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Abstract. Wireless signal strength fingerprinting has become an in-
creasingly popular technique for realizing indoor localization systems
using existing WiFi infrastructures. However, these systems typically re-
quire a time-consuming and costly training phase to build the radio map.
Moreover, since radio signals change and fluctuate over time, map main-
tenance requires continuous re-calibration. We introduce a new concept
called “asynchronous interval labeling” that addresses these problems in
the context of user-generated place labels. By using an accelerometer to
detect whether a device is moving or stationary, the system can con-
tinuously and unobtrusively learn from all radio measurements during a
stationary period, thus greatly increasing the number of available sam-
ples. Movement information also allows the system to improve the user
experience by deferring labeling to a later, more suitable moment. Initial
experiments with our system show considerable increases in data col-
lected and improvements to inferred location likelihood, with negligible
overhead reported by users.

1 Introduction

WiFi localization has shown great promise for indoor positioning, yet has not
achieved ubiquitous commercial success yet. One difficulty has been the con-
struction of an accurate mapping between signal strength patterns and physical
locations. The signal strength patterns depend not only on the distances between
WiFi radios, but also on other factors such as the positions of physical objects,
which reflect or block signals. This complication may be partially overcome by
either performing calculations with detailed models of the environment, or by
collecting a dense dataset of fingerprints and their associated true locations [2].
In this paper, we focus on the latter approach, as it is generally more accurate
and it is easier to collect this data.

Even so, collecting labeled fingerprint samples can be tedious. Signal readings
must be collected every few meters or so, with pauses of tens of seconds at each
position to get an accurate reading. This process must be repeated if the infras-
tructure or environment changes substantially. Commercial deployments usually



conduct such surveys as part of deployment, however in some installations, such
as private homes, consumers may not have the patience for this process.

Previous work has explored end-user labeling of locations [1, 4, 8, 5]. End-
user labeling allows labels to be added as needed, in the places that users most
frequently visit. However, second-by-second signal fluctuations mean that the
fingerprint stored with a label may not match future measurements. Ideally, an
end-user labeled fingerprint would also be collected over an interval of several
tens of seconds, much as is done during formal calibration stages. Users, however,
may not have the patience to comply with this restriction.

In this paper, we present PILS, an adaPtive Indoor Localization System
that addresses the challenges of end-user labeling. PILS explores a technique
that extends the applicability of a user-provided label from an instant to an
interval over which the device is stationary. The stationary state is detected using
an accelerometer, which allows PILS to detect location changes autonomously,
and consequently collect stationary interval measurements without explicit user
intervention.

Using intervals also enables a different kind of labeling. By detecting intervals
of device immobility, the system can defer location labeling to a more appropriate
time, and refer to longer time periods that are easy for users to remember (e.g.,
“Where were you between 9:15 am and 10:05 am today?”). This greatly improves
the user experience, as users need not provide labels while at the labeled location,
where they are likely engaged in some other activity. We call this technique
asynchronous interval labeling.

The reminder of this paper is structured as follows. The next section ex-
plains how PILS relates to other indoor localization systems, in particular, those
that follow a user-labeling approach. Section 3 then describes asynchronous in-
terval labeling in detail. Sections 4 and 5, respectively, describe the prototype
implementation of PILS and the results of the initial experiments. We close with
discussion and conclusions in Sections 6 and 7.

2 Related Work

Research on indoor location systems has been popular for several years [2, 10, 17,
25]. Location systems typically output Cartesian coordinates, which, for indoor
settings, are often mapped to rooms based on available map data [17]. Like
other systems [6, 9], we output symbolic location data (such as room identifiers)
directly. However, rather than using authoritative designations, we collect room
labels directly from end-users during their use of the system.

WiFi fingerprinting [2] has been particularly popular for indoor positioning,
because it requires no new hardware infrastructure for sites that already have
WiFi. With resolution to a few meters, it can usually support room-level local-
ization. To achieve such high accuracy from the noisy WiFi signal, however, such
systems require prior manual calibration. For example, King et al. [17] were able
to achieve an average error distance of less than 1.65 meters, but required prior
calibration with 80 measurements every square meter (20 measurements each



at 0◦, 90◦, 180◦, and 270◦ orientations). Even though a single active WiFi scan
takes only 250 ms, the time needed to measure all four orientations and to move
between locations quickly adds up to tens of seconds per reference point. In total,
the training phase for a small 100 m2 building could take well over one hour. In
addition, the training may miss longer-term variations as described in Section 3.
While training time can be reduced by modeling the environment [12], this ap-
proach is less accurate and requires additional information (such as floorplans)
that are not always available or easy to input.

Ashbrook and Starner [1] describe how significant places may be determined
by detecting stationary GPS signals, which can later be clustered and labeled.
Froehlich et al. [8] also identify significant places using GSM signals. Both ap-
proaches identify places on a building-sized scale rather than a room-sized scale,
and neither use an additional sensor such as an accelerometer to detect true
motion stability.

Bhasker et al. previously explored collecting calibration data during use,
rather than in a separate training step [4]. Their localization system employs
a two stage process. First it computes geometric location. The result is shown
on a map, and can be corrected if necessary. Corrections are treated as virtual
access points and given higher priority when calculating locations. However, this
method requires having a map and interrupting the user’s primary activity to
collect input. The system also allows only one correction per location.

Our earlier work, Redpin [5], also collected calibration information from end-
users. In contrast to Bhasker et al.’s geometric approach, Redpin generates sym-
bolic location identifiers with room-level accuracy. If the current location cannot
be predicted accurately, the user is prompted to enter a label for his or her
current location. By allowing multiple measurements for the same location and
by combining from GSM, WiFi, and Bluetooth, Redpin can provide the correct
symbolic location in nine out of ten cases, as evaluated in a two-day experiment
with ten users on one 30-room floor.

Other location systems also perform motion detection. Krumm and Horovitz’s
LOCADIO [19] uses WiFi signal strength to both localize a device and infer
whether it is moving. However, due to the natural fluctuation of signal strength
readings even when standing still, this motion detection’s error rate is 12.6%,
which results in a high number of false state transitions (e.g., from “stationary”
to “moving”) during experimental use (24 reported when only 14 happened).

King and Kjærgaard [16] also use WiFi to detect device movement, reporting
results similar to Krumm and Horovitz’s on a wider variety of hardware. They
use motion data to minimize the impact of location scanning on concurrent
communications: If the device is stationary, the system does not need to re-
compute its position (which might interfere with regular communications as both
activities share the same WiFi card). In contrast, we use motion information not
only for positioning, but also to aid the training: If the device is stationary, the
system can collect stable WiFi measurements.

Accelerometer-based detection of stability has been a popular research topic
in the context of activity recognition [3, 15, 20, 22]. Kern [15] showed how to use



an accelerometer to distinguish a moving state (walking, running, or jumping)
from a stationary state (standing or sitting). Since our use emphasizes the sta-
bility of the device, rather than the activity of the person, we do not require
a worn device. Moreover, many of today’s laptops, PDAs, and mobile phones
already contain accelerometers to protect system operations (by parking disk
heads before possible impact) or to support the user interface (by detecting
screen orientation).

3 Interval Labeling with PILS

The method of location fingerprinting using WiFi signals assumes that the pat-
tern of mean signal strengths received in one location differs from the pattern
observed in another location. Unfortunately, various effects, including interfer-
ence from interposing static objects as well as reflections off neighboring objects,
make the relationship between the signal means and location difficult to predict
in practice [11, 18, 21, 24]. Less well-documented are sources of variance in the
signal, although there has been some work studying these effects over a one day
period [13].

To understand the significance of those mean variations in signal strength,
we performed a small experiment. We positioned five laptops in different rooms
of our office building. For one week, each laptop did an active WiFi scan every
minute and recorded the access points’ unique identifiers (BSSID) and received
signal strengths (RSS). Figure 1(a) shows the signal strength variation for three
laptops over the course of a day. Different lines correspond to the signal strengths
from different access points. Rooms 2212 and 2214 are adjacent to each other,
and Room 2152 is further away. Room 2212 and 2214’s patterns resemble each
other much more than either of them do 2152, illustrating how these readings
can be used to determine position. However, the graph also shows that there is
short-term variation from minute-to-minute as well as longer-term fluctuations.
The short-term fluctuations arise not only from the motion of people—average
per-access point variance on low-traffic weekends was still 68% of the variance
during the week. Additionally, different access points have different variances.
Figure 1(b) shows the detail of the first hour, with individual scans now indi-
cated by circles. This shows how readings can appear in scans at different rates
independent of the mean received signal strengths.

The long-term variance, which is especially noticeable during the day in
Room 2212, shows that for nearby locations it may not suffice to build the
radio map only once. The best way to cope with long-term variance is to update
the map frequently by taking measurements at different times of the day and
days of the week. This addresses not only variations of unknown causes, but also
infrastructure changes such as failing or replaced access points.

These signal traces also show that the best way to reduce the error caused
by short-term signal variance is to average a large number of measurements
taken during a short time. However, collecting measurements is tedious and not
something an end-user is very eager to do. So, two challenges are: How can a
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Fig. 1. Signal strength variations from three laptops. Rooms 2212 and 2214 are ad-
jacent to each other, and Room 2152 is further away. Signal variations happen on
different timescales, ranging from a few minutes to several hours.

system get users to contribute many labeled measurements to the system without
interrupting their work routine? And how can a system continue to update the
radio map over days and weeks, again unobtrusively?

Our method of interval labeling addresses these two challenges. Labels pro-
vided by end users are applied not only to the immediate signal strength mea-
surement, but to all measurements taken during the interval while the device
was stationary, at the same place. Figure 2 gives an example of the process of
interval labeling. Using data from the accelerometer, PILS partitions time into
alternating periods of “moving” and “stationary” as indicated in the second row
of the figure. (The implementation of the motion detection process is described
in Section 4.3.) Whenever the system is stationary, it continuously adds measure-
ments to the interval. When it detects movement, it stops taking measurements
until the device rests again, at which time a new interval begins.



In addition to increasing the number of WiFi measurements that can be
associated with a location label, intervals can improve the user experience of
labeling. Because intervals are known to be periods of immobility, they can be
more easily labeled asynchronously. A user is more likely to remember their
location during the entire interval (knowing its starting time and duration) than
they are likely to remember their location at a specific instant. This gives the
system the freedom to postpone labeling until a more convenient time such as the
start of the next stationary period, or when the user returns to their desk. This
can help the system reduce the obtrusiveness of any explicit location prompts.
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MovingStationary Stationary StationaryMoving
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Fig. 2. Interval labeling allows the user to update the radio map with all data taken
while the device is stationary. Because intervals provide more cues to users (starting
time, ending time, and duration of interval), users are more likely to remember where
they were during an interval than at an instant.

4 The PILS System

Figure 3 gives an overview of the three main system components: a scanner to
listen for announce beacons, a locator to compare current measurements with
the assembled radio map from a fingerprint database, and a motion detector to
inform the locator about interval boundaries (i.e., changes between the moving
state and stationary state).

4.1 Hardware

PILS requires a WiFi communications module and an accelerometer in the
terminal—two components that are often available in today’s laptops and high-
end mobile phones. We implemented our initial prototype on Mac OS X 10.5
using MacBook Pros (revision B and C).

In particular, the 15-inch machines that we used featured a WiFi network
card from Atheros or Broadcom, as well as a Kionix KXM52-1050 three-axis
accelerometer with a dynamic range of +/− 2g and bandwidth up to 1.5KHz.

In our office environment, there were sixteen access points to cover about 70
rooms with a combined area of 1000m2. Access points were installed at a density
of about 0.23 access points per room, or 1 access point per 62.5m2 of office area.
Typically five access points were visible at any location.
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Fig. 3. Our terminal-based system has four components. The signals observed by the
Scanner are sent to the Locator, which estimates the location from the radio map stored
in the Radio Map. The Motion Detector informs the Locator whether the device is
stationary or moving, and the User Interface collects the labels. For low-power devices,
a terminal-assisted approach could outsource location estimation to a central server.

4.2 Locator

Our approach to location fingerprinting is to learn a probabilistic model of the
likely readings of received signal strength (RSS) of WiFi beacons for each loca-
tion we are interested in. With these learned models, we estimate the device’s
location by choosing the model that gives the maximum likelihood. Our prob-
abilistic model is similar to the approach taken by Chai and Yang [7], except
that we use normal distributions for RSSI rather than quantizing RSSI values
and using histograms. As long as the RSSI values are not multi-modal, such
a unimodal approach still offers good performance while being computationally
much simpler. By keeping only the mean and variance, updates are very fast and
do not use much memory. In addition, the larger number of free parameters in
a histogram approach is more susceptible to overfitting when there is not much
data.

Each received signal strength reading is stored as a pair consisting of the
access point’s BSSID and the measured indicator of its signal strength, i.e.,
bt = (BSSIDt, RSSIt), with RSSIt being the received signal strength from the
WiFi access point with unique identifier BSSIDt at time t.

For each location l we learn a model of the readings received by a device in
location l. For a set of n readings {b1, ..., bn} in location l, we adopt the following
model for the likelihood of the set of readings:

Pl(b1, ..., bn) =
n∏

i=1

pl(BSSIDi) ·N(RSSIi;µl(BSSIDi), σ2
l (BSSIDi)) (1)



where N is the normal distribution and pl(BSSID) is the probability that the
reading in location l comes from WiFi access point BSSID. We model each
reading to be independently generated from a normal distribution with mean
µl(BSSIDi) and variance σ2

l (BSSIDi), which can be different for each access
point.

Given a set of n readings {b1, ..., bn} in location l, the model parameters
which maximize the likelihood of the readings are given by:

pl(bssid) =
Rbssid

n

µl(bssid) =
1

Rbssid

∑
i:BSSIDi=bssid

RSSIi

σ2
l (bssid) =

1
Rbssid − 1

∑
i:BSSIDi=bssid

(RSSIi − µl(bssid))2

where Rbssid = |{bi|BSSIDi = bssid}| is the number of readings that came
from WiFi access point bssid. Note that a location l will not get readings from
all access points. For those access points which were not part of the readings
for learning the model, we set pl(bssid) to a very small value, e.g., 10−15. The
parameters µl(bssid) and σ2

l (bssid) can be chosen in any way as long as the
product of pl and the normal distribution is small.

To estimate the most likely location l̂ from a set of readings {b1, ..., bn}, we
can compute Eq. 1 and find the maximum likelihood location as follows:

l̂ = argl maxPl(b1, ..., bn) .

In practice, we compute logPl(b1, ..., bn) because it is numerically stable and
the monotonic property of the logarithm guarantees the same answer for l̂.

4.3 Motion Detector

The motion detector is a discrete classifier that reads the accelerometer to deter-
mine whether the device is being moved or whether it is stationary. Classification
needs to be somewhat forgiving so minor movements and vibrations caused by
readjusting the screen or resting the computer on one’s lap are still classified
as “stationary.” Only significant motion such as walking or running should be
classified as “moving.”

To classify the device’s motion state, the motion detector samples all three
accelerometer axes at 5 Hz. It then calculates the acceleration magnitude and
subtracts it from the previously sampled magnitude. To prevent misclassification
of small movements as “moving,” the signal is smoothed into a moving average
of the last 20 values. Figure 4 shows that this method yields a sharp ampli-
tude increase in the magnitude delta whenever the user is walking. The classi-
fier includes hysteresis with different threshold values when switching between
the moving and stationary states. The exact threshold values were established
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Fig. 4. Example data from the motion detector. As soon as the magnitude delta exceeds
the stationary-to-moving threshold, the device is considered to be moving. This holds
as long as the magnitude delta does not fall below the moving-to-stationary threshold.

through a series of informal experiments. Figure 4 shows the motion magnitude
trace of a user going from his office to a colleague’s office (A) and back (B and
C), with two stationary phases in between: a longer discussion at the colleague’s
office and a brief chat in the hallway. The sequence bar at the bottom of the
figure shows the motion detector’s output. Due to the use of a moving aver-
age, the system imposes a small delay of 2-4 seconds before values fall below
the threshold for the stationary state, however this does not appear to degrade
performance.

5 Evaluation

To get a better sense of whether interval labeling would work well in practice, we
conducted a user study. The study examined whether users would voluntarily
correct incorrect location predictions, what the characteristics of the labeled
intervals were, and whether labeling increased the system’s confidence in the
user’s location.

5.1 Experimental Setup

We recruited 14 participants, all researchers at one of our institutions. Partic-
ipants installed a custom application on their MacBooks. The software placed
an extra menu in the right side of the menu bar, as shown in Figure 5. Users
were instructed to correct the system if they saw that it incorrectly guessed
the location. This was also the mechanism for adding new labels to the system.
The users gained no benefit from the application other than the satisfaction of
making the correction. The study ran for five weeks, which included the winter
holiday period.

To remind users about the study and to provide additional feedback to the
user about the system’s inferences, the user could optionally enable a voice an-
nouncement of “moving” and “stationary” when the device transitioned between



(a) The user corrects an er-
roneous inference through
the “Correct My Loca-
tion...” menu option.

(b) The user can enter any label for the
current location by a simple dialog.

Fig. 5. User interface for collecting label corrections: The system’s prediction of the
room is placed in the menu bar to provide ambient awareness.

moving and stationary states. Music could also optionally be played while the
device was in the moving state. However, as the laptops went to sleep when
their lids were closed, the music typically did not continue for the entire moving
duration.

Location inferences were made on the users’ laptops, however all WiFi mea-
surements and labeled data were uploaded to a server for later analysis.

5.2 Results

WiFi Scans and Label Frequency When running, the program conducted
an active WiFi scan once every five seconds. A total of 322,089 WiFi measure-
ments were taken. Each scan contained on average 6.6 beacons, with a standard
deviation of 4.4.

Users labeled 31 intervals, with a surge on the first day, and declining fre-
quency afterward (see Figure 6(a)). However, users continued to correct the
system at a roughly constant rate until the end of the experiment, despite not
receiving any reminders about the study other than the ambient awareness in
the menu bar. Furthermore, continued labeling was not concentrated in a couple
individuals—the contributions after the tenth day came from five different par-
ticipants. All these results suggest that providing corrections is a low-overhead
activity that can be sustained for at least a month.

Interval Characteristics Figure 6(b) shows a histogram of interval durations.
Most intervals were only a few minutes long. Of those under a half hour, five
lasted less than a minute, and sixteen less than ten minutes.
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Fig. 6. Label Frequency and Interval Durations

Generally, users provided labels at the beginning of an interval. 28 intervals
were labeled within the first two minutes. Of the remaining three intervals, one
was labeled at the end of a half-hour interval, and two others were labeled in the
middle of multi-hour intervals. From these observations we conclude that since
users chose to enter corrections when arriving at a new place, this is the best
opportunity for a more proactive system to query users for location data.

Benefits of Labeling Intervals To understand how much the system benefit-
ted from interval labeling, we examined the recorded data more closely. A sample
of 1,000 WiFi measurements was drawn. Each scan was classified according to
its most likely location, given the labels that the system knew about at the time
the scan was taken. Two classifiers were compared, one that learned from all
WiFi scans in previously labeled intervals, and another that learned only from
the WiFi scan at the instant a label was assigned.

Figure 7 compares the distribution of maximum log-likelihoods for the class
returned by each classifiers. The graph does not include the scans whose WiFi
likelihood scores were zero, as explained in the caption. For the over 92% of
scans in the instant labeling condition, the likelihood value gives no information
about which label is best. Likelihood values can be computed, however, for over
half of the scans in the interval labeling condition. Furthermore, even when a
likelihood value is computed, the values are, in general, relatively higher in the
interval labeling condition, which indicates greater certainty of the answers.

5.3 Survey

Following the user study, we surveyed participants to better understand the user
experience. We felt that it was important to get users’ perspective on both the
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likely to find labels when using Interval Labeling than when using Instant Labeling.

accuracy of the system as well as the overhead involved in collecting the labels.
Eleven of the participants responded to the survey.

Participants’ perceptions about the system accuracy were mixed. On a Likert
scale from 1–7, where 1 stands for “strongly disagree,” responses to “PILS often
showed a wrong or missing label” had a mean of 3.0 and standard deviation of
1.9. But in response to “the accuracy got better over time,” responses averaged
4.3 with a standard deviation of 0.8.

In free responses, participants offered several improvement suggestions, such
as reducing the latency to make an estimate and improving the autocompletion
of labels. Two participants appreciated the music that played when the laptop
was moving. One found it to be not only a useful form of feedback about the
system’s operation, but also an interesting prompt for social engagement. The
other wanted to be able to choose the music from their iTunes library.

6 Discussion and Future Work

Previous work by King and Kjærgaard [16] has shown that knowing whether the
user or device is in motion can be beneficial for several reasons. In our system,
motion detection allows us to improve end-user data collection by supporting
interval labeling instead of single measurements only. We use a very simple
heuristic to differentiate between stationary and mobile intervals, yet it worked
well in our prototype. In only very few cases did the motion detector report a
false stationary state, while false reports of moving states never occurred.

Although these results indicate that prompting users for feedback when they
arrive at a new place could minimize interruptibility, we did not focus on this
aspect in this work. We plan to more thoroughly investigate this process in the
future. We envision several options worth exploring, such as the active applica-
tions on the device, the time of day, or mouse and keyboard activity. We also



plan to incorporate the results from interruptibility research into this process [14,
23], as well as games for user labeling [26]. For example two users might give the
same label for a room to win points.

Asynchronous labeling can also ensure that only “important” labels are so-
licited, such as the places that the user stays for long time periods or visits
repeatedly. If the user stays at an unknown place for only a few minutes, PILS
can omit the prompt, thus further reducing the intrusiveness of the system.

Our initial results from both the experimental study and the survey give a
strong indication that the accuracy of location fingerprinting can be improved by
interval labeling. However, about one third of the survey participants reported
that accuracy seemed to decline over time, which could have arisen from long-
term signal fluctuations or overfitting effects in the radio map. Consequently, we
plan to evaluate how long to keep old measurements in the radio map, and the
optimal number of measurements in a location fingerprint.

7 Conclusion

In this paper, we have presented a method to improve end-user supported lo-
cation fingerprinting. By using the built-in accelerometer to detect motion, it
is possible to observe and record WiFi signals during long periods. This greatly
increases the number of WiFi measurements associated with a single given label.
In addition, by making intervals the unit of labeling, the labeling process can
be performed at a less obtrusive time, since users are more likely to recognize
intervals of stability than they are to recall their locations at instants. Motion
detection can also reduce the computational burden of inferring location when
a label is given.

Our user study shows that labels can be collected without greatly burdening
users, and that when such labels are applied to intervals, the maximum-likelihood
of a new WiFi measurement is much higher than it would be if only instants
were labeled.

We plan to further investigate how to improve accuracy through interval
labeling. Moreover, we intend to study how to use retrospective labeling to in-
crease the amount of labeled data while minimizing user effort.
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