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Abstract. Interest in seasonal predictions of Arctic sea ice

has been increasing in recent years owing, primarily, to the

sharp reduction in Arctic sea-ice cover observed over the

last few decades, a decline that is projected to continue. The

prospect of increased human industrial activity in the region,

as well as scientific interest in the predictability of sea ice,

provides important motivation for understanding, and im-

proving, the skill of Arctic predictions. Several operational

forecasting centres now routinely produce seasonal predic-

tions of sea-ice cover using coupled atmosphere–ocean–sea-

ice models. Although assimilation of sea-ice concentration

into these systems is commonplace, sea-ice thickness obser-

vations, being much less mature, are typically not assimi-

lated. However, many studies suggest that initialization of

winter sea-ice thickness could lead to improved prediction of

Arctic summer sea ice. Here, for the first time, we directly

assess the impact of winter sea-ice thickness initialization

on the skill of summer seasonal predictions by assimilating

CryoSat-2 thickness data into the Met Office’s coupled sea-

sonal prediction system (GloSea). We show a significant im-

provement in predictive skill of Arctic sea-ice extent and ice-

edge location for forecasts of September Arctic sea ice made

from the beginning of the melt season. The improvements

in sea-ice cover lead to further improvement of near-surface

air temperature and pressure fields across the region. A clear

relationship between modelled winter thickness biases and

summer extent errors is identified which supports the theory

that Arctic winter thickness provides some predictive capa-

bility for summer ice extent, and further highlights the im-

portance that modelled winter thickness biases can have on

the evolution of forecast errors through the melt season.
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1 Introduction and motivation

Arctic sea ice is one of the most rapidly, and visibly, chang-

ing components of the global climate system. The past few

decades have seen a considerable reduction in the extent and

thickness of Arctic sea ice (Vaughan et al., 2013; Meier et

al., 2014; Lindsay and Schweiger, 2015; Kwok et al., 2009).

Although the areal extent of Arctic sea ice has declined in

all seasons, the reduction has been most pronounced in the

summer with the seasonal minimum extent hitting record

low values in September 2007 and 2012 (Meier et al., 2014;

Vaughan et al., 2013). This decline is projected to continue

in the future in response to rising global temperatures and

atmospheric CO2 concentrations (Collins et al., 2013; Notz

and Stroeve, 2016).

In response to declining sea-ice cover, human activity in

the Arctic is increasing, with access to the Arctic Ocean be-

coming more important for socio-economic reasons (Meier

et al., 2014). Such activities include commercial ventures

like tourism, fishing, mineral and oil extraction and shipping

(Smith and Stephenson, 2013), along with activities of im-

portance to local communities such as subsistence hunting

and fishing, search and rescue, and community re-supply.

Accurate forecasts of Arctic sea ice are thus becoming in-

creasingly important for the safety of human activities in the
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Arctic (Eicken, 2013). Improved knowledge of sea ice on

seasonal timescales allows for better planning which should

lead to a reduced level of risk and a reduction in opera-

tional costs for human activities in the Arctic Ocean. Re-

gional changes in Arctic sea-ice cover can also have implica-

tions for lower latitude weather and climate (Koenigk et al.,

2016; Balmaseda et al., 2010; Screen, 2013). For example,

Koenigk et al. (2016) show that late summer sea-ice cover

can be linked to winter North Atlantic Oscillation (NAO)-like

patterns and blocking in Western Europe. Therefore, more

accurate Arctic sea-ice predictions can also contribute to im-

proved forecasts, and hence longer-term planning, in mid-

latitude regions.

Interest in seasonal predictions has increased following the

drastic reduction in Arctic sea-ice extent in the summer of

2007, which led to a (then) record-low summer minimum

extent being set. In response to this, in 2008, the Sea Ice

Outlook (SIO) was instigated by the Study of Environmen-

tal Arctic Change (SEARCH) to synthesize seasonal pre-

dictions of September Arctic sea-ice extent, made from late

spring and early summer, using a variety of modelling, sta-

tistical, and heuristic approaches (see Stroeve et al., 2014).

For seasonal forecasts to be of use to stakeholders, a thor-

ough understanding of their predictive skill is needed. The

community that has been built up around the SIO has en-

abled collaborative activities addressing such issues across

various prediction centres through the inter-comparison and

common evaluation of forecasts (see https://www.arcus.org/

sipn/sea-ice-outlook, last access: 4 October 2010). There is

also an interesting scientific problem here to test our ability

to predict sea ice on seasonal timescales that are considerably

longer than the (typically 1–2 week) limit, beyond which, the

chaotic nature of the atmosphere and ocean inhibit traditional

deterministic forecasting (Slingo and Palmer, 2011). As the

sea ice thins, variability in ice extent increases (Holland et

al., 2011; Goosse et al., 2009) and so the problem of mak-

ing seasonal Arctic sea-ice predictions, particularly for the

September minimum, is one that is getting more challenging

and interesting as the ice cover declines (Holland et al., 2011;

Stroeve et al., 2014).

Although global coupled forecasting systems have been

used successfully for seasonal prediction of mid-latitude

weather and climate for some time now (see, for exam-

ple, Scaife et al., 2014), their application to Arctic sea-ice

prediction is much less mature. In particular, forecasts in

the Arctic are hampered by the fact that observations are

much less abundant and data assimilation techniques less

advanced in the polar regions than at lower latitudes (Jung

et al., 2016; Bauer et al., 2016), meaning that the initial

conditions used for forecasts in the Arctic are less accu-

rate than for lower latitudes. Despite this, several opera-

tional forecasting centres regularly contribute to the SIO with

sea-ice predictions from fully coupled atmosphere–sea-ice–

ocean modelling systems. One such system is the Met Of-

fice’s Global Seasonal (GloSea) coupled ensemble predic-

tion system (MacLachlan et al., 2014; Peterson et al., 2015),

which has contributed to the SIO since 2010. The ocean

and sea-ice components of GloSea are initialized each day

using the Forecast Ocean Assimilation Model (FOAM) op-

erational ocean–sea-ice analysis of Blockley et al. (2014,

2015). FOAM routinely assimilates sea-ice concentration

(SIC) along with various ocean quantities – satellite and

in situ sea surface temperature (SST), satellite sea level

anomaly (SLA), in situ profiles of temperature and salinity

(T&S) – but, as is common with most operational ocean anal-

ysis systems (Tonani et al., 2015; Martin et al., 2015; Bal-

maseda et al., 2015; Cummings and Smedstad, 2014), does

not assimilate sea-ice thickness.

The use of dynamical models for seasonal sea-ice predic-

tion is in its relative infancy. Still, there have been several

studies that demonstrate skill in retrospective forecasts (or

hindcasts) of September-mean Arctic sea ice extent made

from spring (e.g. Sigmond et al., 2013; Wang et al., 2013;

Chevallier et al., 2013; Msadek et al., 2014; Peterson et al.,

2015). However, none of these were able to match the poten-

tial skill found in idealized “perfect model” studies (Gue-

mas et al., 2016; Tietsche et al., 2014; Day et al., 2014;

Blanchard-Wrigglesworth et al., 2011), where all the ini-

tial conditions, but in particular, the sea-ice thickness, are

known precisely. Furthermore, when applied to a real-time

forecast, as submitted to SIO, the skill was found to be even

lower than the hindcast skill (Blanchard-Wrigglesworth et

al., 2015), and only marginally better than a linear trend fore-

cast (Stroeve et al., 2014). Clearly, there is potential for im-

provement in the dynamical models if more complete initial

conditions are known, with an even greater need, as demon-

strated by the deteriorated performance of the real-time fore-

casts, for more accurate real-time initial conditions. None of

the systems mentioned above initialize the sea ice using ob-

served thickness measurements.

Several studies have shown that winter sea-ice thickness

provides important preconditioning for the evolution of Arc-

tic sea ice through the summer melt season. Blanchard-

Wrigglesworth and Bitz (2014) found sea-ice thickness

anomalies in general circulation models (GCMs) to have a

timescale of between 6 and 20 months making their cor-

rect representation in model initial conditions of importance

for seasonal predictions. Other modelling studies by Hol-

land et al. (2011) and Kauker et al. (2009) have also shown

that knowledge of winter ice thickness can provide some

predictive capability for summer ice extent. Perfect model

studies (e.g. Day et al., 2014) have also suggested that cor-

rect initialization of sea-ice thickness can lead to improved

seasonal forecasts. Day et al. (2014) used the HadGEM1.2

climate model to show that memory of winter thickness

conditions can persist well beyond seasonal timescales and

provide predictive capability for up to 2 years. Collow et

al. (2015) found considerable changes in ice concentration

forecasts when changing the initial thickness in the cou-

pled forecast system model version 2 (CFSv2) seasonal pre-
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diction system. They showed an improvement to seasonal

forecasts when using thickness fields from the Pan-Arctic

Ice–Ocean Model Assimilation System (PIOMAS) model of

Zhang and Rothrock (2003). These studies suggest that sea-

sonal (> 90 days) predictions of Arctic summer sea ice, made

with dynamical models, could be improved by correctly ini-

tializing sea-ice thickness. However, we note that, although

uncertainty in the initial conditions plays a crucial role for

seasonal predictions of Arctic sea ice, model uncertainty is

likely to dominate the evolution of seasonal forecast errors

(Blanchard-Wrigglesworth et al., 2017).

Although the assimilation of sea-ice concentration has

been included in ocean reanalysis, operational ocean predic-

tion and seasonal forecasting systems for several years (Stark

et al., 2008; Peterson et al., 2015), sea ice thickness is not

yet routinely used to initialize these systems (Martin et al.,

2015; Balmaseda et al., 2015; Tonani et al., 2015). However,

there have been several recent studies that have sought to im-

prove the representation of Arctic sea-ice thickness in anal-

yses and short-range forecasts using satellite thickness prod-

ucts derived from Soil Moisture and Ocean Salinity (SMOS)

brightness temperatures and/or from CryoSat-2 (hereafter

CS2) radar freeboard measurements. Such studies have gen-

erally focused on assimilation of thickness using ensemble

techniques into short-range, externally forced, ocean–sea-ice

models in the Topaz system (Xie et al., 2016) or using MIT-

gcm (Yang et al., 2014; Mu et al., 2018). Although these

studies showed considerable improvement to the simulation

of sea-ice thickness, the impact on short-range forecasts of

sea-ice concentration or extent was minimal. More recently,

Allard et al. (2018) used direct initialization of CS2-derived

sea-ice thickness, using 2 different datasets processed with

different algorithms, within a series of reanalyses performed

with the Naval Research Laboratory’s forced ocean–sea ice

Arctic Cap Nowcast/Forecast System (ACNFS). They show

that the analysed sea ice thickness is significantly improved

when assimilating CS2 thickness compared against in situ

and airborne measurements. They also perform an in-depth

assessment of the thickness data and analyses, and show a

good agreement between the CS2-derived ice thickness and

observations from in situ and airborne sources.

As noted above, several studies (Yang et al., 2014; Xie et

al., 2016; Mu et al., 2018; Allard et al., 2018) have looked at

the impact of sea ice thickness initialization on analyses and

short-range forecasts produced with externally forced ocean–

sea ice models. What has not been investigated is the im-

pact that assimilation of sea ice thickness may have in longer

(> 90 days) forecasts made using fully coupled dynamical

models. Here we do so for the first time using the Met Of-

fice GloSea coupled seasonal prediction system. For accu-

rate seasonal predictions of September sea ice cover, it is im-

portant to model ice that will persist throughout the summer

season, and so an improved representation of the location

of thick sea ice within the initialization should be advanta-

geous. We hypothesize that GloSea seasonal predictions of

late-summer (September) sea ice cover will be improved by

initializing sea ice thickness in early spring (May) using ob-

servations of thick sea ice derived from CS2. In this study,

we use a simple nudging technique to test this hypothesis,

and evaluate the feasibility of including sea ice thickness

initialization within the operational GloSea seasonal predic-

tion system. We assimilate CS2 sea ice thickness within the

FOAM ocean–sea ice reanalysis and use these analyses as

initial conditions for an ensemble of seasonal (5-month) cou-

pled forecasts to determine the impact of sea ice thickness

initialization on the skill of GloSea seasonal predictions. We

show that sea ice thickness initialization leads to a consider-

able improvement in the skill of seasonal predictions of Arc-

tic sea ice extent and ice edge location.

This paper is structured as follows: Sect. 2 introduces

the modelling systems and observations used in this study;

Sect. 3 describes the initialization of CS2 thickness within

the ocean–sea ice reanalysis and the generation of initial con-

ditions for seasonal predictions; Sect. 4 provides details of

GloSea coupled seasonal prediction experiments performed

using CS2 initialized thickness and shows improved skill

for seasonal forecasts of Arctic ice cover. Section 5 pro-

vides summary discussion and an overview of proposed fu-

ture work.

2 Models and observations used in this study

2.1 Modelling systems

The model systems used in this study are taken from the

Met Office suite of seamless, traceable prediction systems

introduced by Brown et al. (2012) using components of

the Hadley Centre Global Environment Model version 3

(HadGEM3) coupled model architecture described by Hewitt

et al. (2011). All of these HadGEM3-based modelling sys-

tems simulate the ocean and sea ice conditions using the Nu-

cleus for European Modelling of the Ocean (NEMO) ocean

model (Madec, 2008) coupled to the Los Alamos sea ice

model (CICE) (Hunke et al., 2015).

Within the Met Office’s unified, seamless framework, sea-

sonal forecasts are performed using the GloSea coupled pre-

diction system (MacLachlan et al., 2014; Scaife et al., 2014).

GloSea produces two 210-day seasonal forecasts every day,

which, together with those from previous days, are com-

bined to form a lagged ensemble prediction system. Mean-

while hindcasts, retrospective forecasts performed for pre-

vious years using true forecast conditions, are used to es-

tablish errors in the model climatology for the purposes of

bias correction, and to estimate forecast skill. More details

on the GloSea seasonal prediction system can be found in

MacLachlan et al. (2014). The ocean and sea ice components

of the GloSea system are initialized each day using analyses

from the FOAM system described in Blockley et al. (2014,

2015). FOAM is an operational ocean–sea ice analysis and
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forecast system run daily at the Met Office. Satellite and in

situ observations of temperature, salinity, sea level anomaly

and sea ice concentration are assimilated by FOAM each

day using the NEMOVAR 3D-Var First Guess at Appropri-

ate Time (FGAT) scheme. Sea ice thickness is not currently

assimilated in FOAM; new ice is added by the concentration

assimilation at a default thickness of 0.5 m. More details of

the FOAM system can be found in Blockley et al. (2014)

and more about the NEMOVAR 3D-Var FGAT scheme used

therein can be found in Waters et al. (2015).

As well as the abovementioned operational analyses and

forecasts, longer reanalyses are performed with the FOAM

system using surface forcing derived from the ERA-Interim

atmospheric reanalysis (Dee et al., 2011). Within the GloSea

seasonal prediction system, hindcast experiments initialized

from these reanalyses are used to bias correct the GloSea

seasonal forecasts (see MacLachlan et al., 2014, for more

information). As well as being used for bias correction

within GloSea, these ocean reanalyses are utilized more

widely within the ocean community (Balmaseda et al., 2015;

Chevallier et al., 2017; Uotila et al., 2018) and have been

used to help answer a number of other scientific questions

(e.g. by Roberts et al., 2013; Jackson et al., 2015).

Throughout this study we shall use prototype FOAM and

GloSea systems based on the latest configuration of the

Met Office coupled modelling system (GC3: Williams et

al., 2017), which will be used as part of Met Office Hadley

Centre’s contribution to phase 6 of the Coupled Model In-

tercomparison Project (CMIP6). This GC3 coupled model

version uses the GO6 ocean and GSI8 sea ice component

configurations described in Storkey et al. (2018) and Ridley

et al. (2018), respectively, and uses the extended ORCA025

tripolar grid described therein, with nominal 1/4◦ horizontal

resolution, ranging from 8.9 to 15.5 km in the Arctic Ocean

basin, and 75 vertical levels. The sea ice component of the

model is based upon CICE vn5.1.2 and uses the standard

CICE elastic–viscous–plastic (EVP) rheology for modelling

the sea ice dynamics (Hunke et al., 2015). Growth and melt

of the sea ice is calculated using a multi-layer thermodynam-

ics scheme with 4 layers of ice and 1 layer of snow. At each

model grid point, the sub-grid scale ice thickness distribu-

tion is modelled by partitioning the ice into five thickness

categories (lower bounds: 0, 0.6, 1.4, 2.4, and 3.6 m), with

an additional ice-free category for open water areas. The im-

pact of surface meltwater on the sea ice albedo is explicitly

represented by the prognostic evolution of melt ponds using

the topographic formulation. Further details about the sea ice

component, and the wider coupled model used here, can be

found in Ridley et al. (2018) and Williams et al. (2017), re-

spectively.

2.2 Observations of sea ice thickness

Whilst observations of sea ice concentration providing large-

scale coverage for both poles have been available since 1979

(Fetterer et al., 2016; Rayner et al., 2003), measurements of

sea ice thickness are, relatively, much less abundant. How-

ever, satellite estimates of winter thickness have been avail-

able for a number of years using radar altimetry (Laxon et al.,

2003), laser altimetry (Kwok and Cunningham, 2008), and,

more recently for thin ice, microwave brightness tempera-

tures (Kaleschke et al., 2016). Although radar altimeter esti-

mates of sea ice thickness have been available for many years

now, their up-take into operational ocean–sea ice assimila-

tion systems has been minimal. The primary reasons for this

are 3-fold: the data were not made available in near-real-time

for use in operational analysis systems; owing to the orbit

inclination, these datasets often have a large “pole hole” giv-

ing poor coverage in the central Arctic Ocean; there is con-

siderable uncertainty associated with these estimates of ice

thickness (Ricker et al., 2014). The problems outlined above

have been ameliorated somewhat during the last few years by

the launch of ESA’s CryoSat-2 satellite (CS2), the primary

objective of which is to acquire accurate measurements of

sea ice thickness. CS2 has an unusually high inclination or-

bit that provides observational coverage up to 88◦ N, which

has considerably reduced the size of the pole hole (Laxon et

al., 2013). CS2 is also fitted with a Synthetic Aperture In-

terferometric Radar Altimeter (SIRAL) instrument that has

a higher accuracy, and along-track resolution, than was pre-

viously available from the ENVISAT and ERS-1/2 radar al-

timeters (Guerreiro et al., 2017). The processed data from

CS2 is also provided in almost near-real-time by the Centre

for Polar Observation and Modelling (CPOM) (Tilling et al.,

2016) making its use within operational analysis systems a

realistic proposition.

2.2.1 CryoSat-2 thickness observations

In this study, we initialize the model using thick ice from

CS2, which are accurate for ice thicker than 1 m (Ricker

et al., 2017). We use monthly CS2 winter (October–April)

thickness estimates produced by CPOM (Tilling et al., 2016),

which start from October 2010 until present (at time of writ-

ing). Sea ice freeboard is inferred from radar altimetry aboard

the CS2 satellite and is converted to thickness by assuming

that the sea ice floats in hydrostatic equilibrium and by mak-

ing various assumptions about the snow loading and the rel-

ative densities of the sea ice, the ocean, and the overlying

snow. Details of the methods used to generate the CPOM

thickness fields can be found in Laxon et al. (2013) and Till-

ing et al. (2015). Several different centres, including CPOM,

are now producing CS2-derived estimates of sea ice thick-

ness. More details on the differences between these obser-

vational estimates can be found in Stroeve et al. (2018) and

Allard et al. (2018). Some more general discussion of the

uncertainties involved in the calculation of sea ice freeboard

and thickness using radar altimetry can be found in Ricker et

al. (2014).
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The CPOM thickness data are provided on a 5 km polar

stereographic grid having been smoothed with an averaging

window of radius 25 km. We apply a further quality con-

trol (QC) to the data before use. The CS2 thickness retrieval

methodology is particularly uncertain for thin ice where the

ice freeboard is not much higher than sea level (Ricker et

al., 2014, 2017). To avoid high observational error associ-

ated with these thin measurements we impose a minimum

thickness threshold of 1 m, a choice that was motivated by

Fig. 2b of Ricker et al. (2017). Further, to ensure that the ob-

servations are as representative of the month as possible we

apply the constraint that at least 10 different altimeter tracks

are used to determine the monthly mean observation. We also

impose a constraint on the spread of the track observations by

keeping monthly observations only when the standard devi-

ation of the contributing individual track observations is less

than 2 m. Finally, we remove any spuriously high observa-

tions by imposing a maximum thickness threshold of 7 m. In

total, application of the abovementioned QC rejected roughly

21.5 % of the original observations; about 9.4 % of the obser-

vations were removed by the 1m cut-off and just over 12 %

were rejected by the remaining constraints. An example of

the thickness observations used in this study can be seen in

Fig. 1a, which shows a map of average October–April Arctic

thickness for 2011–2015 inferred from CS2 estimates after

application of the QC process described above.

2.3 Observations of sea ice extent and concentration

Within this study, observations of sea ice concentration and

extent from several sources are used both for evaluating

seasonal predictions of Arctic sea ice, and for assimilation

within the reanalyses used for initialization of these seasonal

predictions.

2.3.1 Sea ice concentration and extent datasets used for

evaluation

Uncertainty associated with sea ice concentration and ex-

tent estimates from satellites is high (Ivanova et al., 2015)

and the commonly used sea ice extent metric is non-

linear and dependent on resolution (Notz, 2014). To ac-

count for this uncertainty we include observational estimates

from three different sources: extents calculated from the

1◦ gridded Hadley Centre Sea Ice and Sea Surface Tem-

perature (HadISST1.2) dataset of Rayner et al. (2003); the

National Snow and Ice Data Center (NSIDC) sea ice in-

dex of Fetterer et al. (2016); and gridded sea ice concen-

tration fields from the most recent FOAM-GloSea ocean–

sea ice reanalysis. This reanalysis, performed using ver-

sion 13 of the FOAM system (Blockley et al., 2015), is

used within the Copernicus Marine Environment Moni-

toring Service (CMEMS; http://marine.copernicus.eu/, last

access: 4 October 2018) global ocean reanalyses ensem-

ble product (ID: GLOBAL-REANALYSIS-PHY-001-026;

described in http://marine.copernicus.eu/documents/QUID/

CMEMS-GLO-QUID-001-026.pdf, last access: 4 October

2018). Using this CMEMS reanalysis has the benefit that it

is performed on the same ORCA025 grid as the ocean–sea

ice components of the GloSea seasonal forecasting system,

which makes spatial comparisons easier. This reanalysis has

also been evaluated thoroughly through the Ocean Reanal-

yses Inter-comparison Project (ORA-IP) (see Balmaseda et

al., 2015; Chevallier et al., 2017; Uotila et al., 2018). To avoid

confusion with the FOAM reanalyses performed as part of

this study, and described later, we refer to this product as

“CMEMS” hereafter.

2.3.2 Sea ice concentration datasets used for

assimilation

The CMEMS reanalysis, and the reanalyses performed in this

study, were performed using Special Sensor Microwave Im-

ager/Sounder (SSMI/S) sea ice concentration data provided

by the European Organisation for the Exploitation of Meteo-

rological Satellites (EUMETSAT) Ocean and Sea Ice Satel-

lite Application Facility (OSI-SAF). Sea ice concentration

is assimilated, together with ocean data sources using the

NEMOVAR 3D-Var scheme (see Blockley et al., 2014; Wa-

ters et al., 2015). Prior to October 2009, OSI-SAF’s Global

Sea Ice Concentration Climate Data Records (OSI-409, ver-

sion 1.1) product was assimilated. When the reanalysis was

run, in 2014, these data were only available up to the end

of 2009 and so the OSI-SAF near-real-time (NRT) product

OSI-401a was used from 25 October 2009 onwards. These

two datasets have differences in the processing of low con-

centration ice and near coastlines (see Sect. 4.2 of OSI-SAF,

2017). However, this does not cause us any concern here be-

cause our study is focused on the CS2 era from October 2010

onwards.

3 Initialization of thickness in the ocean–sea ice

reanalysis system

Here we use the latest development version of the FOAM-

GloSea reanalysis system that has been undertaken as part of

the upgrade of GloSea and FOAM to use the latest GC3 ver-

sion of the Met Office coupled model architecture (Williams

et al., 2017). Specifically here the ocean reanalysis system

is using the GO6 ocean configuration described in Storkey

et al. (2018) and the GSI8 sea ice configuration described

in Ridley et al. (2018). We take the latest GO6+GSI8 re-

analysis as our control (hereafter CTRL-RA) and modify it

to include initialization of sea ice thickness using CS2 ob-

servations (hereafter ThkDA-RA). The CTRL-RA reanalysis

was run from 1992 to 2015 but here we only re-run the last

5 years, from October 2010 to the end of 2015 , to tie in with

availability of CS2 thickness estimates.
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Table 1. Details of ocean–sea ice reanalysis experiments used in this study.

Experiment name Reanalysis run period Surface forcing Assimilated variables (3D-Var) Thickness nudging used

CTRL-RA 1 Jan 1992–31 Dec 2015 ERA-Interim SST, SLA, T&S, SIC None

ThkDA-RA 1 Oct 2010–31 Dec 2015 ERA-Interim SST, SLA, T&S, SIC CPOM CryoSat-2

Figure 1. Mean winter (October to April) Arctic sea ice thickness (m) from October 2010 to April 2015 for (a) CPOM CryoSat-2 mea-

surements, after application of the QC and imposing the 1 m minimum thickness threshold; modelled thickness from (b) the CTRL and

(c) ThkDA reanalyses. Panel (d) shows the difference between the ThkDA and CTRL experiments.

Within the ThkDA-RA reanalysis, CS2 thickness data are

assimilated using a basic nudging technique in which thick-

ness fields are nudged towards the monthly gridded CS2 ob-

servations in a fashion akin to that employed by climato-

logical relaxation schemes. All other data used within the

control run (i.e. SST, SLA, T&S profiles, and SSMI/S sea-

ice concentration) are assimilated here too in the same man-

ner as in the standard FOAM system (Blockley et al., 2014,

2015). The sea ice concentration observations assimilated are

the same as used for the CMEMS reanalysis described in

Sect. 2.3.2 above (i.e. OSI-401a). An overview of reanaly-

sis experiments used in this study can be found in Table 1.

We use the monthly CPOM measurements introduced in

Sect. 2.2 and map them onto the model grid using a stan-

dard binning technique. A linear interpolation is performed

each day to get daily thickness observations from the nearest

two months. Assimilation increments are created by taking a

simple difference between these daily CS2 thickness obser-

vations and the daily mean model thickness. Where no obser-

vations are present, the increments are set to zero to ensure

no thickness nudging is performed. We do things this way to

avoid problems arising with the sparse data and so we can

keep nudging the model towards CS2 thickness.

The increments are applied within the CICE model code

in a similar fashion to the sea ice concentration assimila-

tion described in Peterson et al. (2015) and Blockley et

al. (2014). Thickness changes are made at each time step

using the Incremental Analysis Update (IAU) method. A 5-
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Figure 2. Reanalysis Arctic sea ice volume from 1 October 2010 to the end of December 2015 from the CTRL-RA (blue) and ThkDA-RA

(red) reanalysis experiments. Sea ice volume from the PIOMAS model (grey dashed) is included as a reference.

day relaxation timescale is used and increments are only ap-

plied where the grid-cell ice concentration is above 40 %.

The CICE sea ice model uses multiple thickness categories

to represent the sub-grid thickness distribution. To apply the

thickness increments into the multi-category model we chose

to nudge the grid-box-mean thickness towards observations

by making changes across each of the 5 sub-grid categories,

so long as there is ice present there with concentration above

1 %, maintaining the initial distribution of volume between

the categories. We note here that this approach is similar

to that employed by Allard et al. (2018), who multiply the

ice volume in each category by the grid-box-mean model-

observation thickness difference. However, whilst they use

direct initialization, we use the IAU approach to incorporate

changes into the model in a gradual manner and limit the po-

tential for sudden shock in the system (Bloom et al., 1996).

3.1 Impact of CryoSat-2 initialization on reanalysis

thickness

Figure 1 illustrates the general impact of including CS2 as-

similation within the ThkDA-RA reanalysis by showing the

mean Arctic sea ice thickness for the months when CS2 data

are available (October–April) over the whole ThkDA-RA re-

analysis (2010–2015). The difference plot in Fig. 1d shows

that the inclusion of CS2 nudging generally acts to increase

the thickness of the Arctic sea ice, in particular in the Atlantic

sector north of Fram Strait, and to the north of Greenland.

Comparison with the observations in Fig. 1a shows that the

thickness in ThkDA-RA is much more closely aligned with

the CS2 data than is the case for CTRL-RA.

A comparison of sea ice volume for the CTRL-RA and

ThkDA-RA reanalyses in Fig. 2 confirms that the net effect

of CS2 thickness nudging is an increase in sea ice thickness.

We note that an increase in volume here directly implies an

increase in average ice thickness because, as sea ice con-

centration is tightly constrained by the assimilation of sea

ice concentration and sea surface temperature, the ice area

between the two reanalysis simulations is virtually identi-

cal (not shown). Figure 2 shows that winter volume is in-

creased the most by the assimilation of CS2 thickness. This

is perhaps not surprising given that winter is the time when

the data are available. However, there is some evidence that

these winter changes also affect the summer volume, which

is most pronounced in 2014 and, to a lesser extent, 2013

and 2015. In all years, the volume time series shows a clear

kink on 1 October when the CS2 data comes back online

and begins to be assimilated in the reanalysis, although this

is much less pronounced in 2014 when the summer thick-

ness was also increased. In Fig. 2, sea ice volume for the

CTRL-RA and ThkDA-RA reanalyses are also compared

with volume estimates from the PIOMAS model of Zhang

and Rothrock (2003). The PIOMAS volume is included here

purely as a reference because it is well understood and widely

used for this purpose. The volume in the CTRL-RA run is

much closer to PIOMAS than the ThkDA-RA run. This is ex-

pected as PIOMAS has been shown to underestimate thick-

ness and volume in the winter compared to the CPOM CS2-

derived thickness (Tilling et al., 2015; Laxon et al., 2013),

although it has been shown to compare better with laser al-

timeter estimates such as ICESat (Schweiger et al., 2011).

Figure 3a shows the impact of the CS2 thickness initializa-

tion on the reanalysis end of winter thickness fields, which

will be used in this study to initialize GloSea seasonal pre-

dictions, with the 5-year mean differences for 1 May at the

end of winter when CS2 observations cease. At the end of

winter it is apparent that inclusion of CS2 thickness nudg-

ing has increased sea ice thickness across much of the At-

lantic sector of the Arctic (Barents, Kara and Greenland

Seas). Conversely, ice thickness has been decreased in the

Canadian Arctic Archipelago (CAA) and, to a lesser degree,

across much of the Pacific sector (Beaufort, Chukchi and

East Siberian Seas). Thickness is also increased in many of

the marginal seas outside of the central Arctic such as the

Bering Sea and Hudson Bay. One notable exception is the

Labrador Sea and Baffin Bay where the differences form an

east–west dipole with ice thickness being reduced along the

Canadian coast but increased on the Greenland side.

Figure 3b shows the 5-year-mean difference in the reanal-

yses thickness fields at the end of summer (30 September) af-
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Figure 3. Mean sea ice thickness difference (m) between ThkDA-RA and CTRL-RA experiments over the full 5-year reanalysis period from

2011 to 2015. Showing differences for (a) the end of winter on 1 May used for the initialization of summer seasonal forecasts, and for (b) the

end of summer on 30 September. The difference is taken as ThkDA–CTRL so red and blue imply that the CS2 nudging have increased and

decreased the thickness, respectively.

ter 5 months of running without thickness assimilation. The

impact of the CS2 nudging is an increase in sea ice thick-

ness throughout much of the Arctic save for small patches

in the East Siberian Sea and within the CAA. The pattern

is broadly consistent with the differences seen at the end of

winter in Fig. 3a. Even after 5 months of running without the

CS2 thickness nudging, although still assimilating ice con-

centration and other ocean quantities, we can see the impact

of initializing thickness through the winter. This is good news

for the feasibility study because it tells us that the thickness

changes are being retained by the model and not being re-

jected or washed out by the assimilation of other quantities

such as ice concentration.

The general picture shown by the 5-year mean in Fig. 3a

is typical of the end of winter thickness differences seen for

each of the 5 years 2011–2015 (not shown). Mean sea ice

thickness across the Arctic Ocean basin has been increased

by around 14 % (from 2.00 to 2.27 m). This increase is most

pronounced in the Atlantic sector of the Arctic (30◦ W–

140◦ E), where thickness increased by around 33 % (from

1.44 to 1.91 m). Although mean thickness in the combined

Beaufort and Chukchi Seas has decreased by 7 % (from 2.32

to 2.15 m), the net effect over the whole Pacific sector of the

Arctic (140◦ E–20◦ W) is an increase of 6.6 % (from 2.33

to 2.49 m). However, the situation is not so clear-cut for the

summer case (Fig. 3b), where thickness increases are much

more pronounced in 2014 and 2013 (see Fig. 2).

The impact of the thickness changes on the large-scale

sea ice motion is negligible with monthly mean velocities in

the two experiments being virtually identical throughout the

2011–2015 period (not shown). This is consistent with the

findings of Allard et al. (2018), who show little impact on ice

drift in their reanalysis comparisons.

In summary, we have shown that nudging Arctic sea ice

thickness to CS2 observations within the ThkDA-RA reanal-

ysis has the net effect of increasing sea ice volume. The dif-

ferences between the two reanalyses reveal a persistent bias

in the thickness distribution in the model when compared

with CS2, whereby sea ice is too thick on the Pacific side and

not thick enough on the Atlantic side of the Arctic. There is

evidence to suggest that the winter Arctic sea ice thickness

and volume is an important precondition for evolution of ice

through the melt season (in agreement with the current litera-

ture) because the effects of winter thickness changes imposed

by the nudging are still evident at the end of the summer. An-

other important result to note here is that the assimilation of

thickness worked well and the increments were successfully

retained by the model, which bodes well for inclusion of sea

ice thickness within the NEMOVAR system in the future.

4 Initialization of thickness in the GloSea coupled

seasonal prediction system

Seasonal forecasts of sea ice extent are made operationally

by the GloSea system each day. Hindcast predictions, per-

formed from a discrete predefined set of start dates each year,

are also run within the operational suite each day and used

as part of the bias correction process. These hindcast pre-

dictions are initialized using the long GloSea ocean–sea ice

reanalysis (as described in Sect. 3), which is coupled to atmo-

sphere initial conditions interpolated from the ERA-I reanal-

ysis (Dee et al., 2011). In addition to being used operationally

for bias correcting forecasts, seasonal hindcasts such as this

are performed for testing of model configuration upgrades

prior to implementation within the GloSea operational suite.

As these hindcasts are used to test the expected skill of a real

forecast, they are performed in a fashion that does not use any
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Table 2. Details of GloSea coupled seasonal prediction experiments (or “hindcasts”) used in this study.

Experiment name Prediction lead time Years Ensemble members Atmosphere ICs Ocean–ice ICs

CTRL-HC May–Sep 1992–2015 24 per year∗ ERA-Interim CTRL-RA

ThkDA-HC May–Sep 2011–2015 24 per year∗ ERA-Interim ThkDA-RA

FIXED-IC May–Sep 2011–2014 24 per year∗ ERA-Interim ThkDA-RA:

fixed 2015 for all years

∗ 24 members per year = 3 start dates with 8 stochastic members for each.

subsequent observational data after initialization, so as not

to invalidate that expectation. A recent trial of the new GC3

coupled model configuration of Williams et al. (2017) has

been performed using the GloSea seasonal prediction sys-

tem, which we shall use as our control (denoted CTRL-HC).

The ocean and sea ice for these hindcasts are initialized us-

ing the control reanalysis (CTRL-RA) described in Sect. 3

and the atmosphere is initialized from the ERA-I reanalysis.

As the GC3 developments include the implementation of a

new multi-layer model for terrestrial snow (see Walters et al.,

2017; Williams et al., 2017), the snow fields were initialized

separately from the atmosphere using a standalone version

of the GC3 land surface component (Joint UK Land Envi-

ronment Simulator; JULES) with ERA-I snow precipitation

and data assimilation.

Here we wish to test the impact of initializing with CS2

sea ice thickness on the seasonal predictions of September

sea ice extent. For this purpose, an ensemble of seasonal

prediction experiments was configured that was identical to

the CTRL-HC experiment except that the ocean and sea ice

components were initialized from the ThkDA-RA reanal-

ysis instead of CTRL-RA. Seasonal predictions were per-

formed from 3 different spring start dates (25 April, 1 May

and 9 May). For each of these start dates, an ensemble of 8

seasonal predictions was initialized from the same analysis

fields with spread between the members achieved by using

stochastic physics (see MacLachlan et al., 2014, for more de-

tails). This methodology is identical to that used for CTRL-

HC and, through a mixture of lagged and perturbed methods,

provides an ensemble of 24 forecasts of September sea ice

each year. These predictions were performed for 2011–2015,

each year that spring analyses are available from the ThkDA-

RA ocean reanalysis. We denote this system of predictions as

ThkDA-HC. Details of the GloSea coupled prediction exper-

iments used in this study can be found in Table 2.

4.1 Improvements to seasonal prediction of Arctic

extent and ice edge location

Results from the ThkDA-HC experiment show that the CS2

thickness initialization has considerably improved the skill

of GloSea seasonal predictions of Arctic sea ice cover. Fig-

ure 4a shows September-mean Arctic sea ice extent from the

GloSea control ensemble (CTRL-HC; blue) and the ensem-

ble run with initialized thickness (ThkDA-HC; pink). Predic-

tions from each of the 24 ensemble members, initialized from

the 3 April or May start-dates, are depicted by the crosses;

the ensemble mean is plotted with bold symbols and inter-

connecting lines. Although the ThkDA-HC predictions only

start from 2011 we plot the CTRL-HC throughout the whole

period of the run from 1992 to 2015 to help put the, relatively

short, 5-year time series into context. To assess the accuracy

of the GloSea seasonal predictions, observational and reanal-

ysis estimates of Arctic extent, from the CMEMS reanalysis,

and the HadISST and NSIDC datasets (see Sect. 2.3), are

plotted alongside the model predictions (black or grey). We

note here that the difference in extent prior to 2010 between

the CMEMS reanalysis and the HadISST and NSIDC data

sources apparent in Fig. 4a is caused by the switch in OSI-

SAF data products in October 2009, from OSI-409 version

1.1 to OSI-401a, described in Sect. 2.3 above. Being prior

to the launch of CS2, this change does not have any impact

on the results of our study but we include all years avail-

able from CTRL-HC in Fig. 4 to build a picture of the skill

of the CTRL-HC predictions made without sea ice thickness

initialization. Figure 4 illustrates that, throughout the CTRL-

HC experiment, the seasonal predictions of sea ice extent are

consistently biased low. The mean extent over the full time

series (1992–2015) of 4.20 × 106 km2 is between 1.53 and

2.21 × 106 km2 below that for the 3 observational datasets.

The total extent comparisons in Fig. 4a show that the run

with initialized winter thickness gives improved predictions

of September sea ice extent. This is particularly true for

2011 and 2012, for which the ThkDA-HC predictions of to-

tal extent are within 0.12 × 106 km2 of the observed values.

The underestimation of basin-wide extent seen throughout

the CTRL-HC predictions has been reduced; 2011–2015 5-

year-mean extent of 3.78 × 106 km2 for ThkDA-HC is much

closer to the observational average of 4.62×106 km2 than the

CTRL-HC value of 2.79 × 106 km2 (Fig. 4a) is to the same

observations.

Basin-wide extent is not a very useful metric for assessing

sea ice because, although it provides information about the

amount of ice present, it does not take into account the lo-

cation of the ice or the position of the ice edge – which are

more useful for operational users (Notz, 2014). To assess the

skill of GloSea seasonal predictions in relation to the spa-

tial distribution of ice and ice edge location, we use the inte-
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Figure 4. (a) September-mean Arctic sea ice extent from the CTRL-HC (blue), ThkDA-HC (pink), and FIXED-IC (green) seasonal pre-

diction experiments. Observational estimates from the CMEMS reanalysis assimilating OSI-SAF (black squares), NSIDC (grey circles) and

HadISST1.2 (grey triangles) are included and the area between them shaded light grey. (b) Integrated ice edge error (IIEE) for seasonal

predictions relative to the CMEMS reanalysis product introduced in Sect. 2.3. In both panels, individual ensemble members are represented

by coloured crosses and ensemble means by the solid symbols and inter-connecting lines. Horizontal coloured lines depict 2011–2015 mean

values. For ease of viewing, the ThkDA-HC (pink) and FIXED-IC (green) experiments are plotted with a small offset relative to the CTRL-

HC (blue) experiment, and the CS2 period (2011–2015) is plotted with an increased x axis scale, approximately twice that for the early

period 1992–2010, with the transition indicated by a vertical black line.

grated ice edge error (IIEE) metric introduced by Goessling

et al. (2016). This metric is essentially the area integral of

all model grid cells where the forecast and observations dis-

agree about whether sea ice is present or not (see Goessling

et al., 2016, for more details). Here we use a sea ice concen-

tration threshold of 15 % to define whether ice is present or

not in any particular grid cell and compare the GloSea sea-

sonal predictions to the CMEMS reanalysis that assimilated

the OSI-SAF data. The GloSea and CMEMS products are

on the same ORCA025 grid and so comparisons between the

two are easy and not degraded by having to remap the data

between different grids. Results from the IIEE analysis can

be found in Fig. 4b, which shows IIEE for each ensemble

member of the CTRL-HC and ThkDA-HC GloSea seasonal

predictions (as in Fig. 4a, but for IIEE not extent). For the

CTRL-HC experiment, the IIEE is virtually flat across the

length of the full time series (1992–2015) illustrating that, as

for extent, the model without sea ice thickness assimilation

is consistently biased throughout this 24-year period.

Figure 4b shows that ice-edge error is considerably im-

proved by the CS2 thickness initialization with the 2011–

2015 mean IIEE reduced from 3.20×106 km2 for CTRL-HC

to 2.02 × 106 km2 for ThkDA-HC, a reduction of 37 %. The

differences in both extent and IIEE shown in Fig. 4 are sig-

nificant at the 1 % level over the whole 5-year period and for

each of the individual years, except for 2013. In general, the

improvement in the ice edge location and IIEE is more pro-

nounced than the improvement to the basin-wide extent. This

is to be expected given that the CS2 thickness initialization

changed the distribution of sea ice thickness in the Arctic as

well as increasing average thickness. Figure 5 further illus-

trates the spatial improvement in sea ice predictions showing
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Figure 5.

the probability of ice across the CTRL-HC and ThkDA-HC

ensembles for each year (2011–2015), with ensemble-mean

and observed ice extent (represented by 15 % concentration

contours) overlain. Here we calculate the probability of ice,

at each grid-cell, as the proportion of ensemble members for

which the ice concentration is at least 15 %. Consistent with

the IIEE results in Fig. 4b, the ice edge location in Fig. 5

for the ThkDA-HC system is much better than for CTRL-

HC. In particular, the ThkDA-HC ensemble-mean ice edges

for 2011 and 2012 are very close to those produced by the

CMEMS reanalysis. A consistent feature of Fig. 5 is that

the ice edge along the Atlantic sector of the Arctic is very

well defined for the ThkDA predictions and is very close to

the CMEMS reanalysis for all years. These improvements

are further illustrated in Fig. 6, which shows, for several dif-

ferent Arctic Ocean regions, the ice extent predicted by the
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Figure 5. September mean probability of sea ice for the CTRL-HC (left) and ThkDA-HC (right) seasonal predictions for all years from

2011 (top) to 2015 (bottom). Contours of 15 % concentration are overlain to represent the sea ice edge for the ensemble mean (orange) and

CMEMS reanalysis product (black). Probability is defined at each point as the proportion of ensemble members that have at least 15 % ice

concentration. The CMEMS extent, modelled extent and corresponding Integrated Ice Edge Error (IIEE) are included, for each plot, in the

lower-right corner (units: 106 km2).

CTRL and ThkDA experiments, along with the extent from

the CMEMS reanalysis and the corresponding IIEE. The pre-

dictions made using CS2 initialization (ThkDA) have lower

extent in the Beaufort and Chukchi Seas and higher extent ev-

erywhere else. In all regions, the ThkDA extent predictions

are closer to the CMEMS reanalysis and the corresponding

IIEE is lower. Improvements are most notable in the central

Arctic region, and particularly the Atlantic sector.

The spatial changes in the September-mean sea ice con-

centration predictions depicted in Fig. 5 match well with the

May mean thickness dipole shown in Fig. 3a. A good illustra-

tion of this is 2012 for which the extent improvement is much

smaller than the IIEE improvement (Fig. 4), which is caused

by the fact that much of the ice that remains in the CTRL-

HC predictions is located in the Beaufort Sea rather than in

the Atlantic sector (north of Fram Strait/Svalbard and east of

Greenland). Figure 7 further illustrates this point by showing

how thickness differences between the CTRL and ThkDA

experiments, for both the analysed spring initial conditions

and the September-mean seasonal predictions, relate to the

eventual predictions of ice edge. The thickness dipole from

the CS2 nudging matches up well with the areas of miss-

ing ice in the Atlantic sector and the areas of excess ice in

the Beaufort Sea. This suggests a strong relationship, in this

model at least, between wintertime thickness biases and the

evolution of errors in sea ice concentration through the sum-

mer.

4.2 Wider impact of Arctic sea ice changes

We now consider how the abovementioned sea ice improve-

ments affect the wider GloSea seasonal September predic-

tions. With the changes in winter ice thickness, and in the

evolution of Arctic ice coverage through the melt season de-

scribed above, one would expect to see both fast changes

to the local Arctic surface boundary layer (Semmler et al.,

2016), as well as longer timescale changes to the wider atmo-
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Figure 6. Mean September Arctic sea ice extent for 2011–2015

from the CMEMS reanalysis (using OSI-SAF) compared with mod-

elled extent and ice edge error (IIEE) from the CTRL and ThkDA

seasonal predictions (units: 106 km2). Data are shown for 3 re-

gions distinguished by the underlying shading and corresponding

box colours: combined Beaufort and Chukchi Seas (yellow), com-

bined Kara, Laptev and East Siberian Seas (Siberian Shelf; dark

blue) and the central Arctic (red). Also shown (pink boxes) are cor-

responding statistics for the Atlantic and Pacific sectors of the Arc-

tic Ocean, defined by splitting the Arctic Ocean (i.e., the combined

red, yellow and dark blue areas) along 30◦ W and 140◦ E longitude

(yellow lines), which roughly follows the Lomonosov Ridge.

spheric circulation. While much of the recent work on large-

scale circulation has focused on changes to winter circulation

(Koenigk et al., 2016; Vihma, 2014), studies have shown in-

creased Northern European summer (Screen, 2013; Wu et al.,

2013) and East Asian summer monsoon precipitation (Guo et

al., 2014) in association with reduced sea ice.

Figure 8 shows the difference between the ThkDA and

CTRL predictions of September-mean near-surface air tem-

perature (T2M), mean sea level pressure (MSLP), and

500 hPa geopotential height (z500). Panels (a), (c), and (e)

show the mean difference, over all ensemble members and

all years (2011–2015), between the ThkDA predictions and

the CTRL predictions. Meanwhile panels (b), (d), and (f)

show the mean difference in root-mean-square-error (RMSE)

between the ThkDA predictions and the CTRL predictions.

Here RMSE is calculated for each ensemble member relative

to the ERA-I atmospheric reanalysis, which are then aver-

aged over all ensemble members and all years (2011–2015)

before differencing. Defining the error with respect to indi-

vidual ensemble members in this manner, as opposed to look-

ing at the ensemble mean error, provides a sufficiently large

distribution of values to allow us to test statistical signifi-

cance, which we do using a Mann–Whitney test with the null

hypothesis that all errors (or differences) are drawn from the

same distribution. The resulting error difference fields cal-

culated using this method are qualitatively the same as con-

sidering the difference between the RMSE of each ensemble

mean relative to ERA-I (not shown); however, the errors here

will be larger as there will be no cancellation of errors caused

by averaging across ensemble members

We first focus on the local temperature changes, for which

Fig. 8 shows that, owing to the overall increase in Arctic sea

ice thickness and extent, the ThkDA predictions show a gen-

eral cooling of September T2M, which is significant at the

95 % level over most of the Arctic Ocean. This cooling im-

proves the model error relative to the ERA-I atmospheric re-

analysis over the majority of this area (Fig. 8). The exception

to this is south of the Fram Strait in ice export regions, where

the T2M has become too cool. We hypothesize that this small

increase in error is likely due to the model simulating too

much sea ice transport south through the Fram Strait. Inter-

estingly, this improvement is also seen over perennially ice

covered regions north of Greenland and the Canadian Arc-

tic Archipelago, where significant improvements in air–sea

fluxes would not necessarily be expected. On the Pacific side

of the Arctic Ocean, where T2M in the ThkDA experiment is

higher than for the CTRL experiments, very little improve-

ment (or degradation) of the T2M is seen.

We next consider the longer timescale quasi-equilibrium

response (Semmler et al., 2016) to the pressure fields (MSLP

and z500). A significant decrease in MSLP and z500 is seen

in the ThkDA experiment over the Arctic Ocean with an

accompanying increase over Siberia (for z500, significantly

so), and with small non-significant increases over the North

Atlantic and Pacific (Fig. 8). This reduction leads to a de-

crease in error over the Canadian Basin and Greenland, but

slightly worse comparison with observations over the Bar-

ents Sea and Western Europe. However, these differences

in error are generally not significant save for a small patch

of improved MSLP over the Canadian Arctic Archipelago

(Fig. 8).

The z500 and MSLP decrease over the Arctic is sugges-

tive of an increase in both the Arctic Oscillation (AO) and

NAO indices. This is consistent with other studies that have

linked lower Arctic sea ice coverage with a tendency for a

more meridional atmospheric jet (Francis and Vavrus, 2012),

along with a tendency toward the negative phase of the NAO

(Petoukhov and Semenov, 2010). It is also broadly consistent

with the lower Arctic z500 and wave-train nature of pressure

anomalies over Eurasia observed in Wu and Zhang (2013)

and Screen et al. (2013) for summertime circulation patterns

related to above average sea ice areal coverage. However,

owing to the small sample of years looked at here, it is doubt-

ful we could establish a link with increased predictive skill of

the inter-annual variability of the atmospheric mid-latitude

circulation.
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Figure 7. Thickness difference (m) between ThkDA and CTRL experiments in May and September 2012 (contour shading), with differences

calculated as ThkDA – CTRL in each case. Panel (a) shows the difference between the reanalyses fields used to initialize the seasonal

predictions on 1 May 2012. Panel (b) shows ensemble mean forecast differences for September 2012. (Note the different scales used for

the coloured shading). Overlain on both panels are September-mean contours of 15 % ice concentration to represent the sea ice edge for the

CTRL-HC (grey) and ThkDA-HC (pink) experiments along with the CMEMS reanalysis product (black).

4.3 Impact of an improved model thickness climatology

The reanalysis comparison performed in Sect. 3 revealed per-

sistent thickness distribution biases in the model relative to

the CS2 derived data, whereby the ice was too thin in the

Atlantic sector and too thick in the Pacific sector. As shown

previously (Fig. 7), these biases align very well with the ice

edge errors suggesting a clear relationship between model

thickness bias and forecast error. Therefore, we would like to

understand whether the improvements we see in the GloSea

seasonal predictions are caused primarily by an improvement

to the model’s thickness climatology, or whether the inter-

annual thickness distribution changes present in the observa-

tions are having an impact.

To try to answer this question another ensemble of sea-

sonal predictions was performed, for years 2011–2014 only,

using the 2015 sea ice initial conditions each year. This en-

semble of predictions is denoted FIXED-IC. We note here

that FIXED-IC predictions are not performed for 2015 be-

cause they would simply be a duplication of the ThkDA-HC

2015 predictions. The motivation for adopting this approach

is to ensure that we have a dynamically self-consistent ini-

tial condition for the sea ice model. Simply averaging the

initial conditions for the 5 years would potentially introduce

some coupled initialization shock that could make the results

harder to analyse.

The total extent and IIEE relative to the CMEMS reanaly-

sis for FIXED-IC can be found in Fig. 4 alongside those for

the ThkDA-HC and CTRL-HC ensembles. The 2015 predic-

tions for ThkDA-HC have been replicated and included as

part of the FIXED-IC experiment. As was the case for the

ThkDA experiment, the FIXED-IC predictions are much im-

proved compared with the CTRL-HC experiment. The un-

derestimation of Arctic-wide extent and the IIEE are both

reduced. The improvement seen in FIXED-IC is similar in

magnitude, but a little lower, than that seen with ThkDA-

HC. Although results are worse for 2013, the extent and

IIEE analysis in Fig. 4 shows ThkDA-HC to be better than

FIXED-IC in 2011, 2012, and 2014. However, with only a

short 4-year time series it is not possible to distinguish be-

tween the FIXED-IC and ThkDA-HC runs statistically.

Interestingly the FIXED-IC predictions show much re-

duced inter-annual variability when compared to those from

the CTRL and ThkDA experiments and the ensemble-mean

extents for each year are close. This is interesting given that

Arctic summer sea ice melt is strongly influenced by atmo-

spheric variability (Deser et al., 2000), and suggests that the

ensemble size of 24 used here is sufficient to remove atmo-

spheric variability from the ensemble mean. It also suggests

that the initial Arctic thickness distribution and/or volume at

the start of the melt season exhibits a controlling factor on the

evolution of the ice through the melt season and the eventual

September mean extent. This latter point is further supported

by the fact that an additional ensemble of GloSea seasonal

predictions, performed using constant 2015 initial conditions

for both the ocean and sea ice components, gave very similar

results to that seen in the FIXED-IC experiment (not shown).

The Cryosphere, 12, 3419–3438, 2018 www.the-cryosphere.net/12/3419/2018/



E. W. Blockley and K. A. Peterson: Improving Met Office seasonal predictions of Arctic sea ice 3433

Figure 8. Differences in mean fields (a, c, e) and differences in root-mean-square-error (RMSE; b, d, f) between the ThkDA and CTRL

September predictions averaged over all ensemble members for the 5-year period 2011–2015. Fields shown are (a, b) near-surface 2 m air

temperature (T2M; K); (c, d) mean sea level pressure (MSLP: hPa); (e, f) 500 hPa geopotential height (z500; m). Differences are calculated as

ThkDA–CTRL meaning that areas of blue and red denote that ThkDA predictions/RMSEs are lower and higher, respectively. Black contours

and hatching denote areas where differences are significant at the 95 % level as determined using a Mann–Whitney U test. Further details

can be found at the beginning of Sect. 4.2.

www.the-cryosphere.net/12/3419/2018/ The Cryosphere, 12, 3419–3438, 2018



3434 E. W. Blockley and K. A. Peterson: Improving Met Office seasonal predictions of Arctic sea ice

5 Summary and conclusions

In this study, we have used nudging techniques to test the im-

pact that initializing sea ice thickness using CryoSat-2 (CS2)

measurements could have on Met Office seasonal predictions

of September sea ice extent. We have shown that initializa-

tion of sea ice thickness significantly improves the accuracy

of GloSea seasonal predictions of summer sea ice cover. Bi-

ases in total Arctic extent are reduced as a whole and there

are considerable improvements to the spatial distribution of

sea ice and ice-edge location – particularly in the Atlantic

sector. These improvements to the sea ice cover also lead

to improvements in near-surface temperature and pressure

fields over the Arctic domain.

Technically the application of thickness increments within

the CICE sea ice model has been shown to work well. The

winter thickness initial conditions, generated using the sea

ice thickness nudging, are much closer to the CS2 thick-

ness observations, and lead to considerable improvement in

skill when used to initialize GloSea seasonal predictions. The

model is able to retain the information supplied by the thick-

ness nudging all the way through the summer when thickness

observations are absent. This is true during the GloSea cou-

pled seasonal forecasts but also for the FOAM reanalysis in

which the sea ice model is also being modified by the assim-

ilation of concentration. This result, which is also supported

by the findings of Allard et al. (2018), increases our confi-

dence that assimilating sea ice thickness using a more sophis-

ticated and consistent approach will lead to improvements in

the FOAM analyses as well as the short-range (FOAM) and

seasonal (GloSea) predictions initiated from them.

The motivation for using a simple assimilation approach

in this study, using monthly gridded CS2 observations and a

nudging technique (as outlined in Sect. 3), is that it provides

a relatively simple way for us to test our hypothesis that CS2

thickness initialization will improve seasonal predictions of

September Arctic sea ice. The results of this study, made

using this approach, suggest that sea ice thickness assimila-

tion within the FOAM ocean–sea ice analysis is feasible and

could have a positive impact on the skill of GloSea seasonal

predictions. Motivated by the findings of this study, work

is now underway at the Met Office, under the EU-SEDNA

project (“Safe maritime operations under extreme conditions:

the Arctic case”), to include sea ice thickness assimilation

within the NEMOVAR 3D-Var FGAT scheme used in FOAM

(Waters et al., 2015), in combination with the sea-ice concen-

tration assimilation already in place. This work will require

prescription of observational errors (including instrument, al-

gorithm, and representativeness errors), and the development

of methods to represent appropriate model background er-

rors. It will also involve using raw (L2) satellite tracks, from

as many observational platforms as possible (including both

CS2 and SMOS), with information being spread through the

model using spatial and inter-variable error correlations.

Confronting the sea ice thickness from the FOAM reanal-

ysis with the CS2 satellite data has revealed a persistent bias

in the modelled thickness distribution whereby the simulated

Arctic sea ice is too thin on the Atlantic side and too thick

in the Beaufort Sea. This bias is most likely caused by de-

ficiencies in the formulation of the sea ice dynamics: either

the rheology or deficiencies in the momentum exchange be-

tween components in the atmosphere–ice–ocean (primarily

wind drag). To ameliorate this situation we plan to exper-

iment with the form-drag scheme and the anisotropic rhe-

ology developed for CICE by the CPOM group at Univer-

sity of Reading (Tsamados et al., 2013, 2014). In particular,

the form-drag scheme has been shown to improve the Arc-

tic thickness distribution in standalone sea ice model experi-

ments (David Schroeder, personal communication, 2017).

The clear relationship between modelled winter thickness

biases and summer extent errors shown in Fig. 7, along with

the improved ice cover obtained using thickness initializa-

tion (Figs. 4 and 5), highlights the importance that modelled

winter thickness biases can have on the evolution of fore-

cast errors through the melt season. Results from the FIXED-

IC experiment further suggest that the ensemble size of 24

used here is sufficient to account for atmospheric variability

and that late winter/spring sea ice thickness provides quite a

strong constraint on the eventual September extent (Fig. 4) in

any particular year.

Although the addition of sea ice thickness nudging to the

FOAM analysis system clearly improves the seasonal pre-

dictions of summer sea ice, it is not clear how much of this

improvement comes from initializing each year with the CS2

thickness and how much is due to the assimilation improving

the model’s thickness distribution climatology. The IIEE and

extent analysis suggests that, for 3 out of the 4 years, using

the correct thickness initialization (ThkDA-HC) provides a

better prediction of September ice edge location when com-

pared with the run using the 2015 thickness (FIXED-IC).

This is in agreement with the findings of Day et al. (2014)

who showed that, in the perfect model framework, that cor-

rect initialization of Arctic thickness in the HadGEM1 cli-

mate model, led to an improved model evolution when com-

pared with initializing the model with its own thickness cli-

matology. However, in this case we are not able to say this

conclusively because the time series is too short to allow us

to reject the null hypothesis that all the ensemble members

from these two runs are taken from the same distribution.

Furthermore, the improvement shown in Fig. 4 between

ThkDA and FIXED-IC is small relative to the improvement

between ThkDA and CTRL. Therefore, we conclude that,

certainly for the GloSea seasonal prediction system, improv-

ing the model thickness climatology is at least as important

as initialization of sea ice thickness for improving predictive

skill of seasonal forecasts.
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