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Abstract—Due to the widespread software piracy and virus attacks, significant efforts have been made to improve security for
computer systems. For stand-alone computers, a key observation is that, other than the processor, any component is vulnerable to
security attacks. Recently, an execution only memory (XOM) architecture has been proposed to support copy and tamper resistant
software. In this design, the program and data are stored in an encrypted format outside the CPU boundary. The decryption is carried
out after they are fetched from memory and before they are used by the CPU. As a result, the lengthened critical path causes a serious
performance degradation. In this paper, we present an innovative technique in which the cryptography computation is shifted off from
the memory access critical path. We propose using a different encryption scheme, namely, “pseudo-one-time pad” encryption, to
produce the instructions and data ciphertext. With some additional on-chip storage, cryptography computations are carried in parallel
with memory accesses, minimizing the performance penalty. We performed experiments to study the trade-off between storage size
and performance penalty. Our technique reduces the performance overhead from 20.79 percent to 1.28 percent on average for

reasonably sized (64KB) on-chip storage.

Index Terms—Memory design, hardware/software protection, security and protection.

1 INTRODUCTION

SOFTWARE copyright protection plays an important role in
assuring the software market value and a fair return on
development investment. A study in 2001 done by the
Business Software Alliance showed a 12 billion dollar loss
in the software industry due to software piracy [3].
Preventing illicit duplication of software will have a large
impact on economic development. Therefore, it is important
to develop foolproof devices that disallow unauthorized
execution of software.

Several techniques have been proposed to provide hard-
ware support at the microprocessor level against software
piracy [22], [21], [20], [18], [16]. In those techniques, the only
trusted hardware entity is the processor itself. Any other
hardware components in the computer system are consid-
ered vulnerable to security attacks, particularly the copro-
cessor and the main memory. This is because program
confidentiality can be violated by tapping the communication
channel such as the system bus. An adversary can easily
tamper with the execution of the program once some
knowledge of the code is obtained. Moreover, the operating
system is also considered nontamper resistant since it may be
hijacked by the adversary to become malicious to the software
running under its control.

The software is stored in the system storage in encrypted
form. It can only be decrypted by the processor internally
before execution. This prevents any user having full control
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of the computer from examining the clear text instruction.
More importantly, the data communicated between the
processor and the memory are all encrypted to prohibit
reverse-engineering the code. To protect from a potentially
malicious operating system that can access the register
values on interrupts, register values also need to be
encrypted on such events. The representative technique of
the above model is called execution only memory, or XOM,
meaning that software can be executed by the owner
processor only, but not copied (since it would not run on
other processors) or manipulated (since it would raise
exceptions and then halt) by unauthorized entities [21], [20].

Though secure at a satisfactory level, one of the most
important problems in the XOM-type architecture is its
efficiency. As one may notice, every off-chip memory
transaction including both instruction and data undergoes
encryption and decryption. Even with the most optimistic
assumption of finishing the crypto process in 48 cycles with
fully pipelined hardware [21], performance loss can be as
high as 41.81 percent, as our experiments indicate. The
situation is even worse for applications that are memory
bound or time critical. For this reason, the usefulness of the
XOM architecture is yet to be evaluated. Software users
would find it very annoying every time the program runs
significantly slower than the unprotected version, dimin-
ishing the attractiveness of copyright protection.

The purpose of this paper is to relieve the performance
burden on XOM-type architecture. We propose to off-load the
crypto computation from the critical path. In XOM architec-
ture, instructions and data cannot be used until they are
fetched from the memory and decrypted afterward. We
propose performing decryption in parallel with a memory
access, overlapping crypto-computation time with memory
latency.
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Fig. 1. lllustration of symmetric and asymmetric ciphers.

Our technique strives to maintain the same level of
security strength as the XOM architecture. Thus, our work
is based on its proposed mechanisms in handling potential
attacks. No attempts are made to enhance its security level.
Our design also requires extra on-chip storage and we
studied the trade-offs between storage size and perfor-
mance improvement. Experimental results show this
technique is able to lower the 20.8 percent average
performance loss of XOM architecture to only 1.3 percent
over the insecure baseline processor.

The remainder of the paper is organized as follows: We
first briefly describe the XOM architecture in Section 2.
Then, we elaborate on the idea of off-loading the crypto-
graphy computation from the critical path in Section 3. We
illustrate the detailed architecture design in Section 4. In
Section 5, we show the experimental results on performance
gain with various hardware configurations. In Section 6, we
give a brief description of the related work and conclude the
paper in Section 7.

2 XOM ARCHITECTURE OVERVIEW

2.1 Software Encryption and Decryption

Background. There are two major types of cryptography
commonly used in information systems today: symmetric
key ciphers and asymmetric key ciphers (see Fig. 1). In
symmetric key cryptography, communicating parties share
a common secret key in encryption and decryption. The
advantage is that it runs as much as 1,000 times faster than
comparable asymmetric key ciphers [8]. The primary
obstacle is the distribution of the secret key to information
exchange parties. Asymmetric key ciphers solve this
problem by implementing encryption using a key pair:
public key and private key. Information is encrypted using
the publicly available public key at the sender and
decrypted using the private key, which is kept secret by
the receiver. Thus, the sender can send information securely
without knowing the receiver’s private key.

XOM Software Encryption. The software that runs on
the XOM architecture is encrypted by the vendor. The
encryption not only protects the confidentiality of the
software algorithm, but also guarantees that it can only
run on the target processor. To maximize security and
performance, the software is encrypted using a combination
of symmetric and asymmetric key cryptography. The
vendor first encrypts the software using some fast sym-
metric key cipher with secret key k. The decryption of the
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Fig. 2. The lengthened XOM memory path.

program using the same key is relatively fast. The XOM
chip is installed with a private decryption key k,q, of a
public-key encryption pair. The corresponding public key,
k,, is available to the public. To communicate the k; to the
processor, the vendor uses k, to encrypt it and ships it along
with the software. The execution of the protected software
begins with computing k, using k., which is carried only
once but might take a relatively long time, and decrypting
instructions using k,, which is much faster but is carried on
every instruction fetched into the processor. In this way,
software encrypted for processor; cannot run on processors
since they have distinct private keys.

2.2 Interacting with External Memory

The XOM architecture adopts a complicated mechanism in
protecting the program data confidentiality and providing
memory integrity verification. Ensuring confidentiality
means keeping data information hidden from anyone for
whom it is not intended. This is achieved through data and
instruction encryption. Memory integrity verification is to
detect if the memory has been tampered with by an
adversary. This is accomplished by creating a hash (MAC)
value for each memory block." A cryptographic hash
function can take inputs of any length and produce a fixed
length output. It is “one-way,” meaning that it is compu-
tationally infeasible to find the original data given the hash
value and relatively easy to compute. Hashing is especially
useful in the three types of attacks considered in XOM:
spoofing, splicing, and replay. The first two attacks were
handled satisfactorily in XOM. The replay attack is better
developed for performance improvement by Gassend et al.
[12]. Thus, we do not address the issue of verification and
concentrate on speeding up encryption and decryption
process in this paper.

To mitigate the performance impact, XOM pushes data
encryption and decryption through the memory hierarchy
so that it is only done when the data leaves the processor
and enters insecure memory. Thus, all the on-chip caches
are secure and store data and instructions in plaintext. Fig. 2
illustrates the abstract model of the crypto procedure. A
two-level cache structure is assumed in the processor.
Writing to the memory is deferred through the write buffer.
Every dirty L2 cache line is encrypted first and then sent
down to memory. Likewise, every line read from the

1. The block was chosen as an L2 cache line size.
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memory is decrypted before it is stored in the L2 cache and
used by the program.

2.3 Internal Protection for Multitasking

A major effort in designing the XOM secure processor goes
to protecting interactions among multiple active tasks. Each
task is protected within a strict perimeter, termed the
“compartment.” Each compartment has its own ID and a
secret key which was used for encrypting the program. The
compartment ID is used in tagging data written into the
registers and the caches. This tagging ensures no programs
can access the data of another program.

New instructions are added to support security func-
tionalities. They are used for handling the start/termination
of XOM mode, communication between programs, traps
and interrupts, and storing and loading cryptographic data
to and from memory traps and interrupts. We assume that
those features carry over from the original XOM model into
this paper.

3 OFFLOADING CRYPTO-COMPUTATION FROM THE
CRITICAL PATH

In this section, we present a scheme that shifts the
computation intensive crypto-process off from the critical
path. First, we analyze the performance degradation in
XOM architecture.

3.1 Motivation

As we can see from Fig. 2, the crypto hardware lies on the
memory access critical path and, therefore, the performance
decrease is obvious. Developing fast crypto hardware has
been the major focus recently to accelerate security
applications [29], [4], [25], [28]. However, in spite of the
effort in crafting the designs, the crypto-hardware here still
inserts long latency on memory access due to its compu-
tationally intensive nature.

Fig. 3 shows the performance degradation due to the
prolonged memory path in XOM architecture. We tested
over 11 SPEC2000 [17] benchmarks with 32K separated L1
instruction and data cache and 256K L2 unified cache on an
out-of-order 4-issue processor simulation using SimpleSca-
lar [5]. We assumed a typical 100 cycle memory latency and
a 50 cycle encryption/decryption delay similar to that in

[21]. Such a fast hardware for widely used symmetric
ciphers, e.g., DES [10] and AES [1], is possible with ASICS
designs [2], [11]. We also modified the SimpleScalar
implementation to accommodate an 8-entry write buffer
so that real write latency is also taken into consideration.

Across the 11 benchmarks tested, the performance
overhead ranges from 1.72 percent for gzip to 41.81 percent
for art. The arithmetic average slowdown of these bench-
marks is 20.8 percent. For some benchmarks, e.g., art and
mcf, their slowdowns are greater than some others such as
gzip and mesa. This is because art and mcf have
relatively more memory accesses than gzip and mesa
and, thus, their performances are more sensitive to the
memory path latency. We can project that, for memory
intensive programs such as database applications, the delay
will be more severe.

3.2 Proposed Solution
The difficulty in XOM lies in the fact that the crypto-
computation is data dependent on memory accesses, i.e.,
without knowing the data to be written out or brought in,
the encryption or decryption cannot begin. We propose
using a different encryption algorithm to generate the
ciphertext in memory. The creation of the ciphertext must
be data independent on the memory access so that it can be
carried in parallel, not in serial with the memory operation.
The designated ciphertext must also be related to the
memory access so that each access has a unique ciphertext.
We propose using an algorithm similar to “one-time
pad” encryption [26] for both data and instructions in
memory. In one-time pad encryption, the ciphertext is the
exclusive-or of the plaintext and a true random key:

¢ = p @ random key, (1)

where c is the ciphertext, p is the plaintext data value, and
random key is a true random number having the same bit
width as p. In our model, we replace the random key with
an encrypted seed. The seed uniquely corresponds to the
plaintext and can be generated regardless of its value (see
Section 3.4). Thus, with a modified one-time pad algorithm,
the encryption and decryption of a plaintext data value can
be expressed as the following;:

¢ = p @ encrypty(seed), (2)

p = ¢ ® encrypty(seed), (3)

where c is stored in insecure memory, p is the plaintext data
value, and k is the secret key shipped with the software.
Operationally, when p is sent off chip, (2) is used; when p is
read from memory, (3) is used. Calculating encrypt;(seed) is
carried while the processor is waiting for the memory. Let
us assume the memory access latency is 100 cycles and
computing encrypty(seed) is 50 cycles, as before. When c is
loaded from memory and arrives at the processor,
encrypti(seed) is already ready. With an additional one-
cycle XOR, p can be obtained and sent to the processor for
execution. Thus, instead of having 100+50 cycles delay, we
now reduce it to 101 (i.e., MAX(100, 50)+1).
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3.3 Encryption Strength

Using the modified encryption ((2) and (3)) achieves the
same strength as a normal data encryption where
¢ = encrypt(p). This can be seen through the analogy of
the proposed scheme and the stream ciphers [23]. The stream
cipher is similar to one-time pad. The difference is that it
uses a pseudorandom number stream instead of a genu-
inely random number stream. Many widely used encryp-
tion algorithms such as AES [1] and 3DES [9] are believed to
do a good job in generating pseudorandom numbers. As a
result, p ® encrypti(seed) is as random as encrypty(p). Thus,
we call our scheme “pseudo-one-time pad” (POTP) encryp-
tion. Next, we discuss how to select the seeds.?

3.4 Seed Selection

The purpose of encrypting a seed instead of a value itself is
to do it in parallel with memory read operation such that,
when data fetched from memory is available, the encrypted
seed is also available. For memory writes, we start
encryption as soon as the evicted cache line enters write
buffer. Therefore, when the time a packet spent in the write
buffer is equal to or greater than the encryption latency, the
encrypted seed will always be available at the time the
cache line is sent to memory. It is also important to
differentiate seeds for different encryption units, i.e., cache
lines, to decorrelate program data. Naturally, a seed derived
from the location, e.g., address, of a value is a good
candidate. Let us see why using addresses alone might be
good in some cases and bad in others.

Advantage. In the XOM model, every data value is
encrypted directly and stored in its memory location. This
implies that the same data values at different locations have
the same ciphertexts. It is known that the memory contains
a lot of repeated values [19], [30]. Thus, even with
encryption, the repetition pattern still exists, creating
potential security holes.

Using the address of a data value as the seed in (2), each
encryptp(address) is different from others. Moreover, the
property of an encryption function assures no patterns exist
between sequential addresses, i.e., encrypti(address) and
encryptiy(address + 4) are completely unrelated, hence the
neighboring memory ciphertext.

Disadvantage. However, for the same location,
encrypt(address) remains the same every time the value
is written into memory. Thus, a series of data value 0, 1, 2, ...
generated at address addr will have a series of ciphertexts
encrypty(addr), 1 @ encrypti(addr),2 & encrypt(addr) . ..,
which amounts to

C.leC2aC...,

where C is a constant. This is vulnerable and it may
potentially permit an attack that requires a less than brute-
force effort. Therefore, the seed used for such a series of
writes should not be a constant, i.e., it should vary. This is
akin to the mutating register used in XOM. A mutating
register is associated with an XOM compartment to protect

2. The seed used here should not be confused with the seed that is used
in random number generation functions supported by many higher level
languages. As an example, the seed in C function sram() represents a
starting point in a chain of “so-called” random numbers. This is not the case
in our design. We treat the seed as an input to the encryption function.
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normal register values on OS interrupts. It is included in
calculating the hashes for the register values so that an
adversary cannot perform a replay attack. Thus, the
mutating register is updated each time the XOM process
is interrupted. To mutate the seeds in (2), we choose to
adopt a sequence number associated with an address. The
sequence number is updated every time it is used. Thus, the
encryption becomes encrypt;(addr + sequence number). The
details will be fully described shortly.

At this point, it is necessary to separate situations for
encrypting instructions and data. The above analysis on the
disadvantage of using address directly as seed applies to
data writing only. For instructions, there are only read
operations, as they are only loaded from, but never written
back to, memory. Therefore, a constant seed directly
associated with instruction address can be used.

3.4.1 Encrypting Instructions

The instructions are encrypted by the vendor, but are
executed on the customer’s processor. The vendor does not
know the actual addresses when the program is loaded into
the customer’s memory space for execution. Therefore, it is
easier for the vendor to use the virtual address, starting
from, for example, V0. Suppose the vendor chooses a
symmetric key KEY, encryption function AES with block
size of 64 bits. Each instruction is 32-bit. A sequence of
instructions Iy, Iy, I3, 14, I, Is, . .. will be encrypted as:

(11|[2)@AESKE§/(VO), (I3|I4)@AESKEY(V0+8),
(I5|15) ® AESkpy (VO +16).. .,

where “|” means concatenating two 32-bit instructions into
a 64-bit data block. To decipher the program, the processor
simply adds to V0 the offset of the current 64-bit instruction
block to the first instruction block, obtaining the seed for the
encryption. When the ciphered instruction is available from
memory, plaintext instructions can be computed through
XORing the encrypted seed in only one cycle.

3.4.2 Encrypting Memory Data

On-chip data are encrypted when they are evicted out due
to cache conflicts. We assume a two-level cache structure, as
in most high-performance processors. Similarly to XOM,
encryption and decryption are done on a per L2 cache line
basis. Since we adopt sequence numbers on writes to the
same memory location, each sequence number is main-
tained for each L2 cache line. The initial values of the seeds
are the virtual cache line addresses. It is incorrect to use the
physical line addresses since programs may be loaded to
different physical memory spaces on context switches. As
cache lines are transmitted across the chip boundary, the
seeds are increased by the corresponding line’s sequence
number. Thus, on the ith (i > 1) write to memory for a
line L, the following steps are taken in sequence:

seq_num; = seq_num;_1 + system_timer; (4)
seed; = virtual_line_address(L) 4+ seq-num; (5)
Ciphertext = Plaintext ® AESkpy (seed;), (6)
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where seq_.numy = 0. On a line L read:

seed; = virtual_line_address(L) 4+ seq-num; (7

Plaintext = Ciphertext ® AESkpy (seed;). (8)

From (6), we can see that it is possible for pad
AESkry(seed;) generated for Plaintext to repeat itself once
the seed; starts to wrap around since it has a limited number
of bits. This does not weaken the security level since, in the
original XOM design, the Ciphertext does not change as
long as the Plaintext stays the same (Section 3.4). Using
POTP, this problem is solved by generating different pads
each time. However, this additional level of randomness is
not perfect since the pad may recycle itself periodically. It is
not absolutely necessary to break this cycle as our POTP is
no weaker than XOM. On the other hand, one can either
prolong the repeating cycles by using a greater number of
bits for the seed or change the KEY used for encryption
every time the seed; starts to repeat [27]. In the latter case,
the processor needs to be stalled and the entire memory
(used by the program) needs to be reencrypted using the
new KEY. As we can see, there is a trade-off between the
security strength we want to provide and the costs that are
encountered.

It should be noted that, when applying (6) and (8) to an L2
cache line, the Plaintext width might be longer than the AES
output bit width—128 bits. In that case, the cache line should
be divided into segments of 128 bits each. Each segment
should use a different pseudopad. This can be achieved by
simply using the virtual address of the segment instead of the
entire line in (5) and (7). The immediate implication is that,
now, for one L2 cache line, multiple pseudopads need to be
generated, increasing the AES throughput requirement. In
[13], the implementation of a 128-bit AES unit can achieve
30 ~ 70 Gbit/s with 175 ~ 380K gates using 0.18um CMOS
technology. Those throughputs translate to the generation
of 128 bits in 2 ~ 4 cycles on a 1GHz machine, which still
leaves abundant time before a line is fetched from memory.

Reading a cache line may happen long after it was
written to the memory. To make sure it is available when a
line is being fetched, we need to remember the sequence
number that was previously assigned to the line. Next, we
give the details of the design of a special on-chip cache that
stores the sequence numbers. The sequence number cache
should locate within the security boundary, as in the XOM
architecture.

4 ARCHITECTURE DESIGN

As clarified earlier, an on-chip sequence number cache
(SNC) is needed in order to store sequence numbers for
each cache line that goes off-chip. Thus, we place the SNC
below the L2 cache and monitor the traffic between L2 and
the memory. Fig. 4 illustrates the architecture of the abstract
partial XOM model with our SNC.

The SNC should be accessed using the virtual address
(VA) of an L2 cache line. This is because the physical address
of a line may be changed after a context switch, losing
encryption seed information. However, using VA toindex the
SNC may incur synonym problems in which two different
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Fig. 4. Design of POTP encryption on data with sequence number
cache.

VAs may map to the same physical address. The result is that
two different sequence numbers may be generated for the
same physical line. The synonym problem happens when
either the OS and the user or two users want to share a
memory segment. The XOM architecture is very restrictive in
sharing data among tasks, including the OS. The solution
proposed by XOM is to share a key among tasks that have
synonyms, which is considered vulnerable. Since this is still
an open problem in XOM, we choose not to perform POTP
encryption on those shared data. In other words, SNC does
notstore the sequence numbers for memory segments thatare
aliased by two different virtual addresses.

In conventional cache design, the VA will not be
available beyond L1 caches and the L2 cache is physically
addressed. Thus, the VA of each L2 cache line should be
kept within the L2 cache. The stored VA can then be used to
address SNC on a cache write back. The storage incurred
due to storing VAs in the L2 cache is very modest. For
example, in a 256KB L2 cache having 128B each line, 40 bits
of a 48-bit VA (e.g., in Alpha architecture) need to be stored,
enlarging L2 cache by 4.0 percent.

Ideally, the SNC should store all the sequence numbers
of memory lines. Taking a 1GB memory and a 128B line size
as an example, 8M (1GB/128B) sequence numbers need to
be remembered. Having an 8M on-chip cache is unrealistic
to ask. We therefore provide only a limited sized SNC
which stores sequence numbers efficiently. To remove
conflict misses as much as possible, a fully associative
cache is desired. A fully associative cache normally
provides the best hit rate, but occupies a larger chip area
and takes a longer time to access. Normally, a highly
associative cache, e.g., 32-way or 64-way, would perform
equally well. We will present most of our experimental
results using a fully associative SNC implementation in
Section 5 and also show the results with a 32-way set
associative SNC.

With a limited amount of SNC storage, not all sequence
numbers can be stored on-chip. Thus, when the SNC is full,



no further sequence numbers can be stored unless some
stored contents are evicted out. If so, where will the evicted
sequence numbers be stored? A complication arises as to
whether a replacement policy should be employed and
what may happen with or without a replacement policy.

4.1 SNC Operation Policy

With Replacement. If replacements are carried in the SNC,
we need to solve where those evicted sequence numbers
should be stored. It is clear to see that we cannot discard
them since, otherwise, their corresponding memory lines
would not be able to be deciphered. Then, the only solution
is to store them in the insecure memory. This requires some
changes in the memory layout to include the new meta-
data. Since the number of sequence numbers needed is a
fixed value, i.e., %, we can allocate a fixed sized
memory region starting at address Agy for those values.
The sequence numbers corresponding to memory blocks in
a unit of L2 cache line size can be laid out linearly. Thus, the
address of the sequence number of a memory address M is

M — MemAddr0
L2 cache line size

X sequence number size + Agy,

where MemAddr0 is the starting address of user memory.

It is not preferred that the sequence numbers are
encrypted using pseudo-one-time pad again since they
themselves would need sequence numbers! It is also not
necessary to encrypt sequence numbers directly since
memory access time will be doubled in this way. In fact,
those evicted sequence numbers need only be stored in
plaintext. This is because the secret key used to encrypt the
memory data is not revealed, even if the seeds can be
derived. This way we can manage the replacement of
sequence numbers economically.

The advantage of allowing replacement in SNC is to make
POTP encryption available to as many memory lines as
possible. If LRU replacement is adopted, the SNC will catch
frequently used sequence numbers in the long run so as to
reduce the SNC capacity misses. However, each replacement
incurs another memory access plus the encryption latency of
the contents. Although this does not necessarily happen on a
critical path, it imposes additional memory traffic and may
compete with other memory requests that are critical. Thus,
the number of replacements should be small enough to
overcome the above defect. Using LRU in this sense helps
reduce the SNC replacement frequency.

With No Replacement. An alternative way is to disallow
replacements. In such a situation, the POTP encryption is
carried as long as there are vacant slots in the SNC. When
the SNC is full, cache lines whose sequence numbers are not
stored in the SNC will not be able to perform POTP
encryption. Consequently, they should be encrypted di-
rectly and sent to memory. The advantage of no replace-
ment policy is its simplicity. The disadvantage is, however,
only partial memory lines can employ POTP encryption; the
rest are treated the same way as in XOM. We will show in
Section 5 that using LRU is more advantageous than the
nonreplacement SNC.
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4.2 Algorithm

In this section, we discuss the SNC query (i.e., read) and
update (i.e., write ) operations in great detail. To be clear,
we categorize various operations into query hits, update
hits, query misses, and update misses. SNC is filled with
update operations and looked up through query operations.

SNC Hits. A query hit in SNC happens when a read miss
occurs at L2 and the target line’s sequence number is stored
in SNC. A seed is then calculated using (7). After the
memory access returns, the plaintext value is then obtained
by applying (8). Assuming a 100-cycle memory latency and
1-cycle XOR, the value is ready to the CPU at the 101st
cycle. An update hit in SNC happens when an L2 cache line
is evicted down to the memory and this line’s sequence
number is stored in SNC. The sequence number is updated
according to (4). The seed is formed and the line is ciphered
using (5) and (6), respectively. Note that the evicted lines
should first go to the write buffer (Fig. 4) and are later
flushed to the memory on certain conditions. Thus, the
encryption can be done while they remain in the write
buffer. With SNC, the delay is nearly the same as in XOM
except that the XOR takes one more additional cycle. Since
the write operation is not on the critical path and the write
buffer greatly reduces the waiting time for the write
operations to finish, the impact on overall performance is
not a big concern and we will discuss it in the next section.

SNC Misses. Misses in SNC are more complex, espe-
cially in supporting LRU replacement. We will separate the
no-replacement and LRU replacement designs for clarity. In
no-replacement SNC, an update miss means no free entries
are available. At this time, the cache line has to be encrypted
directly, like in XOM. A query miss means the correspond-
ing L2 cache line’s sequence number is not stored in SNC.
As mentioned earlier, those lines were encrypted directly.
Thus, after the line is fetched from the memory, it should go
through the decryption unit, which is another 50 cycles on
top of 100 cycles.

With LRU replacement, every L2 cache line has a
sequence number. For those that cannot fit in the SNC,
they are stored in memory. As pointed out earlier, sequence
numbers in memories are not encrypted. On an SNC query
miss, a memory access is needed to fetch the target
sequence number. Thus, each query miss incurs 100 cycles
before the seed encryption can start, becoming the most
expensive operation. As such, an update miss in SNC also
needs to access memory for the sequence number. Since this
is carried while the cache line is in the write buffer, the
impact is less significant. Algorithm 1 gives the pseudocode
for handling the SNC misses.

Algorithm 1. Pseudocode for handling SNC misses employ-

ing LRU replacement

1. if SNC query miss on cache line L then

2 sn «— read memory for L’s sequence number

3. for each segment va,, in L’s virtual address va do

4 E,; — Encryptgpy (vasy + sn); /* executed in
fully pipelined engine, in parallel with line 7 */

end for

Ciphery, «— read L from memory

7. for each segment C,, in Cipher; do

SIS
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Fig. 5. POTP encryption on data writes.

8. Py — By ®Cyy; /* Py's form plaintext for L */

9. end for

10. replace a victim V,, in SNC with sn;

11. then write V;, into memory if updated;

12. else if SNC update miss on cache line L then

13.  sn < read memory for L’s sequence number

14. sn+ = system_timer;

15.  for each segment va,, in L’s virtual address va do

16. Eyy — Encryptxpy(vasy + sn); /* executed in
fully pipelined engine */

17.  end for

18.  for each segment P, in plaintext L do

19. Csg +— Esg® Py /* Cyy’s compose ciphertext of L
*/

20. end for

21.  write ciphertext of L into memory;

22. replace a victim Vj, in SNC with sn;

23. write V;,, into memory if updated;

24. end if

4.3 Dealing with Memory Writes

The write buffer plays an important role when dealing with
memory writes and most processors are equipped with a
write buffer to hide the write latency from the next level
memory and reduce write traffic [24]. Therefore, we use a
realistic memory access model with a limited write buffer to
investigate the impact on performance in our SNC design.
Fig. 5 shows the write buffer structure. The cache blocks
evicted from L2 are stored in the data section as usual. In
addition, we allocate a pad section to store the pads
corresponding to each block in the data section. The
generation of pads and the operations on pushing the
blocks into the memory will be clear shortly. First, let us
look at when the write buffer retires an entry.

Retirement policy. As we know, the write buffer holds
the evicted L2 cache dirty blocks temporarily and retires
them later at an appropriate time. Similarly to the scheme
proposed by Skadron and Clark ([24]), entries in the write
buffer are retired in a FIFO manner. Also, we adopt the

occupancy-based “lazy retirement” policy that has a “high
water mark,” or threshold, as in [24]. We start to retire
entries when the following two conditions are both
satisfied: 1) the number of occupied entries exceeds a
threshold and 2) the bus is currently free. Since its fill speed
may surpass its drain speed, the write buffer may become
full, upon which the memory bus must give the highest
priority to the write buffer over other components. Instead
of flushing the whole write buffer, only the oldest entry is
written into memory. This is similar to the Alpha 21064 and
21164 processors, which retire the oldest entry if two or
more entries are valid (pointed out in [24]). With this simple
retirement policy, we provide more opportunities for
L2 cache read misses to hit in the write buffer and the
CPU stalls are greatly reduced.

Preparing pads for write buffer data blocks. Since data
blocks stay in the write buffer for some time, it is clearly
beneficial to prepare their pads during this waiting time.
The purpose is to get the pads ready before the block is
retired. In our retirement policy, a block is written into the
memory only when it reaches the queue head, the buffer
occupancy is above threshold, and the bus is free. Thus,
there is plenty of time between the time the block is
enqueued and the time the block is dequeued. However,
excessively long pad generation time, i.e., time to encrypt
the block’s seed, may impose pressure on the write buffer.
In that case, even if the block moves to the queue head and
the bus is free, it is still unable to retire since the pad is not
ready. Fortunately, the encryption latency is shorter than
the memory latency. This means that, as long as a block is
not at the head, there is abundant time for pad generation
since the earlier blocks will all spend a longer time in
writing to the memory. The case where a block is pushed
into the empty write buffer and the occupancy quickly
grows to exceed the threshold within the encryption latency
only happens in the write buffer cold start stage. Thus, there
is little overall pressure from the pad generation on the
write buffer.

Some modern processors adopt a write combining (WC)
technology for enhancing graphics performance. The
WC buffer is similar to a write buffer, but differs in that
the entire block can retire the moment the last word of the
block arrives. With such a retirement policy, our POTP can
still gain noticeable performance improvement since the
generation of a pad starts immediately after an entry is
allocated in the WC buffer. By the time the last word arrives
at the WC buffer, the pad may have been produced,
whereas, in the original XOM, the encryption for the block
only starts at that time. Stalls may happen only when the
WC entry becomes ready before the pads are produced.
Still, many encryption cycles have been hidden and the
performance gain is evident.

Once a pad is generated, it needs to be stored so that it
will be available for XOR upon the block retirement. We
store all such pads in the pad section, as shown in Fig. 5. An
alternative solution is to XOR the data block with the pad
and use it to replace the plaintext one in the write buffer.
This solution appears to save the space for storing the pads.
However, remember that L2 read misses will need to check
the write buffer for a potential hit. If the block has been
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Fig. 6. Performance comparison for XOM, SNC with LRU, and no cache
replacement.

encrypted using POTP, the L2 read cannot immediately
return with the target value in plaintext. Thus, we choose to
save the pads along with their data blocks. This will double
the size of the write buffer since every pad is of equal length
to the line.

4.4 Other Security and Implementation Issues

Context switching. One of the difficulties we realized is to
handle a situation in context switching. On context
switches, XOM architecture employs expensive operations
to avoid leaking information to potential malicious OS and
other users. The contents of our SNC should also be
protected as the new user may use it for its own purpose.
There are two ways of protecting the SNC: 1) flushing it to
the memory with encryption and 2) tagging each entry with
XOM ID. Each method encounters long latency either
during context switching or after. Fortunately, context
switching does not occur very often. The impact on the
overall performance in multitask systems is currently open.

Shared library and program inputs. If the software
package contains shared library code, e.g., .dll, they are
meant for usage by multiple users. Therefore, those library
codes should be provided in plaintext. Similarly, program
inputs are also provided in plaintext since they are brought
in from I/O devices. As a result, memory spaces taken by
them do not need sequence numbers in SNC.

5 EXPERIMENT EVALUATION

We implemented the two schemes in order to compare the
POTP encryption scheme with XOM. We used the
SimpleScalar Tool Set [5] to run 11 SPEC2000 [17] bench-
marks and compared performances for various algorithms
and configurations. The benchmarks are fast forwarded by
10 billion instructions to warm up the pipeline as well as L1
and L2 caches and then continue to execute for another
10 billion instructions so that they finish within a reasonable
amount of time. Our baseline is a 4-issue out-of-order
execution processor with 32KB, 4-way, L1 separate instruc-
tion and data caches, plus a 256KB, 4-way, 128B per line,
L2 unified cache. We set the memory access latency as a
typical 100 cycles, the encryption/decryption delay as
50 cycles as before. Instead of assuming an unlimited write
buffer, as previously presented in [31], we modified the
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ment is used.

SimpleScalar implementation and added a write buffer
with a realistic size and a realistic memory bus model. The
write buffer is set to eight entries for all the configurations.
Other parameters are set as default values provided by
SimpleScalar.

5.1 Performance Comparison

The first set of experiments measures the performance loss
due to security operations. We compare the XOM archi-
tecture with POTP encryption having an SNC. As described
in Section 4, the SNC can either allow or disallow sequence
number replacements. We plot the result for both schemes
as shown in Fig. 6. Here, the SNC is set to 64KB, each
sequence number taking 2 bytes. Thus, there are 32K
numbers stored in the SNC, covering 32K L2 cache lines or
4MB memory data space. It is clearly shown from the graph
that our scheme drastically reduces performance loss—the
arithmetic average drops from 20.79 percent to 3.88 percent
for no replacement SNC and 1.28 percent for LRU SNC. The
highest reduction is from 41.81 percent slowdown to
0.01 percent for program art. We can draw two conclu-
sions from these results:

1. Using POTP encryption is an excellent solution to
minimize performance degradation of secure pro-
cessors. The 1.28 percent slowdown from the LRU
SNC design is not noticeable to the user and thus
increases the practicability of a secure processor.

2. The difference between no-replacement and LRU
proves that using the latter is beneficial in the long
run since it will catch relatively frequently accessed
cache lines. For example, the benchmark bzip2
shows a big difference between the two, sequence
numbers filled into the SNC initially are hardly used
later.

5.2 SNC of 32KB, 64KB, and 128KB

The second set of experiments intends to answer how our
scheme is sensitive to SNC size. To see this, we tested 32KB,
64KB, and 128KB SNC with LRU. Fig. 7 shows the execution
slowdown in percentage of the baseline. We can see that,
with smaller SNC, the scheme underperforms the larger
SNCs. Since a 128KB on-chip cache may be a high
requirement for processors, we conclude that the 64KB is
a better choice among the three.
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5.3 SNC of Different Associativity

The third set of experiments is to see if a fully associative
SNC is really necessary. Implementing a 64KB cache with
full set associativity might be expensive. We therefore ran
the benchmarks with a 32-way, 64KB SNC and compared it
with the fully associative, 64KB SNC. Fig. 8 plots the results.
Apart from one benchmark, ammp (which increases the
slowdown from 2.29 percent to 10.8 percent), all the rest of
the programs show an equivalence of using the two caches.
Sometimes, 32-way is even slightly better. Therefore, in
most cases, a 32-way SNC serves as good as a fully
associative SNC.

5.4 Larger L2 versus L2+SNC

The fourth set of experiments we conducted is to illustrate
that the added on-chip SNC storage is indeed very effective.
We show this by comparing the execution time for LRU
SNC with an XOM architecture that has a larger L2 cache
size. A fair comparison requires that the enlarged L2
occupies the same amount of chip area as the original L2
plus SNC since the increase in cache area is not linear to its
capacity. We used CACTI 3.2 [6] to obtain the area
estimation. We found that a 64KB 32-way set associative
SNC on top of a 4-way 256KB L2 cache occupies chip area
between that of a 5-way 320KB and a 6-way 384KB L2 cache.
We therefore compare our configuration with XOM having
a 6-way 384KB L2 cache. Fig. 9 plots the normalized
execution time w.r.t. the baseline having 4-way 256KB
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Fig. 10. Energy consumption comparisons.

L2 cache. With the same amount of on-chip area, our POTP
encryption scheme still outperforms XOM on average
(2 percent versus 12 percent slowdown). Program gcc
and vortex show a speedup of 2 percent and 7 percent in
execution time compared to the baseline. This is because,
with a 50 percent capacity increase in L2, almost everything
in the two programs fit into L2 and, thus, the need to go off-
chip is greatly reduced. This experiment shows that, in
general, having a larger L2 cache cannot mitigate the
performance impact of XOM when using the POTP
encryption is satisfactory.

With the same on-chip cache area budget, using SNC is
more energy efficient than enlarging the L2 cache. We
measured the total energy consumption for the 384K
L2 cache and a 256K L2 with 64K 32-way SNC cache. We
found that the latter increases the XOM L2 cache energy by
3.34 percent on average, whereas using the 384K L2 increases
the energy by 89.1 percent! We used XCacti [14] to measure
the cache energy and, for the SNC, we chose to use a phased
cache design since it is more suitable for a highly associative
cache. The detailed results are presented in Fig. 10. Combin-
ing with the results in Fig. 9, we conclude that the SNC design
is an effective way of restraining performance loss without
much increase in energy expenditure.

5.5 SNC Induced Memory Traffic

The fifth set of experiments is designed to show the induced
memory traffic due to SNC LRU replacements. The results
are measured in percentages of L2 cache memory traffic.
See Fig. 11. We can see that the effect of SNC replacement is
negligible in terms of memory traffic increase. For quite a
few benchmarks, art, equake, gzip, vpr, the increase
is almost zero. On average, there is only 0.2 percent of the
L2 memory traffic posed onto the system bus. This also
explains why SNC with LRU performs best even though
replacements are expensive.

5.6 Sensitivity to Encryption Latency

Our POTP encryption has an advantage in that it is
insensitive to the cryptography latency. Compared with
the XOM memory latency, mem_lat + crypto_lat, the new
memory latency on cache read misses (which is critical to
speed) is now MAX(mem_lat, crypto_lat) + 1. Therefore, we
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Fig. 11. SNC induced additional memory traffic (64KB SNC).

performed experiments that use a different encryption/
decryption latency, 102 cycles [15].

Results are shown in Fig. 12. It is clearly seen that the
XOM degrades greatly with the prolonged encryption
latency: from 20.79 percent to 42.33 percent slowdown.
This is because the 102-cycle roughly doubles the original
50-cycle latency, while, in our design with LRU replace-
ment, the performance is almost unchanged: from 1.28 per-
cent to 1.29 percent. The difference between the no-
replacement policy and the LRU also proves that the latter
is much more effective than the former. This result
enhances the usability and attractiveness of our proposed
POTP encryption.

6 RELATED WORK

The research closely related to us is the fast hashing
mechanism for memory integrity verification [12]. Defense
of the replay attacks for XOM type of architecture is
addressed. The solution is to build hash trees and combine
them into the on-chip caches to speed up verification of the
untrusted memory. In their later improvement [27], they
employed a more efficient way to reduce the speed and the
space overhead of integrity verification. In handling
memory encryption, a buffer-based “one-time pad” encryp-
tion was independently developed also. Since we adopted
an on-chip cache as the sequence number storage and
performed detailed analysis on various cache configura-
tions, our POTP scheme achieves better performance with
reasonable hardware cost under realistic machine model.
One of the early hardware techniques in protecting
software copyright is to use a tamper-resistant plug-in
model—a “dongle.” Software is sold together with a dongle.
It periodically queries the dongle based on an authorization
protocol. If the dongle does not respond, the software will
halt. However, a skilled programmer can easily analyze the
machine code and disable the software protection functions.
Another type of secure processor, the bus-encryption
microprocessor, has been used for almost a decade in 8-bit
microcontrollers such as the Dallas Semiconductor DS5000
series. Its application ranges from credit card termination,
ATM to pay-TV access control devices and communication
encryption modules [18]. In such microprocessors, software
is stored in encrypted form outside the CPU and decrypted
only when it is read into the chip. Both the data and address
bus values are encrypted in order to send data to external
memory. Bus-encryption microprocessors target single
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application environments in which the code size is usually
very small.

Fast cryptographic coprocessors have been developed to
support security applications for Internet communication
and E-commerce [4], [29], [25], [28]. Such a coprocessor can
support multiple ciphers at competitive speed simulta-
neously. The model we are using in this paper is fundamen-
tally different from those coprocessors since ciphers are
directly implemented on the main processor and we do not
trust any components other than the main CPU.

Many software techniques have been proposed in
providing a certain level of copyright and intellectual
property protection. Obfuscation attempts to transform the
code into a form that is harder to reverse engineer. Tamper-
proofing causes a program to malfunction when it detects
that it has been modified. Software watermarking embeds the
copyright notice in the software code to allow the owners of
the software to assert their intellectual property rights [7].
These software techniques discourage software theft, can
trace piracy, and prove ownership, but cannot prevent
copying itself.

7 CONCLUSION

We proposed using a fast cryptography method—POTP
cryptography, to speed up the execution of a secure
processor. In our design, the cryptography computation is
off-loaded from the processor’s critical path and is carried
in parallel with memory access. To make our new scheme
efficient, we use an on-chip cache to store sequence
numbers required in POTP. Our experiments show that
allocating a certain chip area to the sequence number cache
instead of the regular L2 cache is advantageous in achieving
both good performance and energy efficiency. The new
cache benefits from the adoption of the LRU replacement
policy and the memory traffic increase due to the replace-
ment is within 0.6 percent over the benchmarks we tested.
The POTP can reduce the performance overhead from
20.79 percent for critical path cryptography to 1.28 percent
on average. The maximum reduction reaches 41.8 percent
using a 64KB SNC with LRU replacement policy.
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