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This paper describes the Multi-Radio Diversity (MRD)
wireless system, which uses path diversity to improve loss
resilience in wireless local area networks (WLANs). MRD
coordinates wireless receptions among multiple radios
to improve loss resilience in the face of path-dependent
frame corruption over the radio. MRD incorporates two
techniques to recover from bit errors and lower the loss
rates observed by higher layers, without consuming much
extra bandwidth. The first technique is frame combining,
in which multiple, possibly erroneous, copies of a given
frame are combined together in an attempt to recover the
frame without retransmission. The second technique is
a low-overhead retransmission scheme called request-for-
acknowledgment (RFA), which operates above the link
layer and below the network layer to attempt to recover
from frame combining failures. We present an analysis that
determines how the parameters for these algorithms should
be chosen.

We have designed and implemented MRD as a fully func-
tional WLAN infrastructure based on 802.11a. In our
testbed, we measured throughput gains up to 2.3× over
single radio communication schemes employing 802.11’s au-
torate adaptation scheme.
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1. INTRODUCTION
This paper describes the design and implementation of

the Multi-Radio Diversity (MRD) system, which reduces the
loss rate and improves the throughput observed by transport
protocols and applications running over wireless local area
networks (WLANs). Our approach uses path diversity, rely-
ing on multiple access points (APs) covering a given area (for
uplink diversity) and multiple radios on the user’s device (for
downlink diversity). The hypothesis underlying this system
is as follows: because frame losses are often path-dependent
(e.g., due to multi-path fading), location-dependent (e.g.,
due to noise), and statistically independent between differ-
ent receiving radios, multiple radios that all receive versions
of the same transmission may together be able to correctly
recover a frame, even when any given individual radio is not.

Most current WLAN deployments (e.g., those based on
802.11 [6]) use one or more APs that relay packets to and
from a WLAN client. Each AP operates independently and
each WLAN client can communicate with only one AP at
a time. Because the properties of a single path vary with
time and can undergo severe deterioration, the result is that
communication often suffers from high packet loss rates, long
delays, and even outages. These, in turn, degrade the per-
formance of protocols like TCP and applications like mobile
Internet telephony, streaming audio/video, and games.

In MRD, different APs with overlapping coverage and lis-
tening on the same radio frequency provide alternate com-
munication paths for each frame transmission from a given
WLAN client, while multiple wireless cards on the WLAN
client achieve the same result for transmissions to the client.
MRD coordinates packet receptions across the different ra-
dios to improve loss resilience against path-dependent bit
corruption. The idea is simple: even when each individual
reception of a data frame is erroneous, it might be possible
to combine the different versions to recover the correct ver-
sion of the frame. In MRD, the entity that performs this
frame combining task is the MRD Combiner (MRDC).

MRD’s frame combining algorithm divides each frame
into blocks. For each block, the algorithm assumes that
at least one of the received copies of a frame (including
any possible retransmissions) contains the correct bit val-
ues for that block. The algorithm then attempts to recon-



struct the correct frame by trying every version received for
each block. The process succeeds if a particular block com-
bination passes the checksum embedded in the data frame,
and fails once the search exhausts all possible block choices
for each block. The computational complexity of this al-
gorithm is exponential in the number of blocks for which
different versions were received, which depends on the num-
ber of blocks in each frame. We show how to pick the block
size and evaluate its performance using theoretical analysis
and real-world experiments. This approach to frame com-
bining is reminiscent of an old, well-studied idea called “re-
transmissions with memory” [31, 13], where retransmissions
of erroneous frames are combined with the original trans-
mission in an attempt to recover the correct version of the
data. Our contribution is to generalize this idea using a
block-based technique to incorporate the spatial dimension
as well.

The MRDC can often recover a corrupt frame without
requiring a retransmission from the client, but frame com-
bining will not always succeed. MRD uses a lightweight
retransmission scheme running above the WLAN link layer
to further improve error recovery. At the sender, the MRD
Sender (MRDS) buffers all frames that have not yet been
acknowledged (or given up on), and retransmits any frame
that it believes has not been successfully received by the
MRDC (after frame combining). To prevent adverse interac-
tions caused by ARQ schemes at two different layers, MRD
turns off link-layer retransmissions altogether. To keep over-
head low and to react quickly to channel contention, how-
ever, MRD uses two techniques: first, it retains 802.11’s syn-
chronous ACK mechanism, with the MRDS clearing frames
thus acknowledged from its retransmission buffer. But be-
cause some frames can only be recovered after frame com-
bining, and because the MRDC does not know whether any
given link-layer ACK reached the MRDS, MRD uses a feed-
back protocol between the MRDC and MRDS. This protocol
is designed to have low overhead, using a request for ACK
(RFA) technique rather than traditional ACKs or NACKs.
With RFA, the MRDS explicitly requests an ACK from the
MRDC for certain frames, and decides whether and when
to retransmit frames based on this feedback.

A noteworthy aspect of MRD is that it achieves significant
improvements in loss rates while consuming only a small
amount of additional bandwidth. As a result, it comple-
ments both automatic repeat request (ARQ) and rate adap-
tation [1, 10, 20], two common error-control techniques used
in contemporary WLANs. ARQ-based retransmissions work
well when the duration of channel degradation is short. But
when the channel’s quality deteriorates for a long period,
link-layer retransmissions triggered by a missing link-layer
ACK become ineffective and wasteful. Rate adaptation, on
the other hand, can work well even when the wireless chan-
nel experiences severe deterioration. However, efficient rate
adaptation is difficult to achieve when channel conditions
vary quickly and unpredictably, as is the case in many real-
world WLANs, particularly when users are mobile.

Sections 2 through 5 of this paper detail the different con-
tributions of this paper: the MRD architecture, the frame
combining algorithm and its theoretical analysis, the RFA
scheme, and the MRD modifications to the 802.11 WLAN
rate adaptation schemes. Section 6 describes our fully func-
tional 802.11a/b/g-based Linux implementation of MRD.
Section 7 presents the results of several experiments con-

ducted over an in-building 802.11a-based testbed at MIT’s
Computer Science and Artificial Intelligence Laboratory.
Experiments that experienced a high channel variability
(e.g., a mobile WLAN client that moved over a relatively
small area of about three square meters) show through-
put improvements of up to 2.3× compared to contemporary
802.11a with “autorate adaptation” [1].

2. MULTI-RADIO DIVERSITY ARCHI-

TECTURE

AP …

Wired Backbone

Rest of Network

APAP

WLAN Infrastructure

MRDC

MRDS

WLAN Client

Figure 1: MRD system architecture.

For ease of exposition, we describe the MRD architecture
in the context of uplink transmissions from the client to the
WLAN infrastructure. The same architecture can be used
when the MRD radios are co-located on the same device
(either in a single AP or on the WLAN client).

Figure 1 shows the MRD system architecture. Each AP in
the WLAN infrastructure offers a different physical commu-
nication path to the client. We configure the APs to listen
on the same radio frequency so they can each receive a copy
of the client’s uplink transmission. The AP forwards all
frames—including those that are corrupted—to the MRD
Combiner (MRDC), which filters redundant data frames re-
ceived by multiple radios and invokes the frame combining
procedure when needed. The MRDC maintains a packet
buffer to in-order packet delivery to the rest of the network.

At the WLAN client sender, the MRDS handles data
transmissions and retransmissions. The MRDS operates in
between the link-layer and the IP network layer. It keeps
track of unacknowledged transmissions and schedules their
retransmissions when it believes that the MRDC has failed
to receive a clean copy of the transmitted frame from any of
the APs or has failed to correct their errors frame combin-
ing. The MRDS uses the request-for-ACK (RFA) protocol
to obtain the results of the frame combining procedure from
the MRDC.

The MRD WLAN architecture does not preclude cellular
frequency reuse. Frequency reuse is a common method to
increase network capacity, which requires APs in neighbor-
ing cells to operate in different radio frequencies. In MRD,
the APs that are not explicitly associated with the client
need only listen for uplink transmissions passively. Thus,
one strategy to achieve frequency reuse is to install passive
radios in addition to the regular, active radio at each AP.1

1In fact, companies have begun selling radio chipsets that



The client associates with the active radio at each AP, which
serves the regular function of transmitting management and
control frames to the WLAN client, while the passive radios
are configured to listen on the neighbors’ radio frequencies.
Because the passive radios never transmit a frame, they do
not create any interference in the network. If installing mul-
tiple radios on a single AP is not possible, an operator can
install additional passive access points in the network. As
the costs of APs continue to decline, this approach is a vi-
able way to add path diversity (for uplink communication)
in WLANs.

MRD assumes that there is sufficient bandwidth in the
wired backbone to handle the additional traffic generated
by the passive APs. This assumption is reasonable because
the number of APs within reception range of a transmitter is
usually low and the speed of the wired backbone is usually
at least one or two orders of magnitude higher than the
wireless link.

MRD does not affect the functions of handoff and secu-
rity in a WLAN. The WLAN client would associate with and
handoffs between different APs using their active radios. Ex-
isting WLAN security standards such as WEP [6], 802.1x [7],
and WPA/802.11i [4] handle encryption/decryption and
other security functions in software and are easily imple-
mented in the MRDS and the MRDC, assuming that the
MRDC can establish a secure trust relationship with each
MRD radio in the network.

3. FRAME COMBINING
We describe how MRD recovers error-free versions of cor-

rupted data frames and analyze its performance. One ap-
proach is to run a simple linear time algorithm that attempts
to correct bit errors by selecting the majority bit value be-
tween three or more frames [14]. But this approach requires
at least three copies of the same transmitted frame, which
may not be available (without a retransmission) in the case
when only two MRD radios are within receiving range of the
sender. Therefore, we develop and analyze a block-based
frame combining scheme that can work even when only two
copies are available.

Suppose two copies of the same transmitted frame of size
S bits are received at two different receivers. Before frame
combining, if any of the data frames passes the link-layer
cyclic redundancy checksum (CRC) check, it is decoded as
the transmitted frame and forwarded (soft selection). Oth-
erwise, we run the block-based combining algorithm to re-
cover the packet. Block-based frame combining works by
first subdividing both frames into blocks, and then recon-
structing the frame by assembling the blocks selected from
each received frame of the transmitted packet. The process
succeeds if a block combination passes the CRC embedded
in the data frame, and fails once the search exhausts all
possible block combinations. We provide a summary of the
block combining algorithm below:

1. The input of the algorithm is two frames f =
{A,B} of size S, divided into fixed-sized blocks X =

{Xf
1 ,X

f
2 , ..., X

f
NB

}. Let ∆ = |{i|XA
i ⊕XB

i �= 0}| (i.e.,
the number of blocks that do not have matching bit
values).

can process and decode transmissions from multiple chan-
nels simultaneously (see, e.g., [3]).
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Figure 2: Bit-error analysis. Figure 2(a) shows
that the bit-errors are clustered in a regular pattern
within a frame. The number in the legend indicates
the number of corrupt frames received at each node.
The conditional probabilities in Figure 2(b) suggest
that bit-errors occur in bursts within a frame but
bit-errors between frames received at different loca-
tions have low correlation.

2. Assemble a combined frame that contains X ′ =
{Xf ′

1 ,X
f ′

2 , ..., X
f ′

NB
} blocks from either frame A or B.

Each iteration of this step generates a new combined

frame by replacing Xf ′

i with either XA
i or XB

i for each
i where XA

i ⊕XB
i �= 0.

3. If either of the CRC value embedded in frames A or
B matches the CRC value computed over X ′, return
the combined frame containing X ′. Otherwise, repeat
step 2 until all possible combinations of X ′ have been
tried. If none of the block combinations X ′ passes the
CRC check, declare a frame combining failure.

There are many ways of dividing a frame into roughly
fixed-size blocks. For simplicity, we divide each frame such
that blocks Xf

1 ,X
f
2 , ..., X

f

NB−1 contain B bits and the size

of the last block |Xf
NB

| is 6 B. Thus, NB = ⌈S/B⌉.
When the block-based frame combining algorithm de-

clares a failure, the MRDC can save the corrupt frames for
possible frame combining (using either bit-majority or block-
based combining) with any subsequent retransmissions of
the frame. In our current implementation, the MRDC saves
only one of the corrupt frames and apply block-based com-
bining to two corrupt frames at a time.

The block-based frame combining algorithm is simple but
its running time is exponential in ∆, the number of differ-
ing blocks. With two copies, it needs up to about 2∆ CRC
check operations to identify the correct combination. Since
∆ ≤ NB , one way to bound the number of CRC checks is
to reduce NB by increasing B. Inevitably, the frame com-
bining failure probability will increase as the likelihood of
simultaneous block errors increases with B. We evaluate
this tradeoff next.

3.1 Frame Combining Failure
We analyze how the frame combining failure probability,

pf , varies with NB under a burst bit-error channel model
parameterized by a burst length b. pf is the fraction of
frames that cannot be corrected with combining out of those
that could not be corrected by the soft selection in the first



FLR(R1) 26.5%
FLR(R2) 23.4%
FLR(R1)FLR(R2) 6.21%
FLR(R1 ∩R2) 7.09%

Table 1: Frame loss rates (FLR) observed at two
receivers (Figure 11) in a broadcast experiment.

place. To find the overall retransmission probability we as-
sume that each receiver observes independent losses, and
multiply pf with the independent frame loss rates (FLR)
at each receiver FLR(R1) × FLR(R2) (i.e., the probability
that the frame goes uncorrected by soft selection).

We observe that losses do occur independently at different
receivers in practice. Table 1 shows the frame loss statistics
of a broadcast experiment with three 802.11a nodes illus-
trated in Figure 11. In the experiment, a total of 500,000
frames were transmitted at a bit rate of 48 Mbps. We
use FLR(R1 ∩ R2) to represent the number of broadcast
transmissions that were lost simultaneously at receivers R1

and R2. Our results indicate that FLR(R1)FLR(R2) ≈
FLR(R1 ∩ R2), which suggest that losses are largely inde-
pendent at each receiver.

Using the same experiments, we validate the assumption
that bit-errors occur in bursts by analyzing the bit-error
patterns of over 36,000 corrupt data frames. Figure 2(a)
plots a histogram of the bit-error locations, which shows that
the error distribution is uneven, often clustered within 300-
400 bits, spaced between 800-1200 bit positions apart. At
the 48 Mbps bit-rate, 802.11a employs QAM-64 modulation
at 2/3 coding rate. This burst pattern is also observed in
other node placements on our testbed and also in another
802.11b testbed deployed in an industrial environment [34].

Figure 2(b) shows the auto-conditional and cross-
conditional bit-error probabilities for all the corrupt frames.
The cross-conditional probabilities remain flat even at the
bit level. The cross-conditional bit-error probabilities for
k < 100 are much lower than their counterpart auto-
conditional probabilities, which suggests that bit-errors
rarely occur simultaneously at nearby locations between two
frames received at different physical locations. In contrast,
the auto-conditional error probability at the bit level in-
creases dramatically at small k (< 100). The increased
auto-conditional probability corresponds to the burst bit-
error behavior and is most likely related to the clustered
bit-error patterns shown in Figure 2(a).

We believe that the periodic and burst nature of bit-errors
observed in our experiments is due to the orthogonal fre-
quency division multiplexing (OFDM) scheme employed in
802.11a. In this scheme, 52 separate sub-carriers are used
to provide separate wireless pathways for sending the infor-
mation in parallel. Four of them are used for control, and
each of the remaining 48 sub-channels carries upto 1 Mbps
summing to 48 Mbps. We believe that the non-uniformity
of the losses is because different parts of a frame are carried
by different channels, and the periodicity of bit-errors arises
because the same set of data bits in each frame are consis-
tently assigned to the same sub-channel. Indeed, QAM-64
implies that there are 8 bits/symbol on each sub-carrier and
hence the bunching of 8 × 48 ≈ 400 bits is consistent with
this hypothesis. Also, the 1,200-bit spacing of the peaks
may be because each sub-channel contributes three symbols
at a time rather than just one.
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Figure 3: The PMF for the number of bit-errors for
two different placements of the receiver pair.

These experimental observations motivated us to develop
an analytic model that allows us to examine how pf is
affected by the bit-error burstiness in the communication
channel. In our model, we assume that bit-errors occur
in bursts of b > 1 bits. Moreover, we assume that these
sequences of consecutive b bit-errors are spread uniformly
over the frame. Thus, if there occur d such sequences in a
given frame, then it means there are a total of bd bit-errors
in that frame. We neglect the effect of two individual error
sequences starting within b bits of each other.

Let Db,i represent the number of b-bit sequences with er-
rors in a given frame received at receiver Ri. Then,

P (Db,i = d|Db,i > 0) = η

dbX
d′=(d−1)b+1

P
�
Di = d′

�
. (1)

where η = (1− P (Di = 0))−1 and P (Di = d′) is the proba-
bility that a frame received by Ri contains d′ bit-errors. We
obtain the distribution of number of bit-errors empirically.
Figure 3 shows the probability mass function of the number
of bit-errors for two broadcast experiments using different
node placements. We found that given a frame contains bit-
errors, P (Di = d′) decays almost exponentially, i.e., as e−αd

where α ≈ 0.01—0.05.
In our model, we kept the average number of bit-errors

per packet fixed (independent of b) and b controls only the
burst size. This model of fixed sized bursts of error implies
that the auto-conditional bit error probability distribution is
a step function with a jump at b. Even though this model is
approximate (as shown in Fig. 2(b)), it encompasses certain
flavors of wireless channels where losses occur in bursts.

Let us denote the set of blocks with errors at receiver Ri

by Ni. Then |N1 ∩N2| represents the set of blocks that
contain simultaneous errors at both R1 and R2.

To derive the frame combining failure probability, pf , we
make the following simplifying assumptions. First, we ignore
the possibility that two sequences at a given block of two
different frames have exactly the same position. Second, we
ignore the possibility that a sequence can spread over more
than one block. Third, we assume the boundaries of the
blocks are not fixed and that each one of them can hold
more than B bit-errors whereas in reality each block can
contain at most ⌈B/b⌉ sequences of b bit error sequences.
All these assumptions are reasonable when b≪ B, which is
likely to be the case in reality.
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If the sequences of bit-errors are uniformly distributed
over the frame, the probability of getting at least d simul-
taneous block errors, conditioned on the event that receiver
Ri receives a frame with di trains of burst errors is at most

P (|N1 ∩N2| > d|Db,1 = d1,Db,2 = d2)

6

�
NB

d

��
NB+d1−d−1

d1−d

��
NB+d2−d−1

d2−d

�
�

NB+d1−1
d1

��
NB+d2−1

d2

� . (2)

for d < min{d1, d2, NB}. The analogy with a ball placement
problem is as follows. We have d1 red and d2 blue balls to
be placed in a total of NB bins randomly. We evaluate the
probability that at least d bins contain both red and blue
balls. First, we place d red balls and d blue balls in a given
combination of d bins so that each bin contains exactly one
red and one blue ball. Then we distribute the remaining
d1 − d red and d2 − d blue balls randomly in all possible NB

bins. We end up with an upper bound because we count
certain combinations more than once.

Because a frame combining failure occurs when d > 1, the
conditional frame combining failure probability is simply

pf (d1, d2) = P (|N1 ∩N2| > 1|Db,1 = d1,Db,2 = d2) . (3)

Hence, the upper bound on the unconditional probability
of combining failure can be found plugging (2) in

pf 6

NBX
d1=1

NBX
d2=1

pf (d1, d2)

2Y
i=1

P (Db,i = di|Db,i > 0) . (4)

Figure 4 plots the upper bound on pf as a function of
the burst size b for several values of the block size, NB . If
the bit-errors are uniform (b = 1), pf remains high (≈ 1)
regardless of NB . However, the auto-conditional probabili-
ties in Figure 2(b) suggests that bit-errors indeed occur in
bursts. In this case, we expect pf to decrease with increas-
ing NB . As NB gets larger, the difference between the two

curves for a given b becomes very small, which suggests that
increasing NB beyond a certain point does not yield much
improvement. Thus, we lose little performance by fixing NB

to some small value (say, 6-10) in order to bound complex-
ity. Because pf is a highly convex function of b, we expect
the performance of frame combining to be sensitive with re-
spect to the changes in the burstiness of the bit-errors in the
channel. Moreover, the performance of frame combining will
improve as the available computational power increases.

3.2 False Positives
We now comment on the possibility of false positives in

the combining process caused by repeated trials for the CRC
to check with distinct frames. In essence, CRC is an n-bit
parity check field that detects any k < n bit errors and
misses detection with probability 2−n when k > n. Thus,
if a 32-bit CRC is used, as in 802.11, any number of bit
errors < 32 is detected. Moreover, the probability that any
randomly produced frame will check the CRC is 2−32, which
implies that it is almost impossible for a random bit error
pattern to go undetected even if a frame contains more than
31 erroneous bits.

Now, with frame combining, even though a single check
leading to a false positive is highly unlikely, if we try it re-
peatedly many times, we may end up getting a false positive.
Indeed, if the number of differing blocks in two frames is ∆,
the number of swaps (and the number of tests for the CRC
to check) is 2∆. For independently produced 2∆ frames, the
false positive probability is

P (false positive) = 1 −
�
1 − 2−32�2∆

≈ 1 − exp
�
−2∆−32

�
.

Thus, if E
�
2∆
�

is close to 232, it is likely that the combin-
ing procedure leads to false positives. Even if the available
computational power can perform 232 CRC tests, we pick
a block size that is sufficiently large (i.e., NB is sufficiently
small) so that, even in the worst case, we do not perform
too many CRC checks. Hence, we guarantee by design that
2∆ ≪ 232 and keep the false positive probability sufficiently
small. Our implementation uses NB = 6.

4. RETRANSMISSIONS WITH RFA
MRD disables link-layer retransmissions to allow the

MRDC to recover packets that the active radios receive in
error. The MRDS retransmits frames that the MRDC fails
to recover with soft selection or frame combining (i.e., a
frame recovery failure). To facilitate these retransmissions,
the MRDS uses the request-for-acknowledgment (RFA) pro-
tocol to obtain the status (success or failure) of each frame
transmission. This section describes the design of RFA.

4.1 Design
RFA operates in between the link-layer and the network

layer, but uses the link-layer synchronous ACKs that is im-
plemented in most WLANs such as 802.11. A synchronous
ACK is a link-layer control packet that is sent by the ac-
tive radio (see Section 2) immediately after it successfully
receives a data frame. After each frame transmission, the
MRDS checks the link-layer transmission status. A success
implies that the active radio has received the transmission
correctly, so the MRDS can proceed to transmit the next



available packet. A failure implies either a corrupt link-layer
ACK or a corrupt data transmission. In the former case, the
MRDC simply forwards the correctly received data packet
or buffers it in the reorder buffer (explained below in Sec-
tion 4.3). In the latter case, the MRDC may recover the
frame loss using soft selection or frame combining. If the re-
covery is unsuccessful, the MRDC saves the corrupt frames
for possible frame combining with any subsequent retrans-
missions of the frame.

In either case, the MRDC always knows the final status
of each frame transmission. Thus, when the MRDS fails
to receive a link-layer ACK, it issues a “request-for-ACK”
frame to the MRDC to obtain an MRD acknowledgment
(MRD-ACK), which contains the authoritative status of the
transmission. The MRDS needs to explicitly issue an RFA
because only the MRDS knows which frames are ACKed
by the link-layer. To save overhead, the MRDS signals a
RFA by setting a flag in the frame header of subsequent
data transmissions. We explain the implementation details
of RFA in Section 6.2.

The MRDS buffers the frame that fails to receive a link-
layer ACK for later retransmission and schedules the next
available frame for transmission. The subsequent transmis-
sions keep the wireless channel utilized while the MRDS
waits for the frame recovery results from the MRDC, which
can take many milliseconds. To limit the size of the retrans-
mission buffer, the MRDS may transmit up to N different
frames from the first unacknowledged one. A frame is re-
moved from the transmission buffer after K unsuccessful
retransmission attempts. The MRDS schedules a retrans-
mission if the MRD-ACK indicates a frame recovery failure.
If the MRDS never receives an ACK from the MRDC, the
MRDS will schedule all outstanding unacknowledged pack-
ets for retransmission after a timeout, Ts. Our current im-
plementation uses a static value of 90 ms.

There are two reasons why we chose to use the link-
layer ACK, instead of eliminating it and letting MRDS and
MRDC handle retransmissions using a standard automatic
repeat request (ARQ) protocol that operates strictly above
the link-layer. First, the synchronous ACKs are necessary
for carrier-sense multiple access (CSMA) to operate prop-
erly. CSMA uses a randomized backoff window and relies
on the absence of the synchronous ACK packet to detect
contention and adjust the backoff window after each frame
transmission. Because we allow transmissions to continue
while the MRDS waits for an MRD-ACK from the MRDC,
it is important to preserve the underlying CSMA channel
access mechanism. 2

Second, the wireless medium is already reserved for the
transmission of synchronous ACKs. They are designed (by
means of a smaller data-to-ACK frame spacing time) to not
collide with transmissions from another nearby source. In
contrast, the acknowledgments from the MRDC are asyn-
chronous and must therefore contend for the channel and
suffer potential collisions. Thus, it is a good idea to avoid
sending asynchronous ACKs as much as possible, especially
during times when the channel quality is good and link-layer
losses are low.

2It is conceivable to use some other channel access schemes
besides CSMA (e.g., TDMA). Doing that would require in-
troducing a major modification to the medium access control
(MAC) layer of 802.11.

4.2 Delaying Acknowledgments
To reduce the number of MRD-ACKs sent to the sender,

the MRDC delays the return of an MRD-ACK frame by
up to D frame-transmission times, where 0 < D < N . D
should be greater than 0 because the MRDC needs time
to gather corrupt frame copies from the MRD radios and
perform frame combining. A smaller D value would cause
the system to incur higher overhead as the MRDC would
send MRD-ACKs more often. A higher D reduces overhead,
but can cause larger transmission delay when the frame re-
quires retransmission. In practice, the added delay is of
little concern to higher layer transport protocols and most
multimedia applications because D is usually set to a few
frame transmission times, on the order of a few millisec-
onds. If D > 1, the MRDC could process multiple frames
before returning an MRD-ACK to the MRDS. We expand
the MRD-ACK packet with a bit-vector to indicate the final
status of several packets at once, instead of spreading the
acknowledgment across several different MRD-ACK frames.

4.3 In-order packet delivery
The MRDC maintains a reorder buffer to ensure that

packets are forwarded in-order to the rest of the network.
When a frame requires retransmission, the MRDC inserts
all subsequently transmitted frames into the reorder buffer
until the missing frame has been successfully recovered or
has been given up on.

There are many applications, such as audio and video
streaming, which are sensitive to packet delays but do not
require in-order packet delivery. To cater to these applica-
tions, we can mark specific frames for out-of-order delivery.
Such frames can avoid being delayed inside the ordering
buffer. Our current implementation does not include this
feature but we plan to incorporate it in the future.

5. RATE ADAPTATION IN MRD
Rate adaptation (or “autorate”) works well when the com-

munication channel severely deteriorates and should be used
in MRD when soft selection and frame combining can no
longer recover frame losses effectively. Traditional autorate
algorithms try to maximize throughput by using loss or sig-
nal strength information observed by a single receiver. Cur-
rent autorate algorithms behave sub-optimally under MRD
because they do not use information observed at all of the
diversity radios that are within range of the sender.

The interaction between rate adaptation and MRD er-
ror control is an interesting open topic. Here, we present
some simple modifications to an existing rate adaptation.
Although these modifications may not necessarily yield an
optimal algorithm for MRD, we found them to work well in
our experiments.

Our testbed implementation is based on 802.11 interfaces
that use the Atheros 5212 chipset, which are driven by the
Multiband Atheros Driver3 for WiFi (MADWiFi) [1]. The
MADWiFi driver implements an autorate algorithm that
adjusts bit-rates based on the observed link-layer frame loss
rate. Due to the popularity of MADWiFi, the MADWiFi
autorate algorithm is becoming a de facto benchmark. Its
performance has been studied extensively in [10] and [20]
and is shown to outperform the Auto Rate Fallback (ARF)
algorithm that is implemented in many 802.11 interfaces on

3pci: v.0.8.6.1, hal: v.0.9.9.13, wlan: v.0.7.3.2



market. We use the MADWiFi autorate algorithm as the
basis of discussion, but the general ideas in this section can
be applied to many other loss-based autorate algorithms.

Figure 5 provides a pseudo-code of the MADWiFi au-
torate algorithm. In our notation, bitrate is an integer with
a range [0..MAX BITRATE], which represents the set of dis-
crete bit-rates available to the sender. There eight discrete
bit-rates in 802.11a [6, 9, 12, 18, 24, 36, 48, 54] Mbps.

Init()
stable← 0
numtx← 0
numtxok← 0

TxCallback()
numtx← numtx+ 1
if (txsuccess)
numtxok← numtxok + 1

RateAdjust()
if ((numtx > 0 and numtxok == 0) or

(numtx > 10 and numtxok/numtx < D))
if (bitrate > 0)
bitrate← bitrate− 1
Init()

elseif (numtx > 10 and numtxok/numtx > 0.90)
stable← stable+ 1
if (stable > S and bitrate < MAX BITRATE)
bitrate← bitrate+ 1
Init()

else
stable← stable+ 1

Figure 5: Pseudo-code of the MADWiFi autorate
algorithm.

MRDCallback()
numtxok ←

numtxok + min(numacked, numtx − numtxok)

Figure 6: A procedure that helps autorate maintain
a better estimate of numtxok in MRD.

The MADWiFi algorithm starts by calling Init() and in-
vokes TxCallback() to update the numtx and numtxok
counters after each frame transmission. The algorithm in-
vokes RateAdjust() once every T seconds. If the frame de-
livery rate is above 90% for at least S number of successive
periods, increase the bit-rate. If it falls below a minimum
delivery threshold D, decrease the bit-rate.

The original algorithm adjusts the numtxok counter
based on link-layer feedback. This approach can lead to
an understated numtxok value in MRD because the MRDC
can recover many frame transmissions using soft selection or
frame combining. To fix this problem, we add the routine
listed in Figure 6 to the MADWiFi autorate algorithm.

The MRDS invokes MRDCallback() whenever it re-
ceives an MRD-ACK. numacked is the number of frames re-
ported in the MRD-ACK that have a successful delivery sta-
tus at the MRDC. and is added to numtxok. Thus, MRD-

Scheme Mean (Mbps) Median (Mbps)

Slow R1 4.95 4.68
Fast R1 8.25 7.07
Slow MRD-R1 19.29 19.85
Fast MRD-R1 18.76 19.06

Table 2: The mean and median throughput of one
second non-overlapping window samples across all
five trials in each experiment.

Callback helps the autorate algorithm maintain a correct
estimate for numtxok as long as it receives some MRD-
ACKs. Even if MRD-ACKi packet is dropped for some rea-
son, the numtxok can still be adjusted to the correct value
by the subsequent MRD-ACKs because the MRD-ACKs cu-
mulate the ACK bit vector for any unacknowledged packet.
But because numtxok can be adjusted only upon receiv-
ing a MRD-ACKi packet, long delays between MRD-ACK
receptions can still cause understatement in the numtxok
value. This is not usually a problem in practice because 1)
MRD-ACKs are always transmitted at the lowest (most ro-
bust) bit-rate to minimize loss, and 2) we set a low delay
threshold (16 ms in our implementation) for transmitting
MRD-ACKs.

Another problem with the original MADWiFi algorithm
is that the default minimum delivery threshold D is fixed at
50%, which, as noted in [10], is inefficient for 802.11a/g.
Let Dr and Rr be the expected delivery rate and effec-
tive throughput4 using bit-rate r. Then, the throughput
achieved by the lower bit-rate is the same as the current
bit-rate if Dr−1 ×Rr−1 = Dr ×Rr.
Rr−1 and Rr are known values and in general, Dr−1 > Dr

because lower bit-rates are more robust against loss. To
minimize loss, we set Dr−1 = 1. Thus, the ideal minimum
delivery threshold for bit-rate r is Dr = Rr−1/Rr, the ratio
of the effective throughput at the lower and higher rates.

In 802.11a, the typical value for Rr−1/Rr varies from 0.6
to 0.8. Thus, fixing D = 0.5 is too low and causes the
transmitter to maintain the current bit-rate even though its
delivery rate is well below the break even point. We modified
the MADWiFi algorithm to lower bit-rates according to the
proper break-even ratios in our implementation.

Finally, the default values for T and S (T = 1 second and
S = 10) cause the MADWiFi algorithm react too slowly to
rapid changes in the channel. Instead, we set lower values
T = 0.25 and S = 2 to improve its responsiveness. We
ran an experiment with a high channel variability (by using
mobile transmitter, described in Section 7.1) to compare
the performance of the algorithm using different parameter
values. Table 2 shows that the modified parameter values
(Fast) helped increase throughput by about 67% over the
default parameter values (Slow) for the single radio experi-
ments using R1.

Intriguingly, the performance difference between Slow
MRD and Fast MRD is negligible, suggesting that MRD
is relatively insensitive to the particular parameter values
chosen for rate adaptation. Being able to perform consis-
tently under different parameter values is useful, because
determining the optimal parameter values for any kind of
adaptive algorithm is often difficult in practice.

4The effective throughput is lower than the bit-rate because
of link-layer overhead.



6. IMPLEMENTATION
This section describes the MRD system implementation

and the implementation of the RFA protocol in detail.

6.1 System Implementation
We implemented the MRD system using commodity con-

temporary Pentium class PCs running Linux Kernel 2.4.20
and 802.11a/b/g wireless interfaces based on the Atheros
5212 chipset. We modified the MADWiFi driver to imple-
ment the MRDS component for 802.11a/b/g WLAN clients.

As described before, the primary function of the MRDS
is to schedule retransmissions. To handle retransmissions
within the driver software, we disable the wireless inter-
face from retransmitting packets by setting the retry limit
to zero. During our experimental evaluation, we discov-
ered that doing so caused the distribution of frame inter-
transmission times to peak at the nominal packet trans-
mission time, despite many transmission losses. In other
words, setting a zero retry limit also disabled exponential
backoff in the 802.11 interface. It turns out this is the be-
havior mandated by the original 802.11 standard [6]: the
contention window should reset to the lowest value after a
packet reaches its retransmission limit.

Consequently, our current MRD implementation does not
include CSMA exponential backoff. However, future re-
leases [5] of the MADWiFi driver [1] will include software
support for 802.11e [16], which includes a software API to al-
low the driver to modify the contention window size. Mean-
while, we have disabled exponential backoff in all of our
experiments to make fair performance comparison between
the 802.11 standard and our MRD-enhanced 802.11 system.

We used desktop PCs equipped with 802.11 wireless in-
terfaces as access points. One AP acts as the active radio
and is configured to run in the MADWiFi’s “AP Master”
mode. The passive radios are configured to run in MAD-
WiFi’s “Monitor” mode. On each of the APs, we run a
user-level daemon to capture data frames from the wire-
less interface and forward them over a wired backbone (100
Mbps Ethernet in our experiments) to the MRDC running
on another PC.

For increased efficiency, the AP daemon performs the
CTX header checksum (see the next section) and drops
frames that cannot be used for frame combining (i.e., those
frames with a corrupt header). Because the RFA protocol
does not require the client to acknowledge the receipt of
an MRD-ACK, the AP daemon prepends the target client’s
MAC address in the MRD-ACK payload and transmits each
MRD-ACK as a broadcast frame. Broadcasts saves the
transmission of link-layer ACK frames in unicast and the
benefit is much larger than the cost of expanding the size of
the MRD-ACK payload. In our actual implementation, the
AP daemon writes the target client’s 6-byte MAC address in
the source address field of the 802.11 header, thus saving us
from expanding the MRD-ACK payload at all. We transmit
the MRD-ACK packet at the lowest data rate (6 Mbps for
802.11a/g and 1 Mbps for 802.11b) for robust delivery.

Because the CRC computation is the bottleneck of the
frame combining process, it is important to make it as ef-
ficient as possible. The MRDC currently implements a
widely-used 8-bit table lookup algorithm to compute the
32-bit CRC checksum of a combined frame. Although the
algorithm is simple, it is rather inefficient to process the en-
tire frame to compute a new CRC value when the bit values

for only a small portion of the frame changes during each
iteration of the frame combining algorithm. In the future
versions of the MRDC, we plan to implement an incremental
CRC algorithm, which has been shown to reduce complexity
by over an order of magnitude [12, 30].

We implemented the MRDC as a user-level daemon run-
ning on a 1.5 GHz Pentium 4 PC. Implementing the MRDC
as a user-level daemon facilities debugging and running di-
agnostics. It forwards clean or corrected packets to the tun-
neling driver so that the Linux kernel can forward the packet
using iptables.

6.2 Implementation of RFA

PAYLOADMAC CTX

1 Byte

CTRL SEQ

1 Byte 1 Byte

USEQ CHECKSUM

4 Bytes

NTX

4 bits

RFA

(a) Headers in the transmitted data frame

SEQMAGIC TX STATE

N bits2 Bytes 1 Byte

(b) MRD-ACK Packet

Figure 7: MRD-ACK control information.

Figure 7(a) shows the headers used by RFA. For every
data frame transmission, the MRDS inserts a 7-byte Com-
biner Transmit (CTX) header that is prepended to the pay-
load of the MAC-layer frame. The CTX header contains a
ctrl field, which uses 4 bits to indicate the number of at-
tempted transmissions (ntx) for the current data frame, 1
rfa bit to indicate that the sender has pending unacknowl-
edged frames and is requesting for acknowledgment, and 3
unused bits reserved for future options such as out-of-order
delivery. The 1-byte seq field labels the sequence number of
the data frame, while useq labels the oldest transmitted data
frame in the MRDS buffer that has not been acknowledged
by the MRDC. When frame useq exceeds its retransmission
limit, the MRDS advances useq to the seq number of the
next unacknowledged frame in the retransmission buffer (if
any). This allows the MRDC to detect frames that failed
all its retransmissions and flush the blocked frames from the
reorder buffer.

The MRDC uses the source address in the MAC header
and the seq value in the CTX header to identify the frames
that belong to the same network-layer packet. When the
MRDC receives at least 2 corrupt data frames that corre-
spond to the same packet, it attempts frame combining on
the payload part of the data frame. Since it is important
that the MRDC correctly identifies the frames that belong



to the same packet, RFA uses a 4-byte CRC to protect the
MAC and CTX header. If either the MAC or the CTX
header is corrupted, the MRDC drops the entire frame.

The MRD-ACK packet contains a 2-byte “magic” value
that is used to distinguish the MRD-ACK packet from other
downlink data payload,5 a 1-byte sequence number, and an
N-bit bit vector to indicate the success or failures of up to
N consecutive frames. The sequence number is the seq value
of the first data frame in the bit vector being acknowledged.
The MRDS uses the link-layer data frame checksum to de-
tect errors in the MRD-ACK packet.

The size of the MRD-ACK payload is small (25 bytes in
our implementation). Thus, its overhead is largely domi-
nated by the preamble and header associated with the 802.11
frame. We can potentially decrease overhead further by pig-
gybacking MRD-ACK packets on data frames being trans-
mitted in the same direction.

Our RFA implementation allows the MRDC to delay ACK
transmissions in terms of the number of successive transmis-
sions made by the MRDS. Thus, MRDC can delay an ACK
either by a timeout of length equal to D packet transmis-
sion times or by counting D packet transmissions from the
MRDS. Delaying ACKs by counting packets removes the re-
quirement for sub-millisecond-granularity timers and allows
the MRDC to be implemented in user space. Note that re-
transmitted frames are counted as a transmission while extra
frames that are simultaneously received by different MRD
radios should not be counted. Because both types of frames
have identical seq values, the MRDC uses the ntx value to
distinguish the retransmitted frames.

The MRDC sends MRD-ACKs to the MRDS via the ac-
tive radio (i.e., the AP with which the WLAN client is as-
sociated for MRDS running in the WLAN clients). The
MRDC may also independently use fine-grained path se-
lection [24] to choose the most reliable diversity radio for
transmitting the MRD-ACK packet to the WLAN client.

7. EVALUATION
We conducted several experiments to evaluate the per-

formance of MRD under different environments. We divide
the presentation of the results into two categories, HIVAR
and LOVAR, based on whether the WLAN client was expe-
riencing a high or low degree of channel variability during
the experiment. To create a high channel variability envi-
ronment in HIVAR, we use a client transmitter that is set
in motion during the experiment, while we use a station-
ary transmitter in LOVAR. In the rest of this section, we
describe our experimental setup and analyze the results of
each experiment.

7.1 Setup
We chose to conduct experiments in 802.11a mode to avoid

interfering traffic from the production 802.11 WLAN in our
lab. In all our experiments, we configure one of the AP
receivers (R1 or R2) to be an active AP running in Master
mode. We configure the other AP receiver to run passively
in Monitor mode. We configure the client sender C to run
in 802.11 Managed mode. We run the MRDS on the WLAN
client to evaluate the performance for upstream traffic.

5Instead of using “magic”, we should label the MRD-ACK
with a unique value in the Ethernet type field [32]. We used
the magic value in our implementation to facilitate logging
using standard tools like tcpdump [2] during our experiments.

In all of the experiments, we set a maximum retransmis-
sion limit of 7 (initial transmission plus seven retransmis-
sions). The MRD experiments used a MRD-ACK delay of
D = 8 packet transmissions, a sender buffer size of N = 64
packets, and a retransmission timeout of Ts = 90 ms. We
pick B = 256 bytes () NB = 6), such that the maximum
processing time to search through 2NB block combinations
is less than S/r, where S is the transmitted frame size and
r is the bit-rate. Bounding B in this way helps prevent the
processing queue at the MRDC from building up.

In each experiment, the WLAN client sends 100,000 1472-
byte UDP packets as fast as possible to saturate the wireless
link. We repeat each experiment for five trials. On the
first transmission of each packet, we insert a timestamp into
the frame’s payload. The timestamp remains unchanged on
frame retransmissions. The timestamp allows us to measure
and compare the packet delivery delay between MRD and
the single radio communication schemes. Also, the payload
of the packet contains a known bit pattern so that we can
post-process the trace to analyze the probability of frame
combining failure pf as a function of different block sizes B.

Each MRD experiment involves two sub-experiments: in
the first set (MRD-R1), we configure R1 to be the active
AP with which the client associates and R2 to be the passive
AP. In the second set (MRD-R2), R2 is active and associates
with the client. We compared the performance using differ-
ent active APs because the MRDS schedules retransmissions
based on the link-layer feedback from the active AP.

As mentioned in Section 6, performing software-based re-
transmissions in the driver effectively disables exponential
backoff in the wireless interfaces’ firmware. To make a fair
performance comparison between communication schemes,
we used software-based retransmissions (and thus, disabling
exponential backoff) in all of our experiments, including the
single radio communication schemes. We discuss how dis-
abling exponential backoff might affect our evaluation re-
sults in Section 8.

Because wireless communication is sensitive to the physi-
cal environment, we do not claim that the results of the ex-
periments presented here are exhaustive and representative
of all situations. Our main objectives are to conduct a set of
experiments to illustrate the performance gains that MRD
can achieve in the implemented system under a real envi-
ronment with different degrees of channel variability, and to
analyze the properties of the MRD system in depth.

We present the results of our HIVAR and LOVAR exper-
iments in the following sections. The HIVAR experiments
used the modified autorate algorithm as described in Sec-
tion 5, but the LOVAR experiments were conducted before
we implemented the modifications. Thus, the LOVAR ex-
periments use the standard MADWiFi autorate algorithm,
which could have reduced the performance of MRD for those
experiments.

7.2 HIVAR Experiments
We compare the performance of single radio communica-

tion schemes against MRD when the client experiences a
high degree of channel variability. Figure 8 illustrates the
location of our APs and client in our HIVAR experiments.

7.2.1 Throughput

We define throughput to be the sum of the bits from
unique frames received divided by the time elapsed between
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Figure 8: Setup for the HIVAR experiments. R1
and R2 are stationary receivers. C is a laptop trans-
mitter client that was carried by a walking person
who covered a 1.5 m × 2 m area during the experi-
ments.

the first and last frame receptions. Note that the throughput
metric accounts for the overhead of the CTX header, MRD-
ACK transmissions, and all the processing delay associated
with MRD.

The average throughput over five trials for the single ra-
dio experiments R1 and R2 were 8.25 Mbps and 6.42 Mbps,
which are far below 802.11a’s theoretical maximum UDP
throughput of 31 Mbps. The high channel variability caused
by mobility and distance has resulted in a large throughput
reduction in the single radio experiments. Despite the harsh
channel conditions, MRD-R1 and MRD-R2 maintained a av-
erage throughput of 18.7 Mbps and 18.36 Mbps respectively,
which constitute improvements of 2.27× and 2.23× over R1
(and even more over R2).

We plot the throughput distribution of the one-second
non-overlapping window samples in Figure 9(a). For R1 and
R2, 80% of the samples are between 4-10 Mbps and fewer
than 10% of the samples achieved a throughput more than
15 Mbps. In contrast, MRD achieves a throughput greater
than 15 Mbps for more than 85% of the samples. These
results suggest that even if we allow the WLAN client for
the non-MRD cases to perform handoffs every second, the
average throughput will remain well below 15 Mbps.

Both MRD-R1 and MRD-R2 achieved similar through-
put results. This suggests that the performance of MRD is
relatively insensitive to the choice of active AP, even when
there is a significant difference in link quality between the
two APs.

7.2.2 Source of Improvement

The large throughput improvement comes from the reduc-
tion in frame loss rate achieved by MRD. Table 3 summa-
rizes the statistics of the raw frame loss rate (FLR) observed
at the active AP in each sub-experiment and the ratio of the
lost frames that were recovered (frame recovery rate, FRR)
by MRD. The active APs in both sub-experiments suffered
a raw FLR of about 35% and 39% but MRD was able to
recover 50% and 57% of them, respectively. Because MRD
was able to conceal a large number of losses from the rate
adaptation algorithm, the sender was able to maintain a
high bit-rate throughout both sub-experiments, as depicted
in Figure 9(b), where over 90% of the frames were trans-
mitted at a bit-rate of 24 Mbps or higher. In contrast, the
single radio communication schemes suffers a high loss rate
at the high bit-rates. Consequently, these schemes operate
at low bit-rates. Actually, the selected bit-rates in R1 and

Experiment FLR FRR FRRSS FRRF C

MRD-R1 0.345 0.497 0.423 0.073
MRD-R2 0.391 0.573 0.515 0.058

Table 3: Frame loss and frame recovery rates of the
high channel variability experiments.

R2 are spread across several of the low bit-rates due to the
high degree of channel variability experienced by the client.

These results highlight the importance of MRDCall-
back(). If the procedure were not added to the autorate
algorithm in MRD, the link-layer frame losses observed at
the active AP would have been exposed to the autorate algo-
rithm, causing MRD’s to operate at the same low bit-rates
as R1 and R2 in Figure 9(b).

We decompose the recovered frames into frames recov-
ered by soft selection (FRRSS) and block-based combining
(FRRF C). Thus, FRR = FRRSS + FRRF C. Our results
show that 85% and 90% of the gains in MRD-R1 and MRD-
R2 were achieved by soft selection (i.e., those frames that
were received correctly by the passive AP but not by the
active one).

There are two possible explanations for the relatively
small fraction of frames recovered by frame combining: i)
there were few opportunities for running the packet combin-
ing either because most of the transmissions were already
corrected by soft selection or because the MRDC did not
collect enough valid corrupt frames (due to corrupt headers,
etc.) to perform the combining; or ii) there were many frame
combining attempts but most of them failed to recover the
correct frame.

We analyzed the number of successful and failed frame
combining attempts. The total number of frame combining
attempts was high, constituting 34% and 26% of the total
number of frames that were not successfully received by the
active AP in MRD-R1 and MRD-R2. Although there were
many opportunities for error recovery with frame combining,
about 80% of those attempts failed to correct the errors in
the transmitted frame in both sub-experiments.

One cause for the high failure rate is the low number of
block subdivisions in a frame in our implementation (NB =
6). We post-processed the data trace of our experiments to
analyze how pf varies with other values for NB and plot
the results in Figure 10(a).6 The plot shows that pf drops
as NB increases, which is consistent with the analytic model
for burst bit-error channels that we derived in Section 3. For
example, pf drops from 80% to 60% when NB = 91 (i.e.,
B = 16 bytes).

As discussed in Section 3, increasing NB can potentially
increase ∆, the number of differing blocks between two
frames. To avoid overloading the MRDC, we may need to
abort the frame combining operations for frames received

6Recall that pf excludes those frames that are successfully
delivered by soft selection (Section 3.1). While the major-
ity of frame combining attempts were performed for cor-
rupt frames that were simultaneously received by the APs,
a significant fraction of the frame combining attempts were
performed with retransmitted frames. For simplicity, we
excluded the retransmitted frames in our post processing
analysis. Nonetheless, our results should remain represen-
tative because the retransmitted frames should have an in-
dependent bit error behavior similar to the simultaneously
received frames.
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Figure 9: HIVAR Experiment Analysis. Leftmost: Distribution of throughput averaged over non-overlapping
one-second window samples. Center: Distribution of selected bit-rate for each transmission. Right: Delay
above the minimum one-way packet delivery time.
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Figure 10: Trace-driven simulation of pf and ∆ for various values of NB in the HIVAR experiments.

with a large ∆. Thus, a high ∆ for a large fraction of
combining attempts can offset the performance gain from
increasing NB . Figure 10(b) plots the distribution of the
number of unmatched blocks (∆succ) for the successfully
combined frames at various NB . For NB 6 91, the 75th
percentile ∆succ value are much smaller than NB (e.g., for
NB = 91, the 75th percentile of ∆succ is 10).7 This suggests
that we could improve the performance of frame combining
by re-running our experiments with a larger NB value.

Finally, the low overhead of RFA allows MRD to achieve
high gains. The number of MRD-ACKs transmitted con-
stitute fewer than 7.5% of the total number of transmitted
packets and fewer than 0.1% of the total number of transmit-
ted bytes. The overhead of inserting an extra 7-byte CTX
header to the 1500-byte packet payload is also negligible.

7Performing 2∆ = 210 frame combining checksum opera-
tions for a 1500-byte packet takes about four milliseconds
on a 3.2 GHz Pentium IV PC. The processing time is rather
large and may cause the processing queue to build up at
the MRDC. However, it should be possible to reduce the
processing time substantially by using an incremental CRC
update algorithm [12, 30] or using specialized hardware to
perform the CRC calculation.

7.2.3 Delay Analysis

A number of compelling wireless applications such as tele-
phony and video streaming require a relatively low packet
delivery delay not exceeding 100 − 150 ms [19]. We analyze
MRD’s delay performance here.

As described previously, we insert a timestamp in the pay-
load of a packet’s first transmission attempt to measure the
one-way packet delivery delay. Because it is difficult to syn-
chronize PC clocks to within a few tens of microseconds,8 we
do not measure the absolute packet delivery delay. Instead,
we measure the delay jitter above the minimum one-way
packet delivery time di for packet i, which does not require
clock synchronization between the sender and the receiver.
Let si and ri be the start and receive timestamps associated
with packet i for all 0 < i < 100, 000 packets transmitted in
an experiment. Then di = ri − si − mini(ri − si).

We also applied a piecewise linear regression algo-
rithm [26] to remove clock skew between the sender and
the receiver (we measured clock drifts on the order of 50
microseconds per second). Note that we can compute the

8We require the fine clock synchronization granularity be-
cause the nominal transmission time of 802.11a at high bit-
rates is less than 0.5 millisecond.



one-way packet delivery delay by adding mini(ri−si), which
includes the nominal transmission time and processing de-
lay. In practice, this number is less than one millisecond. We
will ignore this minor adjustment and use the terms “delay
jitter” and “delay” interchangeably.

Figure 9(c) shows the one-way delay distribution for our
HIVAR experiments. The MRD median delay is below 1 ms
and has 25% more packets delivered than R1 and R2. The
low median delay is due to its ability to maintain a high
bit-rate throughout the experiments. However, about 35%
of the packets in MRD were delivered with a significantly
higher delay than R1 and R2. Nonetheless, MRD was able
to deliver 95% of the packets within a delay of 35 ms, which
is well below the delay bound of 150 ms that can be tolerated
by telephony and video applications.

We attribute the increased packet delivery delay in MRD
to the fact that there were a significant number of frames
that required retransmissions. In the design of the MRDC,
we assumed an in-order packet delivery service and added
a re-order buffer at the MRDC (Section 4.3). Whenever a
retransmission is required, the reorder buffer blocks subse-
quent packets from being forwarded and increases the packet
delivery delay for all of them.

Another source of delay comes from the losses of MRD-
ACKs on the reverse channel, which delays the trigger to
retransmit a packet. Also, the user space implementation of
the MRDC is inefficient as interrupts and user space buffer-
ing can add delays in generating and sending MRD-ACKs.

7.3 LOVAR Experiments

R1

R214m

12m

3.5m

C

Figure 11: A diagram that illustrates the relative
positions of the transmitter C and the receivers R1
and R2 in the LOVAR experiments.

We evaluate the performance of MRD in a scenario where
the channel variability is low, using the setup depicted in
Figure 11. The parameters and methods we use for the LO-
VAR experiments are the same as the HIVAR experiments,
except that we use a stationary desktop transmitter instead
of a mobile one. Also, our measurements for the LOVAR
experiments were collected before we introduced our modi-
fications to the MADWiFi autorate algorithm in Section 5.
Thus, the autorate results presented in this section under-
state the performance of the MRD system. Nevertheless,
our results provide an interesting comparison of the system
operating under different situations.

7.3.1 Throughput

Figure 12(a) shows the throughput averaged over five tri-
als for the LOVAR experiments. We ran different experi-
ments using two different fixed bit-rates (36 and 48 Mbps)

Experiment FLR FRR FRRSS FRRF C

MRD-R1 0.359 0.895 0.694 0.200
MRD-R2 0.354 0.958 0.819 0.139

Table 4: Frame loss and frame recovery rates of the
low channel variability experiments.

and using the standard rate adaptation algorithm (Auto)
implemented in the MADWiFi WLAN driver. The fig-
ure shows that the MRD schemes at fixed bit-rate of 48
Mbps performed better than all other schemes. The dashed
lines marks the maximum 802.11a UDP throughput for a
fixed bit-rate 36 and 48 Mbps links, which are 23 and 27
Mbps respectively. The MRD throughput is between 94.4%
and 96.6% of the maximum UDP throughput at 48 Mbps.
Despite the overhead of transmitting MRD-ACK packets,
MRD-R1 increases throughput over R1 by 54.6% at the fixed
bit-rate of 48 Mbps, while MRD-R2 improves throughput
over R2 by 20.2% at 48 Mbps. Similar to the HIVAR exper-
iments, both MRD-R1 and MRD-R2 achieved very similar
throughput results, again suggesting that the performance
of MRD is relatively insensitive to the choice of active AP
in our experiments.

Under autorate (Auto), the throughput gains by MRD-
R1 and MRD-R2 diminish to 3.7% and 8.1% respectively.
The main reason for the diminished gains is that the LO-
VAR MRD experiments used the unmodified version of
the autorate algorithm. The algorithm ignores informa-
tion from the MRD-ACK, so it adapts its bit-rate based
only on the observed loss rate of the link-layer transmis-
sions to the active AP. Consequently, the algorithm selects
a suboptimal bit-rate. For example, Figure 12(b) shows that
MRD-R2 (Auto) selected 36 Mbps roughly 70% of the time
even though our fixed rate experiments shows that it could
achieve a high throughput at 48 Mbps.

We believe that the MRD throughput results would im-
prove if we used the modified autorate algorithm for MRD in
our LOVAR experiments. The potential throughput perfor-
mance could be as high as (if not higher than) the 48 Mbps
fixed rate MRD experiments, which improved throughput
by 9% to 16% over R1 Auto and R2 Auto.

Another reason for the diminished gain is the low variabil-
ity of the channel. Although the frame loss rate was substan-
tial at 48 Mbps, there was almost no loss at 36 Mbps. Thus,
the throughput for R1 and R2 is lower bounded at the 36
Mbps bit-rate and caps the maximum achievable throughput
gain for MRD.

7.3.2 Source of Improvement

We analyze the sources of improvement for the 48 Mbps
fixed bit-rate LOVAR experiments and summarized the re-
sults in Table 4. The active APs in the LOVAR experiments
observed similar frame loss rates to the ones observed in the
HIVAR experiments, but the FLR is much higher. It ranged
between 90%−96% for LOVAR compared to 50%−57% for
HIVAR. There were also a larger number of frames recovered
by frame combining in the LOVAR experiments.

We found that the total number of frame combining at-
tempts was proportionately similar to the HIVAR experi-
ments. It represents 37% and 25% of the total number of
frames that were not successfully received by the active AP
in MRD-R1 and MRD-R2. Thus, the increased number of
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Figure 12: LOVAR Experiment Analysis. Left: Throughput averaged over 5 trials. The dashed line marks
the maximum achievable UDP throughput (23 and 27 Mbps) for 802.11a fixed at 36 Mbps and 48 Mbps bit-
rates. Center: Distribution of throughput averaged in non-overlapping one-second window samples. Right:
Delay above the minimum one-way packet delivery time.

frame combining recoveries were due to a large reduction
in frame combining failure rate. Indeed, the frame combin-
ing failure rate pf was about 45% in both sub-experiments,
which is a large drop from the 80% in the HIVAR experi-
ments.

Like the HIVAR experiments, the average pf drops dra-
matically if the frame were subdivided into smaller blocks.
Our simulation shows that pf = 17% for NB = 91 (i.e.,
B = 16 bytes). At the same time, ∆succ (defined in Sec-
tion 7.2.2) remains low for the successfully combined frames:
the 95th percentile of ∆succ for NB = 91 is 10.

7.3.3 Delay Performance

We repeat the delay analysis in Section 7.2.3 for the LO-
VAR experiments. Figure 12(c) shows the one-way delay
distribution for the fixed and autorate experiments. Com-
pared to the HIVAR experiments, MRD delivered packets
with a lot smaller delay because it was able to recover al-
most all corrupt frame transmissions to the active AP. As a
result, the LOVAR experiments required much fewer frame
retransmissions than the HIVAR experiments. Our LOVAR
experiments show that MRD delivered 99% of the success-
fully received frames within 20 ms.

Finally, we observe a long tail in the one-way delay
distribution (but representing only a tiny fraction of the
transmitted packets) for the single radio communication
schemes that last up to several hundred milliseconds. This
tail is mostly an artifact of handling retransmissions in
the driver, where kernel interrupts can happen in between
retransmissions. We suspect that the long tails arise from
packets that require a large number of retransmissions
because such packets may experience more interrupts
from the kernel than packets delivered with fewer or no
retransmissions. The MRD scheme does not have this long
tail because it successfully delivers packet with a lot fewer
(re)transmissions.

In summary, we found that MRD produced through-
put gains in all experiments, regardless of the channel
variability experienced by the client. In our HIVAR
experiments, we found that MRD was able to increase

throughput up to 2.3× that of the best AP when only a
single radio is used. In our LOVAR experiments, MRD, at
a fixed bit-rate of 48 Mbps, the throughput improvement is
less impressive but still significant, between 9% and 16%.

8. DISCUSSION
The conventional wisdom of managing link quality in

WLANs is to have the clients adapt to the channel con-
ditions (i.e., adapt the bit-rate) before changing to an alter-
nate link (e.g., AP) with a better channel quality. MRD can
be viewed as taking the opposite approach, where the clients
use multiple links simultaneously before changing their bit-
rate to adapt to the underlying channel.

Our experimental results suggest that, with MRD, even
a simple rate adaptation algorithm, such the one based-on
MADWiFi, can perform well in different environments. In
contrast, we observed a rather large performance difference
between the HIVAR and LOVAR experiments in the non-
MRD schemes. We believe that the large performance differ-
ence is attributed not only to the increased frame loss rates
observed at the individual APs, but also to the sub-optimal
bit-rates that might have been chosen by the MADWiFi
autorate algorithm in the high channel variability environ-
ment. (In Section 5, we tuned the algorithm to work well
with multiple radios and frame combining, but did not alter
the fundamental mechanisms used in the algorithm.)

In fact, we can use the results from the previous section to
show that there is room for improvement in the rate adap-
tation algorithm. Table 3 and Figure 9(b) show that the
frame loss rate to the active AP in MRD-R1 was 35% and
that MRD-R1 selected a bit-rate of at least 24 Mbps over
90% of the time. Multiplying 1−FLR with the the effective
throughput of the 24 Mbps (17.8 Mbps) bit-rate yields 11.6
Mbps. Thus, we could have fixed the bit-rate to 24 Mbps for
the non-MRD HIVAR experiment (R1) to improve the per-
formance by 1.4× over the MADWiFi autorate algorithm,
which achieved 8.25 Mbps. (Although the improvement is
significant, it is not as great as MRD-R1, which achieved a
2.3× improvement at 18.7 Mbps.)

We are not suggesting that a fixed bit-rate should be
used for non-MRD wireless links operating in a channel



with high variability: selecting an optimal fixed bit-rate for
such a channel still requires an adaptive algorithm. Rather,
our intent is to use the example to motivate the following
open questions: 1) Could other existing autorate schemes
(e.g., RBAR [15], AARF [20], MiSer [27], OAR [29], Sam-
pleRate [10]) be used to improve performance of the non-
MRD schemes in our HIVAR experiments? 2) Can we de-
sign an autorate algorithm for a non-MRD WLAN that
performs well under a variety of channel conditions in a
real environment? These are open questions, but we have
demonstrated—using real-world experiments—that MRD
can use a simple rate adaptation algorithm to produce good
performance under different and difficult channel conditions,
and that with MRD, the need for a finely tuned rate ada-
patation algorithm is not as important as with single-radio
schemes.

As mentioned in Section 6, the MRDS needs to assume
control over all retransmissions. Performing software-based
retransmissions in the driver, however, also has the side ef-
fect of disabling the exponential backoff controlled by the
firmware.

We acknowledge that the relative throughput improve-
ment by MRD may be reduced when exponential backoff is
enabled. That is because the link layer increases the back-
off window whenever a client fails to successfully transmit a
data frame to the target receiver (i.e., the active AP) at the
link layer. In our current design, the link layer is oblivious
to MRD. Even if the data frame is recovered through soft
selection or block-based combining, the link layer may not
reduce the contention window (which is what CSMA does
when the link-layer transmission succeeds). Consequently,
the backoff window may increase unnecessarily and reduce
MRD’s performance.

Conceivably, we can alleviate the problem by creating an
interface that allows MRD to inform the link-layer back-
off mechanism about the results of frame recovery at the
MRDC. Designing a medium access control algorithm that
can adapt to MRD’s error recovery results is an interesting
open problem.

Despite the above caveat, MRD effectively reduces frame
losses and the total number of transmissions required to de-
liver a packet, without increasing the nominal frame trans-
mission time as in other existing approaches like using low-
ering data rates or employing forward error correction.

9. RELATED WORK
The idea of coordinating multiple radios in WLANs has

recently received considerable attention. The authors in [9]
proposed to embed multiple radios on a single device for
better energy and mobility management, capacity enhance-
ment, and avoiding channel failures. A system that uses
fine-grained path selection (FGPS) that switches transmis-
sions from among a set of nearby APs was demonstrated to
effectively reduce path dependent losses in WLANs [24] and
to improve the quality of video streaming applications [23].
FGPS takes advantage of path diversity at the transmit side
of the system. MRD compliments FGPS to reap the benefit
of path diversity at the receive side of the system.

Diversity reception is a common technique used to miti-
gate the effects of fading, and interference in wireless sys-
tems. Almost all WLAN devices have embedded more
than one antenna that gets selected based on packet loss
rates. Recently, the IEEE incorporated a more advanced an-

tenna diversity technique Multiple-Input Multiple-Output
(MIMO) [25] into the physical layer specifications of their
next generation WLAN devices known as 802.11n [35]. In
general, this class of techniques, known as microdiversity,
are tightly integrated with the physical layer and mostly
help in mitigating path-dependent effect localized at one re-
ceiver. In contrast, the MRD WLAN operates above the
physical layer and may be used to collect data frames re-
ceived by radios distributed across different access points
at different locations; thus, our system achieves diversity at
the macro level. Furthermore, a WLAN operator can build
a MRD WLAN using 802.11n hardware to exploit the path
diversity gains at different scales.

Code Division Multiple Access (CDMA) cellular phone
networks have long used “macrodiversity” to improve per-
formance and to provide seamless handoff between base sta-
tions [28]. Both [21] and [33] applied the idea to use macro-
diversity and frame combining on frames received from ad-
jacent access points to improve uplink WLAN performance
in the same way as MRD. However, [21] presents simulated
results based on a capture model and ignores protocol level
issues such as ARQ. The contributions of [33] lie in the the-
oretical performance evaluation in the context of a WLAN
based on Bluetooth [11] radios. In contrast, our contribu-
tions lie in the design of a macrodiversity system that works
well in CSMA-based WLANs and in conducting a perfor-
mance study of a fully implemented receiver macrodiversity
system on a real testbed.

The idea of recovering a frame by combining it with a
retransmitted version was first proposed in [31] and then
further analyzed in [13, 14]. Hybrid ARQ is an extension
of this technique, which combines forward error correction
(FEC) and retransmission to recover unsuccessful transmis-
sions [22]. Although numerous hybrid ARQ schemes are
available, we chose block-based combining because it has
the advantage that 1) there is no encoding and it inserts
no extra FEC bits into the frame, 2) it uses hard decision
(i.e., it performs correction using only the received data bits
without requiring extra information from the physical layer),
and consequently 3) the algorithm is easy to implement. A
scheme proposed in [8] uses collaborative decoding to im-
prove link reliability. The scheme is complex and requires
the receivers to exchange soft decision estimates of each data
symbol, which is not accessible from any wireless device on
market today.

A proposal that uses 802.11’s request-to-send(RTS)/clear-
to-send(CTS) control packets to convey the results of packet
combining is outlined in [13]. Because RTS/CTS is required
for every transmission, the proposed method (which was
not implemented and experimentally evaluated) will pro-
duce much higher overhead than our RFA protocol.

Like MRD, multi-user diversity [18] and medium-access
diversity [17] also exploit the fact that losses at different re-
ceivers occur independently. In both techniques, an AP has
a queue of packets destined for different clients and attempts
to improve network performance by scheduling transmis-
sions to the client receiver that has the best channel condi-
tion in a given moment. In contrast to MRD, the technique
requires explicit receiver selection and channel quality feed-
back from each receiver. These requirements are necessary
if the receivers are not inter-connected by a high bandwidth
back-channel that MRD relies upon.



10. CONCLUSION
MRD uses wireless path diversity to improve loss resilience

in wireless local area networks. It coordinates wireless re-
ceptions among multiple radios—either co-located on the
same device or distributed across different access points in
the WLAN infrastructure—to increase loss resilience against
path-dependent corruptions in the wireless medium. Using
multiple radios, MRD performs frame combining, which at-
tempts to correct bit errors by combining corrupt copies of
data frames received by each radio in our system. Because
losses are often independent among different receivers, MRD
is able to achieve significant improvement in loss rates.

Our experiments in an in-building testbed using commod-
ity PCs and 802.11a/b/g wireless interfaces demonstrate
throughput gains of up to 2.3× that of single radio com-
munication schemes, with the corresponding one-way delay
bounded to 35 ms for 95% of the delivered packets.

From the experience we gathered in building and evalu-
ating MRD, we discovered a number of performance opti-
mizations such as marking packets for low-latency and out-
of-order delivery, and sharing MRD feedback with the link-
layer to improve rate adaptation and contention window ad-
justments. We plan to pursue to design and integrate these
optimizations to further improve the performance of MRD
in the future.
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