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Abstract—Surveillance of large land, air or sea areas with a
multitude of sensor and sensor types typically generates huge
amounts of data. Human operators trying to establish individual
or collective maritime situation awareness are often overloaded
by this information. In order to help them cope with this infor-
mation overload, we have developed a combined methodology
of data visualization, interaction and mining techniques that
allows filtering out anomalous vessels, by building a model over
normal behavior from which the user can detect deviations. The
methodology includes a set of interactive visual representations
that support the insertion of the user’s knowledge and experience
in the creation, validation and continuous update of the normal
model. Additionally, this paper presents a software prototype that
implements the suggested methodology.
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I. INTRODUCTION

Detection of unusual vessel activities has been identified

as an important objective for enabling maritime situation

awareness in the homeland security domain [1]. Achieving

situation awareness is crucial for making effective decisions

[2]. However, such awareness in complex situations may

be difficult to achieve. Surveillance systems are commonly

complex in function and structure because they process and

present huge quantities of heterogeneous data from multiple

sources (radars, cameras, automatic identification systems,

etc.). Monitoring this kind of systems is a challenging activity

for humans, due to not only the amount of information,

the high number of variables involved or the opacity and

complexity of the data mining techniques used in the detection

process, but also other factors, like time pressure, high stress,

inconsistencies and the imperfect and uncertain nature of the

information.

Automatic learning algorithms for anomaly detection are

usually based on the assumption that sufficient training data

is available and nearly complete with regard to all possible

normal behaviors. Otherwise, the learned model of the normal-

ity cannot confidently classify new observations as abnormal,

since it can just be unseen normal events. This assumption,

however, is very optimistic since recorded training data can

hardly cover all the possible events that occur in reality.

Human expert knowledge can be very valuable in these cases

as it can be used to update, refine and improve the normal

model and guide the anomaly detection process. However,

analytical models for anomaly detection are not necessarily

intuitive to humans. Information visualization methods can be

of great value when large data sets must be analyzed, but they

can also be limited by the problem of data dimensionality,

especially when a high number of attributes are to be dis-

played. We believe that in order to increase the confidence in

the detection of anomalies, it is useful to combine the power

of computational methods with human background knowledge,

experience and flexible thinking using interactive visualization.

In this paper, we propose a methodology that makes possible

to filter out vessels by building a model of normal behavior

from which we can detect deviations. Events that are classified

as anomalies can be flagged as alerts for a human operator who

continuously validates, updates and refines the normal model

by interacting with the visual representations of partial results

of the detection process.

The main contribution of this paper is an interactive method-

ology based on visual representations that involves the user

in the anomaly detection process and therefore benefits from

the operator’s knowledge and experience. Thus, the detection

procedure becomes transparent to the user, which increases

his/her confidence and trust in the system.

II. INFORMATION FUSION, HCI AND INFORMATION

VISUALIZATION

In today’s information age, the lack of information is seldom

a problem. Rather the problem is often the opposite, the

overload of information. The difficulty of processing and

handling vast amounts of information from many sources is

a common feature of many real-life domains. Military oper-

ations, crisis management or homeland security applications

involve a large number of actors with different characteristics,

needs and behaviors. Part of the solution lies in the ability

to process and filter the information in a manner that results

in knowledge, providing responders and decision makers with

improved situation awareness.

Information fusion has been identified as key enabler for

providing decision support [3]. It includes theory, techniques

and tools for exploiting the synergy in the information ac-

quired from multiple sources, for example sensors observing

the environment, databases storing knowledge and simulations

predicting future behavior [4].

Most information fusion applications are designed for hu-

man decision makers, but perhaps often without sufficient
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consideration for the actual end users. The lack of research

in human-computer interaction related issues has been ac-

knowledged by several researchers in the information fusion

community (e.g [5]–[7]). The traditional approach, typically,

as illustrated by the JDL model, shows that data flows from

sensors (source) toward the human (receiver). This is a some-

what simplistic interpretation though, given that the human is

often involved in each step of the fusion process and is not only

an information consumer. Using this basic orientation, rich

information from multiple sensors is compressed for display

on a two-dimensional computer screen (referred to as the “HCI

bottleneck” problem by Hall, Hall and Tate [8]).

In order to overcome the HCI bottleneck in the information

fusion process and account for functions for information

representation and human machine interaction, Hall, Hall and

Tate, [5], proposed the introduction of a new level in the

JDL model, level 5: cognitive refinement. Level 5 accounts for

functions to support a human decision-maker in the loop, users

in collaborative environments and cognitive aids. Examples

of functions for level 5 processing are (adapted from [8]):

cognitive aids (functions to aid and assist human understanding

and exploitation of data); negative reasoning enhancement

(humans have a tendency to seek for information which

supports their hypothesis and ignore negative information);

uncertainty representation (methods and techniques to improve

the representation of uncertainty); focus/defocus of attention

(techniques to assist in directing the attention of an analyst

to consider different aspects of data) or pattern morphing

methods (methods to translate patterns of data into forms

that are more easy for an human to interpret). Other authors,

like Waltz and Llinas [9], have suggested that the overall

effectiveness of a data fusion system is strongly affected by

the HCI efficacy.

The use of information fusion techniques can generate

vast amounts of complex data that in many cases need to

be analyzed by a decision maker. The presentation of the

information, the graphical interface and the availability of

interaction methods play a central role in the acquisition of

the situation awareness necessary to make effective decisions.

Advances in data mining, information visualization, interac-

tive computer graphics (software and hardware) and human

computer interaction open new possibilities for the access,

analysis, navigation and retrieval of information. We believe

that methods that support user interaction will bring the best

of both sides: human knowledge and experience and the power

of automatic processing. Adequate visualization can not only

guide the decision making process efficiently but can also

support direct interaction with the data, allowing the user to get

insights, draw conclusions and, overall, make better decisions.

III. RELATED WORK

A. Anomaly detection

Anomalies are defined as deviations from normality. Detect-

ing these deviations can be seen as a classification problem

[10]: given a set of observations, they must be classified as

normal or abnormal. Nevertheless, conventional classification

algorithms cannot be used in real world problems. The main

reason is that commonly, only normal samples are available

in the training phase, and both normal and abnormal samples

are required when conventional classifiers are used. Moreover,

the set of anomalies can be infinite since we can encounter

unknown anomalies. There are many approaches to anomaly

detection in the literature (most of them in the network

security arena). The majority of them build a model of the

normal behavior in an unsupervised manner. Examples are

the work presented in [11] and [12]. Solutions based on

artificial immune systems have been also applied in intrusion

detection in network systems. An example of the latter is the

methodology presented in [10] where fuzzy characterizations

of normal/abnormal spaces are used in the detection process.

However, autonomous detection systems are rarely used in

the real world [13]. Cain et al. [13] point out that one of the

main contributing factors is the difficulty of representing the

prior knowledge that the users bring to their tasks. Examples

of methodologies for anomaly detection that include human

expert knowledge to any extent are rare. An exception is the

work presented in [14], where a solution based on Bayesian

networks uses the user input to build the normal model in

the training phase. Nevertheless, and despite the initial phase,

no further input from the user is proposed for updating or

validating the results. The methodology presented in this paper

tries to overcome this problem, where a set of interactive

visual representations support the introduction of the user’s

knowledge and experience in the creation, validation and

continuous update of the normal/abnormal model.

B. Anomaly visualization

Most of the published work regarding anomaly visualization

is restricted to the computer security area. Examples of this

kind are [15], using 3D displays, [16] regarding network traffic

visualization or techniques for visualizing security log-files

[17]. Another approach, using Self Organizing Maps (SOM),

is the work introduced in [18], where a final representation of

the normal/abnormal space is presented using SOM (however,

this approach does not include any interaction).

C. Visual data mining

Exploring, analyzing and finding the relevant information

in vast amounts of multidimensional sensor data is a complex

task. Data mining techniques can filter and extract valuable

patterns. The integration of data mining and information

visualization techniques has received a lot of attention in

recent years [19]. Nevertheless, visualization has been mainly

used to provide better understanding of the final results. The

need to tightly include the human in the exploration process

is now recognized by many authors (e.g. [20]–[24]). Visual

data mining focuses on integrating the user in the knowledge

discovery process using effective and efficient visualization

techniques and interaction capabilities. A classification of

visual data mining methods regarding data type, visualization

technique and the interaction/distortion technique can be found
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in [20]. Additionally, significant examples of the use of data

mining and data visualization can be found in [22].

Several tools/applications that offer a diverse number of data

mining and visualization functionalities have been developed

to support the various steps of the knowledge discovery

process. Nevertheless, their support focuses often on one part

of the process, for example: data prepocessing and exploration

[25], clustering [26] or classification [27]. An exception is

VidaMine [28], an overall framework that supports the entire

discovery process: planning, data preprocessing, data integra-

tion, evaluation and presentation.

An emerging research area in the past years is visual

analytics. Visual analytics is defined as analytical reason-

ing supported by highly interactive visual interfaces [29].

Contributions in this area integrate information visualization,

interaction and computational analysis in order to transform

massive data into knowledge. When the data analyzed is space

related (like in our case), models, methods and tools presented

in geovisual analytics [30] are worth considering (e.g. [31]).

Information visualization and visual data mining has had

little attention in the information fusion community up to date

(for exceptions see [32], [33]).

IV. METHODOLOGY

Figure 1 shows a schematic diagram of the suggested

methodology for detecting anomalies. The “pre-processing

data” step includes cleaning, transformation and integration

of data functions. After the pre-processing step, visualiza-

tion methods and automated analysis methods are applied to

the data. The “building normal/special behavior model” step

creates a model of the normal behavior from observations

recorded during a period of time (training data). Once the

model is complete, real time observations (test data) are

processed in order to detect abnormal behavior. For that, the

cumulated probability value of the observed data is calculated

and compared to the threshold level. If the probability value

is higher than the threshold, the operator is notified (this

can be seen as a hypothesis generation process). The user

now has to acknowledge the anomaly, modify the model if

it is a false alarm or look for more information if he/she

cannot make a confident decision. The control of the events

is done through a graphical user interface (GUI) that supports

interactive visualization at various levels.

We use two layers of visual representations in the anomaly

detection process: (1) general views (list of alerts, geographical

map, configurable views– different attributes vs time or space,

detailed information, etc.) and (2) interactive displays that

allow direct manipulation with the data mining module that

builds the normal/special behavior model. The set of interac-

tive visual representations support the user in the knowledge

discovery process and in the insertion of the user’s experience

and knowledge in the system.

The purpose of the suggested methodology is to support the

acquisition of situation awareness through interactive visual-

ization, from the extraction of the environmental information
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Figure 1. Anomaly detection process. Recorded data is used to build a
normal model that is later used to determine the probability a of real time
observations from sensors. The interaction capabilities of this methodology
support the involvement of the user in every step of the detection process and
in the continuous refinement of the normal space characterization.

and its integration with previous knowledge to create a coher-

ent mental picture, to the prediction or anticipation of future

events. Furthermore, the interaction capabilities engage the

user in the detection process, turning it into a more transparent

process that may increase the user’s trust in the system.

The following section presents an instantiation of the

methodology, section VI presents an overview of the general

views and the GUI and, finally, an application example using

synthetic data from a region of Sweden is presented in section

VII.

V. APPLYING THE METHODOLOGY TO MARITIME TRAFFIC

This section instantiates the usage of the methodology for

maritime anomaly detection focusing on the “building the

normal/special behavior model” step of the process depicted

in figure 1.

A schematic diagram of the approach selected to build the

normal/special behavior model is shown in figure 2. This

approach is based on the work presented in [12] (a Gaussian

Mixture Model (GMM) over a SOM of the training data is

used for that). We have extended here their proposal adding

an interactive module that allows continuous refinement of the

calculated model and development of a “special event” model

by the user. This method was selected over other approaches

since it generates a visual representation of the normal space

and feature clusters that can be used as an interactive basis for

refining the model. The graphical representation of the model

of the environment facilitates the understanding of the model

itself, since peaks and valleys are quickly identified as normal

and abnormal behavior (see figure 5).

Essentially, the detector builds a normal behavioral model

using a clustering algorithm, the SOM, over the training data

set. The SOM learns what is normal via iteration over the

training data. In order to quantify probabilities of normal

and anomalous behaviors, the detector uses a GMM coupled

with the use of Bayes’ theorem. Once the model of the

normal behavior is established, the detector can be used on

the test data (which represent real world observations – sensor

readings of vessel movement). For each new observation,

P (observationvesselID) is calculated. A sliding window over

the m most recent observations is used to calculate an average

probability value. If the probability value is higher than a given

threshold, the detector will flag the vessel as anomalous.
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Figure 2. Simplified schema of the anomaly detector (corresponding to the “pre-processing” and “building normal/special behavior model” steps in figure
1). SOM and GMM are used to create a model of the normal behavior over the training data. The user validates this model by interacting with the visual
representations of partial results of the algorithm. A model of special events is also created, validated and updated by the user. The operator can set parameters
for example, the alarm threshold.

A. Clustering using a Self Organizing Map

A SOM can be seen as a clustering algorithm based on a

neural network [34]. It takes a set of n-dimensional training

data as input and clusters it into a smaller set of n-dimensional

nodes, also known as model vectors. These model vectors tend

to move toward regions with a high training data density,

and the final nodes are found by minimizing the distance

of the training data from the model vectors [35]. The SOM

creates a 2D map from n-dimensional input data. In the map,

it is usually possible to identify borders that define different

clusters [36]. These clusters consist of input data with similar

characteristics, in our case, vessels with similar behavior. The

output from the SOM is useful for classification, and can be

used for portraying a compressed representation of a “normal

picture” (see an example in figure 3). However, it does not

provide a complete solution to the anomaly detection problem

since there are many events that do not clearly fall into these

well-defined clusters. Therefore, a GMM has been used on top

of the SOM.

B. Statistical characterization of clusters using a Gaussian

Mixture Model

A GMM is a statistical model in which the overall probabil-

ity distribution, P (x1, ..., xn), is synthesized from a weighted

sum of individual Gaussian distributions (where the sum

always is vaguer than the individual distributions themselves).

P (x1, ..., xn) =
D

∑

i=1

D
∑

j=1

pijPij(x1, ..., xn) . (1)

The individual distributions, Pij , in this case correspond to

the model vectors that were the output from the SOM. Each

U-matrix
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266

Heading

Figure 3. SOM for the HF (cargo ship) vessels. The maps have rectangular
structure and the dimensions of the grid are 60 by 60 (D). The first map
corresponds to the unified distance matrix (U-matrix) and then the component
planes for the features speed and heading. The U-matrix visualizes distances
between neighboring map units, and thus shows the cluster structure of the
map: high values of the U-matrix indicate a cluster border, uniform areas
of low values (blue) indicate the clusters themselves. The component planes
show clusters of data with similar values (a color identifies a cluster).

model vector is characterized by a n-dimensional Gaussian

probability density function. The mean of each individual

probability density function is given by the final weights for

the model vector, while the variance is given by the dispersion

of training data around the model vector. Since the probability

density function is a multivariate Gaussian distribution, it can

be calculated by

Pij(x1, ..., xn) =

1
√

(2pij)n|Σ|(1/2)
exp

(

−
1

2
(x − µ)T Σ−1(x − µ)

)

, (2)

where µ is the mean vector, Σ is the covariance matrix, and

|Σ| is the determinant of Σ.

The mixing proportions pij in equation 1 and 2 are weights

of each individual model vector. The mixing proportions

correspond to the probability of each map unit to be selected

as the best matching unit in the SOM (see figures 4 and 5).
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C. Calculation of probabilities using Bayes’ theorem

When new observations arrive, the GMM can be used to

quantify the likelihood P (d|H = normal) for obtaining

the observation d given the learned model of what is to

be considered as a normal event (H is the hypothesis).

However, the quantity we want to calculate is the probability

of an anomalous event, given the observed data, P (H =
anomalous|d) (in order to calculate P (H = anomalous|d),
we can just take the complement 1 − P (H = normal|d),
where P (H = normal|d) is the probability of a normal event

given the observed data). To calculate P (H = normal|d)
from the likelihood we have to use Bayes’ theorem:

P (H = normal|d) =

P (d|H = normal)P (H = normal)
∑

h∈H P (d|h)P (h)
, (3)

where h refers to the hypothesis: being normal or not. The

prior probability, P (H = normal) adjusts the detection

threshold and can be fine-tuned by the human operator in order

to get an acceptable ratio between the detection rate and the

false positive rate. Otherwise, it reflects the expected relative

frequency between the number of normal observations and the

total number of observations. The denominator in equation 3

can be seen as a normalization constant. In order to calculate

this normalization constant we need to know the quantity

P (d|H = anomalous), which is not known since we have

not built such a model. Hence, we conclude:

P (H = normal|d) ∝ P (d|H = normal)P (H = normal) .

(4)
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Figure 4. SOM grid: each node represents all the observations that had
this neuron as the best matching unit (model vector). The mixing proportions
(pij ) represent how probable it is that the neuron is the best matching unit.
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D. Interaction module

An average probability value is calculated continuously over

the m most recent observations. If the probability value is

higher than a given threshold, the detector will flag the vessel

as anomalous and alert the operator. If the user considers that

it constitutes a real threat and it is representative of abnormal

behavior, the observed data will be part of the “special

events” database. The “special events” database contains any

behavior that the user would like to be alerted of in the future

(that includes not only abnormal behavior but also any rare,

suspicious or unknown events). However, if the user considers

that the flagged vessel exhibits a normal behavior, the normal

model must be updated in order to prevent that this false

alarm occurs in the future. The user then interacts with the

graphical representation of the mixing proportions of the SOM

(see figures 4 and 5) or introduce the probability values of

the event (from very probable to not probable at all). In the

latter, the observations are added to the training data and

its weight values are updated regarding the probability value

that the operator has introduced. Using coordinated views, the

modified values update the main map display and the alert list.

Thereby, the model of normal behavior is built and updated

by the user.
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Figure 5. Mixing proportions pij . Peaks and valleys are quickly identified as
normal/abnormal behavior. The user can drag/modify the probability values if
he/she considers that they are not realistic. If one probability value is modified,
the others are recalculated (see figure 4). This graphical representation
provides support for interaction and continuous refinement of the normal
model.

VI. GRAPHICAL USER INTERFACE

The methodology presented in section IV and instantiated

in section V has been implemented in a software prototype

interface. Its design is based on the suggested requirements as

seen in the literature ([37] and [38]) and the needs specified by

experts from Saab Microwave Systems (Gothenburg, Sweden).

The GUI supports interaction at various levels in order to

increase the confidence in the identified anomalies.

The graphical interface has been divided into three main

areas or modules (see figure 6): geographical map (left side of

the display), controls (right side of the display: filter module,

detection module and vessel module) and detailed information

and alarms list (bottom left side of the display).

There is a basic task that the operator constantly carries out:

establishing and update the normal picture or situation of the

supervised zone. Over the normal situation, abnormal behavior

must be identified. Therefore, both background awareness
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Figure 6. Graphical user interface: filter, detector and vessel module.

(keeping the “big picture”) and foreground awareness (par-

ticular details) must be supported. The vessels are displayed

over a background map of the area. There is an overview

map that shows in which area the cursor is at the moment

(this map facilitates navigation, zooming in and out and

displays information of the area: exact coordinates of the

cursor, temperature, precipitations, wind, etc.). Different icons

are used to represent vessel type. Part of their tracks are

displayed (positions reported by the sensors in the last hour).

Longer tracks indicate high speed. If the vessel is flagged as

anomalous, its identification number and a colored ellipse will

appear around the icon. The color reflects the probability of

the anomaly (red, orange, yellow).

Below the main map, detailed information on the alerts,

selected vessel and reported alerts is displayed. When a vessel

is flagged as anomalous, a card with its information appears

in the alert list (with information such as object ID, exact

coordinates, probability of being anomalous, age of the alert,

delete and report buttons, etc.). The right side of the display

shows the reported alerts to the control center.

Filtering options are grouped under the filter tab. The

operator can filter the displayed vessels regarding: vessel

type, attribute values, display complete tracks for the selected

objects, show all the vessels or detected objects, show coverage

from our sensors, etc.

The next tab groups functions related with the detection

process. The operator can select the source of the data since

different sensors have different coverage, resolution and error

margins. The period of time of the training data can be also

chosen. Additionally, the operator can select the type of vessel,

the features involved in the detection process, the values of the

learning rate (SOM), sliding window number of samples (m)

and threshold value. Under this tab the operator can control

the “building the normal/special behavior model” module,

e.g. manipulating the mixing proportions display (figure 5).

Cumulative probability values and the threshold value are

displayed over time (the operator can adjust the threshold value

in real time, thus controlling the false alarm rate). Views of the

continual evolution of the model vectors for a given boat can

be found under the tab “vessel”. Here, the history of the vessel

can be displayed. Parallel views and 3D views of individual

features vs. position are available.

VII. APPLICATION EXAMPLE

In order to test the approach presented here and exemplify

the visual interactive components, we have used training and

test data provided by Saab Microwave Systems. The data has

been generated using the ground target simulator GTSIM,

described in [39]. Since the training data is synthetic, it

does not include any anomalies. The original data consists

of a large set of observations with a number of attributes:

time stamp, object-ID (object identification number), object

type (classification, e.g. fishing boat, cargo, etc.) and position

(given by x-, y- and z-coordinates using the Swedish grid,

RT90). There are some measurement errors associated with

the objects positions, otherwise there are no uncertainties in

the observations.

The training data set has been preprocessed by cutting out a
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region of interest, in this case a region south of Sweden. The

original attributes have been preprocessed into the following

attributes: time stamp, vessel type, x-coordinate, y-coordinate,

z-coordinate, speed and heading. There are three types of

vessels: F (‘Fartyg’, vessel), FF (‘Fiskefartyg’, fishing boat)

and HF (‘Handelsfartyg’, cargo ship).

The initial experiments have focused on the cargo ship

vessels, HF, since their behavior is easier to analyze than, for

example, the fishing boats. For testing our approach, anomalies

were hidden in the synthetic test data. Two different types

of anomalies were found using the methodology described in

previous sections: (1) one of the vessels has abnormal speed

values, compared to the training data and (2) a HF vessel

approaches the coast (this constitutes an abnormality since this

behavior has not been seen before in the analyzed area, here,

the heading values are not considered normal). Nevertheless,

in order to detect the vessel approaching the coast line, the

threshold value must be reduced considerably, which generates

high number of false positives. There are also other anomalies

in the test set which our detector has not been able to find, for

example HF vessels acting as fishing boats. We believe that

the number of observations m used to calculate the average

probability value must be higher in these cases, since the

abnormality occurs in many samples that represent the track–

positions. But a high m value will mask abnormal behavior

that occurs in few samples. Thus, the selection of m is of

high importance since will affect the detection rate and the

false positive rate. Another solution is to calculate different

average values for different m values.

In conclusion, preliminary results show that this approach

produces satisfactory outcomes, since single attribute anoma-

lies can be detected. However, the experiments carried out

evaluate the performance of the anomaly detector, but no

user tests have been performed so far to really prove the

effectiveness or usefulness of the complete methodology. User

evaluations will be carried out in the near future.

VIII. CONCLUSIONS AND FUTURE WORK

Surveillance applications are a clear example where vast

amounts of multidimensional sensor data from a large number

of objects with different characteristics and behaviors are

processed. Finding relevant patterns and special events in them

is normally a difficult task that can rarely be solved in a fully

automatic manner. We believe that data mining methods that

support user interaction integrate the best of both sides, human

knowledge and the power of automatic processing. Never-

theless, human interaction is not easy to include in complex

cases. Visual representation of partial results of the automatic

process and interactive views can support the involvement of

the user in the detection process, bringing his/her knowledge

and experience into the system. This paper has presented

and exemplified a methodology that combines human expert

knowledge and data mining techniques through interactive

visualization in order to discover anomalies in maritime traffic.

Although the methodology described in section IV has been

developed for maritime anomaly detection in particular, it has

much wider application in general (e.g. it could also be used

in network intrusion detection).

Future improvements to this method will involve the in-

corporation of relational information (relations with other

vessels or objects in the environment). The evaluation of this

methodology will be complemented with tests on real world

data. In this case, modifications or extensions to the method-

ology described here can be required, since the assumption

of no abnormal behavior in the training data may not hold.

Furthermore, other important issues, like how to store the

information in the normal/special behavior databases, will be

considered.

In the future, studies will be undertaken to further evalu-

ate the usefulness of the suggested methodology. However,

objective measures of effectiveness for visual data mining

techniques are rare. Methods used in the HCI community can

be applied here (for example, the usefulness of a software

product can be defined by its usability and utility).
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