
Improving NAND Flash Based Disk Caches

Taeho Kgil∗ David Roberts Trevor Mudge
University of Michigan

Advanced Computer Architecture Laboratory
2260 Hayward Street Ann Arbor, MI 48109

E-mail: {tkgil,daverobe,tnm}@eecs.umich.edu

Abstract

Flash is a widely used storage device that provides
high density and low power, appealing properties for gen-
eral purpose computing. Today, its usual application is
in portable special purpose devices such as MP3 players.
In this paper we examine its use in the server domain—
a more general purpose environment. Aggressive process
scaling and the use of multi-level cells continues to improve
density ahead of Moore’s Law predictions, making Flash
even more attractive as a general purpose memory solu-
tion. Unfortunately, reliability limits the use of Flash. To
seriously consider Flash in the server domain, architectural
support must exist to address this concern. This paper first
shows how Flash can be used in today’s server platforms
as a disk cache. It then proposes two improvements. The
first improves performance and reliability by splitting Flash
based disk caches into separate read and write regions. The
second improves reliability by employing a programmable
Flash memory controller. It can change the error code
strength (number of correctable bits) and the number of
bits that a memory cell can store (cell density) according
to the demands of the application. Our studies show that
Flash reduces overall power consumed by the system mem-
ory and hard disk drive up to 3 times while maintaining
performance. We also show that Flash lifetime can be im-
proved by a factor of 20 when using a programmable Flash
memory controller, if some performance degradation (be-
low 5%) is acceptable.

1 Introduction

Today, NAND Flash can be found in handheld devices

like cell phones, digital cameras and MP3 players. This

has been made possible because of its high density and low

power properties. These result from the simple structure of

∗Currently at Intel

Flash cells and its nonvolatility. Its popularity has meant

that it is the focus of aggressive process scaling and innova-

tion.

The rapid rate of improvement in density has suggested

other usage models for Flash besides handheld devices, and

in recent years, Flash has also emerged as an attractive

memory device to integrate into other computing platforms.

Flash is used in solid state disks and hybrid disk drives to re-

duce power consumption and improve performance [1, 3].

Flash is even being considered inside data centers where

system memory power and disk drive power are critical con-

cerns. With appropriate support, Flash could dramatically

reduce the cost of powering and cooling data centers.

However, Flash manageability and reliability are chal-

lenging problems that need to be addressed to fully integrate

Flash into data centers. Flash wears out as we increase the

number of writes/erases. A combined software/hardware

effort is required to mitigate these problems. Reliability

is especially important in servers deployed in data centers.

This paper proposes a hardware assisted software managed

disk cache for NAND Flash. We address the shortcomings

due to reliability and manageability. Our contributions are

as follows:

1. We extend the power and performance analysis for us-

ing Flash based disk caches on server platforms de-

scribed in [16]. We also show that there is negligi-

ble overhead in complexity and performance to using

Flash.

2. We show that by splitting Flash based disk caches into

read and write regions, overall performance and relia-

bility can be improved.

3. We show that a programmable Flash memory con-

troller can improve Flash cell reliability and extend

memory lifetime. The first programmable parameter is

error correction code strength. The second is the Flash

cell density—changing from multi-level cells to single

level cells.

International Symposium on Computer Architecture

1063-6897/08 $25.00 © 2008 IEEE
DOI 10.1109/ISCA.2008.32

327

International Symposium on Computer Architecture

1063-6897/08 $25.00 © 2008 IEEE
DOI 10.1109/ISCA.2008.32

327

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 21, 2009 at 19:52 from IEEE Xplore.  Restrictions apply.



The paper is organized as follows. The next section pro-

vides background on Flash and makes the case for using

Flash as a disk cache. Section 3 presents the architec-

ture of a Flash based disk cache. Section 4 explains the

Flash memory controller architecture that improves relia-

bility. Section 5 describes how our proposed architecture

works. Section 6 describes the methodology used to ex-

plore the design space and evaluate our proposed architec-

ture. Section 7 presents the results of that exploration. Sec-

tion 8 presents concluding remarks.

2 Background and the case for Flash based
disk caches

2.1 Using NAND Flash to reduce system
memory power

Prior work on Flash has been proposed to save power and

improve performance in memory systems. It has been pro-

posed as a disk cache [16] and a replacement for disk [26].

Tables 1 and 2 show why Flash is attractive as a compo-

nent in servers. Table 1 shows the 2007 ITRS roadmap for

NAND Flash compared to other types of memory devices.

Table 2 shows the density, performance and power con-

sumption of NAND Flash compared to other types of mem-

ory and storage devices. It can be seen that the cell size for

NAND Flash is much smaller than other memory devices.

This is primarily due to the NAND cell structure and the

adoption of multi-level cell (MLC) technology. MLC Flash

today provides 2 bits per cell, and 4 bit per cell MLC Flash

is expected by 2011. Given the trends shown in the ITRS

roadmap, it is reasonable to expect NAND Flash to be as

much as 8× denser than DRAM by 2015.

Table 2 also shows that NAND Flash consumes much

less power than DRAM, but its latency is much greater

[25, 18]. On the other hand, compared to a hard disk drive,

a NAND Flash has significantly lower access latency and

power consumption.

Table 1 shows that Flash is limited in the number of

write/erase cycles that a data block can reliably tolerate.

There also exists a clear trade-off between Flash density

and reliability, since today’s SLC Flash tolerates 10 times

as many writes as MLC. The limited Flash endurance is due

to Flash cell wear out [24, 23, 14].

NAND Flash is organized in units of pages and blocks.

A typical Flash page is 2KB in size and a Flash block is

made up of 64 Flash pages (128KB). Random Flash reads

and writes are performed on a page basis and Flash era-

sures are performed per block. A Flash must perform an

erase on a block before it can write to a page belonging to

that block. Each additional write must be preceded by an

erase. Therefore out-of-place writes are commonly used to

mitigate wear out. They treat Flash as a log and append new

2007 2009 2011 2013 2015

NAND Flash-
SLC∗(μm2/bit)

0.0130 0.0081 0.0052 0.0031 0.0021

NAND Flash-
MLC∗(μm2/bit)

0.0065 0.0041 0.0013 0.0008 0.0005

DRAM Cell
density(μm2/bit)

0.0324 0.0153 0.0096 0.0061 0.0038

Flash write/erase
cycles—SLC/MLC†

1E+05/
1E+04

1E+05/
1E+04

1E+06/
1E+04

1E+06/
1E+04

1E+06/
1E+04

Flash data retention
(years)

10-20 10-20 10-20 20 20

∗ SLC - Single level Cell, MLC - Multi Level Cell
† write/erase cycles for MLC Flash estimated from prior work[17]

Table 1. ITRS 2007 roadmap for memory tech-
nology.

Active
Power

Idle
Power

Read
Latency

Write
Latency

Erase
Latency

1Gb DDR2
DRAM

878mW 80mW† 55ns 55ns N/A

1Gb
NAND-SLC

27mW 6μW 25μs 200μs 1.5ms

4Gb NAND-
MLC

N/A N/A 50μs 680μs 3.3ms

HDD‡ 13.0W 9.3W 8.5ms 9.5ms N/A
† DRAM Idle power in active mode. Idle power in powerdown mode is 18mW
‡ Data for 750GB Hard disk drive [5]

Table 2. Performance, power consumption
and cost for DRAM, NAND-based SLC/MLC
Flash and HDD.

data to the end of the log while old data is invalidated. This

is done on a per page basis. Figure 1(a) illustrates the or-

ganization of the SLC/MLC dual mode Flash used in this

study. A similar design with different page and block sizes

was published by Cho et al. [11]. Pages in SLC mode con-

sist of 2048 bytes of data area and 64 bytes of ‘spare’ data

for error correction code (ECC) bits. When in MLC mode,

a single SLC page can be split into two 2048 byte MLC

pages. Pages are erased together in blocks of 64 SLC pages

or 128 MLC pages.

Server applications typically use a large amount of sys-

tem memory for caching contents in disk. Traditionally

part of DRAM is used as a cache to reduce the high ac-

cess latency to hard disk drives. The disk cache, or page

cache, is managed by the OS. Assuming that reliability can

be guaranteed through software and hardware techniques,

Flash can be used as a way to address the wide latency gap

between the hard disk drive and DRAM while saving power.

In fact, it has been shown that system memory consumes an

appreciable amount of total power—more than 1/4 of the

power consumption in a data center platform [20].

328328

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 21, 2009 at 19:52 from IEEE Xplore.  Restrictions apply.



�������	


������	�

�

��������������

���� ��

���������������������
������	�

���� ��

���� ���

(a) Flash block diagram

0

10

20

30

40

50

0% 20% 40% 60% 80% 100%

Used Flash Space

N
o

rm
al

iz
ed

 g
ar

b
ag

e 
co

lle
ct

io
n

 o
ve

rh
ea

d
 

1

(b) Garbage collection

Figure 1. (a) Example dual mode SLC/MLC
Flash bank organization (b) Garbage collec-
tion (GC) overhead in time versus occupied
Flash space in a 2GB Flash.

2.2 Using NAND Flash based disk caches

In addition to using Flash as a disk cache, there has been

a proposal to use it as an auxiliary disk using NOR cells

[26]. When that study was performed the now dominant

NAND Flash had not been introduced. However, the ar-

chitecture in [26] could easily be modified to incorporate

NAND.

The biggest difficulty with using Flash as a solid-state

disk (SSD) in place of a conventional disk is the garbage

collection overhead. Flash based file systems require a ded-

icated software layer that executes file system primitives

customized for Flash to emulate FAT32, EXT2 or dedi-

cated Flash file systems like JFFS. These implementations

are slow because of the garbage collection that is necessary

with the out-of-place write policy in Flash.

The overhead in garbage collection increases as less free

space is available on Flash. This becomes a significant

problem, because garbage collection generates extra writes

and erases in Flash, reducing performance and endurance as

the occupancy of the Flash increases. The garbage collec-

tion overhead is a product of garbage collection frequency

and garbage collection latency. Figure 1(b) shows how the

time spent garbage collecting increases as more Flash space

is used. It is normalized to an overhead of 10%. It can be

seen that GC becomes overwhelming well before all of the

memory is used. In fact, the study in [26] was only able to

use 80% of its storage capacity to suppress garbage collec-

tion overhead.

Another difficulty is the memory overhead in maintain-

ing the Flash file system data structures. File systems store

file data along with meta-data to manage the file. The size

of these structures are appreciable and take up a consider-

able percentage of memory for small files. Managing the

entire file system meta-data in DRAM incurs an apprecia-

ble memory overhead. Thus, conventional file systems load

only a portion of the file system meta-data in DRAM. This

method is similar to demand based paging. Wear out ef-

Figure 2. 1GB DRAM is replaced with a
smaller 256MB DRAM and 1GB NAND-based
Flash. Additional components are added to
control Flash.

fects and higher access latency mean Flash is less appropri-

ate for storing this meta-data at runtime. File system meta-

data structures are frequently updated and result in frequent

Flash writes and erases. As a result, the meta-data used in

a Flash based file system should be kept in DRAM at run-

time. If Flash is used as a full file system rather than as a

disk cache, more DRAM is required for meta-data.

A disk cache is much simpler and requires less storage

overhead. By managing the contents of a disk at the granu-

larity of pages and using a single item of meta-data to locate

each page, the meta-data size is bounded and independent

of the size of the underlying file system.

3 Architecture of the Flash based disk cache

The right side of Figure 2 shows the Flash based disk

cache architecture. It is an extension of [16]. Compared to

a conventional DRAM-only architecture shown on the left

side of Figure 2, our proposed architecture uses a two level

disk cache, composed of a relatively small DRAM in front

of a dense Flash. The much lower access time of DRAM

allows it to act as a cache for the Flash without significantly

increasing power consumption. A Flash memory controller

is also required, for reliability management. We will pro-

vide a detailed description of our Flash memory controller

in later sections.

Our design uses a NAND Flash that stores 2 bits per cell

(MLC) and is capable of switching from MLC to SLC mode

using techniques proposed in [11, 19]. Finally, our design

uses variable-strength error correction code (ECC) to im-

prove reliability. We will discuss ECC and density control

in later sections.

329329

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 21, 2009 at 19:52 from IEEE Xplore.  Restrictions apply.



Next, we explain the data structures used in our Flash

block and page management. These tables are read from

the hard disk drive and stored in DRAM at run-time to re-

duce access latency and mitigate wear out. The Primary

Disk Cache (PDC) also resides in DRAM and caches the

most frequently accessed disk pages. Adding Flash allows

us to greatly reduce the size of the PDC. The tables are as

follows;

• FlashCache hash table (FCHT) - stores the mapping

between addresses on disk and Flash. The FCHT was

first introduced in [16].

• Flash page status table (FPST) - stores error correction

code (ECC) strength, SLC/MLC mode and a saturating

access counter. It also stores a valid bit field.

• Flash block status table (FBST) - records the number

of erase operations performed on each block as well as

the degree of wear out.

• Flash global status table (FGST) - tracks average la-

tency and miss rate of the Flash based disk cache.

We augmented the data structures described in [16]. Addi-

tional data structures (FPST, FBST, FGST) are required to

support our programmable Flash memory controller. The

overhead of the four tables described above are less than

2% of the Flash size. The FCHT and FPST are the primary

contributors because we need them for each Flash page. For

example, the memory overhead for a 32GB Flash is approx-

imately 360MB of DRAM. Our Flash based disk cache is

managed in software (OS code) using the tables described

above. We found the performance overhead in executing

this code to be minimal.

3.1 FlashCache hash table (FCHT)

The FCHT is a memory structure that holds tags asso-

ciated with the Flash pages. A tag is made up of a logi-

cal block address (LBA) field and a Flash memory address

field. The LBA field points to the location in the hard disk

drive and is used to determine whether Flash has cached this

data. The corresponding Flash memory address field is used

to access Flash.

The FCHT is organized as a fully associative table ac-

cessed quickly by performing a hash. Increasing the num-

ber of entries that can be indexed in the hash table can in-

crease performance We found that around 100 entries pro-

vide close to the maximum system throughput.

3.2 Flash page status table (FPST)

The FPST contains the configuration of each page in

Flash. The ECC strength and the SLC/MLC mode fields

are used to interface with the Flash memory controller. The

saturating access counter is used to address frequent access

behavior. We also keep track of valid page data by setting

and resetting the valid bit field (see [15] for details). Its

usage is explained in section 5.2.

3.3 Flash block status table (FBST)

The FBST is used to profile the number of erases per-

formed on a particular block. This information is used to

perform wear-leveling (section 3.6), which increases the

lifetime of the Flash by attempting to erase all blocks uni-

formly. The FBST maintains the current status of a Flash

block. It holds the degree of wear out of a Flash block, and

the number of erases performed on this block (see [15] for

details). The degree of wear out is a cost function gener-

ated from observing the erase count as well as the status of

all Flash pages belonging to a Flash block. We defined the

degree of wear out for Flash block i as follows. It is a met-

ric used to compare the relative wear out of Flash blocks to

make allocation decisions.

wear outi = Nerase,i + k1 × TotalECC,i

+k2 × TotalSLC MLC,i

where Nerase,i is the number of erases to block i,
TotalECC,i is the total ECC strength of block i (which is

increased as the block wears out). This is the sum of ECC

strengths across all pages in a block. The TotalSLC MLC,i

is the total number of pages in block i that are converted

to SLC mode due to wear out. The constants k1, k2 are

positive weight factors. Constant k2 is larger than k1 be-

cause a mode switch (from MLC to SLC) impacts wear

out a lot more than increasing ECC strength. Essentially,

TotalECC,i and TotalSLC MLC,i are the sum of the ECC

strength and the SLC/MLC mode fields for all pages in the

FPST that belong to block i.
The number of erases is related to the number of Flash

based disk cache evictions and writes. Section 3.6 explains

the usage of the FBST. The wear out field of the FBST

determines whether a block is old or new.

3.4 Flash global status table (FGST)

The FGST contains summary information regarding how

well the entire Flash based disk cache is working. This in-

cludes statistics such as miss rate and average access laten-

cies across all Flash blocks. The fields in the FGST are used

to address the increase in faults due to wear out (see [15] for

details). Its usage is explained in section 5.2.

3.5 Splitting Flash into a read cache and
a write cache

Naively managed out-of-place writes degrade the per-

formance of a Flash based disk cache. They tend to in-

330330

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 21, 2009 at 19:52 from IEEE Xplore.  Restrictions apply.



crease the garbage collection (GC) overhead which in turn

increases the number of overall disk cache misses incurring

a significant performance overhead. The increase in over-

all Flash based disk cache miss rate is due to invalid Flash

pages that are generated from out-of-place writes.

It is desirable to limit GC and maintain a reasonable ac-

cess latency to Flash, because the read access latency to a

Flash based disk cache is important for overall system per-

formance. To that end we divide the Flash into a read disk

cache and a write disk cache. Read caches are less sus-

ceptible to out-of-place writes, which reduce the read cache

capacity and increase the risk of garbage collection. Read

critical Flash blocks are located in the read disk cache that

may only evict Flash blocks and pages on read misses. The

write disk cache captures all writes to the Flash based disk

cache and performs out-of-place writes. Wear-leveling is

applied globally to all regions in the Flash based disk cache.

By separating the Flash based disk cache into a read

and write disk cache, we are able to reduce the number

of blocks that have to be considered when doing write

triggered garbage collection. Figure 3 shows an example

that highlights the benefits of splitting the Flash based disk

cache into a read and write cache. The left side shows the

behavior of a unified Flash based disk cache and the right

side shows the behavior of splitting the Flash based disk

cache into a read and write cache. Figure 3 assumes we have

5 pages per block and 5 total blocks in a Flash based disk

cache. Garbage collection proceeds by reading all valid data

from blocks containing invalid pages, erasing those blocks

and then sequentially re-writing the valid data. In this ex-

ample, when the Flash based disk cache is split into a read

and write cache, only 2 blocks are candidates for garbage

collection. This dramatically reduces Flash reads, writes

and erases compared to a unified Flash based disk cache

that considers all 5 Flash blocks.

Each read and write cache manages its own set of Flash

blocks and its own LRU policy. Section 5.1 provides more

detail for how Flash based disk cache hits, misses and writes

are handled. Figure 4 shows the miss rate improvement

obtained by splitting into a read and write disk cache. Based

on the observed write behavior, 90% of Flash is dedicated

to the read cache and 10% write cache. The reduced miss

rate results in improved performance and shows the benefit

of splitting the Flash based disk cache, particularly as disk

caches get larger.

3.6 Wear-level aware Flash based disk
cache replacement policy

Unlike DRAM, Flash wears out. To mitigate wear out,

wear-level management is performed on Flash erases for the

Flash based disk cache. Wear-leveling is a commonly used

technique in Flash [6, 9]. We adopt a modification of con-

�		�
���� �����!���"�
�
�
#$ �����!���"�
�
�

%$�&������	"�

!���"����	����$ �� ����$�'�(��
�������	���$

)������	"�*(������	"�

+,
���!���"�
�
�

-�!���"����	���(����.����!���"�
�
��/(����.�
���!���"�
�
��(�����

��!���"����	���(����.�-�!���"�
�
��/(����.�
-�!���"�
�
��(�����

0�&�(��'�(��
�������	���$ 0�&�(��'�(��
�������	���$

1&��(�'�(��
�������	���$ 1&��(�'�(��
�������	���$

Figure 3. Diagram illustrating the benefits of
splitting the Flash based disk cache.

0%

10%

20%

30%

40%

50%

60%

128MB 256MB 384MB 512MB 640MB

Flash Size

F
la

sh
 M

is
s 

ra
te

RW unified : shared disk cache
RW separate : separate read and write disk cache

Figure 4. A miss rate comparison executing
a dbt2 (OLTP) disk trace for a unified Flash
based disk cache and a split read and write
Flash based disk cache.

ventional wear-leveling techniques that is customized for a

disk cache usage model. For both the read and write cache,

we initially select a block to be evicted using an LRU pol-

icy on disk cache capacity misses (for the read cache) or

capacity writes (out-of-place writes that need to first erase

blocks, for the write cache). However, if this block wear out

exceeds that of the newest block by a predetermined thresh-

old, then the block corresponding to the minimum wear out

(newest block) is evicted to balance the wear-level. Newest
blocks are chosen from the entire set of Flash blocks. Be-

fore we evict the newest block, its content is migrated to

the old block. The degree of wear out of a Flash block is

determined by observing the entries in the FBST.

4 Architecture of the Flash memory con-
troller

Flash needs architectural support to improve reliability

and lifetime when used as a cache. Figure 5 shows a high-

level block diagram of a programmable Flash memory con-

331331

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 21, 2009 at 19:52 from IEEE Xplore.  Restrictions apply.



0�2.��)���$	��� 0�2.��)����	���

0�2
+$	������
3�	���

!���"
3�$����
��$�(��

4143�!���"

!5�6��$�(�

+7��($��
#$��(&�	�#����$��(&�	�

!���"����(���
8������9/(����:

5(�
�,,�����!���"�,�,�(��	�$�(����(

�)�
+$	�����
3�	���

0���+((�(�9;�����4�:

!���"������9(����:

'�$�(���
��$�(�,��

0�(�����,

1�
�(��",

�"��$
���(	"

'�$�(���
5�(����0���

�)�<�
�)�<� �

�)���((�(���
�)��$���((�(

Figure 5. High-level block diagram of a pro-
grammable Flash memory controller.

troller that addresses this need. It is composed of 2 main

components;

• An encoder and decoder for error correction and detec-

tion. Unlike conventional Flash logic, we use a vari-

able error correction strength.

• A density controller for SLC/MLC mode selection.

This dynamically trades block storage capacity for re-

liability as the Flash ages, or lower latency for fre-

quently accessed pages.

We use a typical device driver interface to access the Flash

memory controller. The device driver reads the error correc-

tion code (ECC) strength and SLC/MLC mode fields from

the FPST and generates a descriptor (control messages) to

access a page in Flash. We describe the details of our Flash

memory controller in the following subsections.

4.1 Hardware assisted error correction
code support

A common way to recover from errors in Flash is to use

an error correction code (ECC). This section describes the

error correction and detection scheme in our Flash memory

controller. We also show how error correction can extend

Flash lifetime, and that the time penalty for the correction

process need not impact performance.

ECCs are widely employed in digital storage devices

to mitigate the effects of hard (permanent) and soft (tran-

sient) errors. Flash typically uses linear block codes like

the Bose, Ray-Chaudhuri, Hocquenghem (BCH) code due

to its strength and acceptable decode/encode latency. To

reduce the false positives that can occur with BCH codes,

CRC codes are also employed.

Our architecture shown in Figure 5 uses a BCH encoder

and decoder to perform error correction and a 32 bit CRC

0

40

80

120

160

200

2 3 4 5 6 7 8 9 10 11

number of correctable errors

d
ec

o
d

e 
la

te
n

cy
 -

 u
s

syndrome chien

(a)

0.E+00

2.E+06

4.E+06

6.E+06

8.E+06

0 1 2 3 4 5 6 7 8 9 10
number of correctable errors

m
ax

. t
o

le
ra

b
le

 W
/E

 c
yc

le
s

stdev = 0 stdev = 5% of mean

stdev = 10% of mean stdev = 20% of mean

1.E+05

(b)

Figure 6. (a) BCH decode latency (b) Maxi-
mum tolerable Flash write/erase (W/E) cycles
for varying code strength.

checker to perform error detection. The BCH check bit stor-

age overhead is small considering the high capacity of to-

day’s Flash. Devices typically include 64 bytes per page for

ECC support bits. The CRC32 code needs 4 bytes, leaving

60 bytes for BCH. Because we limited the number of cor-

rectable errors to 12, a maximum of 23 bytes are needed for

check bits, per page.

4.1.1 BCH encoder and decoder

Given a message of k bits, we can construct a t-error-

correcting BCH code with block length of n bits, such that

the number of parity check bits is given by n − k ≥ mt.
Furthermore, the block length n should satisfy n = 2m− 1.

We need to append approximately log(n) bits for each er-

ror we wish to correct, and the number of parity check bits

increase linearly with the number of correctable errors for a

fixed code length.

Figure 5 shows an implementation of our BCH encoder

and decoder. The Berlekamp and Chien search algorithms

in the decoder are widely used due to their simplicity, and

they have been proven to be an effective iterative technique

in decoding BCH codes [21]. In addition to that, Chien

search can be parallelized in a straightforward manner.

We implemented the BCH encoder and decoder in C and

measured the amount of time spent encoding and decod-

ing BCH code on a 3.4 GHz Pentium 4 system. Laten-

cies ranging from a tenth of a second to nearly a second,

were observed for correcting 2-10 errors. Clearly an ac-

celerator is necessary. In response, we designed one based

on ideas in [22]. A Berlekamp acceleration engine and a

highly parallelized Chien search engine improve the modu-

lar arithmetic and memory alignment found in BCH codes

and takes advantage of the parallelism inherent in BCH de-

coders. The resulting decode latencies are shown in Figure

6(a). These latencies are obtained using a 100 MHz in-order

embedded processor with parallelized modular arithmetic

332332

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 21, 2009 at 19:52 from IEEE Xplore.  Restrictions apply.



support. Berlekamp algorithm overhead is insignificant and

was omitted from the figure.

We developed a design to estimate the cost in area. Our

implementation used a 215 entry finite field lookup table as

well as 16 finite field adders and multipliers as accelerators

to implement the Berlekamp and Chien search algorithm

(16 instances of the Chien search engines). BCH codes use

finite field operators, which are sufficiently different from

standard arithmetic operators to cause a bottleneck in a gen-

eral purpose CPU without an accelerator. We limit the pro-

grammability to a fixed block size (2KB) to avoid memory

alignment with different block sizes and limit the maximum

number of correctable errors to 12. Our design required

about 1 mm2.

4.1.2 CRC checksum

One of the drawbacks of BCH codes is that they cannot al-

ways detect when more errors occur than they have been

designed to correct. In some cases the Chien search can

find no roots, indicating that more errors occurred. In other

cases roots are found creating a false positive. The usual so-

lution to this is to augment them with CRC codes to improve

error detection. CRC codes are capable of covering a wide

range of error patterns. We used an optimized hardware

implementation of a CRC32 functional block. Our design

compiler results showed it occupied a negligible amount of

die area and added negligible performance overhead (tens

of nanoseconds). This agrees with other implementations

such as [13].

4.1.3 Impact of BCH code strength on Flash lifetime

Flash cell lifetime displays an exponential relationship with

oxide thickness [24]. In this exponential model Flash cell

lifetime W can be defined as:

W = 10C1·tox

where C1 is a constant. Most Flash specifications refer to

the probability of a cell failing after 100,000 write/erase

(W/E) cycles. This probability is usually of the order of

10−4, and allows us to calculate the constant in the cell life-

time formula above. We further assume, in common with

other studies, that oxide thickness is normally distributed

with three standard deviations equal to 15% of the mean ox-

ide thickness. Combining these facts with number of cells

in a page and the code strength (the number of errors that

can be corrected) allows us to derive a distribution for the

lifetime in W/E cycles. An exponential analytical model is

employed. We assume Flash page size to be 2KB and first

point of failure to occur at 100,000 W/E cycles. See [15]

for details of the derivation.

Using the exponential model, we plotted the Flash W/E

cycles versus ECC code strength in Figure 6(b). As can

Financial2: working set size 443.8MB

0

1,000

2,000

3,000

0 50 100

Flash die area (mm^2)

0%

20%

40%

60%

80%

100%

S
L

C
 p

er
ce

n
ta

g
e

Latency (us) Optimal SLC fraction

(a) Financial2

Websearch1: working set size 5116.7MB

0

1,000

2,000

3,000

4,000

0 500 1,000

Flash die area (mm^2)

0%

20%

40%

60%

80%

100%

S
L

C
 p

er
ce

n
ta

g
e

Latency (us) Optimal SLC fraction

(b) Websearch1

Figure 7. Optimal access latency and
SLC/MLC partition for various multimode
MLC Flash sizes.

be seen, ECC code strength extends lifetime. We also note

that we see diminishing return from increasing ECC code

strength for both models. Spatial variation negatively im-

pacts code strength because our assumptions in plotting Fig-

ure 6(b) assumed all Flash pages had to be recoverable for

a certain ECC code. As bad Flash cells display a higher

spatial correlation, bad cells cluster in groups on a page re-

sulting in an increasing number of pages that cannot recover

using a particular ECC.

4.2 Hardware assisted density control

MLC Flash cells take longer to read and write. Multiple

levels imply a narrower gap between different logical values

and this is the main cause of reduced endurance. To reduce

this drawback, there has been work on enabling MLC to

operate in SLC mode to improve Flash endurance and la-

tency [11, 19]. Samsung has recently also announced One-

FlexNAND that dynamically controls the SLC to MLC mul-

timode operation. Our programmable Flash memory con-

troller assumes that one can dynamically control the den-

sity of a Flash at the page level by slightly modifying the

sense amplifier circuitry found in a MLC [11, 19]. There-

fore, the primary role of a density controller is to indicate

the mode of the requested page. The density configuration

of the requested page can be found in the density descrip-

tor generated from the SLC/MLC mode field in the FPST.

Density control benefits Flash performance and endurance,

because we are able to reduce access latency for frequently

accessed pages and possibly improve endurance for aging

Flash pages by changing MLC pages into SLC pages as

needed.

To show the potential improvement of Flash perfor-

mance by controlling density, we present a study using real

disk traces. Using disk activity traces from [8] for financial

and web search applications, we analyzed the average ac-

cess latency for different SLC/MLC partitions, for several

Flash sizes.

333333

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 21, 2009 at 19:52 from IEEE Xplore.  Restrictions apply.



We show that a hybrid allocation of SLC and MLC pro-

vides minimum access latency. Figure 7 shows the average

access latencies (left y-axis) achieved for an optimal parti-

tion (right y-axis) between SLC and MLC. The x-axis varies

the Flash size (die area) based on a recent MLC Flash imple-

mentation [12]. Although the total chip capacity in [12] is

fixed at 1GB, we assumed their implementation could scale

and further assumed that the control circuitry area scales

linearly with the number of Flash cells. The x-axis extends

to the entire working set size, given in Figure 7 (see graph

title). As expected, when the size of the cache approaches

the working set size, latency reaches a minimum using only

SLC. The optimal SLC/MLC partition is dependent on the

nature of the workload and Flash size, thus programmabil-

ity is important. In the two benchmarks of Figure 7, it can

be seen that in (a) 70% can be SLC while in (b) almost all

the cells are MLC for a Flash size that is approximately half

the working set size.

5 Putting it all together

5.1 Accessing the Flash based disk cache

In this section we discuss how hits, misses and writes are

handled in a Flash based disk cache with respect to the en-

tire system. When a file read is performed at the application

level, the OS searches for the file in the primary disk cache

located in DRAM. On a primary disk cache hit in DRAM,

the file content is accessed directly from the primary disk

cache (no access to Flash related data structures). On a pri-

mary disk cache miss in DRAM, the OS searches the FCHT

to determine whether the requested file currently exists in

the secondary disk cache. Because it is a file read, the OS

searches the FCHT. If the requested file is found, then a

Flash read is performed and a DMA transaction is scheduled

to transfer Flash content to DRAM. The requested address

to Flash is obtained from the FCHT.

If a read miss occurs in the FCHT search process, we

first look for an empty Flash page in the read cache. If there

is no empty Flash page available, we first select a block for

eviction to generate empty Flash pages. We enforce our

wear-level aware replacement policy to select the block to

evict. Wear-level aware replacement is performed based on

section 3.6. Concurrently, a hard disk drive access is sched-

uled using the device driver interface. The hard disk drive

content is copied to the primary disk cache in DRAM and

the read cache in Flash. The corresponding tag in the FCHT

belonging to the read disk cache is also updated.

File writes are more complicated. If we write to a file, we

typically update/access the page in the primary disk cache

and this page is periodically scheduled to be written back to

the secondary disk cache and later periodically written back

to the disk drive. When writing back to Flash, we first de-

�	���
����	

����	�
����	

0�&�(��
'�(��
��
�����	���$

1&��(�
'�(��
��
�����	���$

���

���

�� �

��	"��,���.�
!���"����	��
�(���

!���"�
�
��/(���

���=�&=
��	��
/(��������>�?�
���(�����

!���"�*(���

'�(��
�������	���$

�

�		�
���� �����!���"�
�
�
*(����$������&�>�?����(�����
#$ �����!���"�
�
�

!���"�)��������

+,
���!���"�
�
�

���=�&=
��	��
/(��������>�?�
���(�����

Figure 8. Flash based disk cache handling
read cache misses, writes and garbage col-
lection.

termine whether it exists on Flash by searching the FCHT.

If it is found in the write cache, we update the page by do-

ing an out-of-place write to the write cache. If it is found in

the read cache, then we invalidate this page (reset the valid

bit field in the FPST) and allocate a page in the write cache.

Garbage collection (GC) may also be triggered in the read

cache when the read cache capacity goes below 90%. If it

is not found in the Flash, we allocate a page in the write

cache. When we have no empty pages in the write cache,

we either trigger GC (common case) or we select a block

for eviction to generate empty Flash pages. We only evict

blocks when the total number of invalid pages is less than

the total number of pages in a Flash block. The disk is even-

tually updated by flushing the write disk cache. All GCs are

performed in the background. When erasing a block during

GC, wear-level management is performed.

Figure 8 shows several examples of how our Flash based

disk cache handles misses, writes and garbage collection.

The left side of the diagram shows how Flash is accessed

when a read miss occurs. Because there are no empty Flash

pages available, a block is evicted and erased, making room

for the new page of data. The write region is illustrated

in the right side. Three existing pages labeled ’S’ have their

values updated. The new data is placed in three empty pages

and the old pages are invalidated ready for garbage collec-

tion (out-of-place write). Writing those three pages for a

second time causes three new pages to be written and the

three previous pages are invalidated.

5.2 Reconfiguring the Flash memory con-
troller

This section describes how the Flash descriptors (control

messages) are generated and how we update the Flash data

structures (FPST) used to generate these descriptors. Before

334334

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 21, 2009 at 19:52 from IEEE Xplore.  Restrictions apply.



we schedule a Flash access to a certain page, descriptors for

that page are generated and sent to our programmable Flash

memory controller. These page descriptors are generated

by looking up the FPST. Based on the observed behavior

of a Flash page, the FPST is updated accordingly to max-

imize the fields found in the FGST (overall performance).

The updated page settings are applied on the next erase and

write access. In addition, whenever we access a valid Flash

page, we update the field that keeps track of the number of

accesses (saturating counter) in the FPST, and all the fields

in FGST accordingly.

There are two main triggers for an error correction code

(ECC) or density mode change. These are 1) an increase

in the number of faulty bits, 2) a change in access (read)

frequency. Each trigger is explained below. If a Flash page

reaches the ECC code strength limit and density limit (SLC

mode), the block is removed permanently and never consid-

ered when looking for pages to allocate in a disk cache.

5.2.1 Response to increase in faults

When new bit errors are observed and fail consistently due

to wear out, we reconfigure the page. This is achieved

by enforcing a stronger ECC or reducing cell density from

MLC to SLC mode. The change in overall latency caused

by each of these options are denoted by Δtcs (stronger

ECC) and Δtd (reducing cell density) respectively. We

choose the option with the minimum latency increase by

comparing heuristic approximations. The heuristics are de-

rived as follows;

Δtcs = freqi ×Δcode delay

t1 = tmiss ×miss rate + thit × (1−miss rate)
t2 = tmiss × (miss rate + Δmiss) +

(thit −Δthit)× (1− (miss rate + Δmiss))
Δtd = t1 − t2

≈ Δmiss× (tmiss + thit) + freqi ×ΔSLC

The parameter freqi is the relative access frequency of

the current page i and tmiss is the average miss penalty

for accessing disk. thit is the average hit latency for our

Flash based disk cache. The latency increase for enforcing

a stronger ECC is Δcode delay, the reduction in average

hit latency is Δthit, the increase in miss rate is Δmiss and

the reduction in Flash page read latency due to switching

from MLC to SLC is ΔSLC. t1 and t2 represent the over-

all average latency before and after a density mode change.

Δcode delay and ΔSLC are constants. freqi, thit, tmiss

and Δmiss are measured during run-time and derived from

the FPST and FGST. The decision to select Δtcs versus Δtd
is influenced by workload behavior and Flash age.

Configuration parameters

Processor type 8 cores, each core single issue in-order

Clock frequency 1GHz

Cache size L1: 4 way 16KB each, L2: 8 way 2MB

DRAM 128∼ 512MB (1∼ 4 DIMMs), tRC = 50ns

NAND Flash

256MB∼ 2GB
random read latency: 25μs(SLC), 50μs(MLC)
write latency: 200μs(SLC), 680μs(MLC)
erase latency: 1.5ms(SLC), 3.3ms(MLC)

BCH code latency 58μs∼ 400μs

IDE disk average access latency: 4.2ms[2]

Table 3. Configuration Parameters

Name Type Description

uniform micro uniform distribution of size 512MB

alpha1,
alpha2,
alpha3

micro
zipf distribution of size 512MB α=0.8, 1.2, 1.6,
x−0.8, x−1.2, x−1.6

exp1,
exp2

micro
exponential distribution of size 512MB with λ =
0.01, 0.1, e−0.01x, e−0.1x

dbt2 macro OLTP 2GB database

SPECWeb99 macro 1.8GB SPECWeb99 disk image

WebSearch1,
WebSearch2

macro Search Engine disk access pattern 1 and 2 from [8]

Financial1,
Financial2

macro Financial application access pattern 1 and 2 from [8]

Table 4. Benchmark descriptions

5.2.2 Response to increase in access frequency

If a page is in MLC mode and the entry in the FPST field

that keeps track of the number of read accesses to a page

saturates, we migrate that Flash page to a new empty page

in SLC mode. If there is no empty page available, a Flash

block is evicted and erased using our wear-level aware re-

placement policy. The FPST field that keeps track of the

number of accesses for the new Flash page in SLC mode is

set to a saturated value. One cannot reduce density at all if

a page is already in SLC mode. The SLC/MLC mode field

in the FPST is updated to reflect this change.

Reassigning a frequently accessed page from MLC mode

to SLC mode improves performance by improving hit la-

tency. Because many accesses to files in a server platform

are spatially and temporally a tailed distribution (Zipf), im-

proving the hit latency to frequently accessed Flash pages

improves overall performance despite the minor reduction

in Flash capacity. We note this analysis was presented in

section 4.2.

6 Methodology

6.1 Modeling the Flash and the Flash
memory controller

Our proof of concept Flash memory controller and Flash

device are implemented on top of a full system simulator

called M5 [10]. The M5 simulation infrastructure is used to

generate access profiles for estimating system memory and

335335

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 21, 2009 at 19:52 from IEEE Xplore.  Restrictions apply.



0

2

4

6

8

10

DDR2 512MB
+ 60GB HDD

DDR2 256MB + Flash
1GB + 60GB HDD

O
ve

ra
ll 

P
o

w
er

-W

0

0.2

0.4

0.6

0.8

1

n
o

rm
. n

et
w

o
rk

 b
an

d
w

id
th

 

mem RD power mem WR power
mem IDLE power disk power
network bandwidth

(a) dbt2

0

2

4

6

8

10

DDR2 512MB
+ 60GB HDD

DDR2 128MB + Flash
2GB + 60GB HDD

O
ve

ra
ll 

P
o

w
er

-W

0

0.2

0.4

0.6

0.8

1

n
o

rm
. n

et
w

o
rk

 b
an

d
w

id
th

mem RD power mem WR power
mem IDLE power disk power
network bandwidth

(b) SPECWeb99

Figure 9. Breakdown in system memory and
disk power and network bandwidth for ar-
chitecture with/without a Flash based disk
cache.

disk drive power consumption. We used the Micron DRAM

power calculator [7], NAND Flash datasheet [4] and Hi-

tachi disk specification guide [2] to estimate power. Our

die area estimates are derived from the 2007 ITRS roadmap

and recently published DRAM and Flash implementations

[12]. M5 is also used to generate some of the disk access

traces used in this study. Because full system simulators

are slow, for reliability and disk cache miss rate experi-

ments where very long traces are necessary, we developed

a light weight trace based Flash disk cache simulator. We

note that our performance evaluations still use full-system

simulation. Given the limitations in our simulation infras-

tructure, a server workload that uses a large working set of

100’s∼1000’s of gigabytes is not supportable. We scaled

our benchmarks, system memory size, Flash size and disk

drive size accordingly to run on our simulation infrastruc-

ture. Because our disk drive size is small we used power

numbers for a typical laptop disk drive [2]. Our configura-

tion is shown in Table 3.

To model wear out behavior we used our exponential

model described in section 4.1.3, which models the vari-

ation of Flash lifetime. This method is sufficient to un-

derstand the impact of a programmable Flash memory con-

troller. Latency values for BCH and CRC codes were taken

from the data we presented in section 4.1.

6.2 Benchmarks

As noted previously, we use two different simulators

in our experiments. Our disk traces were extracted from

micro-benchmarks and macro-benchmarks. These were fed

into the Flash disk cache simulator. The binaries were exe-

cuted on M5. Table 4 summarizes the benchmarks.

We generated micro-benchmark disk traces to model

synthetic disk access behavior. It is well known that disk

access behavior is often found to follow a power law.

Thus we generated disk traces for a Zipf distribution with

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50

BCH strength

R
el

at
iv

e 
B

an
d

w
id

th

(a) SPECWeb99

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50

BCH strength

R
el

at
iv

e 
B

an
d

w
id

th

(b) dbt2

Figure 10. Average throughput as a function
of ECC strength. The system used 256MB of
DRAM and 1GB of Flash.

varying alpha values. Additionally for comparison rea-

sons, disk access behaviors that modeled an exponential

distribution with a variable exponential coefficient and a

uniform distribution were generated. The intent of these

micro-benchmarks was to show that many of the macro-

benchmarks displayed similar behavior.

For macro-benchmark disk traces, we used disk traces

from [8]. These disk traces were intended to model the disk

behavior on enterprise level applications like web servers,

database servers and web search. To measure performance

and power, we used dbt2 (OLTP) and SPECWeb99 which

generated representative disk/disk cache traffic.

7 Results

7.1 Overall Flash energy efficiency

Figure 9 shows a breakdown of power consumption in

the system memory and disk drive (left y-axis). Figure 9

also shows the measured network bandwidth (right y-axis).

We calculated power for a DRAM-only system memory and

a heterogenous (DRAM+Flash) system memory that uses a

Flash as a secondary disk cache with hard disk drive sup-

port. We assume equal die area for a DRAM-only system

memory and a DRAM+Flash system memory. Figure 9

shows the reduction in disk drive power and system mem-

ory power that results from adopting Flash. Our primary

power savings for system memory come from using Flash

instead of DRAM for a large amount of the disk cache. The

power savings for disk come from reducing the accesses to

disk due to a bigger overall disk cache made possible by

adopting a Flash. We also see improved throughput with

Flash because it displays lower access latency than disk.

7.2 Impact of BCH code strength on sys-
tem performance

We have shown in Figure 6 that BCH latency incurs an

additional delay over the initial access latency. We simu-

336336

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 21, 2009 at 19:52 from IEEE Xplore.  Restrictions apply.



0%

20%

40%

60%

80%

100%

uni
fo

rm

al
pha1

al
pha2

al
pha3

ex
p1

ex
p2

W
eb

Sea
rc

h1

W
eb

Sea
rc

h2

Fin
an

cia
l1

Fin
an

cia
l2

%
 o

f 
to

ta
l d

es
cr

ip
to

r 
u

p
d

at
es

code strength density

Figure 11. Breakdown of page reconfigura-
tion events.

lated the performance of the SPECWeb99 and dbt2 bench-

marks to observe the effect of increasing code strength that

would occur as Flash wears out. It is assumed that all Flash

blocks have the same error correction code (ECC) strength

applied. We also measured performance for code strengths

(more than 12 bits per page) that are beyond our Flash mem-

ory controller’s capabilities to fully capture the performance

trends.

From Figure 10 we can see that throughput degrades

slowly with ECC strength. dbt2 suffers a greater perfor-

mance loss than SPECWeb99 after 15 bits per page. The

disk bound property of dbt2 makes it more sensitive to ECC

strength.

7.3 Flash memory controller sensitivity
analysis

Figure 11 shows the breakdown of page reconfigura-

tion events. This can either be a decision to increase ECC

strength or switch the block from MLC to SLC mode. The

objective is to minimize the latency cost function explained

in section 5. The size of Flash was set to half the working

set size of the application. These simulations were mea-

sured near the point where the Flash cells start to fail due

to programs and erases. The results confirm the benefits

of a programmable Flash memory controller, because the

response to each benchmark is significantly different. The

figure also suggests that as the tail length of a workload in-

creases, we see fewer transitions from MLC to SLC, be-

cause Flash based disk cache capacity is more important

for long tailed distributions. In fact, for a uniform distri-

bution which is an extreme case of a long tailed distribution

(α = 0), we found almost all descriptor updates are changes

in ECC strength and not transitions from MLC to SLC.

For exponential distributions, which are an extreme case of

short tailed distributions, we see that density (MLC to SLC)

changes dominate, because the increased miss rate due to a

reduction in density is small. For the macro-benchmarks,

0.00001

0.0001

0.001

0.01

0.1

1

unifo
rm

al
pha1

al
pha2

al
pha3

ex
p1

W
eb

Sea
rc

h1

W
eb

Sea
rc

h2

Fin
an

cia
l1

Fin
an

cia
l2

N
o

rm
al

iz
ed

 li
fe

ti
m

e

programmable Flash memory controller  BCH1 error correcting controller

Figure 12. Normalized expected lifetime for a
given access rate and the point of total Flash
failure.

we see a behavior that is fairly high variance, like the micro-

benchmarks.

7.4 Improved Flash lifetime with relia-
bility support in Flash memory con-
troller

Figure 12 shows a comparison of the normalized num-

ber of accesses required to reach the point of total Flash

failure where none of the Flash pages can be recovered. We

compare our programmable Flash memory controller with a

BCH 1 error correcting controller. Our studies show that for

typical workloads, our programmable Flash memory con-

troller extends lifetime by a factor of 20 on average. For

a workload that would previously limit Flash lifetime to 6

months, we show it can now operate for more than 10 years

using our programmable Flash memory controller. This

was accompanied by a graceful increase in overall access

latency as Flash wore out.

8 Conclusions

This paper presents an architecture that integrates Flash

into a server platform. Flash is an attractive candidate for

integration because it reduces power consumption in sys-

tem memories and disk drives. This in turn can reduce the

operating cost of a server platform. By carefully manag-

ing the Flash and using it as a secondary disk cache and

by also splitting the disk cache into a separate read cache

and write cache, we observed a dramatic improvement in

power consumption and performance. We also showed that

a Flash memory controller with reliability support greatly

improves Flash lifetime. We found that the best configura-

tion of a Flash memory controller is largely dependent upon

the access patterns resulting from the application. For ex-

ample, we found that the typical workload with Zipf access

behavior was best served by a Flash configured such that the

337337

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 21, 2009 at 19:52 from IEEE Xplore.  Restrictions apply.



heavily accessed contents would be located in regions com-

posed of reliable low latency single level cells. In general,

we found that variable error correction code strength (ECC)

gracefully extended Flash lifetime, and that the overhead of

ECC is minimized with configurable density.

Acknowledgments

We thank the anonymous reviewers for providing feed-

back. This work is supported in part by the National Science

Foundation, Intel and ARM Ltd.

References

[1] Flash Solid State Drive. http://www.samsung.com/
Products/Semiconductor/FlashSSD/index.
htm.

[2] Hard Disk Drive Specification Hitachi Travelstar

7K60 2.5 inch ATA/IDE Hard Disk Drive Model:

HTS726060M9AT00. http://www.hitachigst.
com/tech/techlib.nsf/techdocs/
53989D390D44D88F86256D1F0058368D/$file/
T7K60_sp2.0.pdf.

[3] Hybrid Hard Drives with Non-Volatile Flash and

Longhorn. http://www.samsung.com/Products/
HardDiskDrive/news/HardDiskDrive_
20050425_0000117556.htm.

[4] Samsung NAND Flash Memory Datasheet.

http://www.samsung.com/products/
semiconductor/NANDFlash/SLC_LargeBlock/
8Gbit/K9K8G08U0A/K9K8G08U0A.htm.

[5] Seagate Barracuda. http://www.seagate.com/
products/personal/index.html.

[6] Technical Note: TrueFFS Wear-Leveling Mechanism(TN-

DOC-017). http://www.embeddedfreebsd.
org/Documents/TrueFFS_Wear_Leveling_
Mechanism.pdf.

[7] The Micron System-Power Calculator. http://www.
micron.com/products/dram/syscalc.html.

[8] University of Massachusetts Trace Repository.

http://traces.cs.umass.edu/index.php/
Storage/Storage.

[9] Wear Leveling in Single Level Cell NAND Flash Memo-

ries. http://www.st.com/stonline/products/
literature/an/10122.pdf.

[10] N. Binkert, R. Dreslinski, L. Hsu, K. Lim, A. Saidi, and

S. Reinhardt. The M5 simulator: Modeling networked sys-

tems. IEEE Micro, 26(4):52–60, Jul/Aug 2006.
[11] T. Cho, Y. Lee, E. Kim, J. Lee, S. Choi, S. Lee, D. Kim,

W. Han, Y. Lim, J. Lee, J. Choi, and K. Suh. A dual-

mode NAND flash memory: 1-Gb multilevel and high-

performance 512-mb single-level modes. IEEE Journal of
Solid State Circuits, 36(11), Nov 2001.

[12] T. Hara, K. Fukuda, K. Kanazawa, N. Shibata, K. Hosono,

H. Maejima, M. Nakagawa, T. Abe, M. Kojima, M. Fujiu,

Y. Takeuchi, K. Amemiya, M. Morooka, T. Kamei, H. Nasu,

C. Wang, K. Sakurai, N. Tokiwa, H. Waki, T. Maruyama,

S. Yoshikawa, M. Higashitani, T. D. Pham, Y. Fong, and

T. Watanabe. A 146mm2 8Gb Multi-Level NAND Flash

Memory With 70-nm CMOS Technology. IEEE Journal of
Solid State Circuits, 41(1), Jan 2006.

[13] R. Hobson and K. Cheung. A High-Performance CMOS

32-Bit Parallel CRC Engine. IEEE Journal of Solid State
Circuits, 34(2), Feb 1999.

[14] D. Ielmini, A. S. Spinelli, A. L. Lacaita, and M. J. van Du-

uren. A Comparative Study of Characterization Techniques

for Oxide Reliability in Flash Memories. IEEE trans. on
device and materials and reliability, 4(3), Sep 2004.

[15] T. Kgil. Architecting Energy Efficient Servers. PhD thesis,

University of Michigan, 2007.
[16] T. Kgil and T. Mudge. FlashCache: a NAND flash memory

file cache for low power web servers. In Proc. Int’l Conf. on
Compilers, Architecture and Synthesis for Embedded Sys-
tems, 2006.

[17] K. Kim and J. Choi. Future Outlook of NAND Flash Tech-

nology for 40nm Node and Beyond. In Workshop on Non-
Volatile Semiconductor Memory, pages 9–11, Feb 2006.

[18] J. Lee, S. Lee, O. Kwon, K. Lee, D. Byeon, I. Kim, K. Lee,

Y. Lim, B. Choi, J. Lee, W. Shin, J. Choi, and K. Suh. A

90-nm CMOS 1.8-V 2-Gb NAND Flash Memory for Mass

Storage Applications. IEEE Journal of solid-state circuits,

38(11), Nov 2003.
[19] S. Lee, Y. Lee, W. Han, D. Kim, M. Kim, S. Moon, H. Cho,

J. Lee, D. Byeon, Y. Lim, H. Kim, S. Hur, and K. Suh.

A 3.3V 4Gb Four-Level NAND Flash Memory with 90nm

CMOS Technology. In Proc. Int’l Solid-State Circuits Con-
ference, pages 52–53, 2004.

[20] C. Lefurgy, K. Rajamani, F. Rawson, W. Felter, M. Kistler,

and T. Keller. Energy management for commercial servers.

IEEE Computer, 36(12):39–48, 2003.
[21] S. Lin and D. Costello. Error Control Coding, Second Edi-

tion. 2004.
[22] R. Micheloni, R. Ravasio, A. Marelli, E. Alice, V. Al-

tieri, A. Bovino, L. Crippa, E. D. Martino, L. D. Onofrio,

A. Gambardella, E. Grillea, G. Guerra, D. Kim, C. Missiroli,

I. Motta, A. Prisco, G. Ragone, M. Romano, M. Sangalli,

P. Sauro, M. Scotti, and S. Won. A 4Gb 2b/cell NAND

Flash Memory with Embedded 5b BCH ECC for 36MB/s

System Read Throughput. In Proc. Int’l Solid-State Circuits
Conference, pages 497–506, Feb 2006.

[23] N. Mielke, H. Belgal, I. Kalastirsky, P. Kalavade, A. Kurtz,

Q. Meng, N. Righos, and J. Wu. Flash EEPROM Threshold

Instabilities due to Charge Trapping During Program/Erase

Cycling. IEEE trans. on device and materials and reliability,

4(3), Sep 2004.
[24] A. Modelli, A. Visconti, and R. Bez. Advanced Flash Mem-

ory Reliability. In Proc. of Int’l Conf. on Integrated Circuit
Design and Technology, pages 211–218, 2004.

[25] C. Park, J. Seo, S. Bae, H. Kim, S. Kim, and B. Kim. A

Low-cost Memory Architecture With NAND XIP for Mo-

bile Embedded Systems. In Proc. Int’l Conf. on HW-SW
Codesign and System Synthesis(CODES+ISSS), Oct 2003.

[26] M. Wu and W. Zwaenepoel. eNVy: A Non-Volatile, Main

Memory Storage System. In Proc. Int’l Conf. on Arch. Sup-
port for Prog. Lang. and Oper. Sys., Oct. 1994.

338338

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 21, 2009 at 19:52 from IEEE Xplore.  Restrictions apply.


