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Abstract. Direct visual tracking can be impaired by changes in illumi-
nation if the right choice of similarity function and photometric model
is not made. Tracking using the sum of squared differences, for instance,
often needs to be coupled with a photometric model to mitigate illumi-
nation changes. More sophisticated similarities, e.g. mutual information
and cross cumulative residual entropy, however, can cope with complex
illumination variations at the cost of a reduction of the convergence ra-
dius, and an increase of the computational effort. In this context, the
normalized cross correlation (NCC) represents an interesting alterna-
tive. The NCC is intrinsically invariant to affine illumination changes,
and also presents low computational cost. This article proposes a new
direct visual tracking method based on the NCC. Two techniques have
been developed to improve the robustness to complex illumination vari-
ations and partial occlusions. These techniques are based on subregion
clusterization, and weighting by a residue invariant to affine illumination
changes. The last contribution is an efficient Newton-style optimization
procedure that does not require the explicit computation of the Hessian.
The proposed method is compared against the state of the art using a
benchmark database with ground-truth, as well as real-world sequences.

1 Introduction

Direct visual tracking (DVT) can be defined as the problem of finding the trans-
formation parameters that best align a reference image to the following frames
in a video stream. This is a basic task that must be solved in different computer
vision problems, e.g. mosaicking [1], visual odometry [2], SLAM [3]. In contrast
to feature-based methods, which are built on the extraction and matching of a
sparse set of characteristics from the image [4], direct visual tracking methods
exploit each individual pixel’s intensity to solve the visual tracking. In this work,
we focus on the latter class of techniques.

In DVT methods, the quality of the match between two images is mea-
sured by a similarity function. Typically, DVT methods are built upon the
sum of squared differences (SSD), which usually assumes brightness constancy.
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The SSD has proven to be very efficient, mainly because the optimization can
be much simplified due to numerous solutions to nonlinear least squares [5,6].
SSD tracking, however, is severely impaired when brightness constancy is vio-
lated, since motion and photometric variations are dealt in the same way by the
similarity function. Different works improve the SSD-based tracking by estimat-
ing online [7] or offline [8] photometric parameters, and the problem of partial
occlusion is usually treated by a robustly weighted SSD [8]. Nevertheless, as we
show in this paper, the SSD does not perform well under concurrent illumination
changes and partial occlusions.

More general examples of similarity measures include the mutual informa-
tion [9], and cross cumulative residual entropy [10]. These similarities have also
been applied to DVT, and they relax the brightness constancy to more com-
plex photometric variations. The counterpart is an overwhelming increase of the
complexity of the solution, and the reduction on the radius of convergence. A
review on different similarity measures and their respective MATLAB implemen-
tation is available in [11]. The normalized cross correlation (NCC) is a similarity
measure invariant to affine illumination changes, which is simpler than those
solutions and whose radius of convergence is comparable to the SSD. Typically,
gradient-based solutions for the NCC have to resort to computationally expen-
sive Newton’s method [12], or approximations [13] that do not imply a well
defined optimization (c.f. §3).

We propose a novel DVT solution using the NCC as similarity measure. This
similarity is chosen because of its simplicity. It is intrinsically invariant to affine
illumination changes, which is a powerful characteristic that allied with two
techniques here presented can improve the robustness to nonlinear illumination
and partial occlusion. These techniques are based on subregion partitioning,
and weighting using a residue invariant to affine illumination variations. We also
propose a method to improve the gradient solution while having a well defined
optimization problem.

The proposed method is extensively tested and compared against other state
of the art methods using a benchmark dataset [14] and challenging real-world
video sequences. The obtained results show that our method is suited for vi-
sual tracking under complex illumination variation, and tracking can still be
performed for partially occluded target under extreme illumination settings.

2 Notations and Background

The matrix I ∈ R
m×n denotes an image with m rows and n columns, and

each element of I represents a pixel intensity. Let the point p = (u, v) ∈ R
2,

then the function I(p) : R2 �→ R maps a point p to the respective intensity
in I, which is obtained using interpolation when u and v are not integers. A
warp function w(x, p) : X ×R

2 �→ R
2 defines a differentiable transformation with

x ∈ X , with X being a Lie Group of dimension N , and, in this work, we consider
warps that satisfy w

(
x1, w(x2, p)

)
= w(x1 ◦ x2, p), and w

(
x1, w(x1

−1, p)
)
=

w
(
x1 ◦ x1

−1, p)
)
= p. An example is given by planar homographic warps, which
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can be written using the SL(3) [6]. The warp w maps pixel positions from the
reference image IR(p) of a target object to a current image IC(p) later obtained
for this object. We denote I(x) as the resulting image after warping all pixels
of I(w(x, p)).

2.1 Illumination Changes

According to the Blinn–Phong model, the illumination over a surface can be
modeled by components of specular γs, diffuse γd and ambient γa reflections:

IC = γs(IR) + γd(IR) + γa(IR) .

These functions are in general nonlinear, and also depend on the object’s ma-
terial and camera viewpoint. The illumination model, however, is simplified if
we assume a planar and Lambertian surface and neglecting specular reflections.
Considering such simplifications, the photometric model is reduced to an affine
transformation

IC = αIR + β , (1)

where α, β ∈ R. This approximation holds, at least locally, for most applications.

2.2 Normalized Cross–Correlation

The Normalized Cross–Correlation (NCC) is defined as:

N×
(
IR, IC

)
=

∑
i

(
IR(pi)− IR

)(
IC(pi)− IC

)

√∑
i

(
IR

(
pi)− IR

)2
√∑

i

(
IC(pi)− IC

)2
,

where the correlation coefficient N× ∈ [−1, 1], and IR = 1
mn

∑
p IR(p), IC =

1
mn

∑
p IC(p) represent the mean of IR, IC pixel intensities, respectively. We can

also write the NCC using vector notation. It follows directly that:

N×
(
IR, IC

)
=

iR
T iC

|iR||iC| . (2)

where iR, and iC are the vectors obtained by stacking the intensities of IR
and IC, respectively, such that the i-th element of each vector writes iR(i) =
IR(pi) − IR, and iC(i) = IC(pi) − IC. Notice that this representation yields an
easier interpretation of the NCC.

The correlation coefficient N×
(
IR, IC

)
= 0 implies that the vectors iR and iC

are orthogonal, thus the images share no information. Furthermore, a coefficient
N×

(
IR, IC

)
= 1 implies that the vectors are parallel, therefore the images are

perfectly aligned. Recalling inner product properties, we have that the corre-
lation remains unaffected after any shift and/or (positive) scale. Note that the
absolute value of NCC remains the same after a negative scaling, however, the
sign of the resulting correlation coefficient is inverted. Scales and shifts on iC are
directly related to illumination variations, i.e. α and β of photometric model (1).
Invariance to such effects is indeed a good property for a similarity measure.
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2.3 Direct Visual Tracking

The direct visual tracking (DVT) problem corresponds to finding the param-
eters x that yield a current image IC

(
w(x, p)

)
=IC(x) to best match a given

reference IR. Similarity functions S(IR, IC
(
x, p)

)
are scores of how good is the

matching between two images. The DVT writes the following optimization for
some S that is maximized when the images are best matched:

x̂ = argmax
x

S(IR, IC(x)
)
. (3)

We identify from now on the group element x ∈ X with ϕ(x) ∈ R
N , where ϕ is

a minimal parametrization sending the identity element in X to the null vector
0 ∈ R

N . Such a parametrization is given, e.g., by ϕ = log. The optimization (3) is
not globally concave, therefore finding the optimal solution is not an easy task.
Gradient-based optimization has been widely employed to solve the problem,
since this method presents a good trade between region of convergence and
computational cost. The solution of (3) can be given by Newton’s method [15],
i.e., the function S(IR, IC(x)

)
is approximated by a parabola around x̂0:

S(IR, IC(x)
) ≈ S(IR, IC(x̂0)

)

+
∂S(IR, IC(x))

∂x

∣
∣∣
x=x̂0

x̃+
1

2
x̃T ∂2S(IR, IC(x))

∂xT ∂x

∣
∣∣
x=x̂0

x̃ ,

where x̃ = x̂0
−1 ◦ x and the maximum is obtained at ∂x̃S = 0:

x̃∗ = −
(
∂2S(IR, IC(x))

∂xT∂x

∣
∣
∣
x=x̂0

)−1
∂S(IR, IC(x))

∂x

T ∣
∣
∣
x=x̂0

. (4)

Note that an increment x̃ is obtained, and the solution is given by x̂ = x̂0 ◦ x̃∗.
Newton’s method converges in one iteration for quadratic functions. For non-
quadratic functions, however, the solution is obtained computing (4) iteratively,
until the increment x̃ is conveniently small, i.e., |x̃| < ε. According to the classifi-
cation of Baker and Matthews [5], Eq. (4) yields a forward compositional method.
Some similarity measures can be computed efficiently inverting the roles of refer-
ence and current images, i.e. computing the solution for S(IR(x ◦ x̃−1

)
, IC(x)

)
.

This latter procedure yields an inverse compositional, and it can be solved as (4).

3 Visual Tracking Using NCC as Similarity Measure

Recall the NCC vector formulation (2) for two images IR, IC(x):

N×
(
IR, IC(x)

)
=

iR
T iC(x)

|iR||iC(x)| .

For the sake of simplicity, we denote N×
(
IR, IC(x)

)
by its shorter N×, and recall

that |v|=
√
vTv, and ∂u

1
|v(u)|=

−v(u)T

|v(u)|3 ∂uv(u). We obtain the gradient of N× as:

∂N×
∂x

= gFC(x) =

(
iR
|iR| − N×

iC(x)

|iC(x)|
)T

J×
C(x)

|iC(x)| , (5)
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where J×
C(x) is obtained after stacking the Jacobians of IC, and the i-th element

writes J×
C(i)(x) = JC(i)(x) − 1

mn

∑
i JC(i)(x), with JC(i)(x) =

∂IC(w(x,pi))
∂x being

the image Jacobian as found in [6]. Evaluating the partial derivative w.r.t. xT

of Eq. (5), we thus obtain the full expression for the Hessian as:

∂2N×
∂xT∂x

= −N×
J×
C(x)

T J×
C(x)

|iC(x)|2 − J×
C(x)

T

|iC(x)|
(

iRiC(x)
T

|iR||iC(x)| +
iC(x)iR

T

|iC(x)||iR|
)

J×
C(x)

|iC(x)|

+ 3
J×
C(x)

T

|iC(x)|
iC(x)iC(x)

T

|iC(x)|2
J×
C(x)

|iC(x)| +
mn∑

i=0

H×
C(i)(x)

|iC(x)|
(
iR(i)

|iR| − N×
iC(i)(x)

|iC(x)|
)

, (6)

where H×
C(i)(x) = ∂xT J×

C(i)(x). Computing (6) at each iteration is not an easy

task mainly because H×
C(i)(x) involves more complex computations, and it is not

as stable as the Jacobians. Therefore, any simplification provided for the Hessian
computation would be very welcome.

Dame and Marchand [9] remark that the Hessian of the mutual information
should not be approximated by neglecting only the term that involves the image

Laplacian, e.g. the NCC’s term
∑H×

C(i)
(x)

|iC(x)|
(

iR(i)

|iR| −N×
iC(i)(x)

|iC(x)|
)
. It can be shown,

however, that such an approximation is not always negative definite, which is a
problem for a maximization problem. A similar approximation is suggested by
Brooks and Arbel [13], that might lead to an unexpected behavior caused by an
unstable Hessian. There are practical Newton methods [15] that can improve the
conditioning of the Hessian, but these modifications add computational burden
without a guarantee of increased speed nor basin of convergence. Dame and
Marchand [9] suggest an interesting approximation of the Hessian at the solution,
i.e. approximating the Hessian around N×(IC(x), IC(x)) such that

∂2N×
∂xT∂x

≈ MFC = −J×
C(x̂k)

TJ×
C(x̂k)

|iC(x̂k)|2 +
J×
C(x̂k)

T

|iC(x̂k)|
iC(x̂k)iC(x̂k)

T

|iC(x̂k)|2
J×
C(x̂k)

|iC(x̂k)| (7)

yielding a definite negative matrix.1 The solution for the DVT is obtained after
computing (4) iteratively using Eqs. (5) and (7):

x̃∗
FC = −MFC

−1gFC(x̂k)
T , (8)

where x̃∗
FC is the increment for x̂k+1 = x̂k◦x̃∗

FC until a convenient x̃∗
FC : |x̃∗

FC| < ε
is obtained. The same procedure2 can be used to compute an inverse composi-
tional solution for the NCC:

gIC(x̂k) = −
(
N×

iR
|iR| −

iC(x̂k)

|iC(x̂k)|
)T

J×
R

|iR| , (9a)

MIC(x̂k) = − J×
R
TJ×

R

|iR|2 +
J×
R
T

|iR|
iRiR

T

|iR|2
J×
R

|iR| , (9b)

x̃∗
IC = MIC(x̂k)

−1gIC(x̂k)
T , (9c)

1 Technically, this matrix can be semi-definite negative. It can be verified from the
eigenvectors of Imn−iCiC

T that semi-definiteness happens iff IC’s gradients are zero,
i.e. the reference image is not textured, which is not practical for visual tracking.

2 Remarking that locally x̃−1 ≈ −x̃.
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where x̃∗
IC is the increment for x̂k+1 = x̂k ◦ x̃∗

IC until a convenient x̃∗
IC : |x̃∗

IC| < ε
is obtained. This approach can be considered as an improved version for the
steepest descent, and this solution is very interesting as MIC and its inverse can
be computed only once, thus reducing the computational cost of each iteration.
Nevertheless, the basin of convergence can be smaller compared to the forward
compositional. Despite these techniques for the NCC DVT can be quite adequate
for some applications, it is still possible to improve the solution of the problem.

4 Revisiting the NCC

The NCC is intrinsically robust against affine illumination changes, but there
is not a simple and transparent approach to reject occlusion and unmodeled
illumination, e.g. specular reflections. We propose to redefine the NCC:

NW
×

(
IR, IC(x)

)
=

iR
TWiC(x)

|iR|W|iC(x)|W , (10)

where W is symmetric positive definite weighting matrix and |v|P =
√
vTPv. A

simpler option suggests W be written as a diagonal matrix with elements μi>0.

4.1 Local Illumination Changes

Maximizing the NCC of the whole reference image makes the implicit assumption
that the same affine illumination parameters in (1) are shared by every pixel.
This hypothesis is but seldom satisfied due to reflective properties of the target,
and local illumination sources. Instead of assuming that the reference image
represents a target with constant reflective properties, we split IR in several
subregions Gi. Irani and Anandan [12] proposed this grid approach to improve
the robustness adding two simple steps: only the concave subregions are taken
into account (i.e., all the Hessian eigenvalues are negative), and each subregion is
weighted by its determinant. This technique can be helpful whilst using Newton’s
method, but weighting by the determinant may not be very robust with the
approximations presented in §3. Fig. 1 (a) shows a reference image and (b) the
same image corrupted by non-uniform illumination. We illustrate the effects of
the determinant weighting in Fig. 1 (c) and (d). Remark that the corrupted
region in Fig. 1 (b) is not well identified using any of the constant Hessians.

We propose a technique to improve the optimization based on Hessian approx-
imations. The k-means algorithm [16] is employed to partition the subregions
two clusters. We classify the cluster with absolute NCC closer to the unit as good
G+, and the other as bad G−. Afterwards, we assign a weight to every subregion.
For values lower than G+’s centroid, weights μg

i are assigned from the current
distance to the centroid using Huber’s influence function [17]. The other subre-
gions have a weight assigned to μg

i = 1. Fig. 1 (e) displays the grid weighting
using the proposed technique. We can verify that the proposed method is able
to identify the degraded portion of the image, and reduce their corresponding
influence in the optimization.
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(a) IR (b) IC (c) μg
i : MIC+[12] (d) μg

i : MFC+[12] (e) μg
i : proposed

Fig. 1. Grid weighting procedure; (a) reference image; (b) current image; (c) weights
from [12] using MFC; (d) weights from [12] usingMIC; (e) proposed weights. All weights
vary from black: μi = 0 to white: μi = 1.

(a) IR (b) IC (c) μp
i : [18] (d) μp

i : proposed

Fig. 2. Pixel weighting procedure; (a) reference image; (b) current image; (c) weights
from [18] vary from black: μp

i = 0.8; to white: μp
i = 1 (d) proposed weights vary from

black: μp
i = 0.25 to white: μp

i = 1

4.2 Specular Reflections and Occlusion

Other types of unmodelled changes in the current image can impair direct vi-
sual tracking applications, e.g. specular reflections and partial occlusions. These
effects can indeed be treated by the technique proposed in §4.1. Moreover, if the
reference image is already small, the local approach it not very recommended.
Arya et al. [18] treats such local variations by weighting each pixel from IR
and IC using their histograms and Huber’s influence function. This technique
tries to approximate the images by mono-modal distributions. Nevertheless, this
weighting might not present the desired effect depending on the degradation
level. As an illustration, Fig. 2 (a) represents a reference image and (b) the same
image corrupted by specular reflection. Fig. 2 (c) represents the weights using
the method [18]. Remark that the specular reflection was not detected, and only
the pixels with larger gradients are affected.

Our approach is directly connected to the NCC gradient (5). Observe that

the residue r � iR
|iR| − N×

iC(x)
|iC(x)| can be defined. This residue r defines a new

distribution. We compute the weights μp
i using Huber’s influence function to-

gether with the median and the median absolute deviation of r. This weighting
approach is similar to the one employed by robust least-squares, however, the
NCC defines a distribution invariant to affine illumination changes. Fig. 2 (d)
displays the weights computed using the proposed approach. Despite weighting
the strong gradients from the right side, the specular reflection is well identified.
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4.3 Improving the Gradient Solution

It is well known in the literature that robust estimators reduce convergence speed
of the optimization in favor of the robustness against outliers. Furthermore, us-
ing solely the inverse or forward solution neglects all the gradient information
that could be provided either by the current or reference images. We propose a
method to improve the solution. First, we heuristically approximate the parabo-
las for the forward and inverse compositional methods using constant Hessians:

{
NFC

× ≈ NFC
× (x̂k) + gFC(x̂k)x̃+ 1

2 x̃
TMFCx̃ ,

N IC
× ≈ N IC

× (x̂k)− gIC(x̂k)x̃+ 1
2 x̃

TMIC(x̂k)x̃ .
(11)

where NFC
× = N×(IR, IC(x)

)
, and N IC

× = N×
(
IR(x ◦ x̃−1), IC(x)

)
. Thus, to

obtain the maximum we compute the partial derivative w.r.t. x̃ for (11) that
equals to zero and obtain:

{
0 = gFC(x̂k)

T +MFCx̃
∗ ,

0 = − gIC(x̂k)
T +MIC(x̂k)x̃

∗ .
(12)

Ideally, under the assumption that the similarity function is quadratic, the in-
verse and the forward solutions are the same. Nevertheless, in practice, these
solutions give complementary information that we propose to exploit. Summing
both right hand sides of (12), we obtain the optimal increment:

x̃∗ = −(
MFC +MIC(x̂k)

)−1(
gFC(x̂k)− gIC(x̂k)

)T
. (13)

The computational effort of the proposed solution is increased comparing to the
inverse compositional, however, we double the information employed to solve the
optimization. This is at the expense of recomputing MFC(x̂k) and gFC(x̂k) at
each iteration. Solution (13) is inspired by the ESM [6], which achieves a second
order convergence rate for the SSD without computing the Hessian explicitly.
The ESM uses the information of both reference and current image Jacobians,
nevertheless, the estimation of the photometric parameters is a necessary task to
accomplish a similar result with the NCC. Brooks and Arbel [13] propose an ESM
extension for the other similarities than the SSD by directly adding reference
and current Jacobians, as proposed by the ESM.3 Such a solution is contradicted
by considering the, theoretically possible, case where the photometric gradients
have inverse signals. Note that solution (13) is still valid for that case.

4.4 Summary of the Proposed Method

This Section summarizes the contributions of the proposed method in Algo-
rithm 1. The weighting matrix W is defined as a diagonal matrix, and the
elements Wii are obtained by the multiplication of the weights μg

i from §4.1
3 The primal ESM solution [6] assumes brightness constancy, therefore it is sound to
directly sum the Jacobians, but one must be careful under illumination changes.
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Algorithm 1. Visual tracking using proposed method

Input: threshold ε, maximum number of iterations k, grid G.
1: for each subregion Gi ∈ G do
2: iR : iRi = IRi − 1

mn

∑

p IR(p),

J×
R : J×

Ri
= JRi − 1

mn

∑

i JRi , JRi =
∂IR(w(x, pi)

∂x

∣

∣

∣

∣

x=0

.

3: end for
4: for each new image IC do
5: repeat
6: for each subregion Gi do
7: iC(x̂k) : iCi(x̂k) = IC(x̂k)− 1

mn

∑

p ICi

(

w(x̂k, p)
)

,

J×
C(x̂k) : J

×
Ci
(x̂k) = JCi(x̂k)− 1

mn

∑

i JCi(x̂k),JCi =
∂IC(w(x, pi))

∂x

∣

∣

∣

∣

x=x̂k

.

8: end for
9: Cluster good G+ and bad G− subregions by N× = iR

T iC(x̂k)
|iR||iC(x̂k)| ,

Compute weights μG
i of every subregion Gi, c.f. §4.1.

10: Compute weights μp
i of every pixel; dist. r = iR

|iR| −N×
iC(x̂k)
|iC(x̂k)| of G

+, c.f. §4.2.

11: Compute Wii = μg
i μ

p
i ; compute x̃∗ via (14), then update x̂k+1 = x̂k ◦ x̃∗.

12: until |x̃k| < ε or k > k
13: end for

and μp
i from §4.2. Remark that the use of the weighting is optional, and grid or

pixel weighting are neglected by setting μg
i = 1 or μp

i = 1, respectively. Using
the same procedure as §3, it is direct to obtain the explicit forms of gW

FC(x̂k),
MW

FC, g
W
FC(x̂k), and gW

IC (x̂k) needed by the optimization of the revisited NCC
(10). The solution is given by:

x̃∗ = −(
MW

FC +MW
IC (x̂k)

)−1(
gW
FC(x̂k)− gW

IC (x̂k)
)
, (14)

where x̃∗ is the increment that composes x̂k+1 = x̂k ◦ x̃∗.

5 Experiments

We evaluate the tracking accuracy and the robustness w.r.t. illumination vari-
ations and partial occlusions using a benchmark dataset and challenging video
sequences. Our objective is to show that the proposed techniques can improve
the NCC tracking, in terms of computational effort and speed, to the same level
as other state of the art methods whilst improving the robustness to concur-
rent illumination changes and partial occlusions. For all of the experiments, we
compute the homographic warp using the SL(3) parametrization as [6].

5.1 Evaluation on Benchmark Dataset

First, we evaluate the proposed method using a planar tracking benchmark [14].
This benchmark consists of 8 different reference images classified among low,
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repetitive, normal and high texture. There are sequences of 5 different motion
types for each target: high angles, distance range, fast far motion, fast close
motion and, at last, illumination changes. The estimated positions obtained from
the visual tracking are compared to a ground truth database, and the tracking is
considered successful if the template position error is lower than 10 pixels. The
results are given as rate of successfully tracked frames.

We tested four different methods using this dataset: two methods obtained
from the literature, and two implementations of the method we propose. The
first from the literature is an implementation of the SSD with local illumination
changes (SSD+i) from Silveira and Malis [7], and the second is an NCC with
inverse compositional -like steepest descent optimization (NCC+ICS ), c.f. §3 and
Eq. (9). Two implementations of the proposed method are evaluated, first, with-
out the pixel-wise robust weighting (Proposed-I), i.e. Algorithm 1 without
computing line 10; and secondly, with pixel-wise robust weighting (Proposed-
II), i.e. Algorithm 1 fully implemented.

We use the same stopping criteria for every method: the optimization is
stopped with ε = 10−3, and each method is allowed to run at most 200 iter-
ations to provide the same opportunity to the four tested methods. The warps
are computed using bilinear interpolation, and we use a downsized template to
320×240 pixels instead of the original 640× 480 pixels so to avoid oversampling
in most of the sequences. The only difference between the parameters refers to
the local grid. The SSD+i uses a grid of 5×5 local patches, where the proposed
methods use a grid of 3×3 local patches. The scores obtained by the four methods
are presented in Table 1, the numbers in bold refer to the best result obtained
for the dataset, and the underlined refer to a unique best result. For the sake of
comparison, we consider any score difference below 5% to be irrelevant.

Among the methods implemented from the literature, we can verify that the
NCC+ICS presents the worst results since it did not outperform any of the other
three methods a single time. Additionally, it could only achieve scores similar to
the other methods in 25% of the sequences. The results obtained from the other
three methods were similar in 52.5% of the sequences, however, for this dataset,
we could classify the SSD+i performance as worse than the proposed methods.
The SSD+i was the best tracker throughout 10% of the sequences, that yielded
an average improvement of 22% of tracked frames, i.e., 264 frames.

The two proposed methods obtained similar results for 80% of sequences, and
one or both methods outperformed the SSD+i in 37.5% sequences, that yielded
an average improvement of 21% tracked frames, i.e. 252 frames. We remark
the outstanding performance of Proposed-I for sequences with illumination
changes, where the method was able to track more than 99.8% of all images. This
method performed better in 25% of illumination sequences probably because the
robust weighting reduces the influence of pixels with strong gradients, and these
are specially responsible for the method’s accuracy. Other authors have evaluated
their methods using this benchmark, e.g. the mutual information from Dame and
Marchand [9], the interested reader can verify that the results for the proposed
method are of the same order.
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Table 1. Scores obtained for benchmark [14]. Methods: (1) SSD+i, (2) NCC+ICS,
(3) Proposed-I, (4) Proposed-II. Rows display textures: L. stands for Low, R. for
Repetitive, N. for Normal and H. for High. Columns display sequences: A. stands for
Angle, R. for Range, F.F. for Fast Far, F.C. for Fast Close, I. for Illumination.

(1) A. R. F.F. F.C. I.
L. 99.8% 77.3% 62.1% 39.6% 97.8%

100% 98.9% 54.9% 51.0% 91.1%
R. 100% 87.6% 26.4% 72.6% 100%

91.2% 64.9% 12.7% 72.6% 61.4%
N. 99.8% 98.9% 38.8% 50.1% 99.6%

100% 99.9% 14.7% 84.5% 100%
H. 66.3% 28.6% 7.0% 11.2% 34.8%

100% 51.8% 13.2% 36.2% 90.2%

(2) A. R. F.F. F.C. I.
L. 99.9% 76.8% 16.8% 26.7% 97.8%

99.8% 92.8% 16.8% 28.7% 75.5%
R. 24.8% 22.6% 11.6% 31.4% 85.4%

35.6% 18.3% 7.7% 37.6% 34.6%
N. 83.2% 71.3% 15.6% 64.2% 100%

63.7% 53.7% 11.5% 24.2% 96.6%
H. 13.0% 9.7% 5.7% 3.8% 15.5%

51.7% 25.8% 11.8% 11.8% 67.9%

(3) A. R. F.F. F.C. I.
L. 99.7% 76.8% 52.7% 27.6% 100%

100% 99.9% 21.6% 66.0% 100%
R. 100% 57.7% 22.2% 68.2% 100%

100% 81.3% 12.2% 53.6% 100%
N. 100% 96.8% 58.2% 90.5% 100%

99.9% 99.9% 20.1% 80.5% 100%
H. 93.6% 52.3% 9.2% 14% 98.9%

100% 51.5% 22.0% 75.0% 100%

(4) A. R. F.F. F.C. I.
L. 99.8% 92.2% 51.8% 31.6% 100%

100% 95.8% 13.5% 42.1% 85.2%
R. 100% 59.1% 22.3% 68.1% 100%

100% 81.1% 10.5% 69.1% 100%
N. 100% 96.1% 58.5% 86.1% 100%

99.8% 99.9% 20.5% 85.3% 100%
H. 76.4% 16.9% 7.2% 9.7% 59.8%

100% 69.7% 19.7% 42.8% 100%

5.2 Evaluation under Challenging Illumination

Secondly, we evaluate the proposed method on two sequences from Silveira and
Malis [7]. These sequences represent extreme real-world situations with challeng-
ing illumination and targets from different materials and sizes. The obtained
results are compared against the SSD+i for Bear and Book sequences. Be-
sides 8 geometric parameters from the SL(3), the SSD+i must estimate other
photometric parameters that increase with the number of grids. We evaluate the
methods using the same reference images, minimum step size ε = 10−3, and 50
maximum iterations. These are reasonable parameters for most real-time appli-
cations. Furthermore, we found the Book to be more complex because none of
the methods was able to complete the tracking using the standard parameters.
We thus reevaluate this sequence using the proposed method with ε = 10−4 and
500 iterations. Table 2 presents the comparative result in terms of total tracked
images, median of iterations per image, number of estimated parameters, and the
median NCC of the final IC and IR. Figs. 3, and 4 present key samples results
obtained for the proposed method in sequences Bear, and Book respectively.
The full videos of these sequences can be found in http://goo.gl/qYZuO.

We can verify that the proposed method performed at least similarly to the
SSD+i. Note that the proposed method presents a slight increase in the number
of iterations, however, we obtained a median of 23 iterations for the NCC+ICS
(using the robust techniques). This result highlights the importance of the im-
provement proposed in §4.3, since, using the information from inverse and for-
ward solutions, the NCC compares to a second order method in terms of it-
erations. Remark that the proposed method performed better than the SSD+i
for the Book sequence. The SSD+i gets stuck in a local minimum at frame
163, however, the proposed method is able to continue until 203 using the same
parameters. The decrease of the median NCC and increase on the iteration

http://goo.gl/qYZuO
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(a) Image #1 (b) Image #370 (c) Image #1062 (d) Image #1407

(e) IR (f) IC #370 (g) IC #1062 (h) IC #1407

Fig. 3. Samples from Bear sequence – Total of 1573 images

(a) Image #1 (b) Image #114 (c) Image #204 (d) Image #225

(e) IR (f) IC #114 (g) IC #204 (h) IC #225

Fig. 4. Samples from Book sequence – Total of 283 images

(a) Image #1 (b) Image #102 (c) Image #578 (d) Image #1122

(e) IR (f) IC #102 (g) IC #578 (h) IC #1122

Fig. 5. Samples from Starry Night sequence – Total of 1600 images



454 G.G. Scandaroli, M. Meilland, and R. Richa

Table 2. Comparative results under challenging illumination and occlusion

Bear
Method #Img. #Its. #Parms. RMS N×
SSD+i 1573 10 8G+36P 20 0.807
P.M. 1573 12 8G – 0.807

Book
Method #Img. #Its. #Parms. RMS N×
SSD+i 163 11 8G+49P 10.1 0.962
P.M. 203 14 8G – 0.957

P.M. ε=10−4 283 19 8G – 0.959

Starry-Night
Method #Img. #Its. #Parms. RMS N×
SSD+i 400 12 8G+43P 13.3 0.939
SSD+i(M) 680 21 8G+43P 21.4 0.876
P.M. 1600 22 8G – 0.849

numbers is directly related to the sequences that the SSD+i was unable to track.
We consider frame 204 to be the most difficult from this sequence. Our method
was only capable of completing the sequence without the real-time constraint
imposed by the iterations. The SSD+i still failed in the same local minimum
(frame 163). We invite the reader to revisit Fig. 4 and examine the samples with
extreme tilt and illumination changes.

5.3 Evaluation under Partial Occlusion and Illumination Changes

The last experiment evaluates the SSD+i and the proposed method in a real-
world situation where part of the reference image is partially occluded and illumi-
nation is varying throughout the experiment. Again, we use the same parameters:
reference image, minimum step and maximum iterations for both methods. Ta-
ble 2 presents the comparative results from SSD+i and its implementation with
a robust M-estimator, and the proposed method. Fig. 5 presents some key frames
results obtained for the proposed method in the sequence Starry Night, The
full video can be found in http://goo.gl/qYZuO. The proposed method was the
only capable of completing the full sequence. The SSD+i was unable to cope
with the partial occlusion, and this is the main reason why it presents less median
iterations per frame and a larger NCC than the other two methods. The SSD+i
with M-estimator was capable of tracking the occluded patch as long as there
were no illumination changes. We can infer that the SSD+i is unable to han-
dle partial occlusion and illumination changes at the same time. The capability
of facing illumination changes and occlusion supports the weighting techniques
presented in §4. To the authors knowledge, this is the only approach capable of
dealing with such extreme situations.

6 Discussion

We have proposed a novel solution to the problem of direct visual tracking un-
der illumination changes and partial occlusions. The direct tracking is solved
using the NCC, mainly because this similarity is intrinsically invariant to affine
illumination changes. Two techniques are presented to increase the robustness

http://goo.gl/qYZuO
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against non-modeled effects and, compared to the state of the art, these tech-
niques highly improve the rejection of degraded areas. We also address how to
improve the gradient solution using both inverse and forward compositional ap-
proaches. Our method is compared against state of the art methods in a bench-
mark dataset and challenging real-world video sequences. We verify that the
proposed method is able to cope with tracking partially occluded objects even
under severe illumination changes.
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