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Abstract

Multiview face detection is a challenging problem due

to dramatic appearance changes under various pose, il-

lumination and expression conditions. In this paper, we

present a multi-task deep learning scheme to enhance the

detection performance. More specifically, we build a deep

convolutional neural network that can simultaneously learn

the face/nonface decision, the face pose estimation prob-

lem, and the facial landmark localization problem. We show

that such a multi-task learning scheme can further improve

the classifier’s accuracy. On the challenging FDDB data

set, our detector achieves over 3% improvement in detec-

tion rate at the same false positive rate compared with other

state-of-the-art methods.

1. Introduction

Face detection has been one of the fundamental tech-

nologies to enable natural human-computer interaction. In

recent years, significant progress has been made on this

topic [32][34]. While frontal face detection has been largely

considered a solved problem thanks to the seminal work by

Viola and Jones [29], multiview face detection remains a

challenging task due to dramatic appearance changes under

various pose, illumination and expression conditions. The

performance of modern face detection solutions on multi-

view face data set is still unsatisfactory, as shown on the

recently published FDDB benchmark [8].

The classic strategy for multiview face detection has

been “divide and conquer”. Namely, we divide face im-

ages into multiple categories, e.g., frontal, half profile, pro-

file, etc. Different classifiers can then be trained for dif-

ferent subcategories. Research publications along this di-

rection include[13][30][6][33], etc. The benefit of such a

scheme is that the detection can be performed at a relatively

fast speed, in particular when certain hierarchical structure

is adopted [6][33] during detection. On the other hand,

the performance of these detectors are not state-of-the-art,

mostly due to the simple Haar features that are almost uni-

versally adopted due to detection speed concerns.

One direction to improve the situation is to apply more

complex features in the detector, e.g., LBP features [12],

generic linear features [17], SURF features [16], etc. Since

these complex features are often slow to compute, a com-

mon practice is to construct post filters with these features.

For instance, Rong et al. [31] applied a support vector ma-

chine (SVM) post-filter with wavelet features, and demon-

strated improvement in the detector’s precision.

In this paper, we propose to apply deep convolutional

neural networks (DCNN) as the post filter, which is known

to be able to extract effective features automatically during

learning. Furthermore, we learn the post filter in a multi-

task learning (MTL) framework, where we jointly train the

face/non-face decision, the facial pose estimation, and the

facial landmark localization problem simultaneously. Our

experimental results show that MTL can improve the accu-

racy of the learned classifier, and the final DCNN classifier

can achieve state-of-the-art performance on the challenging

FDDB data set.

The rest of the paper is organized as follows. Related

works are discussed in Section 2. An overview of our detec-

tion system is presented in Section 3. The multi-task DCNN

is introduced in Section 4. Experimental results and conclu-

sions are given in Section 5 and 6, respectively.

2. Related Works

Our work is certainly not the first that adopts neural net-

works on the face detection problem. In fact, before the Vi-

ola and Jones [29] detector was published, neural network

had been a very popular approach [24][23][4] and achieved

state-of-the-art performance at that time. More recently, the

convolutional neural architecture was used for face detec-

tion in [5][19]. While no multi-task learning is involved,

Osadchy et al.’s scheme [19] trained a convolutional neural

network to map face images to points on a low dimensional

face manifold parameterized by facial pose, and non-face

images to points far away from the manifold. The detector



was fast and achieved satisfactory performance, on par with

the boosting based detectors such as [29].

In the past few years, deep neural networks (DNN) have

seen a surge in research interest, thanks to the ground-

breaking performance improvement on various applica-

tions such as speech recognition [22] and image classifi-

cation [14]. A few research works have been reported to

apply DNN on face related problems. For instance, Luo et

al. applied DNN on face parsing [21]; Huang et al. applied

convolutional deep belief networks on face verification [7];

Sun et al. applied deep convolutional cascade on facial land-

mark detection [28]; and Sermanet et al. applied DCNN on

pedestrian detection [25]. To the authors’s best knowledge,

the latest deep learning algorithms have not been applied to

face detection yet.

A few novel face detection algorithms have also been

presented recently. Notably, Zhu and Ramanan [35] pre-

sented a mixture of trees model with shared parts for face

detection, pose estimation, and landmark estimation. Both

shape and appearance parameters are learned discrimina-

tively using a structured prediction framework. Shen et

al. [26] presented a scheme to perform face detection and

alignment by image retrieval. Their method contains a vali-

dation step that uses a similar voting scheme for face val-

idation and landmark localization. These works indicate

that the face detection problem is highly related to other

facial tasks such as pose estimation and landmark detec-

tion. Therefore, in this paper, we adopt a multi-task learning

framework [1] with DCNN to examine whether additional

improvement on face detection could be achieved.

Multi-task learning is a machine learning approach that

learns a problem together with other related problems at the

same time using a shared representation. It often leads to a

better model for a single task than learning it independently,

because it allows the learner to use the commonality among

tasks. It is very natural to apply multi-task learning on a

neural network, since one can simply learn multiple targets

and make them share the common lower layers. Multi-task

learning with neural networks have been applied in natu-

ral language processing [2], traffic flow forecasting [11],

speech recognition [3], etc.

3. System Overview

We use multi-task DCNN to build a post filter for a

boosting based multiview face detector. The overall flow

for predicting whether a given image patch is a face or not

is shown in Fig. 1. The image patch first passes through

a cascade-based multiview face detector. If the decision is

true, we scale the patch to 32× 32 pixels, and perform pre-

processing for the patch. It is then sent to a DCNN for the

final decision. Since the first stage multiview face detec-

tor is cascade-based, it is fast and can reject most negative

patches. Consequently, the overall system can still run fast
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Figure 1. Algorithm flow for predicting whether an image patch is

a face or not.

Figure 2. Example landmark labels for different face poses.

despite the relatively more complex DCNN classifier.

3.1. The Training Data

We collected face data from various sources, including

images from the web, the Feret database [20], the BioID

database [10], the PIE database [27], etc. The faces are cat-

egorized into 5 poses, namely, frontal, left/right half profile,

left/right profile, each with 0 and ±30 degree in-plane rota-

tions (15 subcategories in total). The data set includes about

49,000 frontal faces, 43,000 half profile faces, and 25,000

profile faces. Some example images and their labeled land-

marks are shown in Fig. 2. For frontal and half profile faces,

the left/right eye center, the nose tip and the left/right mouth

corners are manually labeled. For profile faces, the visible

eye’s center, the nose tip, the visible mouth corner, ear top

and bottom are labeled. The cropping windows of the faces

are then computed from the labeled landmarks. The face

patches are scaled to 32× 32 pixels for training.

To increase the data variation, we apply numerous ran-

dom lighting and geometry variations to the face patches,

including flipping/shift/scale/rotation for the cropping re-

gion, shearing in horizontal and vertical directions, inten-

sity variance scaling, intensity gamma nonlinearity, etc. In

the end, the overall number of (artificially generated) face

examples used for training is about 2 million. The negative

image set is also collected from the web, which contains

about 30 thousand images, or 10 billion non-face patches of

size 32× 32 pixels.

3.2. The BoostingBased Multiview Face Detector

We follow the algorithm in [33] to build the boosting-

based multiview face detector. It uses a winner-take-all ap-

proach to adaptively relabel the faces in order to achieve



Figure 3. Patch preprocessing before being sent to the DCNN. Top

row: before preprocessing; bottom row: after preprocessing.

better performance. Since practically any multiview face

detector can be applied before our DCNN post filter, we

skip the details of the boosting classifier in this paper.

It is important to set the final threshold of the boosting-

based multiview detector appropriately. Setting the thresh-

old too high may cause many positive examples be rejected

even before entering the DCNN post filter, and setting it too

low may lead to too many pass-through patches that needs

to be classified further by the DCNN, slowing down the

overall detection process. In this paper, we set the thresh-

old of the boosting-based detector to successfully detect

about 94% of the training face patches, which leads to about

0.057% false positive rate, or 10 to 100 positive patches for

a typical image. We pass all the training patches through the

detector, which leaves about 1.88 million positive patches

and 570 thousand negative patches to be used to learn the

post filter.

3.3. Patch Preprocessing

The image patches are preprocessed before sending to

the DCNN for classification. The preprocessing consists of

three steps: histogram equalization, linear lighting removal,

and intensity normalization. In the first step, we perform

standard histogram equalization to enhance the contrast of

the image patch. We then fit a linear plane onto the image

intensity, namely, let:

ax+ by + c = I, (1)

where (x, y) is the pixel location, and I is the corresponding

pixel intensity. We use least square fitting, which has a close

form solution in this case, to find the best fitting parameters

a, b and c, and keep the value I − ax − by − c as the pixel

value at (x, y). The last step is to normalize the pixel values

to unit variance. Fig. 3 shows the results of such a three-step

preprocessing, which is very effective in improving image

contrast and removing shadows.

4. Multi-Task DCNN

4.1. Network Architecture

We adopt a multi-task DCNN as shown in Fig. 4. Given

the input 32 × 32 grayscale image patch, the first layer is a

convolutional layer with 32 kernels of size 5 × 5 × 1, fol-

lowed by 2×2 max pooling. The second convolutional layer
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Figure 4. The multi-task DCNN network adopted in this paper.

Here “DO” indicates that the densely connected layer has dropout

enabled.

takes as input the output of the first layer, and filters it with

32 kernels of size 3× 3× 32. The third convolutional layer

has 24 kernels of size 3 × 3 × 32, which is again followed

by 2× 2 max pooling. The fourth layer is a fully connected

layer that has 512 neurons. Afterwards, the network is split

into three branches:

• The first branch learns the face/nonface decision, and it

contains 2 additional fully connected layers, with size

128 and 2, respectively. Dropout [14] is enabled at the

first dense layer. The output is fed to a 2-way softmax,

and we minimizes the cross-entropy loss:

L1 = −

2∑

i=1

ti log yi, (2)

where (t1, t2) = (1, 0) for face patches and (t1, t2) =
(0, 1) for nonface patches, and (y1, y2) is the softmax

output.

• The second branch learns the facial pose (frontal,

left/right half profile, left/right profile), which also

contains 2 additional fully connected layers of size 128
and 5. Again dropout is enabled at the first dense layer.

The output is fed to a 5-way softmax, and we again

minimizes the cross-entropy loss:

L2 = −

5∑

i=1

ti log yi, (3)

where t = (t1, · · · , t5) is a vector with the element

corresponding to the ground truth pose set to 1, and 0

otherwise.

• The third branch learns the locations of the facial land-

marks. There are 7 landmarks in total (Fig. 2), thus

there are 14 output units. The branch has 3 fully con-

nect layers, with size 256, 196 and 14, respectively.

The first two dense layers have dropout turned on. The

output directly predicts the landmark 2D coordinates,

and we minimize a weighted mean square error:

L3 =
1

2

∑
i
wi(zi − yi)

2

∑
i
wi

, (4)



where zi is the ground truth coordinate value, and wi is

a weight defined on each output. Since during DCNN

training we do not distinguish the input face poses, for

frontal and half profile faces the ear top and ear bot-

tom coordinate ground truth will be missing; and for

profile faces one of the eyes and mouth corners will be

missing. We thus set the corresponding weights wi to

0 during training for the missing labels.

In all convolutional and fully connected layers the ReLU

non-linearity [14] is applied, except for the ones in the facial

landmark prediction branch, where the hyperbolic tangent

nonlinearity is used.

When multi-task learning is performed, we minimize the

following linear combination of losses:

L =
3∑

i=1

αiLi, (5)

where αi are linear weights, currently set as all equal to

1.0. Note if we set the second and third weights to zero, we

return to the traditional single task learning.

4.2. Implementation Details

We train our models using stochastic gradient decent

with a batch size of 128 examples, momentum of 0.0, and

weight decay of 0.0005. The learning rate is initialized as

0.01 and adapted during training. More specifically, we

monitor the overall loss function. If the loss is not reduced

for 5 epoches in a row, the learning rate is dropped by 50%.

We deem the network converged if the learning rate has

dropped below 0.0001.

For our face detection task, as mentioned earlier, the

overall number of training examples for the post filter is

about 1.88 million positive patches and 570 thousand nega-

tive patches. The data are randomly shuffled before sending

to the network for training. Each epoch of training takes

about 10 minutes on a Nvidia GTX Titan GPU with our in-

house implementation, and the network usually converges

in 80-100 epoches.

5. Experimental Results

We tested the detector on the publicly available FDDB

data set [8]. The data set contains 5171 faces in 2845 im-

ages. In the first experiment, we compare five different

approaches to demonstrate the benefit of deep convolution

neural networks, and multi-task learning:

• The first approach is directly using the boosting-based

multiview detector. No post filter is applied. This is

our baseline for this experiment.

• The second approach adopts an SVM based post fil-

ter. For each subcategory of the multiview detector,

76.00%

76.50%

77.00%

77.50%

78.00%

78.50%

79.00%

79.50%

80.00%

80.50%

81.00%

0 50 100 150 200 250 300

D
e

t
e

c
t
io

n
 R

a
t
e

Number of False Positives

Boosting detector (no DCNN)

LBP+SVM Post Filter

DCNN (no MTL)

DCNN with MTL

DCNN with MTL+retrain

Figure 5. Comparison of five approaches for face detection on the

FDDB data set.

we collect all patches that successfully pass through

the detector. We then extract LBP features [18] for

the image patch, and train a linear SVM classifier for

face/nonface decision in each subcategory. This ap-

proach is similar to what was presented in Rong et

al. [31], except that LBP features are more robust to

lighting variations than wavelet features.

• The third approach trains a DCNN on the post filter

training data (1.88 million positive examples and 570

thousand negative patches) directly, without involving

multi-task learning. We basically set (α1, α2, α3) =
(1.0, 0.0, 0.0) in the loss function of Eq. (5), and train

a DCNN.

• The fourth approach trains a multi-task DCNN on

the same data. This time we set (α1, α2, α3) =
(1.0, 1.0, 1.0), although in the end we only verify the

face detector’s performance in this paper.

• The fifth approach takes the trained multi-task DCNN

from the previous approach, freezes all parameters in

the second and third branches, and retrain the detec-

tor based on the same training data. We hypothesize

that the benefit of multi-task DCNN comes from better

tuning of the lower layers (thanks to multi-task learn-

ing), thus the network is less likely to over-fit. On the

other hand, forcing the network to also perform pose

estimation and landmark detection may to some de-

gree impact the overall face/nonface decision accuracy.

We expect that the retraining will start from a good set

of initial network parameters, and thus will converge

quickly to a classifier that performs even better.

The results are shown in Fig. 5. We limit the plot to

300 false detections on the whole data set, as we believe

detectors with higher false positive rates are not practically

useful. It can be seen that in general the three DCNN post

filters outperform the baseline detector significantly: at the

same false positive rate, the detection rate improves by over
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of-the-art approaches.

3%. Compared with the linear SVM based post filter, the

improvement is also significant: over 2% in detection rate

at the same false positive rate.

The three DCNN based post-filters are relatively close

to each other in performance. Multi-task learning provides

improvement over the vanilla DCNN by 0.2− 0.5%, while

retraining gains another 0.2%. The fully connected layers

in our network are mostly equipped with dropout, which

is known to be very robust to over-fitting. We think that

could be the reason that the improvement was less than what

we originally expected. However, a change of 0.5% in de-

tection rate still corresponds to 25 more correct detections,

which is good to have.

To give a perspective about how our detector performs

against some of the state-of-the-art approaches, we com-

pare our method with four recent publications, including

the VJGPR detector by Jain et al. in [9], the SURF cas-

cade detector by Li et al. [16], the XZJY detector by Shen

et al. [26] and the adaptation detector by Li et al. [15]. The

results are shown in Fig. 6. The baseline boosting detector

without DCNN and the DCNN post filter with multi-task

learning and retraining are also included. It can be seen that

our detectors’ performance is much better than the existing

methods.

One interesting issue we observe is that when we set

the DCNN’s final threshold to 0.999 (the maximum soft-

max output is 1), we achieve 77.32% detection rate, with

18 false positives. We were curious how these false positive

patches pass through the DCNN with such high confidence.

In Fig. 7 we show all the 18 “false” detections made by our

detector. At a glance, all of them appear to be legitimate

detections. We then compared these detection results with

the ground truth, and noted two major cases. For image 1,

3, 4, 8, 9, 11, 12, 15 and 16, these “false” detections are ba-

sically missed faces in the ground truth file. In other words,

these are indeed faces but were somehow not labeled in the

ground truth. For image 2, 5, 6, 7, 10, 13, 14, 17 and 18, the

problem appears to be caused by how a detected face is con-

sidered as a true detection in FDDB. As we mentioned, our

cropping windows are computed from landmark points dur-

ing training, and they are different from the FDDB labels.

This is particularly clear on profile faces, where our com-

puted cropping window tends to place the visible eye at the

horizontal center column. Another factor is that our detec-

tor output square windows, and this tends to be miss-judged

by FDDB if the ground truth face is an elongated ellipsoid.

If better agreement can be made on how the ground truth

faces are labeled, we expect our detector to perform even

better on the same data set.

6. Conclusions

In this paper, we applied multi-task deep convolutional

neural networks to build a post filter to improve the accu-

racy of multiview face detection. The idea is to learn the

face/nonface decision together with facial pose estimation

and facial landmark localization. We achieved state-of-the-

art performance on the challenging FDDB data set.

For future work, we would like to include more facial

attributes into our multi-task learning framework. These at-

tributes may include gender, age, facial expression, lighting,

etc. It would also be interesting to vary the weights among

different learning tasks, to examine which tasks are more

closely related, and thus are more effective when applying

multi-task learning.
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