
This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2019.2893412, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.201X.DOI

Improving multipath routing of TCP
flows by network exploration

J. ALVAREZ-HORCAJO, D. LOPEZ-PAJARES, AND I. MARTINEZ-YELMO, J.A. CARRAL, J.M.

ARCO
Departamento de Automática. University of Alcalá. N-II Km 33,600. 28805 Alcalá de Henares (Madrid), Spain.
(e-mail: {j.alvarez, diego.lopezp, isaias.martinezy, juanantonio.carral, josem.arco}@uah.es)

Corresponding author: I. Martinez-Yelmo (e-mail: isaias.martinezy@uah.es).

The source code associated with this paper can be found at https://github.com/gistnetserv-uah/TCP-PATH

ABSTRACT Ethernet switched networks are widely used in enterprise and data center networks. However,
they have some drawbacks, mainly that, to prevent loops, they cannot take advantage of multipath topologies
to balance traffic. Several multipath routing proposals use link-state protocols and Equal Cost Multi-Path
routing (ECMP) to distribute the load over multiple paths. But, these proposals are complex and prone
to flow collisions that may degrade performance. This paper studies TCP-Path, a protocol that employs a
different approach. It uses a distributed network exploration mechanism based on broadcasting the TCP-
SYN packet to identify and select the fastest available path to the destination host, on the fly. Our evaluation
shows that it improves on ECMP by up to 70% in terms of throughput for elephant flows and by up to
60% in terms of flow completion time for mouse flows. Indeed, network exploration offers a better, yet
simple alternative to ECMP-based solutions for multipath topologies. In addition, we also study TCP-Path
for elephant flows (TFE), which restricts TCP-Path application to elephant flows to reduce the exploration
broadcast overhead and the size of forwarding tables, thus improving its scalability. Although elephant flows
represent a small fraction (about 5%) of total flows, they have a major impact on overall performance, as
we show in our evaluation. TFE reduces both the overhead incurred during path setup and the size of the
forwarding tables by a factor of almost 20. Moreover, it achieves results close to those obtained by TCP-
Path for elephant flows, especially when working with high loads, and yields significant improvements for
all types of flow at medium and high load levels.

INDEX TERMS Data Networks, ECMP, Ethernet, Flow Completion Time, Load Balance, Multipath,
Network Exploration, Throughput, TCP

I. INTRODUCTION

Ethernet switched networks are widely used in enterprise and
data center environments due to their advantages, such as low
cost, high speed, plug & play, etc. However, they present
some drawbacks, mainly that they can have loops and do
not take advantage of multipath topologies to balance traffic
load among the different available paths/links. ECMP is the
default multipath routing mechanism that has been employed
in many routing protocols such as Open Shortest Path First
(OSPF) and Intermediate System to Intermediate System (IS-
IS). Furthermore, it is also used in L2 protocols such as
TRILL [1] and SPB [2]. Nevertheless, ECMP presents some
problems such as collisions between large flows [3], [4]. Its
load balance does not take into account either the link traffic
load or the flow size. Moreover, it shows poor performance
under failure conditions [5]. These drawbacks may reduce

the delivered traffic by up to 40% despite the existence of
different alternative paths.

To overcome these issues we propose TCP-Path, a simple
protocol with some multipath features which belongs to the
All-Path family of exploration protocols [6]. It has been
designed considering that, most network traffic nowadays is
TCP [7], [8]. The design can be explained according to the
questions proposed in [9]. TCP-Path uses path discovery via
network exploration instead of route computation (Q1, Route

Computation?). The decision metric is based on latency (Q2,

Routing Metric?), since only the fastest path is selected
(Q4, Number of Paths to Use? and Q5, How Multiple Paths

are Used?). When a host opens a new TCP connection, an
additional path is discovered by exploration. This achieves
load balance (Q3, Load Balancing?) by continuously adapt-
ing to the current network traffic load at the moment of

VOLUME 4, 2016 1

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2019.2893412, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

path selection. TCP-Path uses the same address learning
and locking mechanisms to prevent loops as ARP-Path [6],
which is a layer 2 protocol. It is based on broadcasting
encapsulated TCP-SYN packets to explore the network and
select the fastest path to the destination host. TCP-Path is a
multilayer approach since the information learned from the
TCP-SYN packets includes not only the source but also the
destination Medium Access Control (MAC) address as well
as the source and destination TCP ports. Hence, different
application flows between a pair of hosts can use different
paths (multipath in the broad sense), which are transparent to
end hosts. TCP-Path is suitable for deployment in scenarios
such as campus, small data center, cluster, and enterprise
networks. A preliminary study on TCP-Path was presented
at IEEE CloudNet 2017 [10].

Additionally, we also propose TFE (TCP-Path for Ele-
phant Flows), to improve TCP-Path scalability. TFE restricts
the application of TCP-Path logic to large flows (also known
as elephant flows), while the rest of the flows are routed
via layer 2 routing protocols (such as ECMP, Spanning Tree
Protocol - STP, or ARP-Path). Our evaluation shows that
TFE achieves very good performance, close to that of TCP-
Path, both for elephant (large) and short-lived (mouse) flows,
which are key to the application scenarios, while drastically
reducing the state stored at switches and the broadcast control
overhead.

This paper is structured as follows: related work is dis-
cussed in Section 2 and TCP-Path and TFE are described
in Sections 3 and 4. In Section 5, we report the evaluation
performed and the results obtained. Finally, we present our
conclusions in Section 6.

II. RELATED WORK

ECMP [11] is the most widely used algorithm to optimize
multipath switched networks. It is a simple yet efficient
routing strategy to balance traffic flows between a given pair
of source and destination endpoints, among several equal
cost paths. Traditionally, ECMP relies on a link-state routing
protocol to compute several equal cost shortest paths (usually
based on link bandwidth metrics) in advance. When required,
each flow is assigned to one of the precomputed paths,
following a random scheme, by hashing the flow packet
header. As stated in the previous section, it works irrespective
of link load and flow size, which leads to an undesirable sub-
optimal performance (for example, when two or more large
flows collide in the same path). Many solutions have been
proposed to overcome this drawback, which mainly focus
on improving the load balance to achieve better use of the
available resources.

According to Alizadeh’s classification for load balancing
mechanisms [5], these solutions can be either centralized
or distributed. Centralized flow multipath routing usually
relies on the Software Defined Networking (SDN) paradigm,
where an SDN central controller schedules the flow path,
as in Hedera [12] or VL2 [7]. Centralized solutions may
be hard to scale out due to the single point of failure of

the controller, and exhibit slow reaction times in data center
networks. Although some studies have explored the possibil-
ity of deploying redundant and/or federated controllers such
as Onix and ONOS [13], [14], [15], the lack of a standard
definition of westbound and eastbound interfaces between
SDN controllers renders consensus or advances in this area
difficult.

Distributed solutions can be further divided into host-
based or in-network. The former are hard to deploy and may
increase incast (the convergence of many traffic flows on the
same switch interface over a short period of time [8]. The
packets arriving at the interface may exhaust either the switch
memory or the maximum allocated buffer for that interface,
resulting in heavy packet losses for some of the flows and
leading to TCP timeouts). Moreover, host-based solutions
require updates on legacy systems and sometimes even on
the applications, as in MP-TCP [4] or FDALB [16].

In-network solutions can be local, either stateless or
congestion-aware, or global/congestion-aware. Flare [17]
and LocalFlow [18] are local congestion-aware solutions
that simply acquire congestion information from the link
output buffer. SPB [2] and TRILL Rbridges [1] are exam-
ples of the stateless group. They use a layer 2-based link-
state routing protocol (IS-IS) to obtain the shortest paths
between bridges and statically distribute the load by using
ECMP. Thus, they suffer from the same flaws as ECMP.
In general, local solutions perform poorly, especially when
working with asymmetric network topologies and with sym-
metric topologies under failure conditions. Finally, many
global/congestion-aware solutions rely on link state routing
to compute congestion-aware paths, rendering them unstable,
complex, and hard to deploy [19]. There are also other
global/congestion-aware solutions which are based on over-
lay networks, as in Conga [5]. These overlay-based solutions
have the additional need to exchange signaling traffic to
monitor the network, which can limit their scalability.

Besides the above classification, in-network proposals can
also be categorized according to traffic splitting; thus, they
can be per flow, per packet or per flowlet (bursts of packets
spaced at a minimum interval [17] [5]). Most of the revised
proposals use a per flow strategy as in Conga [5], Hedera [3]
and VL2 [7]. The basic algorithm consists of applying a hash
function to the packet header to determine the selected path
for a flow, as previously stated. Per packet approaches are
simple to implement but usually require packet reordering as
in [20]. Finally, per flowlet approaches split each flow into
equal-sized segments and send them over multiple paths as in
Presto [21]. At the receiver, packets are temporarily buffered
to prevent reordering. Both [20] and [21] are not congestion
aware, which reduces their performance during link failures.

Some theoretical studies have analyzed the load distri-
bution problem in multipath networks. For example, [22]
studies the problem of minimizing the cost of carrying traffic
and proposes splitting the flows to balance the load, but
this can provoke traffic disorder. Moreover, it is necessary
to know the traffic matrix in advance, which is not always

2 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2019.2893412, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

possible. [23] analyses ECMP in Clos networks under a static
flow model, which is far from a real-world scenario. [24]
formulates some load balance algorithms and studies their
performance based on the fluid limit concept. However, it is
necessary to know the exact flow size in advance, which is
not always feasible.

Our proposed protocols, TCP-Path and TFE, explore the
network at the moment of path setup, with a broadcast probe
packet, to find the fastest available path. Thus, they can be
classified as distributed, in-network, global/congestion-aware
and per flow solutions. Moreover, they can be deployed in any
network topology due to their simplicity, which is another
advantage with respect to solutions designed for a specific
target such as Conga, Presto and HULA [25]. Compared to
ECMP, which is a solution based on (advance) path computa-
tion, our proposals distribute traffic flows among alternative
paths more efficiently. They choose the fastest available path
for a flow at the moment of flow setup instead of randomly
picking one of the precomputed paths as ECMP does, thus
mitigating undesirable collisions of large flows on the same
path.

III. TCP-PATH

TCP-Path is a path exploration protocol (from the All-Path
family of protocols) designed to establish a TCP connection
(or flow) over the fastest available path in a switched network,
at the time of connection setup, between two end hosts. It
finds the fastest path between a pair of edge switches using
network exploration by broadcasting a protocol control frame
over the entire topology. The fastest copy arriving at the
destination edge switch sets the path to be used by that
flow. Since we leverage TCP-SYN and SYN-ACK packets
(encapsulated in a Path Request and a Path Reply packet) to
explore the network and confirm the fastest path discovered
respectively, no additional signaling traffic is needed.

TCP-Path relies on the locking mechanism designed for
All-Path [6] to avoid broadcast loops without a spanning tree
or any other link prohibition protocol while exploring the

entire topology. The main idea behind the All-Path proto-
col is to explore all available paths between a source and
destination host with a broadcast frame, on demand. To pre-
vent broadcasting loops while exploring the entire network
topology, an All-Path switch associates the ingress-port of
the first received copy of the broadcast frame with its source
MAC address. Other copies of that frame may be received
at other ports later, but they will be discarded as late frames
because their source MAC address is already associated with
another port. The first protocol of the family, named ARP-
Path, leverages the IP to MAC address resolution process of
the Address Resolution Protocol (ARP) (the ARP Request

and Reply control frames) to simultaneously explore the
network and set up the path. The exploration is performed
by the ARP Request broadcast packet while the ARP Reply

packet is used to confirm the fastest path discovered in the
exploration phase.

Furthermore, TCP-Path is a switch only protocol; end-
points (hosts) are not aware of the path setup process and,
thus, do not require any modification. The mechanism de-
vised for path setup and frame forwarding is further ex-
plained below using a simple example as an illustration.

A. SWITCH INITIALIZATION

A TCP-Path capable switch periodically broadcasts Hello

packets to its neighbors to announce itself. Hello packets
have the main address of the switch as source address and
a special EtherType value reserved for the protocol. When a
Hello packet arrives at a TCP-Path capable switch, it creates
(renews) an entry {neighbor MAC - Arrival Port} in its
neighbor table. The remaining ports, not assigned in the
neighbor table, are marked as potential host ports and will
not participate in the path setup process.

B. PATH SETUP

Fig. 1 shows the network exploration mechanism in a Spine-
Leaf topology with 3 switches (the spine) that provides mul-
tipath connections to a second row of 3 switches (the leaves).

L1 L3

S1 S2

L2

SYN (from S to D)

SD

SD

S3SD

S D

SD

SD

SD

S
Y

N

S
Y

N

SD ‘locked’ tuple (table entry: S|D|pS|pD|port|timer)

Path Request Path Request (late copy)

(a) Network exploration

L1 L3

S1 S2

L2

SYN+ACK

(from D to S)

SD ‘confirmed’ tuple (table entry: S|D|pS|pD|port|timer)

SD

SD

S3SD

S D

S
Y

N
 +

A
C

K

DS

DS

D
S

SD

SD

SD

S
Y

N
 +

A
C

K

Path Reply

(b) Fastest path confirmation

L1 L3

S1 S2

L2

Final Path

setup

S3

S D

DS

DS

D
S

SD

SD

SD

(c) Flow setup

FIGURE 1: TCP-Path behavior example

VOLUME 4, 2016 3

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2019.2893412, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

SD

SD

SYN	

SYN	

L1 S1 S2 S3 L2 L3

SD
SD

ti
m
e

SD ‘locked’	tuple (table entry:	S	|	D	|	pS |	pD |	port |	timer)

Path Request Path Request (late	copy)

SD ‘confirmed’	tuple (table entry:	S	|	D	|	pS |	pD |	port |	timer)

Path Reply

SYN	+ACK

SD

DSSD

DSSD

SDSYN	+ACK DS

(a)
(b)

(c)

(d)

(e)

(f)

SD

SD

SD
SD

SD

SD

FIGURE 2: TCP-Path time diagram

Fig. 2 represents the timeline of events. Each leaf-switch in
Fig. 1, behaves as a classical ToR (Top of Rack) switch that
is connected to several servers (hosts). Now consider server
S, connected to leaf-switch L1, and server D, connected to
leaf-switch L3. There are 3 possible shortest paths from L1
to L3, one across each spine switch connecting them (namely
S1, S2, and S3). There are also, longer paths, crossing an
extra pair of spine to leaf and leaf to spine hops. If server S
tries to establish a new TCP connection to server D, it must
first obtain server D’s MAC address using a MAC resolution
mechanism (for instance classical ARP over a spanning tree
or ARP-Path [6]). Once it obtains D’s MAC address, server S
sends the TCP-SYN packet to negotiate the TCP connection
setup.

In Fig. 1a, when the TCP-SYN frame is received at the
S edge switch (L1), it is encapsulated in a special protocol
control frame, a Path Request, using a specific EtherType
value reserved for TCP-Path. The MAC address of the source
server (S), the TCP protocol port identifying the connection
at S (pS), the MAC address of the destination server (D), and
the TCP protocol destination port identifying the connection
at the D side (pD) form the SD tuple {S, pS, D, pD}, which is
stored together with a timeout in a forwarding table, associ-
ated with the incoming port at L1, for (later) forwarding pur-
poses. Then, L1 broadcasts the Path Request frame through
all its network ports (those connected to spine switches in
Fig. 2 (a)). When the Path Request frame arrives at an L1
neighbor switch (for instance, spine switch S2 in Fig. 1a),
it also creates a new entry in its own forwarding table,
which contains the SD tuple {S, pS, D, pD} associates this
with its incoming port and forwards the Path Request frame
through all its network ports except the incoming one (see
also Fig. 2 (b)). This procedure is repeated by all switches in
the network, which creates a temporary exploration tree with
the root on the edge source switch. Finally, the fastest copy
of the Path Request arrives first at the edge switch connected
to server D (leaf switch L3). Switch L3 stores the SD tuple

(as any other TCP-Path switch), de-encapsulates the original
TCP-SYN frame and sends it through the port connected to
server D (see also Fig. 2 (c)).

At this point, the chain of switches traversed by this frame
(L1-S2-L3) is the fastest path available from L1 to L3. Newly
created SD tuples remain in a locking state to avoid loops
until they are confirmed or have expired, whichever happens
first. Late copies of the original Path Request may be received
at any switch due to the exploration (broadcast) process
performed by the Path Request frame. However, they are
discarded as late copies, provided that a non-expired SD tuple
associated with a different port already exists at the switch, to
prevent broadcast loops. Hence, only a single copy, the first
one to arrive, is broadcast at every switch.

As shown in Fig. 1b, after receiving the TCP-SYN frame,
server D replies with the corresponding TCP SYN+ACK to
acknowledge the connection (see Fig. 1b)). When this reply
arrives at L3, it confirms the SD tuple {S, D, pS, pD}, creates
a new DS tuple {D, S, pD, pS} associated with the receiving
port (the one connected to D), and confirms and updates the
validity (timeouts) of both tuples. Now, both SD and DS
tuples are in a confirmed state (see also Fig. 2 (d)). Then,
it encapsulates the frame in a new protocol control frame, a
Path Reply (identified by TCP-Path EtherType), and sends it
through the port associated with the SD tuple. Each switch
receiving the Path Reply also confirms this SD tuple, creates
and confirms the corresponding DS tuple and forwards the
Path Reply back (S2 in Fig. 2 (e)) until it reaches L1. Once
the Path Reply has been processed at L1, the original TCP
SYN+ACK is deencapsulated and sent to server S (see also
Fig. 2 (f)). At this point, a bidirectional symmetric path
between L1 and L3 (identified by tuples SD and DS at each
switch) exists, which is able to forward the traffic between
S and D. This is the fastest available path in the network
at the setup time. Unconfirmed SD tuples on other ports
at switches will simply expire (see Fig. 1c). There is no
additional delay incurred in the path setup other than the time
needed to process the Path Request and Path Reply packets
at edge switches (encapsulate and de-encapsulate TCP-SYN
and SYN-ACK). The path exploration process takes the same
time as traditional TCP-SYN forwarding or less, since it goes
via the fastest path between the edge switches. Additionally,
Fig. 3 shows the processing of a frame, which carries TCP
data, on reception at a TCP-Path capable switch.

C. DATA FORWARDING

When a data frame is received at a TCP-Path switch, it
first checks whether a matching TCP-Path tuple exists in the
forwarding table. If there is a match, the switch retrieves the
forwarding port from the matching entry, and forwards the
frame accordingly. Finally, it renews the expiration timer for
the matched tuple. If no matching entry is found, the switch
starts a path recovery process or simply falls back to legacy
(non-TCP-Path) forwarding based on ARP-Path, STP, etc.

4 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2019.2893412, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Frame

Received

Carries

TCP-SYN?

Add new

forwading entry

Create

“Path Request”

Is PATH

REPLY?

No

Is DST

Switch?

De-encapsulate

TCP-SYN+ACK

Is PATH

REQUEST?

No

Is DST

Switch?

Add new

forwading entry

Broadcast

Frame

De-encapsulate

TCP-SYN

Forward to

Destination

Add new

forwading entry

Yes

NoNo

Update

forwading entry

Carries TCP

SYN+ACK?

Add new

forwading entry

Create

“Path Reply”

No

Forward to

Host

FIGURE 3: Processing of a frame carrying TCP data in a
TCP-Path switch

D. PATH RECOVERY

Broken paths may appear in the network under failure situ-
ations (either node or link). When a node fails, all its links
fail and the failure condition is detected by adjacent nodes as
a link failure. The accuracy of link failure detection can be
increased using strategies such as Bidirectional Forwarding
Detection [26] but this study is outside the scope of this paper.
When a TCP-Path switch detects a failure at a link/port, it
must invalidate all the entries using that port, as they are
no longer valid, and start a Path Recovery process for each
affected flow. Each flow is represented by two entries in the
forwarding table, one per direction of the communication,
but only one of the flow edge nodes of the communication
is reachable after the failure (the other was reached through
the failed link). Thus, the switches detecting the failure must
inform the corresponding (and reachable) edge switch of
each affected flow by sending a special unicast notification
control frame called Path Fail. Path Fail frames must be pro-
cessed at intermediate switches to invalidate the correspond-
ing entries (backwards entry erasure in both directions). This
mechanism ensures that both flow edge switches receive the
notification and that every intermediate switch updates its
entries accordingly. When the source edge switch of a flow
receives a Path Fail message it simply starts the discovery
and setup of a new path for that flow. The mechanism to
setup a new path works much like the original path setup.
Two special control frames, called Path Recovery Request

and Path Recovery Reply, are needed to play the role of
the original PathRequest and Path Reply (since there are
no hosts and no TCP SYN and SYN+ACK involved in the
recovery) but the procedure is exactly the same. Figure 4
shows a simplified example of failure detection and recov-
ery. In-transit flow data packets are lost until the new path
is established. However, the losses could be mitigated, for
example, by using alternative preestablished paths [27] but

S2

S6

S1

S3

S5

S7

S D

Path Fail PathRecovery Request

PathRecovery Reply

Broken Path

New Path

FIGURE 4: Path Recovery example

this procedure falls outside the scope of the present paper.
This mechanism can also be used when a TCP-Path capable
switch receives a frame (that carries TCP data) and no valid
entry for it is found in the forwarding table, for example,
because of a timeout. Apart from the fully distributed process
described above, we envisage other ways to implement the
path recovery process. For instance, we could leverage an
SDN controller and the OpenFlow protocol to deploy a
centralized path recovery mechanism or even use a hybrid
approach where the controller and the switches cooperate to
recover the path [28].

IV. TFE: TCP-PATH FOR ELEPHANT FLOWS

In the previous section, we presented the TCP-Path protocol,
which explores the network to select the fastest available path
for each new flow. The exploration process relies on broad-
casting a frame and the selected path requires a forwarding
entry to be stored in each switch in the path. This may
give rise to a scalability issue when working with very large
scenarios where the number of live flows at a given instant is
huge, and therefore so is the broadcast control traffic needed
to discover and set up the paths and the number of entries to
be stored at switches. So as to improve protocol scalability,
we decided to restrict its application solely to some relevant

TCP flows, leaving the other TCP flows (the majority) and
other non-TCP traffic to default forwarding.

The main idea behind TFE is that the (overall) benefit of
selecting the fastest available path for a flow depends on the
type of flow. For instance, if we choose a bad path (one that
traverses a highly loaded link) for a new elephant flow, our
poor choice will not only impact the throughput and Flow
Completion Time (FCT) for this flow, but also that of other
flows sharing a common link with it in their paths. This effect
will last longer in time and affect a lot more flows because
elephant flows carry huge amounts of traffic and last longer
in the network (even longer when a bad path is chosen).
In contrast, if a bad path is assigned to a mouse flow, the
undesired effect on other flows is quite limited because it only
carries a few KB of data and only stays in the network for a
few milliseconds, even when a bad path is selected. Thus,
bad path selection for a flow from the former group would
a have large impact on many other flows, whereas bad path

VOLUME 4, 2016 5

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2019.2893412, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

selection for a flow from the latter would not. Here, the key
point is to select the right threshold (constraint) to apply to
the TCP-Path protocol so as to capture as many benefits as
possible without compromising protocol scalability.

As we will show later when we describe the experimental
setup, several studies have used real traffic traces to charac-
terize the traffic in data centers. These studies show that only
about 5% of flows carry more than 10 MB of data (we call
these Elephant Flows), and that these are responsible for 50-
95% of the total bytes transmitted in the network. As such, we
think they represent a promising candidate for our protocol,
and decided to call it TFE (TCP-Path for elephant flows).
Switches running TFE must be able not only to detect frames
carrying TCP data as for TCP-Path, but also to classify them
as a function of the type of TCP flow they belong to, for
instance by inspecting the TCP port.

V. EVALUATION

We aim to compare the performance of TCP-Path and TFE
versus ECMP in terms of throughput (average Mbps per
flow) and FCTs under different network load and flow traffic
distribution conditions.

A. TESTBED

Our hardware infrastructure consists of 7 computers pow-
ered by Intel(R) Core(TM) i7 processors with 24 GB of
RAM, all of which are interconnected via a GbE Netgear
GS116 switch, for emulation and simulation. We also have
a F16 instance in the Microsoft Azure platform, powered by
Intel(R) Xeon(R) E5-2673 v3 with 32GB RAM, intended
solely for very high demand simulation purposes since our
infrastructure does not have sufficient power to emulate large
scenarios. We use the well-known ns-3 network simulator

[29] as our primary platform to evaluate the proposed pro-
tocols. ns-3 features a built-in TCP/IP stack, so it is only
necessary to develop TCP-Path and TFE switch models.

To validate both the simulation model itself and its results,
we have also developed TCP-Path and TFE software switch
implementations based on OfSoftSwitch [30]. Implementa-
tions of TCP-Path and TFE is tested using the Mininet [31]

emulation platform, which makes it possible to evaluate
our protocols using a real Linux TCP/IP stack. Thus, the
same sets of experiments are performed on both ns 3 and
Mininet platforms, running at different link rates depending
on hardware limitations.

B. EXPERIMENTAL SETUP

We use a 4-4-20 Spine-Leaf network topology (two rows of
4 switches with 20 servers per leaf switch for a total of 80
servers) [5], [21], [32] as shown in Fig.5a. In adition, we
run some simulations on a three-layer topology derived from
Facebook-Altoona [33] as shown in Fig. 5b to validate the
results obtained with the Spine-Leaf.

Traffic flows are randomly distributed between any pair of
servers attached to two different leaf switches with no further
restrictions. In addition, we consider two different flow size
distributions, Data Mining and Web Search, derived from
experimental traces taken from actual data centers [7], [8].
Fig. 6a shows the Cumulative Distribution Function (CDF) of
both distributions and also illustrates how flows are classified
according to their size.

Flows with less than 10 KB of data are considered mouse

flows, while those carrying more than 10 MB are considered
elephant flows, as explained in [7]. The remaining flows are
identified as rabbit flows. Fig. 6b shows the percentage for
each type of flow as well as the percentage of bytes trans-
mitted by each type of flow. Lastly, we calculate the average
flow Inter-Arrival Time (IAT) to achieve an average offered
network load of 10%, 20%, and 40% with respect to the
full capacity of links, according to either the Web search or
Data mining flow size distributions. Our TFE implementation
relays on the sender application to mark elephant flows by
using a specific TCP source port range.

Each experiment runs for 1800 seconds and it is repeated
10 times to later compute 95% confidence intervals. Table 1
summarizes the full setup of the experiments conducted.

We also use ARP-Path as a layer 2 (default) forwarding
protocol since it is easy to implement and allows us to use
the full network infrastructure. Unlike other protocols such

L1 L3

S1 S2

L2

S3 S4

L4

20

1

40

21

60

41

80

61

(a) Spine-Leaf 4-4-20 evaluation topology

L1 L3

S1 S2

L2

S3 S4

L4 L13 L15

S13 S14

L14

S15 S16

L16

C1 C4

20

1

40

21

60

41

80

61

180

161

200

181

220

201

240

221

(b) Three-layer topology derived from Facebook-Altoona

FIGURE 5: Evaluation topologies

6 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2019.2893412, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

Flow size (Bytes)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

Mouse

Rabbit Elephant

Web search

Data mining

(a) Flow size distributions

5.5 5.0

Web Search Data Mining
0

20

40

60

80

100

T
o
ta

l
fl
o
w

s
 (

%
)

0.02
2.54

0.04

Web Search Data Mining
0

20

40

60

80

100

T
o
ta

l
b
y
te

s
 (

%
)

Elephants Rabbit Mouse

(b) Total flows and total bytes per flow type

FIGURE 6: Flows characterization

TABLE 1: Experimental Setup

Network topology Spine-Leaf (4 - 4) [5] &
Three-layer (derived from Facebook-Altoona)

Servers per leaf switch 20
Flow distribution Random inter-leaf
Flow size distributions Web search [8] & Data mining [7]
Network offered load (%) 10, 20, 40 & 60%
Link speed (Mpbs) 10Mbps, 100Mbps & 1Gbps
Run length (s) 1800 s
Warm up time (s) 800 s
Number of runs 10

as STP, it prevents loops while allowing broadcasting over
the full network, and no link prohibition is needed [6].

C. RESULTS

First, we carry out a set of ns-3 experiments with 1 Gbps
link rates to compare ECMP, TFE, and TCP-Path in terms
of throughput and FCTs. Then, a second set of experiments
are carried out both in ns-3 (simulation) and Mininet (emu-
lation), but with link rates limited to 10 Mbps (due to limi-
tations in the maximum switching capacity of our prototype
switches) to validate the results obtained by simulation.

Regarding the first set of experiments, Fig. 7 compares the
throughput of ECMP, TFE and TCP-Path, for the different
types of flow (elephant, rabbit, or mouse). The results ob-
tained using the Web Search traffic distribution are shown on
the left-hand side of the figure and those obtained using the
Data Mining distribution on the right-hand side. As expected,
throughput decreases with the offered load regardless of the
protocol or traffic distribution in use. When the number
of flows contending for the same resources (link capacity)
increases, each flow obtains a smaller share of the available
resources. Furthermore, they spend longer in the network,
aggravating this effect.

TCP-Path and TFE outperform ECMP at all levels of load.
Clearly, TCP-Path and TFE take advantage of their native
load balance feature derived from their network exploration
capability and fastest path selection mechanism. The im-
provement achieved increases with network load, and reaches
the level of 50% with respect to ECMP at 40% load and
for elephant flows, because the collision of more elephant
flows in the same link is handled more efficiently by TCP-

10 20 40 60
0

200

400

600

800

1000

E
le

p
h

a
n

t

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

10 20 40 60
0

200

400

600

800

1000

R
a

b
b

it

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

10 20 40 60

Offered Load (%)

0

60

120

180

240

300

M
o

u
s
e

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

10 20 40 60
0

200

400

600

800

1000

10 20 40 60
0

200

400

600

800

1000

10 20 40 60

Offered Load (%)

0

60

120

180

240

300

ECMP TFE TCP-Path

Web Search Data Mining

FIGURE 7: Throughput on Spine-Leaf (4-4-20) 1 Gbps
topology

Path (and TFE). We can also see that TFE approaches TCP-
Path performance in the case of Data Mining distribution but
clearly falls behind it with Web Search distribution because
in the former case, the number and importance of elephant
flows is greater, whereas in the latter case, rabbit flows (not
treated by TFE) constitute a substantial share of the traffic.
For rabbit and mouse flows, the improvement is negligible at
low load levels, but again increases with load to reach values
of 10-20% at 40% load, which is noteworthy given that these
flows are not directly treated by the protocol. Fig. 8 shows the
exact improvement ratios achieved versus ECMP in all cases.
It also includes the results obtained at 60% load. Although
these show even better improvement ratios we consider that
this load exceeds real network scenarios.

VOLUME 4, 2016 7

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2019.2893412, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

10 20 40 60
0

50

100

150

200

T
h

ro
u

g
h

p
u

t
in

c
re

a
s
e

 (
%

)

6.4
13.7

28.3
43.5

12.5
26.5

53.0

72.5

10 20 40 60

Offered Load(%)

0

50

100

150

200

T
h

ro
u

g
h

p
u

t
in

c
re

a
s
e

 (
%

)

10.8
24.2

49.1

73.2

11.7
25.8

51.5

82.9

10 20 40 60
0

50

100

150

200

-1.4 0.0
9.7

29.6
14.1

31.5

68.8

94.9

10 20 40 60

Offered Load(%)

0

50

100

150

200

-2.0 4.3
18.8

45.9

15.2

33.6

73.6

115.2

10 20 40 60
0

50

100

150

200

0.9 0.8
11.7

38.8

14.3
29.8

75.0

135.4

10 20 40 60

Offered Load(%)

0

50

100

150

200

-0.2 4.2
19.0

58.2

13.8
27.9

70.5

155.2

TFE TCP-Path

Elephant Rabbit Mouse

Web

search

Data

mining

FIGURE 8: Throughput improvement ratios versus ECMP

10 20 40 60
0

600

1200

1800

2400

3000

E
le

p
h

a
n

t

F
C

T
 (

m
s
)

10 20 40 60
0

20

40

60

80

100

R
a

b
b

it

F
C

T
 (

m
s
)

10 20 40 60

Offered Load (%)

0

1.2

2.4

3.6

4.8

6

M
o

u
s
e

F
C

T
 (

m
s
)

10 20 40 60
0

600

1200

1800

2400

3000

10 20 40 60
0

20

40

60

80

100

10 20 40 60

Offered Load (%)

0

1.2

2.4

3.6

4.8

6

ECMP TFE TCP-Path

Web Search Data Mining

FIGURE 9: FCT on Spine-Leaf (4-4-20) 1 Gbps topology

Conversely, as shown in Fig. 9, FCTs exhibit the opposite
behavior since throughput and FCT are inversely propor-
tional. We can see that TCP-Path and TFE obtain a larger
decrease in FCTs as the load increases compared with ECMP
and ARP-Path. Moreover, mouse flows show the greatest
FCT reduction. This is particularly important since FCT is
the key performance indicator for this type of flow, accord-
ing to [8]. Mouse flows are usually associated with time
constrained applications: thus, reducing their FCTs may also
have a considerable economic impact [34]. Again, we can see

that TFE achieves similar results as TCP-Path for elephant
flows especially when working with high loads and the Data
Mining distribution, and yields significant improvements for
all types of flow at medium and high load levels. Fig. 10
shows the improvement ratio achieved versus ECMP in all
cases.

Finally, Fig. 11 shows the evolution of the average
throughput for elephant flows over time (only the flows effec-
tively finished during the simulated time and already started
at a given simulated time are considered). The information
is processed in 50-second batches. For example, a point
at t=350 seconds represents the average throughput of the
elephant flows started after t=350 seconds and finished before
the simulation end time. We choose to show elephant flows
because they are the scarcest type and are therefore also
prone to exhibit a larger deviation and take more time to
stabilize. We can see that the average is quite stable right
from the beginning of the simulation. However, if we reduce
the link rate down to 10 Mbps (as we did in Mininet), we
can see in Fig. 12 that the average takes almost 800 seconds
to stabilize (especially with the Data Mining distribution).
Consequently, our measure interval was set at between 800
and 1400 seconds (we also exclude the last 300 seconds
because some flows have not yet finished).

1) Validation

In order to validate the results obtained by simulation and
shown in the above section, we carry out a second set of
experiments on two platforms: ns-3 (simulation) and Mininet
(emulation). To this end, we developed software switch im-
plementations of TCP-Path and TFE based on OfSoftSwitch
[35]. The tests are run with link rates restricted to 10 Mbps
due to limitations in the maximum switching capacity of our
prototype switches.

Fig.13 shows the throughput for elephant, rabbit, and
mouse flows for both ns-3 and Mininet. A comparison of the

8 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2019.2893412, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

10 20 40 60
0

20

40

60

F
C

T
 d

e
c
re

a
s
e

 (
%

)

8.6

15.8

26.9

37.1

14.6

25.6

39.8

49.5

10 20 40 60

Offered Load(%)

0

20

40

60

F
C

T
 d

e
c
re

a
s
e

 (
%

)

14.1

26.0

39.9

51.2

15.2

27.2

40.6

53.8

10 20 40 60
0

20

40

60

-4.7 -1.5

15.3

28.3

19.3

33.4

46.6

52.9

10 20 40 60

Offered Load(%)

0

20

40

60

-8.1

15.0

32.0

43.7

29.5

45.6

54.8
59.6

10 20 40 60
0

20

40

60

0.4

11.8

23.5
29.1

52.0

66.6 67.0

60.4

10 20 40 60

Offered Load(%)

0

20

40

60

20.5

41.2

48.6
51.5

56.2

69.0 68.3 66.1

TFE TCP-Path

Elephant Rabbit Mouse

Web
search

Data
mining

FIGURE 10: FCT improvement ratios versus ECMP

0 200 400 600 800 1000 1200 1400 1600 1800
0

500

1000

A
v
.

T
h

ro
u

g
h

p
u

t

(M
b

p
s
)

0 200 400 600 800 1000 1200 1400 1600 1800
0

500

1000

0 200 400 600 800 1000 1200 1400 1600 1800
0

500

1000

A
v
.

T
h

ro
u

g
h

p
u

t

(M
b

p
s
)

0 200 400 600 800 1000 1200 1400 1600 1800
400

600

800

1000

0 200 400 600 800 1000 1200 1400 1600 1800

Simulated time (s)

400

600

800

1000

A
v
.

T
h

ro
u

g
h

p
u

t

(M
b

p
s
)

0 200 400 600 800 1000 1200 1400 1600 1800

Simulated time (s)

400

600

800

1000

10% load 20% load 40% load 60% load

Web search Data mining

ECMP

TFE

TCP-Path

FIGURE 11: Throughput evolution along the time (elephant flows) at 1Gbps

0 200 400 600 800 1000 1200 1400 1600 1800
0

5

10

A
v
.

T
h

ro
u

g
h

p
u

t

(M
b

p
s
)

0 200 400 600 800 1000 1200 1400 1600 1800
0

5

10

0 200 400 600 800 1000 1200 1400 1600 1800
0

5

10

A
v
.

T
h

ro
u

g
h

p
u

t

(M
b

p
s
)

0 200 400 600 800 1000 1200 1400 1600 1800
0

5

10

0 200 400 600 800 1000 1200 1400 1600 1800

Simulated time (s)

0

5

10

A
v
.

T
h

ro
u

g
h

p
u

t

(M
b

p
s
)

0 200 400 600 800 1000 1200 1400 1600 1800

Simulated time (s)

0

5

10

10% load 20% load 40% load 60% load 80% load

Web search Data mining

ECMP

TFE

TCP-Path

FIGURE 12: Throughput evolution over time (elephant flows) at 10Mbps

VOLUME 4, 2016 9

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2019.2893412, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 13: Throughput in ns-3 and Mininet on Spine-Leaf (4-4-20) 10Mbps topology

results for both platforms shows that they are fairly similar.
However, a closer inspection reveals some differences. For
instance, the ns-3 simulator offers a lower throughput for
mouse flows than Mininet. Consequently, the FCT of mouse
flows is higher in the ns-3 simulator than in Mininet. There
are two reasons for this. The first is related to memory man-
agement: the Mininet platform allows bursts of packets to be
sent to the TCP sockets for their transmission in the network;
however, the ns-3 implementation has memory limitations
that oblige us to send the data to the TCP socket on a packet
basis, which prevents the allocation of a burst of data packets.
Moreover, the ns-3 TCP model features a TCP slow-start
phase, while the Mininet TCP stack does not implement
this initialization phase. Together, all these differences result
in a slower transfer speed at the beginning of a flow that
mostly affects smaller flows (rabbit and mouse). The effect
on larger flows is negligible because these last longer in the
network and most of the data transfer is accomplished in
the congestion avoidance phase, thus achieving maximum
throughput. Therefore, if we compare these results with the
results shown in the previous section, we can conclude that
our ns-3 simulator yields very similar results once we scale
out the link rates. To confirm this, we also run the experi-
ments in ns-3 with 100Mbps link rates. The results as shown
in Fig. 14 reflect a perfect scale when compared with those
obtained with 10Mbps and 1Gbps link rates.

We also carry out simulations on a three-layer topology
derived from Facebook-Altoona [33], as shown in Fig. 5b.
This offers four disjoint paths (one traversing each top-layer
switch) between any pair of ToR switches, identical to the
Spine-Leaf we use extensively in the evaluation, but arranged

10 20 40 60
1

10

100

1000

E
le

p
h

a
n

t

tr
o

u
g

h
p

u
t

a
v
.

(M
b

p
s
)

10 20 40 60
1

10

100

1000

10 20 40 60
1

10

100

1000

10 20 40 60

Offered load (%)

1

10

100

1000

E
le

p
h

a
n

t

tr
o

u
g

h
p

u
t

a
v
.

(M
b

p
s
)

10 20 40 60

Offered load (%)

1

10

100

1000

10 20 40 60

Offered load (%)

1

10

100

1000

10Mbps 100Mbps 1Gbps

ECMP TFE TCP-Path

Web

search

Data

mining

FIGURE 14: 10-100-1000 Mbps link rate comparison

in three layers. The results, shown in Fig. 15a and Fig. 15b,
confirm that adding a third layer of switches does not affect
the results provided that the number of multiple disjoint paths
between hosts is kept constant.

D. SCALABILITY

In section V-C we showed that TCP-Path outperforms TFE
in terms of throughput and FCT. However these performance
parameters may not offer a complete vision in some cases,
because they do not take into account other relevant param-
eters that affect packet processing, such as, the forwarding
state or the broadcast control traffic needed to set up the
paths. This section aims to illustrate that TFE may help
improve TCP-Path scalability when working with very large

10 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2019.2893412, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

10 20 40 60
0

2

4

6

8

10

E
le

p
h
a
n
t

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

10 20 40 60
0

2

4

6

8

10

R
a
b
b
it

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

10 20 40 60

Offered Load (%)

0

0.5

1

1.5

2

2.5

M
o
u
s
e

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

10 20 40 60
0

2

4

6

8

10

10 20 40 60
0

2

4

6

8

10

10 20 40 60

Offered Load (%)

0

0.5

1

1.5

2

ECMP TFE TCPPath

Web Search Data Mining

(a) Throughput

10 20 40 60
0

3

6

9

12

15

E
le

p
h
a
n
t

F
C

T
 (

m
s
)

10 4

10 20 40 60
0

1200

2400

3600

4800

6000

R
a
b
b
it

F
C

T
 (

m
s
)

10 20 40 60

Offered Load (%)

0

120

240

360

480

600

M
o
u
s
e

F
C

T
 (

m
s
)

10 20 40 60
0

3

6

9

12

15
10 4

10 20 40 60
0

1200

2400

3600

4800

6000

10 20 40 60

Offered Load (%)

0

120

240

360

480

600

ECMP TFE TCPPath

Web Search Data Mining

(b) FCT

FIGURE 15: Three-layer 10 Mbps topology results

scenarios where the number of concurrent flows is huge and
therefore so is the control traffic needed to discover and set up
the paths and the number of entries to be stored at switches.
In both cases, we first theoretically analyze the issue and then
provide some experimental results to validate the study.

1) Forwarding table size

TCP-Path sets up the path for every flow by adding one entry
in the TCP-Path forwarding table of every switch traversed
by the selected path. In contrast, TFE only establishes the
path for elephant flows, which compromise a small fraction
of the total (about 5% considering the data in Fig. 6b). Thus,
we can conclude that TFE adds far fewer entries than TCP-
Path.

However, we also have to take into account that the rest
of the TCP flows (rabbit and mouse) must be forwarded in
some way, as well as non-TCP flows. This task is left to
the legacy (default) forwarding protocol, ARP-Path in our
evaluation, which relies on another table, the ARP learning
table, that switches must maintain in all cases. Therefore, the
main difference in the state maintained by the switches is the
size of the TCP-Path forwarding table, and TFE drastically
reduces this.

To validate this conclusion, we measure the average num-
ber of entries in the TCP-Path forwarding table on the ns
3 simulation platform. Using the same set of experiments

designed to characterize and compare the performance of
TCP-Path and TFE, we sample the table size every second
to later compute the average. It is also important to note that
we set a 10-second aging timeout for each unused entry.

Fig.16 shows the average number of entries in the TCP-
Path forwarding table obtained for TCP-Path and TFE. TFE
table sizes are reduced to about 5.6% for Web Search and
5.1% for Data Mining distributions. These figures are slightly
above the expected 5% because, as we explained regarding
Fig. 9, elephant flows last a bit longer in the network with
TFE than with TCP-Path due to the impact of the other
flows (rabbit and mouse) it does not handled. Again, this
effect has a larger impact when working with the Web Search
distribution where rabbit flows account for a substantial share
of the traffic. On the whole, we reduce the size of the TCP-
Path forwarding table by a factor of almost 20.

2) Broadcast control traffic

The second issue that limits TCP-Path scalability is related
to the broadcast overhead incurred to set up the paths. Let’s
consider the worst case scenario, where hosts do not use ARP
cache entries (we assume they are unknown) so that each
new flow requires an ARP resolution process (ARP Request
broadcast and ARP Reply) as the first step. Thus, TCP-
Path broadcasts a control frame to explore the network and
find the fastest path available at that moment, and confirms

VOLUME 4, 2016 11

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2019.2893412, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

10 20 40 60

Offered Load

10 0

10 1

10 2

10 3

E
n

tr
ie

s

10 20 40 60

Offered Load

10 0

10 1

10 2

10 3

TFE TCP-Path

Web Search Data Mining

FIGURE 16: TCP-Path table size on Spine-Leaf (4-4-20) 1
Gbps topology

the path with a unicast reply control frame. Therefore, we
need two broadcast frames and two unicast frames to set
up the path. This is also applicable to TFE, but only for
elephant flows (5% of total flows). The remaining flows are
handled by ARP-Path (default forwarding), which relies on
the ARP resolution exchange to set up the path; thus, no
new control frames are needed. Hence, if we omit the ARP
resolution process, the only difference remaining between
TCP-Path and TFE control overheads is related to the second
exploration, which is always performed in the former case
and only for 5% of flows in the latter.

Let’s now consider a Spine-Leaf topology made up of
NS spine switches and NL leaf switches. When a new TCP
flow needs to be installed in the network, the leaf switch
serving the source host broadcasts a request packet to explore
the network; thus, each spine switch receives the request
and broadcasts it down to all the leaf switches except the
originating one. Therefore, every leaf switch other than the
originating one receives and processes NS copies of the
original request. Considering that all flows are inter-leaf and
that the destination leaf switch is randomly selected, we can
compute the total amount of broadcast control bytes overhead
(OH) that a single leaf switch needs to process on average, as
the total number of copies of the request frame received at
leaf switches (for a flow) multiplied by the size (in bytes) of
that frame (LB) and the total number of flows to be installed
(NF) and then divided by the number of leaf switches:

Bcast_OHLEAF =
NS · (NL − 1)

NL

· LB ·NF (1)

The above equation is also valid for TFE simply by apply-
ing the 5% factor to NF .

We can also compute the amount of data bytes to be
processed by each switch leaf in a similar way. Given that
each data packet needs to be processed by two leaf switches
(source and destination edges), it can be computed as twice
the total number of flows multiplied by the average length
(LF , in bytes) of a flow and divided by the number of leaf
switches:

Ucast_DataLEAF =
2 ·NF

NL

· LF (2)

It is worth noting that we do not consider the impact of
ACK frames because these depend on stack implementation
and amount to a very small total when compared with data
bytes or retransmissions due to frame losses. Regardless, the
impact on the final figure of merit that we compute below is
a worst-case scenario.

Finally, we compute the broadcast control to unicast data
ratio as:

Bcast_OH

Ucast_Data
=

NS · (NL − 1)

2
·

LB

LF

(3)

Taking into account that the broadcast request frame length
is 64 bytes and the average flow size in Web Search and Data
Mining distributions is 1.90 MBytes and 2.97 MBytes, re-
spectively, Table 2 shows the theoretical ratio values obtained
for TFE and TCP-Path for increasing Spine-Leaf topology
sizes.

We can see that the ratio is almost 20 times lower for TFE
than for TCP-Path and stays at the 1% threshold even for a
128 leaf switch scenario.

To validate the theoretical study we also measure the traffic
(broadcast and unicast) processed at leaf switches in our
ns-3 simulator. Fig. 17 shows the average results obtained
for a Spine-Leaf 4-4-20 topology with 1 Gbps link rates.
It is important to note that these are real figures, and we
cannot separate the different types of broadcast traffic or
the data traffic due to Acknowledgment (ACK) or frame
retransmissions. However, the results are fairly similar to
those shown in Table 2.

10 20 40 60

Offered Load (%)

0

0.006

0.012

0.018

0.024

0.03

B
ro

a
d

c
a

s
t

o
v
e

rh
e

a
d

 (
%

)

TFE TCP-Path

10 20 40 60

Offered Load (%)

0

0.006

0.012

0.018

0.024

0.03

TFE TCP-Path

Web Search Data Mining

FIGURE 17: Broadcast control to unicast data ratio on Spine-
Leaf (4-4-20) 1 Gbps topology

TABLE 2: Theoretical broadcast control to data bytes ratio at
a leaf switch (%)

N
S

N
L

TCP-Path TFE

Web
Search

4 4 0.02 0.001
16 16 0.4 0.020
64 64 6.8 0.34

128 128 27.4 1.4

Data
Mining

4 4 0.014 0.001
16 16 0.28 0.014
64 64 4.8 0.24

128 128 19.3 0.96

12 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2019.2893412, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

VI. CONCLUSIONS

TCP-Path is a new switching protocol for enterprise and
data center networks. Based on simultaneous exploration
of all network paths, it selects the fastest available path.
Compared with path computation protocols, TCP-Path is
simple and completely transparent to hosts. Moreover, it dis-
tributes traffic among alternative paths more efficiently than
ECMP, which randomly selects an existing path instead of
the fastest available one. We found that TCP-Path improved
the throughput obtained for all kinds of flow (elephant, rabbit,
and mouse). The throughput improvement for elephant flows,
the most important ones, reached up to 70% for the highest
offered loads. Moreover, the FCT was also improved for all
flows. In mouse flows, where the FCT is a critical parameter
since it has an important economic impact, the decrease in
FCT was over 60% for medium and higher offered loads,
which is substantial. To validate the accuracy of our ns-
3 simulation model of TCP-Path, we developed a software
switch implementation and tested it with Mininet at lower
link rates (due to hardware limitations).

We devised TFE (TCP-Path for elephant flows), which
restricts the application of TCP-Path to a subset of flows
(elephant flows) in order to improve TCP-Path scalability to
deal with larger scenarios. TFE reduces both the overhead
incurred during path setup and the size of the forwarding
tables by a factor of almost 20. We included TFE in our
ns-3 and Mininet comparisons and found that it achieves
results close to those obtained by TCP-Path for elephant
flows, especially when working with high loads and the Data
Mining distribution, and yields significant improvements for
all types of flow at medium and high load levels, which is
noteworthy because it does not handle these flows.

REFERENCES

[1] “Transparent interconnection of lots of links (trill).” [Online]. Available:
https://datatracker.ietf.org/wg/trill/charter/

[2] “802.1aq - Shortest Path Bridging,” http://www.ieee802.org/1/pages/802.
1aq.html.

[3] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic flow scheduling for data center networks,” in Proceed-
ings of the 7th USENIX, ser. NSDI’10, 2010, pp. 19–19.

[4] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and M. Han-
dley, “Improving Datacenter Performance and Robustness with Multipath
TCP,” in SIGCOMM 2011, New York, NY, 2011, pp. 266–277.

[5] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu,
A. Fingerhut, V. T. Lam, F. Matus, R. Pan, N. Yadav, and G. Varghese,
“CONGA: Distributed Congestion-aware Load Balancing for Datacen-
ters,” SIGCOMM Comput. Commun. Rev., vol. 44, no. 4, pp. 503–514,
Aug. 2014.

[6] E. Rojas, G. IbaÃśez, J. M. Gimenez-Guzman, J. A. Carral, A. Garcia-
Martinez, I. Martinez-Yelmo, and J. M. Arco, “All-Path bridging: Path
exploration protocols for data center and campus networks,” Computer
Networks, vol. 79, no. 0, pp. 120 – 132, 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1389128615000055

[7] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A.
Maltz, P. Patel, and S. Sengupta, “VL2: a scalable and flexible data center
network,” SIGCOMM Comput. Commun. Rev., vol. 39, no. 4, pp. 51–62,
2009.

[8] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prabhakar,
S. Sengupta, and M. Sridharan, “Data center TCP (DCTCP),” SIGCOMM
Comput. Commun. Rev., vol. 41, no. 4, pp. 63–74, Aug. 2010.

[9] J. Qadir, A. Ali, K. L. A. Yau, A. Sathiaseelan, and J. Crowcroft, “Ex-
ploiting the Power of Multiplicity: A Holistic Survey of Network-Layer

Multipath,” IEEE Communications Surveys Tutorials, vol. 17, no. 4, pp.
2176–2213, 2015.

[10] J. Alvarez-Horcajo, D. Lopez-Pajares, J. M. Arco, J. A. Carral, and
I. Martinez-Yelmo, “Tcp-path: Improving load balance by network ex-
ploration,” in Cloud Networking (CloudNet), 2017 IEEE 6th International
Conference on. IEEE, 2017, pp. 1–6.

[11] D. Thaler and C. E. Hopps, “Multipath issues in unicast and multicast
next-hop selection.” RFC, vol. 2991, pp. 1–9, November 2000. [Online].
Available: http://dblp.uni-trier.de/db/journals/rfc/rfc2900-2999.html

[12] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic Flow Scheduling for Data Center Networks,” in Pro-
ceedings of the 7th USENIX Conference on Networked Systems Design
and Implementation, ser. NSDI’10. Berkeley, CA, USA: USENIX
Association, 2010, pp. 19–19.

[13] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and S. Shenker,
“Onix: A Distributed Control Platform for Large-scale Production
Networks,” in Proceedings of the 9th USENIX Conference on Operating
Systems Design and Implementation, ser. OSDI’10. Berkeley, CA,
USA: USENIX Association, 2010, pp. 1–6. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1924943.1924968

[14] “ONOS - Open Network Operating System.” [Online]. Available:
http://onosproject.org/

[15] F. X. Wibowo, M. A. Gregory, K. Ahmed, and K. M. Gomez, “Multi-
domain software defined networking: research status and challenges,”
Journal of Network and Computer Applications, vol. 87, pp. 32–45, 2017.

[16] S. Wang, J. Zhang, T. Huang, T. Pan, J. Liu, and Y. Liu, “Flow distribution-
aware load balancing for the datacenter,” Computer Communications, vol.
106, pp. 136 – 146, 2017. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0140366417303043

[17] S. Kandula, D. Katabi, S. Sinha, and A. Berger, “Dynamic Load Balancing
Without Packet Reordering,” SIGCOMM Comput. Commun. Rev., vol. 37,
no. 2, pp. 51–62, Mar. 2007.

[18] S. Sen, D. Shue, S. Ihm, and M. J. Freedman, “Scalable, Optimal Flow
Routing in Datacenters via Local Link Balancing,” in Proceedings of
the Ninth ACM Conference on Emerging Networking Experiments and
Technologies, ser. CoNEXT ’13. New York, NY, USA: ACM, 2013,
pp. 151–162. [Online]. Available: http://doi.acm.org/10.1145/2535372.
2535397

[19] S. Vutukury and J. J. Garcia-Luna-Aceves, “A simple approximation
to minimum-delay routing,” SIGCOMM Comput. Commun. Rev.,
vol. 29, no. 4, pp. 227–238, Aug. 1999. [Online]. Available: http:
//doi.acm.org/10.1145/316194.316227

[20] J. Cao, R. Xia, P. Yang, C. Guo, G. Lu, L. Yuan, Y. Zheng, H. Wu,
Y. Xiong, and D. A. Maltz, “Per-packet load-balanced, low-latency routing
for clos-based data center networks,” in CoNEXT ’13, Santa Barbara, CA,
December 9-12, 2013, pp. 49–60.

[21] K. He, E. Rozner, K. Agarwal, W. Felter, J. Carter, and A. Akella, “Presto:
Edge-based Load Balancing for Fast Datacenter Networks,” SIGCOMM
Comput. Commun. Rev., vol. 45, no. 4, pp. 465–478, Aug. 2015.

[22] D. Xu, M. Chiang, and J. Rexford, “Link-state routing with hop-by-hop
forwarding can achieve optimal traffic engineering,” IEEE/ACM Transac-
tions on Networking, vol. 19, no. 6, pp. 1717–1730, Dec 2011.

[23] M. Chiesa, G. Kindler, and M. Schapira, “Traffic engineering with equal-
cost-multipath: An algorithmic perspective,” IEEE/ACM Transactions on
Networking, vol. 25, no. 2, pp. 779–792, April 2017.

[24] M. Shafiee and J. Ghaderi, “A simple congestion-aware algorithm for load
balancing in datacenter networks,” IEEE/ACM Transactions on Network-
ing, vol. 25, no. 6, pp. 3670–3682, Dec 2017.

[25] N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford, “HULA:
Scalable Load Balancing Using Programmable Data Planes,” in
Proceedings of the Symposium on SDN Research, ser. SOSR ’16.
New York, NY, USA: ACM, 2016, pp. 10:1–10:12. [Online]. Available:
http://doi.acm.org/10.1145/2890955.2890968

[26] D. Katz and D. Ward, “Bidirectional forwarding detection (bfd),” June
2010, rFC5880. [Online]. Available: http://tools.ietf.org/rfc/rfc5880.txt

[27] D. Lopez-Pajares, J. Alvarez-Horcajo, E. Rojas, G. Ibanez, and J. A.
Carral, “Iterative discovery of multiple disjoint paths in switched networks
with multicast frames,” in Proceedings of the 43nd IEEE Conference on
Local Computer Networks (LCN. IEEE, 2018.

[28] Joaquin Alvarez-Horcajo, Isaias Martinez-Yelmo, Elisa Rojas, Juan A.
Carral-Pelayo, and Diego Lopez-Pajares, “New cooperative mechanisms
for Software Defined Networks based on Hybrid Switches,” Transactions
on Emerging Telecommunications Technologies, 2016.

VOLUME 4, 2016 13

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2019.2893412, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

[29] “ns-3 simulator,” https://www.nsnam.org/.
[30] “CPqD: OpenFlow 1.3 Software Switch,” https://github.com/CPqD/

ofsoftswitch13.
[31] “Mininet: An instant virtual network on your laptop (or other PC) -

mininet.” [Online]. Available: http://mininet.org/
[32] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar,

and S. Shenker, “pFabric: Minimal Near-optimal Datacenter Transport,”
SIGCOMM Comput. Commun. Rev., vol. 43, no. 4, pp. 435–446, Aug.
2013.

[33] N. Farrington and A. Andreyev, “Facebook’s data center network architec-
ture,” in Optical Interconnects Conference, 2013 IEEE. Citeseer, 2013,
pp. 49–50.

[34] J. Zhang, F. Ren, and C. Lin, “Survey on transport control in data center
networks,” IEEE Network, vol. 27, no. 4, pp. 22–26, Jul. 2013.

[35] “OpenFlow Switch Specification v1.3.2,” https://www.opennetworking.
org/images/stories/downloads/sdn-resources/onf-specifications/openflow/
openflow-spec-v1.3.2.pdf.

J. ALVAREZ-HORCAJO (M’17) obtained a
Master’s Degree in Telecommunications Engi-
neering from the University of Alcala in 2017.
After having worked at Telefonica as a test en-
gineer for COFRE and RIMA networks, he was
awarded a grant for university professor training
(FPU) at the University of Alcala. The areas of
research in which he has worked include Software
Defined Networks (SDN), Internet protocols, and
new generation protocols. At present, he is espe-

cially interested in topics related to advanced switches and SDN networks.
He has participated in various competitive projects funded through the
Community of Madrid plan (TIGRE5).

D. LOPEZ-PAJARES (M’17) obtained a Mas-
ter’s Degree in Telecommunications Engineering
in 2017. He has been working as a researcher with
the GIST-NETSERV research group since 2015,
focusing on topics related to delay-tolerant and
SDN networks, specifically low latency routing
solutions and the multipath problem. These topics
form the basis of the PhD he is currently working
on. In addition, he actively participates in sev-
eral GIST-NETSERV research projects, such as

TIGRE5-CM, EsPECIE, and SIMPONS.

I. MARTINEZ-YELMO (PhD’10) obtained a PhD
in Telematics from the Carlos III University of
Madrid in Spain in 2010. After working as a
postdoctoral assistant at the Carlos III University
of Madrid, he became and remains a teaching
assistant in the Automatics Department at the Uni-
versity of Alcala in Spain. His research interests
include Peer-to-Peer Networks, Content Distribu-
tion Networks, Vehicular Networks, NGN, and
Internet protocols. Nowadays, he is especially in-

terested in advanced switching architectures and Software Defined Networks
(SDN). He has participated in various competitive research projects funded
by the Madrid regional government (Medianet, Tigre5), National projects
(CIVTRAFF), and European projects (CONTENT, CARMEN, etc.). His
research papers have been published in high impact JCR indexed research
journals such as Communications Magazine, Computer Communications,
and Computer Networks, among others. In addition, he has been a reviewer
for high quality conferences (i.e. IEEE INFOCOM) and scientific journals
(IEEE Transactions on Vehicular Technology, Computer Communications,
ACM Transactions on Multimedia Computing, etc.) and was a Technical
Program Committee member for IEEE ICON from 2011-2013.

J.A. CARRAL (PhD’13) graduated in Telecom-
munications Engineering from the Polytechnic
University of Madrid (UPM) in 1993. There, he
worked as a research assistant in the Telematics
Engineering Department (UPM) and was granted
a 4-year FPU-MEC (1994-1998) by the Spanish
Ministry of Science and Education. He joined the
Polytechnic School of the University of Alcala
as a teaching assistant in 1998 and obtained a
teaching position in 2001. He received his PhD

degree from the University of Alcala in 2013 in the field of advanced
Ethernet switches and was promoted to the position of associate professor.
He has participated in several regional, national, and international (EU)
research projects both at the UPM and the University of Alcala. He has
published more than a dozen articles in selected international journals in
the field of telecommunications and has participated in several international
and national conferences. Currently, he also collaborates with the Madri+d
Foundation as a member of the VERIFICA panel of experts.

J.M. ARCO (PhD’01) received his Ph.D. in
Telecommunications Engineering from the Uni-
versity of Alcala, Spain, in 2001. He has been
associate professor in the Automatica Department
(Telematics Area) at the University of Alcala
since 2002. His current research interests include
SDN, high performance and scalable Ethernet,
and data center networks. He also teaches SDN
and data center networks. He has participated
in various competitive research projects funded

by the Madrid regional government (Medianet, Tigre5), national projects
(CIVTRAFF), and European projects (ALFA). His research papers have
been published in high impact JCR indexed research journals such as
IEEE Communication Letters, Computer Communications, and Annals of
Telecommunication. In addition, he has been a reviewer for the high quality
scientific journal IEEE Communication Magazine.

14 VOLUME 4, 2016

