the best found solution and
the solution found in last iteration of local search.

In the main loop, each iteration consists of a removing

Algorithm 3: DynWVC1
Input: A weighted graph G = (V,E,W ), cutoff, α
Output: A vertex cover of G

1 begin
2 C ← Construct();
3 C∗, C

′
← C;

4 for each e ∈ E, edge w(e)← 1;
5 calculate gain, loss and valid score of vertices;
6 no improve← 0;
7 while elapsed time < cutoff do
8 choose a vertex w with minimum loss from C,

breaking ties in favor of the oldest one;
9 C ← C \ {w};

10 u← DynamicChoose(no improve, α);
11 C ← C \ {u};
12 R← {w, u};
13 while some edge is uncovered by C do
14 choose a vertex v with maximum gain from

N(R), breaking ties in favor of the oldest one;
15 C ← C ∪ {v};
16 edge w(e)← edge w(e) + 1 for each uncovered

edge;
17 remove redundant vertices from C;

18 if w(C) < w(C∗) then C∗ ← C;
19 if w(C

′
) ≤ w(C) then no improve++;

20 C
′
← C;

21 return C∗;

phase and an adding phase. In the removing phase, two
vertices are removed from C. Firstly, a vertex w with the
minimum loss is first removed from C. Then, the second
vertex u is selected by DynamicChoose function introduced
in Section 4.1. After the removal of w and u, some of their
incident edges may become uncovered.

In the adding phase, vertices are added into C until
C becomes a vertex cover. As explained in the baseline
algorithm, we only need to consider the vertices in N(R) =
N(w)∪N(u). Specifically, while C is not yet a vertex cover,
a vertex v ∈ N(R) with the maximum gain is chosen and
added to C, breaking ties by preferring the oldest one (line
14-15). Then weights of all uncovered edges are increased
by 1. At the end of each adding operation, redundant vertices
whose neighbors are all covering vertices are removed. Note
that this is different from previous algorithms, which remove
redundant vertices by scanning all vertices in C after all
adding operations are done. In fact, only neighbors of the
adding vertex may become redundant vertices, and thus we
only need to check the neighbors of the vertex just added.

If C is better than C∗, C∗ is updated to C. If the solution
found in this step is no better than the solution in last step,
i.e., C is no better than C

′
, no improve is increased by 1.

Finally, C
′

is set to C. At the end of the algorithm, the best
found solution C∗ is returned.

5 DynWVC2 Algorithm
In most local search algorithms for MVC and MWVC, one
vertex is removed in the removing phase, FastWVC [Li et
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Instance |V | |E| PLS WIS MSITS DLSWCC FastWVC DynWVC1
wmax(wavg) wmax(wavg) wmax(wavg) wmax(wavg) wmax(wavg)

alabama-AM2 1164 19386 154265(152437.6) 174017(174017) 173969(173883.1) 174297(174291.9) 174243(174217.6)
alabama-AM3 3504 309664 150548(146911.9) 184135(184135) 182322(181655.3) 185484(185411.9) 185590(185521.4)
columbia-AM1 2500 24651 193904(193779.6) 192626(192626) 196418(196391.3) 196466(196460.1) 196475(196475)
columbia-AM2 13597 1609795 160892(159906.7) 184140(184140) 191755(191127.3) 208964(208931.1) 208973(208949.7)
columbia-AM3 46221 27729137 161950(159907.1) N/A(N/A) N/A(N/A) 223870(223367.9) 225494(225068.7)
florida-AM2 1254 16936 211590(209854.3) 228849(228849) 230537(230478.3) 230595(230594.4) 230595(230595)
florida-AM3 2985 154043 180223(176676.6) 236460(236460) 236111(235650) 237283(237268.6) 237271(237098.7)
georgia-AM3 1680 74126 187605(185334.9) 221354(221354) 221531(221255.3) 222651(222646.9) 222652(222652)
greenland-AM3 4986 3652361 11940(11496.2) N/A(N/A) 12110(12110) 14003(13990.5) 14012(14009.4)
hawaii-AM2 2875 265158 109338(107426.7) 125007(125007) 124206(123476.3) 125244(125223.5) 125278(125272.9)
hawaii-AM3 28006 49444921 100163(98118.4) N/A(N/A) N/A(N/A) 138015(137680.7) 140718(140666.3)
idaho-AM3 4064 3924080 70018(68488.9) N/A(N/A) 74530(74530) 77123(77115.6) 77145(77145)
kansas-AM3 2732 806912 74702(72976.2) 87812(87812) 87584(86638.2) 87951(87944.8) 87976(87974.8)
kentucky-AM2 2453 643428 87058(86615) 97397(97397) 95725(95497.1) 97397(97397) 97397(97397)
kentucky-AM3 19095 59533630 82387(79291.7) N/A(N/A) N/A(N/A) 99432(99335.7) 100474(100462.1)
louisiana-AM3 1162 37077 53182(52575) 59922(59922) 59404(59351.1) 60024(60024) 60005(60005)
maryland-AM3 1018 95415 40480(39928.6) 45496(45496) 45400(45359.7) 45496(45495.2) 45496(45496)
massachusetts-AM2 1339 35449 135506(134827.9) 140071(140071) 140035(140022.2) 140095(140095) 140095(140095)
massachusetts-AM3 3703 551491 128952(127317.1) 145108(145108) 142638(142602.8) 145773(145744) 145865(145850.3)
mexico-AM3 1096 47131 90383(89059.4) 97571(97571) 97382(97296.4) 97660(97654.8) 97663(97663)
new-hampshire-AM3 1107 18021 103494(101645.5) 116002(116002) 114721(114574) 116060(116060) 116060(116057.6)
north-carolina-AM3 1557 236739 45877(45239.5) 49652(49652) 49095(48781.8) 49720(49719.5) 49720(49709)
oregon-AM2 1325 57517 149883(148166.3) 165047(165047) 164834(164824.2) 165047(165047) 165047(165047)
oregon-AM3 5588 2912701 131420(130517.2) 174200(174200) 164953(164928.2) 174912(174873.5) 175064(175049.8)
pennsylvania-AM3 1148 26464 117980(116745.1) 143867(143867) 142914(142760.2) 143870(143870) 143870(143870)
rhode-island-AM2 2866 295488 159295(157745.7) 183624(183624) 183870(183556.6) 184596(184591.2) 184545(184532.7)
rhode-island-AM3 15124 12622219 145333(142756.2) N/A(N/A) N/A(N/A) 199223(198937.3) 201477(201433.8)
utah-AM3 1339 42872 84397(83214.7) 98628(98628) 98230(98171) 98847(98845.6) 98802(98799.8)
vermont-AM3 3436 1136164 53411(52764.5) 63195(63195) 61225(60728.7) 62909(62868.7) 63254(63236.8)
virginia-AM2 2279 60040 243531(241229.3) 295055(295055) 295690(295634.2) 295867(295867) 295847(295672.2)
virginia-AM3 6185 665903 231241(227065.2) 301612(301612) 299523(297636.6) 307644(307589.3) 307903(307805.3)
washington-AM2 3025 152449 248720(243684.5) 302004(302004) 304914(304759.1) 305574(305565.1) 305619(305614)
washington-AM3 10022 2346213 230433(223661.6) 305342(305342) 297413(297258.7) 312767(312664.8) 313693(313626)
west-virginia-AM3 1185 125620 44895(44540.5) 47826(47826) 46991(46880.3) 47881(47881) 47927(47927)

Table 1: Experiment results on map labeling benchmark. We report the weight of the returned independent set, the larger the better.

al., 2017] proposes to remove two vertices at one iteration to
enlarge the search region. It is an effective strategy especially
for massive sparse graphs. However, the degrees of vertices
vary a lot, the search region produced by removing two
vertices is not always sufficient for the search process. From
the overall point of view, removing two vertices is an effective
method. But from the view of each step, the search region
produced by it may be still not enough for some steps.

To make the algorithm more efficient on massive sparse
graphs, we incorporate a new strategy into DynWVC1 for
deciding the number of removed vertices, resulting in the
DynWVC2 algorithm. In DynWVC2, the first two removing
vertices are selected and removed in the same way as Dyn-
WVC1. After removing two vertices, if the total degree of
the removed vertices does not reach a predetermined value
(which is set to 2 times average degree of the graph), then the
algorithm removes one more vertex with small loss based on
BMS strategy. In this way, when the search region produced
by removing two vertices is too small, which limits our
options in the adding phase, it can be expanded by removing
one more vertex. If the search region produced by removing
two vertices is large enough, to get a balance between search
time and search quality, we do not remove the third one.

6 Experiments

We evaluate our algorithms on map labeling instances and
massive graphs, compared with state of the art algorithms.

6.1 Experiment Preliminaries

Setup: DynWVC1 and DynWVC2 are implemented in C++,
and compiled by g++ with ’-O3’ option. The parameter in
our algorithms α is set to 5. All experiments are run on a
4-way Intel Xeon E7-8850 v2 @ 2.30GHz CPU with 1TB
RAM server under CentOS 7.2.

Competitors: For the map labeling benchmark, we com-
pare with three local search algorithms for MWVC namely
MS-ITS [Zhou et al., 2016], DLSWCC [Li et al., 2016] and
FastWVC [Li et al., 2017], and a local search algorithm for
MWIS namely PLS MWIS [Pullan, 2009], which is selected
as the best MWIS algorithm for the map labeling benchmark
[Barth et al., 2016]. For the massive graphs, FastWVC
performs significantly better than MS-ITS and DLSWCC
[Li et al., 2017], so we only compare with FastWVC. All
competitors are implemented by their authors using C++ and
complied by g++ with ’-O3’ option.

Results Reporting Methodology: All algorithms are exe-
cuted 10 times on each instance independently with a cutoff
time of 1000 seconds. We report the following information:
the average weight of the solutions found in 10 runs (”wavg”),
the best solution found in 10 runs. For map labeling, we treat
it as MWIS problem, and report the weight of independent set
(the larger the better). For massive graphs MWVC instances,
the smaller weight the better. If an algorithm failed to find a
solution within time limit, we marked it by ”N/A”.
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Instance FastWVC DynWVC1 DynWVC2 Instance FastWVC DynWVC1 DynWVC2
wmin(wavg) wmin(wavg) wmin(wavg) wmin(wavg) wmin(wavg) wmin(wavg)

ca-AstroPh 643098(643111.9) 643016(643021.1) 643010(643013.6) soc-livejournal 108354007(108376264.8) 107109272(107175170.3) 107119513(107171075.4)
ca-citeseer 7071275(7072174.2) 7004514(7004613) 7004443(7004760.4) soc-LiveMocha 2462223(2462424.1) 2461311(2461444.8) 2461134(2461234.3)
ca-author-dblp 27177143(27178701.2) 27086884(27087172) 27087067(27087258.2) soc-orkut 128907034(128921417.8) 127809146(127851626.7) 127852422(127880203.9)
ca-CondMat 679176(679193.5) 679099(679104.7) 679089(679097.4) soc-pokec 50055454(50068176.5) 49012281(49073735.7) 49051954(49110504.9)
ca-dblp-2010 6625143(6649380.4) 6594945(6595074.4) 6594885(6595099.9) soc-slashdot 1228968(1229005.1) 1228898(1228903.9) 1228811(1228819.9)
ca-dblp-2012 9029616(9030774) 8930269(8930691) 8930674(8931272.9) soc-twitter-follow 138884(138884) 138884(138884) 138884(138884)
ca-HepPh 365487(365496.6) 365471(365474.2) 365469(365469) soc-youtube 8160145(8200371.2) 7992738(7993675.1) 7992494(7994238.9)
ca-holywod-09 49016625(49017602) 48851286(48851930.7) 48850043(48851087.4) soc-youtube-snap 15416414(15418150.1) 15075956(15077176.3) 15127993(15129877.9)
ca-MathSciNet 7729148(7730475.5) 7595513(7595824.9) 7595452(7595753.8) socfb-A-anon 22236342(22291292.3) 22090572(22091793.8) 22104015(22105054.9)
ia-email-EU 48447(48447) 48447(48447) 48447(48447) socfb-B-anon 17972088(17975652.3) 17844202(17852798.5) 17845087(17863627.5)
ia-enron-large 692227(692234.1) 692153(692157.2) 692150(692152.9) socfb-Berkeley13 1003741(1003868.5) 1003122(1003247.2) 1003040(1003135.7)
ia-wiki-Talk 946156(946170.7) 946120(946126.2) 946081(946091.2) socfb-Indiana 1365785(1366024.6) 1364526(1364658.1) 1364435(1364597.9)
inf-roadNet-CA 56922074(56947699.5) 55740241(55765382.3) 55730992(55767520.6) socfb-OR 2084279(2084490.4) 2083440(2083527.4) 2083230(2083346.8)
inf-roadNet-PA 31481091(31486345.1) 30701298(30705976.4) 30701298(30705976.4) socfb-Penn94 1810396(1810689.2) 1808768(1808896.5) 1808672(1808802.3)
inf-road-usa 668594656(668627425.9) 668032689(668066207.3) 668023952(668068870.6) socfb-Stanford3 496577(496657.9) 496514(496525.2) 496510(496513.1)
rec-amazon 2574487(2575227.3) 2571527(2571557.8) 2571527(2571557.8) socfb-Texas84 1648374(1648625.6) 1646886(1647079.3) 1646603(1646855.3)
rt-retweet-crawl 4732837(4734284) 4728891(4728902.8) 4728868(4728887) socfb-uci-uni 51468147(51473502.1) 51218381(51221409.6) 51228972(51230733.2)
sc-ldoor 49550246(49551537) 49428447(49429403.5) 49427306(49430888.2) socfb-UCLA 884262(884333.8) 883749(883825.7) 883666(883752.9)
sc-msdoor 22063493(22064239.4) 22002649(22003068.6) 22001876(22003364.2) socfb-UConn 772903(773124.3) 772526(772617.3) 772468(772573.6)
sc-nasasrb 2984150(2985056.9) 2979327(2979409.2) 2979367(2979464.1) socfb-UCSB37 655343(655418.8) 655066(655132.8) 655009(655057.7)
sc-pkustk11 4876622(4878352.1) 4867503(4867632.2) 4867392(4867573.5) socfb-UF 1594572(1595017.6) 1593400(1593597.5) 1593376(1593494.8)
sc-pkustk13 5191545(5192638.6) 5173828(5174100.7) 5173806(5174114.9) socfb-UIllinois 1404688(1404889.3) 1403731(1403806.1) 1403428(1403674.6)
sc-pwtk 12151340(12155895.5) 12085553(12086438.5) 12085826(12086426.8) socfb-Wiconsin87 1073751(1074010.9) 1073102(1073312.1) 1073136(1073210.2)
sc-shipsec1 6786381(6790277.5) 6726861(6728121.1) 6727779(6728873.6) tech-as-caida2007 198710(198710) 198705(198705) 198705(198705)
sc-shipsec5 8477677(8484227.7) 8405621(8406534.5) 8404554(8406087.6) tech-as-skitter 29888271(29910900) 29222525(29223901) 29386910(29388955.6)
soc-BlogCatlog 1180108(1180119.3) 1179906(1179920.9) 1179870(1179884.2) tech-internet-as 311624(311624) 311623(311623) 311623(311623.2)
soc-brightkite 1165377(1165401.8) 1165253(1165278.7) 1165217(1165238.5) tech-p2p-gnutella 922568(922570.8) 922552(922553.5) 922551(922552.4)
soc-buzznet 1739328(1739422.9) 1738907(1738945) 1738808(1738871.8) tech-RL-caida 4158849(4165235) 4149301(4149603.5) 4149072(4149207.1)
soc-delicious 4921290(4927118.5) 4898568(4900311.2) 4895133(4897942.3) web-arabic-2005 6600438(6606173.1) 6548677(6549252.5) 6549005(6549322)
soc-digg 5967941(5976630.6) 5938917(5938946.7) 5938590(5938669.7) web-BerkStan 288172(288188.5) 288144(288156.8) 288146(288157)
soc-douban 516082(516082) 516082(516082) 516082(516082) web-indochina-04 398644(398649.1) 398603(398609.9) 398606(398609)
soc-epinions 537998(538024.7) 537976(537989.2) 537957(537965.9) web-it-2004 23824127(23825659.3) 23765753(23766387.6) 23765925(23766802.4)
soc-flickr 8705430(8706624.6) 8539127(8539501.2) 8537070(8538040) web-sk-2005 3127008(3127230.7) 3124138(3124236.6) 3124154(3124319.2)
soc-flixster 5693856(5694379.4) 5692954(5692959.7) 5692945(5692952.7) web-uk-2005 7563135(7563202.4) 7561840(7561840) 7561840(7561840)
soc-FourSquare 5281828(5282156.1) 5279869(5279912.4) 5279873(5279919) web-webbase-01 143922(143927.2) 143918(143921.4) 143917(143920.7)
soc-gowalla 4682631(4703023.1) 4675213(4675386.7) 4674975(4675054.5) web-wikipedia09 36460676(36465150.1) 35717178(35723311.3) 35747391(35750347.8)
soc-lastfm 4642497(4642613.3) 4642174(4642184) 4642164(4642169.6)

Table 2: Experiment results on massive graphs. We report the weight of the returned vertex cover, the smaller the better.

6.2 Experiments on Map Labeling Benchmark
We download the map files for North America from Open-
StreetMap1 and generate conflict graphs from them using the
software2 developed by Barth et al. [Barth et al., 2016],
which are used as the benchmark. We consider almost all the
POIs3 to label during the generating procedure. For each map
file, there are three resulting conflict graphs corresponding
to the Activity Model chosen, namely AM1, AM2 and AM3
[Barth et al., 2016]. We do not report results on instances
with fewer than 1000 vertices, which are easy to solve.

Experiment results on these instances are shown in Table
1. DynWVC1 finds better solutions than other algorithms on
most instances. Also, DynWVC1 is much faster than other
algorithms: its average run time is 219s, while this figure
is 498s for PLS WIS, 593s for MS-ITS, 329s for DLSWCC
and 443 for FastWVC. Also, DynWVC2 has almost the same
performance as DynWVC1, and is not reported.

6.3 Experiments on Massive Graphs
We also evaluate our algorithms on massive graphs from
Network Data Repository [Rossi and Ahmed, 2015]. Many of
them have 100 thousands to millions of vertices, and dozens
of millions of edges. These instances become popular in

1http://download.geofabrik.de/north-america.html
2https://github.com/kit-algo/temporalmaplabeling
3https://wiki.openstreetmap.org/wiki/Map Features

recent heuristic works for MWVC. The weight of each vertex
is assigned to a value from [20,100] uniformly at random, as
adopted in testing DLSWCC and FastWVC [Li et al., 2017].

Table 2 reports results on massive graphs with more than
10,000 vertices. DynWVC1 and DynWVC2 find better
solutions than FastWVC on most instances, pushing forward
the state of the art in solving MWVC for massive sparse
graphs. Additionally, DynWVC2 improves DynWVC1 on
these instances. For 37 out of 73 instances, DynWVC2 has
better performance than DynWVC1 in terms of both best
and averaged solution quality, while DynWVC1 has better
performance on 14 instances. For the remained instances,
neither of them dominates on both measurements.

6.4 Effectiveness of DynamicChoose
To study the effectiveness of the dynamic strategy for choos-
ing scoring function, we compare DynWVC1 with its simpli-
fied version that does not use the DynamicChoose function,
namely SimpWVC. We report the difference between the best
solutions and difference between averaged solutions found by
DynWVC1 and SimpWVC. We only present results on map
labeling instances with more than 1000 vertices and massive
graphs with more than 10000 vertices. Experiment results
are shown in Table 3 and 4, respectively. Almost all ∆ values
are negative, indicating that DynWVC1 finds better solutions
than SimpWVC on almost all instances. We conclude that the
DynamicChoose function effectively improves the algorithm.
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Instance
SimpWVC-DynWVC1

Instance
SimpWVC-DynWVC1

∆max ∆avg ∆max ∆avg

alabama-AM2 -32 -63.4 massachusetts-AM2 -1 -2.8
alabama-AM3 -2331 -2384.3 massachusetts-AM3 -1147 -1177
columbia-AM1 -14 -20.2 mexico-AM3 -166 -205.3
columbia-AM2 -1658 -1665.7 new-hampshire-AM3 -245 -269.7
columbia-AM3 -10308 -10278.2 north-carolina-AM3 -6 -1.1
florida-AM2 -13 -27.7 oregon-AM2 -64 -75
florida-AM3 -534 -490.1 oregon-AM3 -1412 -1664
georgia-AM3 -606 -711.4 pennsylvania-AM3 -349 -430.4
greenland-AM3 -196 -282.9 rhode-island-AM2 -256 -386.8
hawaii-AM2 -533 -583.9 rhode-island-AM3 -9754 -10226.8
hawaii-AM3 -7757 -8111.5 utah-AM3 -241 -263
idaho-AM3 -198 -236.8 vermont-AM3 -983 -1030.1
kansas-AM3 -119 -133.3 virginia-AM2 14 182
kentucky-AM2 -66 -85.4 virginia-AM3 -8157 -8352.5
kentucky-AM3 -2556 -2936.6 washington-AM2 -401 -442.3
louisiana-AM3 -31 -38.2 washington-AM3 -12326 -12777.9
maryland-AM3 -13 -17 west-virginia-AM3 -154 -195.1

Table 3: Results of SimpWVC-DynWVC1 on map labeling

Instance
DynWVC1-SimpWVC

Instance
DynWVC1-SimpWVC

∆min ∆avg ∆min ∆avg

ca-AstroPh -72 -79.3 soc-livejournal -602156 -588590.3
ca-citeseer -7519 -7638.3 soc-LiveMocha -655 -684.3
ca-coauthors-dblp -90109 -90921.3 soc-orkut -559630 -576350.7
ca-CondMat -85 -85.7 soc-pokec -452147 -420907.4
ca-dblp-2010 -5150 -5289.3 soc-slashdot -79 -90.6
ca-dblp-2012 -12685 -13096.9 soc-twitter-follows 0 0
ca-HepPh -19 -21.8 soc-youtube -1528 -1607.6
ca-hollywood-09 -165838 -166004.9 soc-youtube-snap -58603 -112590.3
ca-MathSciNet -3301 -3330.5 socfb-A-anon 13035 -40526.5
ia-email-EU 0 0 socfb-B-anon -42 -6404.6
ia-enron-large -65 -68.3 socfb-Berkeley13 -576 -525.1
ia-wiki-Talk -36 -35.4 socfb-Indiana -1090 -1191.8
inf-roadNet-CA -997607 -980812.8 socfb-OR -537 -588.3
inf-roadNet-PA -778138 -781780 socfb-Penn94 -852 -1315.6
inf-road-usa -219899 -226239.6 socfb-Stanford3 -77 -136.9
rec-amazon -850 -988.4 socfb-Texas84 -1507 -1470
rt-retweet-crawl -48 -56.2 socfb-uci-uni -251521 -253746.9
sc-ldoor -122090 -123726.9 socfb-UCLA -381 -431.7
sc-msdoor -61349 -61790.1 socfb-UConn -329 -462.5
sc-nasasrb -2054 -2197.4 socfb-UCSB37 -212 -218.2
sc-pkustk11 -3717 -3932.1 socfb-UF -1038 -1213.7
sc-pkustk13 -8546 -8981.3 socfb-UIllinois -708 -945.9
sc-pwtk -23457 -24073 socfb-Wisconsin87 -760 -697.5
sc-shipsec1 -10851 -10559.3 tech-as-caida2007 -4 -4.3
sc-shipsec5 -11889 -11919.7 tech-as-skitter -663233 -666506.9
soc-BlogCatalog -166 -170.6 tech-internet-as -1 -1
soc-brightkite -111 -121.1 tech-p2p-gnutella -14 -15.1
soc-buzznet -281 -284.7 tech-RL-caida -616 -508.6
soc-delicious 3515 4002.7 web-arabic-2005 -22007 -23188.2
soc-digg -879 -923.8 web-BerkStan -35 -31.9
soc-douban 0 0 web-indochina-2004 -38 -38.6
soc-epinions -44 -34.9 web-it-2004 -59299 -59603.7
soc-flickr -546 -1457.6 web-sk-2005 -1881 -1917.7
soc-flixster -143 -151.4 web-uk-2005 -1833 -1876.3
soc-FourSquare -1070 -1124.8 web-webbase-2001 -4 -2.1
soc-gowalla -980 -1053.1 web-wikipedia2009 -745191 -744083.8
soc-lastfm -106 -106.6

Table 4: Results of DynWVC1-SimpWVC on massive graphs

7 Conclusions and Future Work

This paper focused on efficient heuristic algorithms for
MWVC. We introduced a local search framework, and pro-
posed two dynamic strategies to improve the baseline algo-
rithm, leading to two local search algorithms for MWVC.

We evaluated our algorithms on the instances transferred
from the real world map labeling problems and massive
sparse graphs. Our algorithms significantly outperform pre-
vious heuristic algorithms. We would like to improve our
algorithms for more real world problems.
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