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Abstract: Forest structural parameters, such as tree height and crown width, are 

indispensable for evaluating forest biomass or forest volume. LiDAR is a revolutionary 

technology for measurement of forest structural parameters, however, the accuracy of 

crown width extraction is not satisfactory when using a low density LiDAR, especially in 

high canopy cover forest. We used high resolution aerial imagery with a low density 

LiDAR system to overcome this shortcoming. A morphological filtering was used to 

generate a DEM (Digital Elevation Model) and a CHM (Canopy Height Model) from 

LiDAR data. The LiDAR camera image is matched to the aerial image with an automated 

keypoints search algorithm. As a result, a high registration accuracy of 0.5 pixels was 

obtained. A local maximum filter, watershed segmentation, and object-oriented image 

segmentation are used to obtain tree height and crown width. Results indicate that the 

camera data collected by the integrated LiDAR system plays an important role in 

registration with aerial imagery.  The synthesis with aerial imagery increases the accuracy 

of forest structural parameter extraction when compared to only using the low density 

LiDAR data. 
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1. Introduction 

 

Forest structural parameters, such as tree height, crown width and canopy cover are critical to study 

the biomass, biogeochemical cycles, ecological function, exchange between mass and energy, water 

budgets and radiation transfer in a forest system [1-3]. Accurate forest inventory is crucial to forest 

resource management and wildlife habitat assessment [4,5]. 

It is desirable to use 3D measurement techniques to extract tree height and crown size information. 

Before airborne LiDAR became available, aerial photogrammetry and InSAR had been used to extract 

forest structural information at various scales ranging from individual trees to landscapes [6,7]. 

However, these 3D technologies require image matching from multi-angular images and it is often 

difficult to obtain reliable results. Preprocessing techniques that can help locate individual trees, 

particularly tree tops, are helpful to improve image matching accuracies.  Wulder et al. adopted local 

maximum filtering to locate trees on high spatial resolution imagery [8]. Wang et al. used a marker-

controlled watershed segmentation technique to extract crown size and detect treetops based on high 

spatial resolution aerial imagery [9]. However, these methods are based on optical imagery and 

assumed that treetops and crowns have higher reflected radiation because they expose more sunlit 

surface. Sometimes, under cloudy imaging conditions or with dense canopy closure, treetops are 

difficult to identify, even visually. 

LiDAR (Light Detection and Ranging) is an active ranging technique that can directly measure 3D 

forest canopy coordinates at laser illuminated locations. Canopy coordinates can be used to 

characterize forest structural information [10]. A number of approaches have been proposed, with 

varying degrees of success, to characterize individual trees using LiDAR data. Bortolot adopted an 

object-oriented method using tree clusters as objects to assess canopy cover and density [11]. Popescu 

et al. used a local maximum filtering method with variable window size (based on a canopy height 

model) to extract tree height and used a regression model to retrieve crown diameter [12]. Koch et al. 

used a pouring algorithm to delineate crown shape based on treetops detected by local maximum 

filtering algorithm [13]. Chen et al. adopted watershed segmentation to isolate individual trees and 

proposed an improved watershed segmentation algorithm with a distance-transformed image to reduce 

inadequate segmentation [14]. All of these methods rely on computer vision techniques developed for 

optical imagery in order to process canopy height models. The density of the LiDAR point cloud 

affects the accuracy of crown shape delineation. Optical images provide information about geometry 

and color that is useful for delineation of tree crown shape and size. There is great potential for 

synergy between high-resolution optical imagery and LiDAR data for forest structural parameter 

extraction. However, only a small amount of research has been published on this topic.  

Hill and Thomson used HyMap data to classify vegetation type and LiDAR data to retrieve canopy 

height [15]. Hudak et al. integrated Landsat Enhanced Thematic Mapper Plus (ETM+) and LiDAR to 

assess forest canopy height based on spatial and aspatial models [16]. Popescu and Wyne used high 

resolution optical imagery to differentiate deciduous trees and pines, and combined LiDAR data to 

estimate height of different tree species [17]. These studies provide evidence that integrating LiDAR 
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data and optical imagery could improve extraction accuracy of forest structural parameters. The main 

problem in integrating high resolution optical imagery with LiDAR data is co-registration. Absolute 

geometric coordinate information has been used to match imagery. This method requires high accuracy 

navigation and tracking hardware, such as global positioning systems (GPS) and inertial measurement 

units (IMU) which describe the three dimensional orientation of the scanner according to the 

instrument pitch, roll and yaw.  

The objective of this paper was to evaluate the quality, accuracy, and feasibility of an automatic tree 

extraction method based on low density LiDAR point data and high resolution imagery. Specific 

questions include: 

How can LiDAR data be better registered with high resolution aerial imagery? 

How much improvement in structural parameter extraction is possible when LiDAR data are 

integrated with high resolution aerial imagery? 

Section 2 outlines the study area, LiDAR data specification, high resolution aerial image 

characteristics and field data. In Section 3, we introduce methods used for automatic DEM generation, 

registration and tree structural parameter extraction. The results are presented and discussed in 

Sections 4 and 5, respectively. Finally, some conclusions are drawn in Section 6. 

 

2. Materials  

 

2.1. Study area  

 

The study area was selected in the Culai Mountain National Forest in the Shandong Province of 

China, with geographic coordinates 117°16′~117°20′E, 36°02′~36°17′N. This site is approximately 

7,164 hectares and covers nine different forest types (Figure 1). The main tree species include 

hardwood (Quercus liaotungensis) and conifer trees (Pinus armandi Franch). 

 

Figure 1. Location of Culai Mountain in Shandong Province, P.R. China. 

 
 

2.2. LiDAR and aerial imagery  

 

The LiDAR data and the aerial imagery were collected May, 2005, using a Riegl LMS-Q280i 

airborne laser scanner and DCS22 (Digital Camera System 22 megapixels), respectively. The LiDAR 

was operated at a nominal altitude of 800 m above ground level and recorded the first returns as well 
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as the return intensity in a single pass. A 22% overlap between adjacent strips ensured that no gaps 

appeared in the surveyed area. The maximum scan angles were ±30° off nadir and the average 

sampling space is about 1.6 m (0.43/m2 for whole area, 0.57/m2 for broadleaf tress and 0.65/m2 for 

conifer trees). The nominal accuracy of horizontal (x, y) and vertical (z) is about 0.5 and 0.2 m, 

respectively. The LiDAR contains a “true color channel” which provides, for each return, 8-bit red, 

green and blue (RGB) intensities of the target in addition to the x,y,z position information. Detailed 

specifications of the Riegl LMS-Q280i sensor can be found at the following URL: 

http://www.3dlasermapping.com/en/airborne/hardware/Q280i.htm. The DCS22 is a charge coupled 

device (CCD) camera with 22 mega pixels and each pixel is 9 μm in size. The DCS22 imagery has a 

50 cm spatial resolution with a 40% overlap along the flying direction and a 30% overlap across flight 

lines. 

 

2.3. Field data  

 

We selected two different field sampling sites including hardwood and conifer trees and measured 

tree heights and crown widths using clinometers and tapes. Crown widths were estimated by averaging 

two direction measurements taken at North-South and West-East. The general statistical information of 

representative species is listed in table 1, which includes numbers, mean of tree height and crown 

width (Mean_TH and MD_CW) and  standard deviation of tree height and crown width (SD_TH and 

SD_CW). The data in Table 1 were generated from field measurements of the trees. Tree positions 

were located with a GPS (LEICA GPS1200). Two GPS were used for location measurement, one for a 

base station and another for measuring. There are more than 20 GPS records for each tree position 

(www.geoservis.si/dnload/doc/System1200/GPS1200_ApplField_en.pdf).  

 

Table1. Statistical information of trees measured in the field, by species. 

Species Numbers Mean_TH(m) SD_TH(m) Mean_CW(m) SD_CW(m)

Quercus liaotungensis 35 16.81 3.54 7.37 1.91 

Pinus armandi Franch 56 8.96 1.70 4.30 1.20 

 

3. Methods  

 

3.1. LiDAR data processing  

 

For the purpose of retrieving tree heights, a morphological filtering method was used to separate the 

ground points from the tree points and to generate the Digital Elevation Model (DEM). The CHM 

(Canopy Height Model) was created by subtracting the DEM from the Digital Surface Model (DSM). 

The morphological filtering algorithm was developed by Chen et al. [18]. The detailed procedure of 

DEM generation is as follows: 

First, a grid was created to record the last return (the lowest z value) of all pulses falling in the cell. 

The size of grid was decided by the average scanning density:  
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 (1) 

where R is the cell size in meters, N is the total number of returns in the point cloud and x and y are the 

dimensions in map coordinates. 

If some cells had no return pulse within them, they were filled with the nearest cell value. This grid 

is denoted gmin. Then, a morphological open operation was used to filter vegetation and artificial 

objects such as buildings; this grid is named gopen. Finally, an initial set of terrain pulses were 

identified by calculating the difference between the grid after morphological filtering (gopen) and the 

original grid (gmin). The difference grid is denoted gdiff. The cells of gdiff where |gdiff| < Average(gdiff) 

were classified as terrain pulses and these points were used to create a DEM with a Kriging 

interpolation. 

 

3.2. CHM and aerial image registration  

 

The basic idea for registration of aerial images and the CHM is to use the RGB intensity 

information contained in the LiDAR records as a connection between the LiDAR data and the aerial 

image. In this LiDAR system, there is a true color channel that includes RGB intensity of the target 

with every return. So the LiDAR data not only include range information, but also reflected RGB 

information. The SIFT (Scale Invariant Feature transformation) algorithm was employed for matching 

LiDAR RGB data and aerial images. The SIFT was introduced by Lowe. It is an approach for 

detecting and extracting distinct features from images [19]. The features are invariant to image scale, 

rotation and robust with respect to changes in illumination, noise and, to some extent, changes in the 

3D camera viewpoint. By using the feature points found by SIFT, a feature matching registration can 

be carried out. The flowchart of image registration is shown in Figure 2. 

 

Figure 2. Flowchart of the image registration method. 

 
 

3.3. Tree height and Crown width retrieval  

 

Treetop detection is a prerequisite for tree height and crown width retrieval. The basic assumptions 

of tree top detection using the CHM are as follows: 
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1. The tree top is always convex and surrounded by an area that is concave.  

2. The canopy has a roughly circular outline when viewed from above.  

3. The tree top has a higher value than the surrounding area in the CHM.   

4. Trees are not clustered in such a way as to be confused for one crown. 

5. There are an insignificant number of suppressed trees that are obstructed by a dominant 

overstory. 

A local maximum filter algorithm was introduced to detect tree tops. The main problem 

encountered when using local maxima to detect tree tops is that non-treetop local maxima are 

incorrectly classified as treetops. A correlation relationship between tree height and crown size was 

used to reduce the commission errors, as described in Popescu and Wynne [17], and Chen et al. [14]. 

Watershed segmentation was used to extract crown size. The process of watershed segmentation 

can be illustrated in terms of flooding simulations [20]. Individual crown shape is retrieved after 

segmentation. There are two ways to calculate the crown size, one using a circle to fit crown shape and 

using the diameter as crown width, the other using average crown diameter along two perpendicular 

directions. In this paper, the circle fitting method was adopted. This method was more suitable for the 

low resolution CHM resulting from sparse LiDAR point clouds. An object-oriented segmentation 

method was used to process the high resolution aerial imagery to get the more elaborate crown 

information.  This segmentation method uses region merging based on object heterogeneity of shape 

and spectral values [21]. The segmentation was performed using the BerkeleyImageSeg software 

package (http://www.imageseg.com/).  

 

4. Results  

 

Figure 3 shows the initial DEM after morphological filtering. The LiDAR points above ground have 

been removed leaving some gaps on the terrain.  

 

Figure 3. Initial DEM after morphological filtering. 
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Figure 4 shows the frequency histogram of the initial DEM. As illustrated in Figure 4, the 

distribution of the original DEM is approximately normal, so Kriging interpolation was used to 

generate the final result as illustrated in Figure 5. 

 

Figure 4. Distribution of the original DEM. 

 
 

Figure 5. Final DEM after Kringing interpolation. 

 
 

In order to assess the quality of the DEM, several points were measured in the field with high 

precision GPS. A Pearson’s correlation analysis (R), RMSE and MD (Equation 2) were performed to 

calculate the degree of correlation between the GPS measurements and the DEM (Figure 6):  
( )j iMD mean Y Y   (2) 

where jY  is the estimated measurement and iY  is the field measurement. 

The R squared, RMSE and MD are 0.98, 4.41 and 3.95 m, respectively, and the regression curve is 

almost parallel to the one to one line. This indicates that the DEM is close to elevation measured by 

GPS but has a systematic error in it. 
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Figure 6. Correlation between measured GPS and DEM. 
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The canopy height model is shown in Figure 7. As shown as Figure 7, most points have values from 

-0.5 to 0.5 m. Greater values were colored by yellow and red, which indicate trees in the CHM.  

 

Figure 7. The CHM generated from LiDAR data. 

 
 

Figures 8 and 9 show high resolution airborne imagery and true color imagery rasterized from the 

RGB intensity of LiDAR returns, respectively. 141 pairs of control points were selected using the 

SIFT algorithm and a cubic polynomial was used to match the rasterized RGB to the high resolution 

airborne imagery.  
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Figure 8. Aerial image covering the study area. 

 
 

Figure 9. True color image rasterized from the RGB intensity. 

 
 

Figures 10 and 11 show their relative positions before registration and after registration, 

respectively.  As shown in Figure 11, we can see that roads connect after registration. In order to 

assess the match accuracy, 20 points was selected randomly, and the RMSE computed from the points 

is 0.47 pixels, indicating a good match. 



Sensors 2009, 9  

 

 

1550

Figure 10. Relative position before image registration. 

 
 

Figure 11. Local slice after image registration. 

 
 

Figure 12 shows location of treetops using the local maximum filter and trees are paired by visual 

analysis. Tree positions measured in the field were compared to the results obtained from the CHM 

using local maximum filtering and from the aerial image using object-oriented segmentation. Each 

GPS measured tree was paired with a corresponding treetop when a GPS measured tree location was 

within the coverage of a crown diameter estimated by watershed segmentation from the CHM or 

object-oriented segmentation from the aerial image. Errors of omission were recorded when a field-

measured tree could not be successfully paired with a tree identified from the CHM or the aerial image. 

Errors of commission were not recorded because not all of the trees were measured in the field [22].  
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Figure 12. (a): Tree tops obtained from applying local maximum filtering to CHM, (b) and 

(c): Larger scale view of the tree tops (shown with cross) and ground measured trees (dot) 

of broadleaf and conifer trees, respectively, where the matched trees are linked with arrows. 
 

 
(a) 

  
(b)                                     (c) 

 

Table 2 presents omission errors for broadleaf and conifer trees identified from the CHM and aerial 

image. As listed in Table 2, omission errors from the CHM are greater than those from the aerial image 

for both broadleaf and conifer trees. Omission errors from the CHM have a greater difference between 

the two species (57.14% for broadleaf trees and 75% for conifer trees) than those from the aerial image 

(45.71% for broad leaf trees and 51.78% for conifer trees). As a whole, broadleaf trees could be 

identified better than conifer trees with both methods.  

 

Table 2. Omission errors of broadleaf and conifer trees identified from CHM and aerial images. 

Species CHM Aerial image 

Quercus liaotungensis (QL) 57.14% 45.71% 

Pinus armandi Franch (PAF) 75.00% 51.78% 
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Pearson’s correlation (R), RMSE and MD analysis between measured tree height and predicted tree 

height is illustrated in Table 3 and Figure 13. In order to analyze tree height extraction of different 

species, tree height statistics for both broadleaf and conifer trees are illustrated. As shown in Table 3 

and Figure 13, tree heights for conifers and broadleaves are in distinct categories, which contribute to a 

high correlation when the trees are combined. The R coefficient, RMSE and MD are 0.83, 2.78 

and -0.97 m, respectively, though most predicted values are lower than measured values (-0.97 m). As 

for individual species, tree heights of conifer trees have a smaller RMSE and MD (1.81 m and -0.85 m) 

than those of broadleaf trees (3.45 m and -1.07 m). However, the correlation between measured and 

predicted tree heights of broadleaf is greater than that of conifer trees (0.26 for broadleaf trees and 0.12 

for conifer trees). 

 

Table 3. Goodness-of-fit statistics between observed tree heights and those predicted from CHM. 

Numbers Correlation RMSE(m) MD(m) 

QL PAF QL PAF QL PAF QL PAF 

29 0.83 2.78 -0.97 

15 14 0.26 0.12 3.45 1.81 -1.07 -0.85 

 

Figure 13. Scatter plot between observed tree heights and those retrieved from CHM, (a) 

for overall trees, (b) for broadleaf trees and (c) for conifer trees. 
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Goodness-of-fit statistics and scatter plots between measured and predicted crown width from the 

CHM for broadleaf, conifer and combined trees are shown in Table 4 and Figure 14, respectively.  

 

Table 4. Goodness-of-fit statistics between observed crown widths and those predicted from CHM. 

Numbers Correlation RMSE(m) MD(m) 

QL PAF QL PAF QL PAF QL PAF 

29 0.46 1.88 -0.01 

15 14 0.47 0.43 2.02 1.71 -1.21 1.26 

 

Figure 14. Comparison of observed tree crown widths with those retrieved from CHM using 

watershed segmentation, (a) for overall trees, (b) for broadleaf trees and (c) for conifer trees. 
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As listed in Table 4, the R coefficient, RMSE and MD are 0.46, 1.88 m and -0.01 m, respectively, 

for combined species. Goodness-of-fit statistics of broadleaf and conifer are compared in Table 4. The 

two species have similar correlation, 0.47 for broadleaf trees and 0.43 for conifer trees. Crown widths 

of conifer trees have a smaller RMSE (1.71 m) than those of broadleaf trees (2.02 m). As the results in 

Table 4 show, most extracted crown widths of broadleaf trees were less than observed crown widths 
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(MD is -1.21 m) and those of conifer trees were greater than measured crown widths (MD is 1.26 m). 

Comparison of Figure 14 (b) and (c) also shows a similar result.  

 

Table 5. Goodness-of-fit statistics between observed crown widths and those predicted 

from Aerial image. 

Numbers Correlation RMSE(m) MD(m) 

QL PAF QL PAF QL PAF QL PAF 

46 0.61 2.10 -0.40 

19 27 0.51 0.17 2.40 1.86 -0.67 -0.21 

 

Figure 15. Scatter plot of measured crown widths and those extracted from high resolution 

aerial image, (a) for overall trees, (b) for broadleaf trees and (c) for conifer trees.  
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Table 5 and Figure 15 show statistics and scatter plots of measured crown width and crown width 

determined from object-oriented segmentation on the high resolution imagery for overall trees, 

broadleaf and conifer trees. More trees were identified and paired with trees measured in the field, 
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resulting in 19 broadleaf trees and 27 conifer trees matched. The comparison between Table 4 and 

Table 5 shows that the correlation coefficient increases from 0.46 to 0.61 and more points in Figure 15 

are closer to the one to one line. This comparison indicates that higher accuracy of crown width 

extraction from segmentation of the aerial imagery than from the CHM. As for individual species, 

correlation between measured and predicted crown widths increases from 0.47 to 0.51 for broadleaf 

trees, while it decreases from 0.43 to 0.17 for conifer trees. Mean difference is reduced from -1.21 

to -0.67 for broadleaf trees and from 1.26 to -0.21 for conifer trees. The two different crown width 

retrieval methods have divergent results for conifer trees. Predicted crown width from CHM 

overestimated actual crown width, while those from aerial image underestimated actual crown width.  

 

5. Discussion  

 

Airborne LiDAR data is often used to provide detailed information on tree canopy structure. Lower 

accuracy was obtained when using low density LiDAR data, as it is difficult to capture crown shape 

with low density LiDAR data [22]. As more and more airborne LiDAR systems integrate with CCD 

cameras, it is highly relevant to assess methods that can combine LiDAR and high resolution imagery 

for forest structural information extraction. This process is constrained by difficulties in co-registration 

of airborne LiDAR range data and aerial images. Using the additional RGB intensity included in the 

LiDAR data, the method proposed here serves as a bridge to match LiDAR range data and high 

resolution aerial imagery. In this paper, a SIFT algorithm was introduced to automatically find tie 

points and a cubic polynomial was used to perform registration based on the tie points. The method 

presented in this paper increased the crown width extraction accuracy when compared with crown 

width extraction result only based on the CHM, especially for broadleaf trees. More trees were 

identified and paired with measured trees, and the correlation increases from 0.46 to 0.61. More and 

more LiDAR systems include intensity information reflected by objects. This intensity could play an 

important role in co-registration of LiDAR range data and other images. The methods proposed here 

could also be effective for matching multi-temporal LiDAR data for the purposes of forest  

growth detection. 

The LiDAR point cloud filtering is of primary importance for CHM generation. The morphological 

filtering algorithm used in this paper achieved mixed results when compared to field estimated values. 

While the extracted heights seemed to underestimate the field observed values (especially for 

broadleaf trees), it is just as valid to assume that the field observations over-estimated tree heights.  As 

field estimation of tree heights can be difficult and notoriously inaccurate, we feel it is prudent to 

exercise caution in using field observed values as “ground truth.”  Our results indicate disagreement 

between LiDAR extracted heights and field estimated heights, but it is difficult to determine which 

data set is more accurate.  It may be possible to increase the accuracy of LiDAR height extraction by 

incorporating additional information to the automatic filtering algorithm. The filter could be more 

adaptive by incorporating intensity and contextual information from aerial images and LiDAR point 

cloud data. Another way to increase accuracy of the LiDAR based tree height extraction is to increase 

the sampling frequency of the LiDAR. A greater number of LiDAR returns per unit area would result 

in a denser LiDAR point cloud from which a more accurate CHM can be interpolated. 
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Although we have demonstrated that combining high resolution aerial imagery with LiDAR can 

make up for some of the limitations of a low density LiDAR point cloud, both crown widths from 

CHM and aerial image were poorly correlated with field measured crown widths. Low density of data 

is one potential source of error, while tree density, models of crown shape, and surface generation also 

affect accuracy.  We estimated the average tree spacing in the study area at about 6 meters. In higher 

density forests, it is possible that this method would have higher error. The methods we describe 

(watershed segmentation for CHMs and object-oriented segmentation for aerial imagery) are more 

effective for dominant tree detection than co-dominant and suppressed trees. Additional research is 

needed to explore more effective crown width and tree height extraction methods, especially for 

clustered and/or suppressed trees. There is also a need to establish the relationship between LiDAR 

point cloud density and the accuracy of extracted forest structural parameters. 

 

6. Conclusions  

 

We describe a method for integrating sparse LiDAR data and high resolution aerial imagery to 

extract forest structural parameters. A morphological filtering algorithm was effective to pre-process 

the LiDAR point cloud and a Kriging interpolation was successful for generating a digital elevation 

model (DEM) and canopy height model (CHM). We also found local maximum filtering to be 

effective for detection of individual treetops. Inclusion of additional intensity information within a 

LiDAR system helps with bridging LiDAR range data and high resolution aerial imagery during 

geometric registration. The SIFT algorithm was harnessed for this purpose with good results. 

Watershed segmentation and object-oriented methods were successfully used to extract crown width 

based on CHM and high resolution aerial imagery. From our results, we conclude that accuracy of 

forest structural extraction can be improved combining high resolution imagery with LiDAR data. 
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