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Localized multiple kernel learning (LMKL) is an e
ective method of multiple kernel learning (MKL). It tries to learn the optimal
kernel from a set of prede�ned basic kernels by directly using the maximummargin principle, which is embodied in support vector
machine (SVM). However, LMKL does not consider the radius of minimum enclosing ball (MEB) which actually impacts the error
bound of SVM as well as the separating margin. In the paper, we propose an improved version of LMKL, which is named ILMKL.
	e proposedmethod explicitly takes into consideration both themargin and the radius and so achieves better performance over its
counterpart.Moreover, the proposedmethod can automatically tune the regularization parameterwhen learning the optimal kernel.
Consequently, it avoids using the time-consuming cross-validation process to choose the parameter. Comprehensive experiments
are conducted and the results well demonstrate the e
ectiveness and e�ciency of the proposed method.

1. Introduction

Over the past decade, kernel methods [1] have drawn a lot of
attention of researchers in the machine learning community
and have been widely applied. A kernel characterizes the sim-
ilarity between two samples [2]. Actually, the performance
of a kernel-based algorithm oen strongly depends on the
selection of the kernel. Generally, an unsuitable kernel would
lead to a poor performance. 	erefore, it is very critical to
choose a suitable kernel for a kernel-based algorithm.

Recent researches on kernel methods have highlighted
the requirement to learn a suitable kernel matrix or function
from the training data. A generic technique is known as
multiple kernel learning (MKL) [3]. Given a set of prede�ned
basic kernel functions, MKL tries to �nd their combination
by employing a criterion which maximizes a generalization
performancemeasure orminimizes an error bound. Actually,
the practical problems frequently involve multiple heteroge-
neous data sources [4]. 	us, MKL is in accord with this
fact. Many studies [5–13] have shown that MKL can generally
�nd the suitable combination of basic kernel functions and

so can usually achieve better performance in contrast with
single kernel. 	e idea of MKL has been applied in all
sorts of kernel-based algorithms, for example, support vector
machine (SVM), which is a powerful and excellent machine
learning method based on Vapnik’s statistical learning theory
[14]. In the paper, we will only focus on the SVM-basedMKL.

Localized multiple kernel learning (LMKL) [15–17], as a
method of MKL, is an attractive method which combines
multiple heterogeneous attributes according to their discrim-
inative ability for each individual instance. Generally, other
MKLmethods try to learn a global combination in the whole
input space [2, 5, 6, 18, 19], whereas LMKL believes that a
sample-speci�c local combination should most likely better
re�ect the distinctive characteristics of each instance and so
embodies the idea. 	is is the key di
erence between other
MKL methods and LMKL. Overall, LMKL consists of an
SVM learning problem and a parametric gating model. 	e
gating model is used to assign local weights to prede�ned
basic kernels. In LMKL, a two-step alternate optimization
method is employed to train the two components. In contrast
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with other MKL methods, LMKL generally provides fewer
support vectors but can achieve statistically similar accuracy
results.	e idea of LMKL has been extended to other kernel-
based methods and successfully used in some practical
applications [20–23].

However, LMKL learns the kernel function (essentially
the parameters of the gating model) only by maximizing
the margin which is embodied in single-kernel-based SVM.
A key fact is that the generalization performance of SVM
depends not only on the separating margin, but also on the
radius of the smallest ball that encloses the data [24–28]. In
fact, it is not necessary that standard SVM (or single-kernel
SVM) exploits the radius. 	e reason is that the radius of
the minimum enclosing ball (MEB) is �xed once the kernel
including its parameters is selected. However, in the context
of LMKL, the radius is not �xed but is a function of the
parameters of the gating model.

Actually, several attempts have recently been directed at
incorporating the radius into SVM-based MKL [29]. How-
ever, most of these works direct SVMwith ℓ2 somargin (ℓ2-
SVM) because the problem of ℓ2-SVM can be transformed
into a form of SVM with hard margin, in which the radius-
margin bound holds and can be used to conduct model
selection [25]. Unfortunately, for SVM with ℓ1 so margin
(ℓ1-SVM), the radius-margin bound does not hold, as we
have no way of reducing the formulation of ℓ1-SVM to a form
of SVM with hard margin. So, one cannot directly utilize the
radius-margin bound in LMKL since its formulation is rooted
in ℓ1-SVM.However, in [27], Chung et al. investigated several
heuristic bounds for SVM and developed a modi�ed radius-
margin bound to conduct model selection for ℓ1-SVM. 	e
experimental results have indicated its e
ectiveness.

Inspired by the work of Chung et al. in [27] and aiming
at the drawback of LMKL, in this paper, we propose an
improved version of LMKL, which is named ILMKL. A
noticeable characteristic of the proposed method is that it
takes account of both the separatingmargin and the radius of
MEB; that is, it integrates the information of the margin and
the radius tomeasure the goodness of the kernel and learn the
parameters of the gating model. Actually, a key insight of our
work is that learning the parameters of the gating model in
LMKL is similar to conductingmodel selection. Analogous to
LMKL, the problemof the proposedmethod can be e�ciently
resolved in a coupled manner through employing the two-
step alternate optimization method. Moreover, the proposed
method treats the regularization parameter as an extra
parameter that can be automatically learned. Consequently,
we can jointly tune it with the parameters of the gating
during the learning kernel function process. 	is improves
the computational e�ciency of the proposedmethod to some
extent since it avoids the time-consuming cross-validation
process. Comprehensive experiments are conducted and the
experimental results well demonstrate the e�ciency and
e
ectiveness of the proposed method.

	e rest of the paper is organized as follows. Section 2
reviews the related work. In Section 3, we �rst present the
formulation of the proposed method and then detail how to
solve the optimization problem. Aer that, we conduct some

preliminary discussion on the proposed method and outline
the algorithm step. Section 4 reports the experimental results,
and the conclusions are drawn in Section 5.

2. Preliminaries

In the paper, we suppose a training dataset which consists of� samples and is represented byD = {(x1, �1), . . . , (x�, ��)},
where the samples x� ∈ R

� and its corresponding labels�� ∈ {1, −1}. Here, � = 1, . . . , � and � is the dimension of
the sample space. Denote, for convenience, byI the set of all
indices; that is,I = {1, . . . , �}.
2.1. Radius-Margin Bound for SVM. SVM embodies the
structural risk minimization principle, which is related to
the probability of incorrectly classifying an unknown sam-
ple. Geometrically, the key idea of SVM is to construct a
separating hyperplane in the data space through employing
the maximal margin principle among two di
erent classes
of samples [14]. In the nonlinear case, ℓ1-SVM de�nes the
following optimization problem:

min
w,�,�

12 ‖w‖2 + 	∑�∈I��
s.t. �� (⟨w, � (x�)⟩ + �) ≥ 1 − ��, �� ≥ 0, � ∈ I,

(1)

where �(x) : R� → H, ⟨⋅, ⋅⟩ is the inner product of two
vectors, �� represents the training error, and 	 is the regulari-
zation parameter that adjusts the training error and the

regularization term ‖w‖2. Problem (1) can be e�ciently solved
by transforming it to its corresponding dual problem [30],
which is formulated as

max�

�∑
�=1
�� − 12

�∑
�=1

�∑
�=1
��������� (x�, x�)

s.t.
�∑
�=1
���� = 0, 	 ≥ �� ≥ 0, � ∈ I.

(2)

Here, �(x�, x�) = ⟨�(x�), �(x�)⟩ is called kernel function.

Suppose that �∗ = [�∗1 , . . . , �∗�]
 solves the above optimiza-
tion problem and �∗ is the optimal threshold which can be
computed by using the KKT condition of (1); the decision
function of SVM is formulated as

� (x) = ∑
�∈I
�∗� ��� (x�, x) + �∗. (3)

In order to obtain a better performance in the practical
applications, it is very important to choose suitable hyper-
parameters which include the regularization parameter 	
and the kernel parameter of the kernel function �(⋅, ⋅) for
SVM. 	is is the so-called model selection [24]. Generally,
one can empirically set these hyperparameters. But this is
very hard work because one cannot know in advance the
suitable hyperparameters when facing all kinds of practical
applications. Many works have tried to �nd a good criterion
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to automatically learn the related hyperparameters [24–26].
In [27], Chung et al. proposed the following bound for ℓ1-
SVM:

(�2 + Δ	)(12 ‖w‖2 + 	∑�∈I��) , (4)

where Δ is a parameter and can generally be set as Δ = 1
and � refers to the radius of MEB.	is radius-margin bound
is di
erentiable and is successfully used to conduct model
selection for ℓ1-SVM in [27].

2.2. Localized Multiple Kernel Learning. In the context of
MKL, we assume that there exist " di
erent mappings��(x) : R� → H� (# = 1, . . . ,"), the #th mapping of
which is endowed with the base kernel ��(⋅, ⋅) of associated
reproducing kernel Hilbert space (RKHS)H�.

As a method of MKL, LMKL is based on ℓ1-SVM and
de�nes its optimization problem as follows:

min
w,�,�,k�

12 ‖w‖2 + 	
�∑
�=1
��

s.t. �� (⟨$w, %� (x�)⟩ + �) ≥ 1 − ��, �� ≥ 0, � ∈ I,
(5)

where $w = [w1; . . . ;w�], %�(x�) = [&1(x�)�1(x�); . . . ;&�(x�)��(x�)], � ∈ R, 	 is a regularization parameter that

adjusts the training error and the regularization term ‖$w‖2,
and �� represents the training error. Here, w� ∈H�, ��(x) ∈
H�, and &�(x) is a gating function de�ned up to a set of

parameters which need to be learned from the training data.
Further, by using duality, we have the dual formulation of the
primal problem in (5) as follows:

max�

�∑
�=1
�� − 12

�∑
�=1

�∑
�=1
��������%� (x�, x�)

s.t.
�∑
�=1
���� = 0, 	 ≥ �� ≥ 0, � ∈ I,

(6)

where the locally combined kernel function is de�ned as

%� (x�, x�) = ⟨%� (x�) , %� (x�)⟩
= �∑
�=1
&� (x�) &� (x�) �� (x�, x�) .

(7)

If the used gating model &�(x) is constant (not a function
of x), LMKL �nds a �xed combination over the whole input
space and is similar to the original MKL formulation. 	e
main advantage of LMKL is that it can achieve statistically
similar accuracy results by storing fewer support vectors
compared with the original MKL.

3. The Proposed LMKL Framework

In this section, we �rst present the primal optimization
problem of the proposedmethod ILMKL and then detail how
to solve it, and �nally some preliminary discussion on the
proposed method is given and the algorithm is outlined.

3.1. Primal Optimization Model of the Proposed Method. In
the context of LMKL, it is easy to �nd that the radius of
MEB is not �xed but is a function of the parameters of the
gating model. Nevertheless, LMKL learns the parameters of
the gating model only through using the separating margin.
	erefore, LMKL ignores the fact that the generalization
performance of SVM depends not only on the separating
margin but also on the radius.

Actually, the purpose of learning the parameters of the
gating model is in essence to yield an appropriate kernel
matrix for good performance. In our opinion, this process is
similar to model selection by which SVM chooses the appro-
priate parameters to achieve good performance. 	erefore,
following the basic idea of the work in [27], we de�ne the
primal optimization problem of ILMKL as follows:

min
ŵ,�,�,a,�,k�,�

(�2 + Δ	)(12 ‖$w‖2 + 	
�∑
�=1
��)

s.t. �� (⟨$w, %� (x�)⟩ + �) ≥ 1 − ��,
�� ≥ 0, � ∈ I

----%� (x�) − a
----2 ≤ �2, � ∈ I.

(8)

As in Section 2.2, here, $w = [w1; . . . ;w�], %�(x�) =[&1(x�)�1(x�); . . . ; &�(x�)��(x�)], w� ∈ H�, � ∈ R, ��(x) ∈
H�, �� represents the training error, and 	 is a regular-
ization parameter that adjusts the training error and the

regularization term ‖$w‖2. Note that ‖$w‖2 = ∑��=1 ‖w�‖2 and⟨$w, %�(x�)⟩ = ∑��=1⟨w�, ��(x�)⟩, and thus we can reformulate
(8) into

min
w�,�,�,a,�,k�,�

(�2 + Δ	)(12
�∑
�=1

----w�----2 + 	
�∑
�=1
��)

s.t. ��( �∑
�=1
&� (x�) ⟨w�, �� (x�)⟩ + �)

≥ 1 − ��,
�� ≥ 0, � ∈ I

----------
�∑
�=1
&� (x�) ⟨w�, �� (x�)⟩ − a

----------
2

≤ �2,
� ∈ I.

(9)
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Here, &�(x) is a gating function. As in [15], we employ the
somax gating model determining the parameters k� (# =1, . . . ,") and it can be expressed as

&� (x�) = exp (V�0 + ∑��=1 V��4��)
∑��=1 exp (V�0 + ∑��=1 V��4��)

= exp (⟨k�, x̃�⟩)∑��=1 exp (⟨k�, x̃�⟩) ,
(10)

where 4�� is the �th feature of the �th sample, x̃� = [1, x�], and
k� = [V�0, V�1, V�2, . . . , V��] ∈ R

�+1 (# = 1, . . . ,") are
the parameters of the gating model associated with the mth
kernel and the somax guarantees nonnegativity. As pointed
out in [17], one can use more complex gating models.

Obviously, in contrast with LMKL (5), ILMKL has two
noticeable characteristics. One is that it takes into consid-
eration the information of the radius and margin. Another
characteristic of the proposed method is that it treats the
regularization parameter	 as a variable that can be automati-
cally learned during the procedure of learning the parameters
of the gatingmodel. To sum up, the key insight of ourmethod
is that, in the context of LMKL, learning the parameters of
the gating model is similar to conducting model selection for
SVM.

3.2. Training with Alternating Optimization. Generally, it is
very di�cult to directly solve problem (9). In LMKL, a
two-step alternate optimization method is employed to �nd
the parameters of the gating model and the discriminant
function. In our method ILMKL, we use the same strategy.

	e �rst step is to �x {k�, 	} and solve (9) with respect to{w�, �, �, a, �}, and the second step is to optimize the param-
eters of {k�, 	} by using a gradient-descent method. 	e
objective value obtained for a �xed {k�, 	} is an upper bound
for (9) and the parameters of {k�, 	} are optimized according

to the current solution. 	e objective value obtained at the
next iteration cannot be greater than the current one due
to the use of gradient-descent procedure. And as iterations
progress with a proper step size selection procedure, the
objective value of (9) never increases. Note that this way does
not guarantee convergence to the global optimum and so the
initial parameters of {k�, 	}may a
ect the solution quality.

In this subsection, we will discuss how to solve problem
(9) when �xing {k�, 	}. In the following two subsections, we
will, respectively, discuss how to optimize k� and 	.

For a �xed {k�, 	}, we have
min

w�,�,�,a,�,k�,�
(�2 + Δ	)(12

�∑
�=1

----w�----2 + 	
�∑
�=1
��)

= (min
a,�
(�2 + Δ	))

× (min
w�,�,�

(12
�∑
�=1

----w�----2 + 	
�∑
�=1
��)) .

(11)

Here, we set

I (k�, 	) = (min
a,�
(�2 + Δ	))

× (min
w�,�,�

(12
�∑
�=1

----w�----2 + 	
�∑
�=1
��))

61 (k�, 	) = min
a,�
(�2 + Δ	)

62 (k�, 	) = min
w� ,�

(12
�∑
�=1

----w�----2 + 	
�∑
�=1
��) .

(12)

	erefore, for a �xed {k�, 	}, problem (9) of the proposed
method can be expressed as

min
w�,�,�,a,�

I (k�, 	) = 61 (k�, 	) × 62 (k�, 	) ,

where 61 (k�, 	) = min
w�,�,a,�

(�2 + Δ	)

s.t.

----------
�∑
�=1
&� (x�) ⟨w�, �� (x�)⟩ − a

----------
2

≤ �2, � ∈ I,

62 (k�, 	) = min
w�,�

12
�∑
�=1

----w�----2 + 	
�∑
�=1
��

s.t. ��( �∑
�=1
&� (x�) ⟨w�, �� (x�)⟩ + �) ≥ 1 − ��, �� ≥ 0, � ∈ I.

(13)
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Note that if we �x the gating model parameters and the regu-
larization parameter, the optimization problem (13) becomes
convex. In order to �nd its solution, we can switch it into
the dual optimization problem. By using duality, the dual
problem of the primal problem in (13) can be formulated as

min
w� ,�,�,a,�

I (k�, 	)
= 61 (k�, 	) × 62 (k�, 	) ,

where 61 (k�, 	) = Δ	 +max
�

�∑
�=1
7�� (x�, x�)

− �∑
�=1

�∑
�=1
7�7�%� (x�, x�)

s.t.
�∑
�=1
7� = 1, 7� ≥ 0, � ∈ I,

62 (k�, 	) = max�

�∑
�=1
��

− 12
�∑
�=1

�∑
�=1
��������%� (x�, x�)

s.t.
�∑
�=1
���� = 0,

	 ≥ �� ≥ 0, � ∈ I,

(14)

where the locally combined kernel function %�(x�, x�) is
de�ned as (7). Obviously, this formulation corresponds to,
respectively, solving a canonical SVM dual problem and a
canonical support vector domain description (SVDD) [31]
dual problem with the kernel matrix $8(&) = (%�(x�, x�))�×�,
which should be positive semide�nite.

Finally, once the �nal gating model &�(x) has been
learned and problem (14) is solved, the resulting discriminant
function of the proposedmethod ILMKL can be expressed as
follows:

� (x) = sign( �∑
�=1

�∑
�=1
��&� (x�) &� (x) �� (x�, x) + �) . (15)

3.3. Optimizing the Parameters of the Gating Model. In order
to optimize the parameters k� of the gating model &�(x)
by using a gradient-descent method, one needs to calculate
the derivatives of the primal objective with respect to the
parameters k�. Next, we will discuss how to calculate the
derivatives of the parameters.

First, note that

9 (exp (⟨k�, x̃⟩))9k� = {{{
0, � ̸= #
exp (⟨k�, x̃⟩) x̃, � = #

= A��exp (⟨k�, x̃⟩) x̃.
(16)

So, we have

9&� (x)9k� = A��&� (x) x̃ − &� (x) &� (x) x̃. (17)

	us, we can calculate the derivatives of �(x�, x�)with respect
to the gating model parameters k� as follows:

9 (� (x�, x�))9k� = �∑
�=1
�� (x�, x�)(&� (x�) 9 (&� (x�))9k�

+ &� (x�) 9 (&� (x�))9k� ) .
(18)

Further, according to the above formula, the following can be
obtained:

9 (61 (k�, 	))9k� = �∑
�=1
7� 9 (� (x�, x�))9k�

− �∑
�=1

�∑
�=1
7�7� 9 (� (x�, x�))9k�

9 (62 (k�, 	))9k� = −12
�∑
�=1

�∑
�=1
�������� 9 (� (x�, x�))9k� .

(19)

Finally, the derivatives of I(k�, 	) with respect to the
parameters k� of the gating model &�(x) can be formulated
as

9 (I (k�, 	))9k� = 62 (k�, 	) 9 (61 (k�, 	))9k�
+ 61 (k�, 	) 9 (62 (k�, 	))9k� .

(20)

3.4. Optimizing the Regularization Parameter. In ourmethod,
the regularization parameter 	 is treated as a variable that
can be learned when learning the gating model. Similar
to the process of optimizing the parameter of the gating
model, we employ a gradient-descentmethod to optimize the
regularization parameter 	 and so the derivative of (14) with
respect to 	 is needed. In the following, we will discuss how
to compute the derivative.

Actually, the derivative of (14)I(k�, 	) with respect to 	
can be expressed as

9 (I (k�, 	))9	 = 62 (k�, 	) 9 (61 (k�, 	))9	
+ 61 (k�, 	) 9 (62 (k�, 	))9	 .

(21)
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(1) Initialize ln(	
init
) and initialize k� to small random numbers for# = 1, . . . ,";

(2) while stopping criterion not met do
(3) Compute 	 with 	 = exp(ln(	));
(4) Calculate %�(x�, x�) with the gating model according to (7) when �xing k�;

(5) ComputeI(k�, 	) by using an canonical SVM solver and an canonical SVDD solver with %�(x�, x�) according to (14);
(6) Compute 9(I(k�, 	))/9k� for# = 1, . . . ," with (20);
(7) Compute 9I(k�, 	)/9(ln(	)) with (23);
(8) Update k� and ln(	) by the gradient-descent method;
(9) end while

Algorithm 1: ILMKL.

Obviously, one obtains in advance 9(61(k�, 	))/9	 and9(62(k�, 	))/9	, which are, respectively, computed as

961 (k�, 	)9	 = 9 (�2 + Δ/	)9	 = 9 (Δ/	)9	 = − Δ	2 ,
9 (62 (k�, 	))9	
= 1	 (

�∑
�=1
�� − �∑
�=1

�∑
�=1
��������� (x�, x�))

= 1	62 (k�, 	) .

(22)

3.5. Discussion. It should be noted that 	 > 0 must hold in
the whole procedure. However, actually in the iterations, this
condition may be broken. In order to deal with this problem,
following [27], we can use ln(	) instead of 	 in the solving
procedure. 	e reason is that ln(	) can be any real number
when 	 > 0. 	us, the positivity of 	 is dodged. Here, we
need to rewrite the above partial derivatives. According to the
chain rules, we can modify (21) as the following:

9I (k�, 	)9 (ln (	)) = 62 (k�, 	)
961 (k�, 	)9 (ln (	)) + 61

962 (k�, 	)9 (ln (	)) , (23)

where

961 (k�, 	)9 (ln (	)) = 	
961 (k�, 	)9	 ,

962 (k�, 	)9 (ln (	)) = 	
962 (k�, 	)9	 .

(24)

Finally, according to the above discussion, we outline the
complete algorithm of ILMKL in Algorithm 1.

4. Experiments

In this section, the experimental results will be reported. In
the �rst experiment, we investigate the in�uence of parame-
ters on ILMKL performance. In the second experiment, we
further explore the possibility of learning the regularization
parameter 	 under di
erent initial value on a synthetic

dataset. In the third experiment, we conduct the experiments
on several UCI datasets and compare the proposed method
with traditional MKL methods.

4.1. Parameter In�uence on Performance of the Proposed
Method. In the training procedure of LMKL, the regular-
ization parameter 	 must be prede�ned. In our method
ILMKL, the parameter 	 can be automatically tuned during
the learning process of the parameters of the gating model.
However, we need to �rst set the parameter Δ and the
initial value (denoted by 	init) of 	. In [27], the authors
suggested Δ = 1 and ln(	init) = 0. In this subsection,
we will investigate the in�uence of these parameters on the
�nal learned regularization parameter	 and the classi�cation
performance of the proposed method.

We used the Sonar dataset, which was selected from
the UCI repository [32]. In the experiment, 50% of the
datasets were randomly selected for training and the rest for
testing.	edatawere preprocessed in the followingway: �rst,
the mean and the standard deviation of each feature were
computed according to training data; then, training examples
were normalized to havemean 0 by subtracting themean and
unit variance; �nally, testing examples were correspondingly
preprocessed using themean and the standard deviation.	e
base kernels include one linear kernel and one polynomial
kernel with degree of two. All kernel matrices are calculated
and normalized to unit trace before training.

Figure 1 shows the experimental results under di
erentΔ. From Figure 1(a), we can �nd that the value of Δ actually
in�uences the �nal value of learned 	. 	e reason, in our
opinion, is that the algorithm may fall into a local minimum
since we adopt the gradient-descent method which cannot
guarantee �nding the global minimum. Actually, the �nal
values of learned 	 under di
erent Δ are close to each
other on the whole. Moreover, the classi�cation accuracies
under di
erent Δ have almost no di
erence according to
Figure 1(b). Figure 2 shows the experimental results under
di
erent initial value of 	. From Figure 2(a), similar to the
case which is shown in Figure 1(a), we can �nd that the initial
value 	init of 	 also impacts the �nal learned 	. However,
according to Figure 2(b), the initial value scarcely in�uences
the classi�cation accuracy.

	erefore, it can be concluded that the proposed method
is e
ective to learn a suitable 	 in the SVM-based LMKL
scenario under di
erent Δ and initial value 	init of 	.
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on the Sonar dataset.

4.2. Experimental Results on Synthetic Dataset. In the above
experiments, the �nal regularization parameter learned 	 is
always much larger than the initial value 	init of 	 and so	 almost always increases in the learning progress. In these
experiments, we will show that the �nal learned 	 actually
can be larger or smaller than the initial value 	init of 	.

Following [15], we create a synthetic dataset, which
consists of two classes, and each class contains 200 samples.
	e samples come from four Gaussian components (two
for each class), and each component, respectively, has the
following mean vector and covariance matrix:K1 = [−3.0, +1.0] ,

K2 = [+1.0, +1.0] ,
K3 = [−1.0, −2.2] ,
K4 = [+3.0, −2.2]
Σ1 = [0.8 0.00.0 2.0] ,

Σ2 = [0.8 0.00.0 2.0] ,

Σ3 = [0.8 0.00.0 4.0] ,

Σ4 = [0.8 0.00.0 4.0] ,
(25)

where the samples in class 1 are from the �rst two components
(denoted by red ×) and others belong to class 2 (denoted by
blue +).Here, we adopt the same base kernels as in Section 4.1,
that is, linear kernels and one polynomial kernel with degree
of two. Before training, all kernel matrices are computed and
preprocessed to unit trace in advance.

Figure 3 illustrates the experimental results of LMKL
under di
erent regularization parameter 	. It can be easily
found that the values of the regularization parameter 	
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Figure 3: 	e experimental results of LMKL on the synthetic dataset.

impact severely the result of LMKL. Obviously, the exper-
imental result illustrated in Figure 3(c) is better. Here, the
regularization parameter	 is set as	 = 10.	e experimental
results of the proposed method are illustrated in Figure 4. It
can be found that we almost obtain the same result under
di
erent initial value 	init of 	. Moreover, the �nal learned	 is sometimes smaller and sometimes larger than the initial
value. Note that the �nal values of learned 	 are di
erent
under the di
erent initial value 	init of 	. 	e reason,
as pointed out in Section 4.1, is that the gradient-descent
method is employed to optimize the regularization parameter	. However, the �nal learned regularization parameters are

close to each other. 	e experiments further validate the
fact that our method can e
ectively automatically learn
the regularization parameter 	. 	is is an advantage over
traditional LMKL.

4.3. Experimental Results onUCIDatasets. In this subsection,
we report the performance comparison about SimpleMKL
[2], LMKL [15], and the proposed method on several UCI
datasets [32].

In the experiment, we use 50% of each dataset as a
training set and the rest as the test set. As in Section 4.1, the
data were normalized (i.e., 0 mean and 1 standard deviation).
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Figure 4: 	e experimental results of ILMKL on the synthetic dataset.

	e base kernels include seven Gaussian kernels with the
widths of [3−3, 3−2, 3−1, 30, 31, 32, 33] and four polyno-
mial kernels with degrees of one to four. Before training, all
kernel matrices are calculated in advance and preprocessed
to unit trace. Each experiment is repeated 50 times, and the
mean accuracy and standard deviation were computed. In
the experiments, SimpleMKL and LMKL employ the cross-
validation technique to choose the regularization parameter	 from the set {10−4, 10−3, 10−2, 10−1, 100, 101, 102, 103,104}. For our method ILMKL, it is not necessary to use cross-
validation to select the parameter 	 because it can learn an
appropriate value.

Table 1 reports the classi�cation accuracies of several
SVM-based MKL methods on the selected datasets. From

Table 1, it can be found that LMKL has comparable perfor-
mance to SimpleMKL.However, on thewhole, it can be found
that ILMKL has a clear improvement in the classi�cation
performance in contrast with SimpleMKL and LMKL. 	ese
experimental results indicate that the generalized perfor-
mance in SVM-based MKL can be improved when the
information of radius of MEB is considered. 	e proposed
method ILMKL embodies the idea.

For a rigorous comparison, simultaneously, we further
conducted the paired two-tailed O-tests [33] on these meth-
ods. In O-test, the P value depicts the probability that two
sets generate from distributions with equal means. If the P
value is smaller, then the di
erence of the two mean values
is more signi�cant. Generally, 0.05 is viewed as a typical
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Table 1: Classi�cation accuracy (mean ± standard derivation) on the selected datasets.

Dataset SimpleMKL LMKL ILMKL

Ionosphere 92.07 ± 2.02 91.64 ± 2.77 93.89 ± 1.21

Heart 84.01 ± 1.38 83.92 ± 1.65 85.91 ± 2.84

Wdbc 96.19 ± 0.44 95.54 ± 2.35 96.97 ± 1.96

Wpbc 76.59 ± 1.02 77.40 ± 2.21 78.42 ± 1.14

Liver 64.45 ± 3.64 62.13 ± 2.93 64.87 ± 3.46

Musk1 89.79 ± 2.02 86.44 ± 3.37 90.27 ± 4.68

Sonar 83.42 ± 3.30 79.95 ± 3.15 82.98 ± 5.02

Fourclass 99.95 ± 0.06 99.93 ± 0.14 99.97 ± 0.09

Coloncancer 74.98 ± 8.18 74.83 ± 3.93 76.11 ± 1.16

Germannumber 72.74 ± 1.55 73.32 ± 1.78 75.24 ± 1.15

Pima 74.37 ± 2.05 75.23 ± 3.12 77.01 ± 1.52

Table 2: P value of O-test on the selected datasets.

Dataset LMKL/SimpleMKL ILMKL/SimpleMKL ILMKL/LMKL

Ionosphere 0.0862 0.0296 0.0451

Heart 0.0639 0.0371 0.0339

Wdbc 0.0418 0.0641 0.0207

Wpbc 0.0325 0.0153 0.4759

Liver 0.0393 0.0426 0.0931

Musk1 0.0244 0.0915 0.0185

Sonar 0.0167 0.0733 0.0239

Fourclass 0.8514 0.0435 0.1384

Coloncancer 0.7426 0.0158 0.0256

Germannumber 0.0462 0.0192 0.0374

Pima 0.0437 0.0382 0.0427

Table 3: Rate of support vectors comparison on the selected datasets.

Dataset SimpleMKL LMKL ILMKL

Ionosphere 0.6982 ± 0.0926 0.4862 ± 0.0504 0.4565 ± 0.0674

Heart 0.7681 ± 0.0671 0.5948 ± 0.1486 0.4333 ± 0.1102

Wdbc 0.3640 ± 0.0213 0.2191 ± 0.0182 0.2010 ± 0.0218

Wpbc 0.9948 ± 0.0153 0.7928 ± 0.0952 0.7857 ± 0.0579

Liver 0.9982 ± 0.0026 0.9203 ± 0.0550 0.9302 ± 0.0111

Musk1 0.9316 ± 0.0309 0.6793 ± 0.0544 0.6185 ± 0.1155

Sonar 0.9126 ± 0.0330 0.6456 ± 0.0367 0.5398 ± 0.1079

Fourclass 0.3790 ± 0.0177 0.1804 ± 0.0514 0.1388 ± 0.0840

Coloncancer 1.0000 ± 0.0000 0.9274 ± 0.0265 0.9258 ± 0.0816

Germannumber 0.8972 ± 0.0373 0.7006 ± 0.0356 0.7378 ± 0.0407

Pima 0.7937 ± 0.0872 0.5893 ± 0.0876 0.5759 ± 0.0209

threshold of the P value; that is, it is considered statistically
signi�cant when the P value is smaller than 0.05. Table 2
reports the experimental results of the O-tests. For example,
the P value of the O-test when comparing LMKL and Sim-
pleMKLon the Ionosphere dataset is 0.0862 (>0.05),meaning
that SimpleMKL does not perform signi�cantly better than
LMKL on this dataset at the 0.05 signi�cant level though
SimpleMKL has better classi�cation accuracy according to
Table 1. However, ILMKL performs signi�cantly better than

SimpleMKL since theP value of the O-test is 0.0296 (<0.05) on
this dataset at the 0.05 signi�cant level. From Table 2, ILMKL
has on the whole signi�cant improvement in the generalized
performance in contrast with SimpleMKL and LMKL.

Finally, we investigated the support vector percentages of
several methods on the selected datasets, which are reported
in Table 3. Generally, fewer support vectors mean less test
time. From Table 3, LMKL tends to have more support
vectors in contrast with SimpleMKL. 	e proposed method
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ILMKL has on the whole similar support vector percentages
to LMKL. So, our method inherits the advantage of LMKL
that it stores fewer support vectors but can achieve statistically
similar accuracy results compared with other MKLmethods.

5. Conclusions

In this paper, by following the work in [27], we presented a
novel LMKL method. Di
erent from traditional LMKL, our
method takes into consideration the information of both the
radius and the margin when learning the parameters of the
gatingmodel. As a result, ourmethod can achieve better accu-
racy. Simultaneously, our method can automatically tune the
regularization parameter	 during the process of learning the
parameters of the gating model. 	erefore, this can improve
the computational e�ciency of ourmethod by avoiding using
the time-consuming cross-validation technique to �nd a suit-
able regularization parameter. Comprehensive experiments
are conducted on several toy and benchmark datasets and the
results well demonstrate the e�ciency and e
ectiveness of the
proposed method.
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