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ABSTRACT

Groupware communicates by sending messages actoss t

network, and groupware programmers use a varietyrofats for
these messages, such as XML, plain text, or segilbbjects.
Although these formats have many advantages, tfeepfien so
verbose that they overload the system’s networloue®s.
Groupware programmers could improve efficiency bing more
compact formats, but this efficiency comes at th&t of increased
complexity, reduced convenience, and reduced ré#glam this
paper we propose an alternate approach for impgeefiiciency —
an automatic compression system that transparenifymizes
verbose formats. Our general message compressoME &
automatically finds and removes redundancy in nggss&reams,
without any knowledge of the contents or structafe the
message, and without any need for the programmehaage the
way they work. In tests with realistic message @sacGMC
reduced text messages to 20% of their original, s¥BIL
messages to 8% of the original, and serialized athjeo 9%.
Although not as compact as a hand-coded repregamt&MC
provides most of the compression benefits with ainmone of the
work — it allows groupware programmers to use coierd
message formats without compromising transportiefiicy.

Categories and Subject Descriptors

H.5.3 [Group and Organization Interface§jomputer-supported
cooperative work E.4 [Coding and Information TheoryPata
compaction and compression

General Terms
Algorithms, Design, Experimentation, Human Factors.

Keywords

Groupware performance, message compression, netletal.

1. INTRODUCTION

Groupware systems share information — such as ujadiates,
remote commands, lock requests, or user events sehging
messages. Groupware programmers use a varietyrmate for
these messages, such as XML, plain text, or segilbbjects.
Each format has advantages: some are easy to won$g.g.,
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serialized objects), others fit well with existitapls (e.g., XML

messages with XML parsers), and others are eashuiorans to
read (e.g., plain text). The drawback to all ofsthemessage
formats, however, is that they are verbose — thathiey use a
large amount of space to represent a small amdtnfasmation.

For example, the text telepointer message in Fidungses 85
bytes to send a timestamp, a client ID and a namtg@olocation.

Serialized objects are even worse — a simple telggoevent

object can require 267 bytes in serialized form.

(timestanp: 803488132 sender_id: 12 session_id:
9357) (tel epointer x: 1138.0 y: 601.0)

Figure 1. A text telepointer message

Inefficient message representations are a majdvlemo because
messages must be sent across the network, andhicgroaipware
systems regularly run out of network bandwidtha ystem tries
to send more data than it has bandwidth, messaijepile up,
and latency will increase to the point where mamcfions of the
system (such as telepointers, locks, and sharedstiaictures) are
unusable. There are several situations that canltr@s low
available bandwidth for a groupware system: fornepie, low-
data-rate networks (wireless or dialup), high-baid¢hwnetworks
that already have a large amount of traffic, or adlmand
connections with asymmetric upload/download rates.these
situations, groupware can exceed bandwidth with atsn
messages, choking its own communication channel.

Even though network capacities are increasing imegs,
situations of low available bandwidth are not gotogdisappear
in the foreseeable future. As a result, it is int@ior to reduce the
amount of data sent by the groupware system. Taereseveral
methods for reducing data rate (e.g., send messéeEs
frequently) — but the inefficiency of message foignds an
obvious place to start. In many groupware systénesmajority of
the data sent between clients is message strumtwtax, rather
than critical information. If messages could berespnted more
efficiently, groupware applications would need ld@ndwidth,
and so would be usable in more network situations, (
alternatively, would be able to send messages often).

Groupware programmers can make their messages ¢ae m
efficient by designing compact representations r-eiample, by
using only the minimum number of bits necessaryepresent
numbers, and by hard-coding the order of fields pachmeter
lists. In fact, most networked games already ds, thid it is clear
that they have greatly reduced their bandwidth irements as a
result. However, there are problems with askingupgveare
programmers to use efficient message represensatmompact
formats are much more difficult to design and buitde less
flexible, and provide none of the benefits desatilabove (such
as readability, convenience, or interoperability).



In this paper we propose an alternate approadmerghan asking
groupware programmers to design minimal representt we
have built a groupware message compressor thatmigies
message representations automatically. GMC is dedig
specifically to compress the message structuresgnthx that is
useful for programmers, but inefficient at the sport level: it
does this by building a dictionary of sequences #na repeated
across a set of messages, and replaces those cegwéth short
lookup codes. GMC can also further compress mestageusing
a Ziv-Lempel algorithm and Huffman coding. Furtherey GMC
works with all networking designs, including prigrischeduling
algorithms, aggregation policies, and network prots, including
unreliable transport protocols such as UDP.

In tests with realistic message traces, GMC drarallyi reduced
message sizes: text messages to 20% of their arigine, XML
messages to 8%, and serialized objects to 9%. Gi@nms
substantially better than per-message Ziv-Lempehpression,
which compresses XML to 57% but does not compress t
messages or serialized objects at all. In additmmpression
with GMC is fast (less than 2ms per message intesir setup),
and the system is fully under application contrsd, that the
compressor can fit into an overall application-le9eS scheme.

The main contribution of GMC is that it allows gpware
programmers to use representations that are caveniithout
sacrificing transport efficiency. GMC is easy toderstand and
implement, and can be ported to any groupware isyste

In the next sections we review the foundations dgihg the
work, consider where repetition occurs in a grougwaessage
stream, introduce GMC and its compression techsiguport on
the performance of the system, and discuss waysGMC or
similar compressors can be used in real-time greupwystems.

2. BACKGROUND

This research is based on four foundations: groupweessaging,
groupware network performance,
techniques for compressing network data.

2.1 Groupware Messaging

Distributed groupware systems have to send infaamatio one
another: information about state changes, requéstsdata,
commands, and notification of user events. Thisroanication
happens throughmessages- parcels of information sent over the
network that encapsulate one update, request, cothmar
notification [17]. Groupware systems use messaggardless of
whether the underlying system uses distributed datactures,
remote procedure calls, or a notification servad eegardless of
whether the model layers are centralized or ref@itésince even
centralized systems must distribute informationwahser actions
and view changes).

There are several possible types of message, dieygeond the
application. Examples include model-layer updatelepointers,
streaming multimedia such as voice or video, sydeml control
and feedback messages, text chat, and session-emasag
messages. Different message types have differaracteristics,
but two main groups can be considered fEnsactionsconcern
longer-term changes to the system, such as maiififiato data
structures or lock requests, and are usually infat; streaming
messageare much more frequent, and provide informatioouab
the transient state of a user’s activity or comroatibn. An

data compressiond an

important further distinction within the category streaming
messages is between awareness messages and mialtiSiede
video and VolIP transmissions are usually alreadypressed,
and are usually handled with established protosath as RTP
[21], we are more concerned here with awarenessages (e.g.,
telepointers, avatar movements, intermediate lonatof objects
during drag operations, or changes to view loca)io8treaming
awareness messages have different QoS requirertigams do
transactions: in particular, they do not all havetrive, but they
do need low latency. This means that they are bs#et using
UDP — which is faster but non-guaranteed — than [8JP

Both transactions and awareness messages are yusnaill

enough to be sent whole, and are routed to otiertsldepending
on the system's distribution architecture. In calited-

communication systems, each client connects onlyéoserver;
in a peer-to-peer architecture, each client makesrmection to
every other client [17]. The distribution archite@t plays a major
role in a groupware system’'s overall data ratecesinouting

determines whether each messages is sent ondee(getver) or
multiple times (to each client, assuming no natigticast).

We are concerned primarily with real-time distriditgroupware
systems that send awareness messages and tramsadtids
covers several types of real-world groupware: sharerkspaces,
shared editors, collaborative virtual environmeats] networked
games. We do not focus on asynchronous awarenessyser
media spaces since awareness systems generallynhiaimal

data volumes, and since multimedia systems gepeunal well-
established protocols for sending information (sastRTP).

Although some effort has been made to establisimdara

protocols for groupware (e.g., [12]), these areymitwidespread,

and in practice, groupware programmers must deterwhat to

send and how to send it. A groupware message mggide

several pieces of information, both data and mégada

« the sender of the message (client ID)

e the message ID (for loss detection and ordering)

« the application ID (since several groupware apfibos may
be sharing the same network port to get througiwfitls)

e atimestamp (required to control playback from &esy

« the message type (e.g., telepointer move, modedtajpd

- field names for each parameter (e.g., X positigmysition)

» data values for each field

This information can be represented in several wayfferent
representations have different advantages, butllysatathe cost
of message size. However, the strengths of textl. Xand objects
are enough that most groupware systems have ussed fbrmats:
for example, text strings are used by GroupKit [1&8jd
TeamRooms [18]; XML by Disciple [14], and serializebjects
by JSDT (jsdt.dev.java.net/) and JAMM [2].

2.2 Groupware Network Performance

The performance of real-time distributed groupwaxer real-
world wide-area networks has been frequently czitid (e.g.,
[4,10,25]). These performance problems are primadilie to
network issues: latency, which is the time requfednformation
to travel between locations; jitter, which is vada in latency;
loss, which results from network packets not angviat their
destination; and insufficient bandwidth. These peois are
common in today’s wide-area networks, and althongtworking
advances are aiming to reduce these problems,riiems will



be present for some time to come. In the meantgreypware
applications must attempt to deal with these istesselves.

Network delay has been shown to have serious sftetusers. It
can cause difficulties in coordinating collaborativactions
[25,16], in predicting others’ intentions [8], amdl interpreting
gestural communication [9]. The overall effect idatt
collaboration breaks down — groups tend to decouhler
collaboration and work more independently. Wheneray
becomes extreme (as happens when systems excéedetimerk
bandwidth), the distributed parts of the applicappear to grind
to a halt — telepointers freeze, locks are nevemtgd, and
changes are never propagated.

Delivering network performance in real-time groupsvas a
difficult task due to the diverse performance needsthe
applications, and the situational factors that cffeerformance
requirements [7]. There are many different genrfegroupware
(including games, whiteboards, conferencing systestmared
editors, virtual classrooms, and collaborative uatt
environments), and each application can have nheliperaction
techniques with diverse quality of service requieats. The
applications also need to keep model layer datalspnized and
these requirements vary based on the needs opgiEation. In
addition, performance requirements are affectedsibyational
factors such as proximity to other users, the le¥eoupling and
dependence between actions, and the level of aessethat a
user wishes to maintain of their collaborators.

The diversity of requirements in groupware meara tho one
technique can solve all performance problems. Hewev
bandwidth restrictions are one of the most criticalises of
latency in distributed systems, and the size arfitiaicy of
groupware messages will play a major role in artgngpt to
improve groupware performance.

2.3 Data Compression

Compression means making a piece of data smalldéinting a

more compact way to represent it. There are twanrhges of

data compression — lossless, which guarantees that
decompressed data is exactly the same as the samddossy,
which accepts some reduction in the quality of@uype or signal
in order to achieve higher compression. For groupwiessages,
we are almost exclusively interested in losslesthaus, since all
of the parts of the message are required in omienterpret it

correctly. Lossy methods can only be used to cosspoertain
types of data elements within the message (suchidsres).

There are many lossless compression techniquesseTlaee
generally categorized into statistical modeling adidtionary

methods (see [3] for more detail on these methods).

Statistical modeling Statistical modeling schemes represent the
symbols of an alphabet using variable-length bifuseices, and
use shorter sequences for more likely symbols. &ample,
standard ASCII characters are represented with 8ddies, but in
many cases some characters are more likely thagrsptif the
more frequent characters had shorter codes, masgages could
be shortened. Huffman coding [11] and arithmetidiieg [3] are
the most common methods for generating optimal coitles.
Sometimes ad-hoc approximations to these are us#éth as
coding the 15 most common values in 4 bits.

A more powerful version of statistical modeling éakaccount of
the context in which a symbol appears in order toenaccurately

determine its probability; for example, the likeldd of an ‘e’ in
English text becomes much higher if one knows tinatpreceding
two characters were ‘t" and ‘h’. The more accurptebability
distributions improve coding efficiency. The mostivanced
context-modeling technique is the PPM family [3]high is
usually coupled with an arithmetic encoding scher@®M
techniques usually achieve the highest compresdin, are
slower than other techniques. A related methodhs BWT
transform, which permutes the text using sortinghst characters
are ordered by their context. This approximates PBWlis much
more efficient to compute, and is used in the papultility
bzi p2. It has the disadvantage that data must be cosguda
reasonably large blocks, so is unsuitable for geractive system.

Dictionary compressianDictionary techniques replace sequences
of several symbols in the source message with eglémto a
dictionary. For example, the string “moveTelepoihteould be
replaced in a message by a dictionary index (&'y.as long as
both the sender and the receiver are using the sltienary.
The entries in the dictionary can either be deteedhibeforehand,
or built up adaptively as messages are read. Trst well-known
adaptive dictionary encoders are the Ziv-Lempelilfarte.g.,
LZ77 [26] and LZ78 [27]) which are seen in commopl$ such
as gzi p and defl ate. Some Ziv-Lempel techniques work
without a separate dictionary, by replacing a segeewith a
pointer to a previous occurrence of that sequendbe message
itself. Thus the text is its own dictionary, anchpthtion happens
naturally as the nature of the text changes.

2.4 Network Compression

Most data compression techniques are designed $er in

compressing files rather than a sequence of indaligdnessages

sent out across a network. In the case of a stfamessages,
additional issues must be taken into consideratidone main
concern is reliability — some transport protocag(, UDP) that
are commonly used to send groupware messages dre
guaranteed to arrive. These protocols are essergizduse they
provide a much better fit to the QoS requirementstéaming
awareness messages than reliable protocols suchCRs [5];
therefore, the message compression technique rawilb to deal
with the loss of some parts of the overall datasstr. As a result,
the Ziv-Lempel techniques that refer to previoustpaf the
stream (e.g., LZ78 [27]) cannot be used for congingsthe entire
stream as if it were one file (these techniquesstdinbe used to

compress individual messages, however). In thearktgetting, a

variety of compression techniques have been used:

e Hardware compressionrSome hardware manufacturers have
attempted to address the problem of bandwidth dimiith
network compression modules. These devices compress
individual outgoing packets and then transport résilting
message over a connection to another such devicehw
decompresses it.

e Packet compressionThere are a number of schemes for
compressing IP packets. These techniques usenmgsaage
compression (i.e., each packet has its own dictionar
probabilistic algorithms for compression [24]. Foample,

HP packet-by-packet compression [22] uses per-packe
dictionaries, run-length encoding, and a reducatbset. In
one evaluation, this method compressed general onletw
packets to approximately 52% of original size. Aligh
these techniques have been used to improve penicarfar

no



some types of network connections (e.g., PPP), ahestill
not commonly seen. One reason is that they areralgneot
under application control — that is, they requidkliional
computation time, and in some cases, this addititme is
unacceptable to the application.

¢ Delta compressionAnother manner in which network traffic
can be compressed is via delta compression (alkal aelta
encoding). Here, after an initial state is estdlglis messages
that are transmitted contain only changes since ldsé
update. This is the technique used in screen-ghagistems
such as VNC [1]. Note that in most cases, deltapression
has strict reliability requirements, since the aelalues are
relative to a previously-sent message.

e  Tailored compression schem&ome systems can have their
bandwidth use dramatically reduced if there is kiedge
about how the data in the messages will be usechgor
used). A good example of this is Compressed X
(www.vigor.nu/dxpc/), a protocol for sending X-Winds
messages more efficiently. Compressed X does dehargs
to reduce message size: it removes all unusedniafdon
from the message, recodes common remote procedlise ¢
(RPCs) using shortcuts, and recodes the data sétRECs
with minimal bit-length representations.

¢« Game techniquedMultiplayer networked games represent a

trivial degree of work on the part of the programsnand
designers. Much like creating minimal length enoggi for
messages, these techniques make the process dbmlegeand
modifying the application far more complex, and uieg that
programmers build their systems in particular ways.

Given that existing techniques are not perfectijtesuto the
requirements of groupware, we next look in moreaitleat
groupware messages, and consider where savings beubund
from a groupware-specific compression scheme.

3. SOURCES OF INEFFICIENCY IN
GROUPWARE MESSAGES

There are three main sources of redundancy in grarg
messages that can be exploited for compressioretitiep of
sequences within a single message; repetition sicseveral
messages, and inefficient encoding of the symbfalseomessage.

3.1 Repetition within a single message

There are often repeated sequences inside groupwassages,
and these repetitions can be compressed using téordicy
scheme. This is the approach taken by some exigiaket
compressors. However, most groupware message<até/ely
short, and dictionary compression is less effectiith short

highly evolved category of groupware. As such, game Source documents because there is less opporfonisequences
programmers have had to address the problem of to be repeated.

compressing numerous messages sent over lossyatimmse
[23]. Games are strongly oriented towards usingimah
representations, but they achieve this in diffevesays. First,
some game networking libraries provide programming
abstractions that let the programmer specify regdion.
For example, the Torque Network Library [6] prowdde
wrappers on all ‘writeToStream’ messages that altbe
programmer to specify the number of bits to useoBd,
some game libraries provide standard message wtescthat
the system knows how to compress. For example, &akn
[20] provides standard object types that programsnmeust
use if they want their messages to be compresdsed], Tll
games also employ dictionaries for remote procedatts
and commonly-used strings.

e Binary formats for XMLASN.1 (Abstract Syntax Notation
One) is a standard for the binary encoding of foematted
data. As such, it has been suggested as a lebsseer
encoding method for XML [13]. This method requitést
the application programmer define an XML schematifer
messages, and then convert each message to a fonary
The degree of compression is dependent upon hosfutigr
the designer constrains the schema [15].

Although each of these techniques is effective iome
circumstances, none are entirely appropriate fooupware
compression. In the case of IP-packet and harde@rgression,
the techniques rely on within-message redundanbjchwas will

be discussed below, offers relatively small savifogsgroupware
messages. Furthermore, hardware compression regigréces at
either end of the data link, which limits the geality of the

method. Delta compression is inappropriate becaokeits

reliability requirements; in practice (e.g., witysgems like VNC),
this presupposes a TCP-style lossless transmigsimocol. The
remaining techniques (custom formats, game fornaatd, binary
XML formats) are applicable to groupware, but regua non-

For example, the example moveObject message inrd-igu
generated as a user drags an object across then sora shared
whiteboard, shows the sequences that can be reptscpointers
to earlier occurrences of the text. Most of theestpd sequences
are short, and (in this case) none are repeateé than twice.
Only a small reduction is therefore possible by pmssing the
message as an individual document.

Q21 11101:5051] [objecD 53] [ 1537] 0351

Figure 2. Within-message repetition.

[moveObject [sendel

3.2 Repetition between messages

In contrast, there is often considerably more i&patfrom one
message to the next, as long as messages are séartie type.
Figure 3 shows two example moveObject messageser&ev
elements of the two messages are identical: thesagestype
indicator, the sender and object IDs, parts ofdata elements,
and the field-delimiter syntax. As can be seerhinftgure, all but
a few bytes of the message exactly are the same.

[moveObject [senderlD 168.142.1.101::5051] [objectID 153] [x 153F| [y 10
)
[moveObject [senderID 168.142.1.101::5051] [objectID 153] [x 153p] [y 103

Figure 3. Between-message repetition.

This repetition of certain message patterns is lihsis of the
GMC template compression scheme described belowafifount
of compression that is possible with this approdepends on the
amount of self-similarity in the messages. Most ugrgare
systems use several message types, and otherdjpesssages
(e.g., telepointer or chat messages) will show mask similarity
to the object move message in Figure 3. For eadsage type,
however, there will be considerable self-similgriagnd in many
systems, there are only a small number of messgges.t



Furthermore, at least some types are likely todsn often (e.g., Function createTemplate (message m)
awareness messages such as object and telepootes)m « create new template T:

« build a suffix trie S from message m
« create a lookup table L
 compress the previous n messages with T and determine the overall
compression ratio
« if the ratio with T is better than the previous ratio:
« if there are fewer than the maximum number of templates:
 announce T as a new template
e else
« find the least efficient existing template Q
« announce T as a replacement for Q

3.3 Inefficient encoding

Groupware systems often encode the elements of ssage

inefficiently. For example:

« Encoding of numbersString representations of numeric
values takes more space than binary representations

e Field widths for numeric data typeSome fields use more
space than is needed: for example, screen cooedireae
often represented as four-byte integers, even thahgy
have a much smaller possible range.

«  Symbol frequencyThe symbols (e.g., the characters) used in

groupware messages do not occur with the samedneigs, Function compressMessage (message m)
but are often represented using the same numbigitsofAs « for each template T:
described above, schemes such as Huffman codirgtiges o remainder=m
more frequent symbols shorter codes. o result(T)= @
e  Structure as textField names and message types are often ) o
represented as text strings; these could be reypsbas an * while remainder is not empty:
enumeration that would use considerably less space. + find the longest prefix p of remainder in template T

« ifthere is a prefix:
« if pis in the lookup table:
« add the key for p to result(T)

How small is an efficient encoding? As an examplable 1
compares the text-encoded message of Figure 3avatistomized
minimal format that represents values in binaryd amses

. . ) . e else
minimal-width fields for the possible data ranges. « add p to the lookup table and add the new key to resul(T)
Table 1. Sizes of text and minimal representationg.he * remove p from remainder

‘padding’ field is needed to reach a byte boundary.
« ifthere is no prefix of remainderin T:

Field Range Text format Minimal format « find the sequence of characters s that is notin T
Message type 0..31 12 bytes 5 bits « add the escape code and s to result(T)
Sender ID 0..63 31 bytes 6 bits * remove s from remainder
Object ID 0..1023 15 bytes 10 bits « if T has a Huffman code:
X 0..2047 9 bytes 11 bits « encode result(T) with the code set
Y 0..2047 9 bytes 11 bits « record the compression ratio r(T) = size(resulf) / size(m)
Padding : : 5 bits « ifno r(T) is lower than the desired compression ratio:
Total 608 bits (76 bytes) 48 bits (6 bytes) « create a new template from message m

« return the best result and the number of the associated template

Figure 4. Algorithms for creating templates and comressing
messages using templates.

In the next section, we introduce GMC, a comprestat
performs both between-message and within-messagpression.

4, GMC Template creationA new template is created for a message by
The goal of GMC is to automatically and quickly aibtmost of ~ constructing three elements:
the compression that is possible with a hand-codpresentation, *  a suffix trie from the bytes of the message, whittbws for
but without requiring any extra work on the parttué application fast determination of longest-substring matches tiie
programmer. GMC has two parts: a template compretsat compression phase;
finds repeated structure and syntax elements batwesssages, ¢  a lookup dictionary (initially empty), which willdbused to
and a within-message compressor that uses Ziv-Letopeduce store repeated sequences as they are found duniag t
the size of large, data-intensive messages. compression phase;

e« a Huffman frequency table, which keeps track of chhi
4.1 Between-message (template) compression dictionary entries are used most oftep; after a bemof
The goal of between-message compression is to EseEyuences messages have gone by, the frequencies are usedate a
that are the same across several messages imasiee scheme Huffman code set for the template.

works by treating one message as a template andctivaparing Message compressioCompression of a new message involves
subsequent messages to the template to determirieh Wh finging the longest substrings of the current mgsdghat are also
sequences are repeated. Any repeated sequencassi@geed @ i the template. Whenever a substring is found repace it in
code and entered into a.dlctlonary; these codegtmm be used the original message with the corresponding dictigrkey. If we

to replace the sequence in any new message. Teetbrae parts  encounter bytes that are not in the template, vdetiaeim directly

to the scheme: creation of a new template, comioressf a to the output as an escape sequence. A compressssage

message, and announcement of new templates. These a therefore consists of lookup codes and escape seesie
described below, and general algorithms are gimdfigure 4.



Announcing new templates and dictionary entri#ghenever
GMC creates a new template, it must send the tempdaother
clients in the groupware system. Similarly, whemeuae
compressor adds an entry to the dictionary, it nelstothers to
add the entry to their dictionaries as well. Wel cdlese

notifications announcementsand we assume that they are sent

reliably (since messages cannot be decompresseectpruntil
the announcements arrive). The number of announusme
depends on the characteristics of the messagerstigalf, but the
expected number of templates is low — in the evalnebelow, a
stream of about 13,000 messages resulted in sevgpidtes (of
about 700 bytes each) and 781 dictionary entridsy/{€s each).

There are a few message types for which templatesat useful
— in particular, one-of-a-kind messages, such aseththat send
model-layer data to late entrants. In these casespuld be
useless to have the other clients build a tempia&efore, we do
not tell others to build the template until the et message of a
type comes in. That is, GMC only announces the template
when it is used for a new message (showing thae tiseat least
one other message that is similar to the template).

4.1.1 Balancing compression ratio and time

The algorithm used in GMC has two variables thatloa used to
tune the compression: the amount of time needezbimapress a
message, and the desired compression ratio. GM&npts to
automatically find a reasonable balance: with eawssage, it
gradually lowers the target compression ratio ucinpression
time exceeds a threshold (currently 2ms).

A third variable in GMC is the number of templatesated by the
scheme. We assume that GMC must work on a hetezogen
stream of messages, and so must create as manatesngs there
are self-similar message types in the stream, dteroto achieve
good compression. GMC does this automatically, legating new
templates whenever the compression rate for a nesgage drops
below a threshold. GMC maintains a set of tempjatasd
compresses a message using the template thatthevbgst result.
Multiple templates means that each message mustdrethe
template that was used to compress it, informattia is placed
in the message header (see below).

GMC’s template compressor is completely unaware thod
structure or meaning of the messages that it pseseJhis means
that it will work with any message type, and alseams that it is
naturally adaptive to changes in the message stréhat is, if
one type of message gives way to another, GMC sitiply
create a new template for the new message type.

4.2 Within-message compression

The template compression scheme described abovevesm
repeated sequences that appear in every messdbe stream.

Although this removes a main source of redundatieye are still

cases where the data elements of the message rcoafsated
information (e.g., the text part of a chat messa8#jce template
compression does not affect elements that are animgu a

message, data-intensive messages can be compfesked

GMC identifies data-intensive messages by keepiacktof the
size of the escape sequences; when this value dseetreshold
(currently 100 bytes), GMC runs a standard zlibogtgm
(deflate) on the output of the template compresSeflate uses a

mixture of dictionary compression and Huffman eringdto
compress the input. The resulting message sizenpared with
the input: in cases where the algorithm actualtyeéases the size
of the message, no compression is carried out.

Within-message compression is only valuable irvadases (e.g.,
when participants send files to each other, or wthen system
sends the model layer to a late entrant). Nevestiselit is
inexpensive to include the functionality in GMCna zlib is
built into many class libraries (we use java.dilby and can
make a substantial difference for large messages.

4.3 A compressed-message protocol

A compressed message must be sent with informatieut how
to decode it. We assume that GMC has already bentemplate
and dictionary announcements needed to decomprbes
message; however, we must send additional infoomatith each
message: namely, whether zlib compression is usdather
template compression is used, and if so, which kzt®p

We designed a simple message protocol for GMC rgessthat
contains this information (see Table 2). This pcotacould easily
be integrated into a more complete groupware mesgegtocol,
but for illustration, we have developed it to staaldne. The
protocol uses a variable-length header that canpbtd 16 bits:
one bit to state whether deflate is used or nog bit to state
whether template compression is used or not; anenifplate
compression is used, 14 bits to state the templatsber. This
allows for 16,384 templates across the entire sygteg., 1,638
clients who each announce ten message templatets).Hgwever
that this number
decompression: for compressing, each client ongs uke small
number of templates that they themselves have gtater

Table 2. Message protocol for GMC-compressed messag

Header Payload
Deflate?| Template? Template np. Compressed message
1 bit 1 bit 14 bits Variable length

4.4 An example of GMC in code

Figure 5 shows an example of the code that woulaiten to

use GMC in a Java groupware system. We assumehtirz are
generic Sender and Receiver objects that handlevoniet
communication. As can be seen from the exampleygu§iMC

requires only a few additional calls; in additighGMC were to

be integrated with the network layer, it could bad@ completely
transparent to the programmer.

Sender:

GMC gmc = new GMC();

String message = "(timestamp: 716626384 sender_id: 12
session_id: 9357)(telepointer x: 308.0 y: 78.0)";

Sender.send(gmc.encodeString(message));

Receiver:

GMC gmc = new GMC();
String incoming = (String) gmc.decodeString(Receiver.receive());
System.out.printin(incoming);

Figure 5. Compressing and decompressing a text meg®

5. EVALUATION OF GMC

We tested our implementation of GMC by comparing it
performance with other compression schemes on treakstic

t

of templates would only be used fo



message traces. The goals of the evaluation wereomapare
compression ratios and computation time, and terdeéne how
GMC compared both to hand-coded representationgaother
low-effort compression techniques.

5.1 Dataset

We used a GroupKit message trace, recorded fromawing

program, as the basis for an evaluation dataset. tfdce has
12,850 messages gathered over 47 minutes, andirc®rsaven
message types: telepointer position, object cresigect resize,
object move, text chat, text box edit, and lategarit model-
update messages. The relative frequencies of gpehate shown
in Table 3. Note that object-resize messages arenom because
this function is used in creating a new object. (iabjects are
created on mouse down, then resized as the modsagged).

The messages were used to generate new tracaedifferent
formats: text, XML, and Java objects. Examples atheformat
are shown in Figure 6. The overall compressabhilftthe streams
was tested by running gzip on the text and XML dgaas files:
text was reduced to 10.4% of its original size, ZML to 4.2%.

Table 3. Number and frequency of message types.

Message type #intrace % of total
Telepointer position 10593 82.4%
Object create 97 0.75%
Object move 265 2.1%
Object resize 958 7.5%

Text chat 20 0.15%
Text box edit 916 7.1%
Model update 1 <0.01%

Text:

(timestanp: 716626384 sender_id: 12 session_id:
9357) (tel epointer x: 308.0 y: 78.0)

XML:

<gr oup_event >
<ti mestanp> 716626384 </ti mestanp>
<sender _i d> 12 </sender_i d>
<session_i d> 9357 </session_id>
<event _cont ent >
<t el epoi nter_event >
<x> 308.0 </x>
<y> 78.0 </y>
</ tel epoi nter_event >
</ event _content >
</ group_event >

Objects (class definitions):

abstract class Abstract G oupEvent {
int sessionlD, senderlD;
Long ti nest anp;

cl ass Tel epoi nter Event extends Abstract G oupEvent{
int x, vy;
}

Figure 6. Examples of the three test representatian

5.2 Compression techniques

We compared GMC to several other techniques: twesyof
hand-coded representation, a within-message zfitpoessor, and
an XML-specific representation called ASN.1.

¢ GMC operated as described above, in ‘fully automatic’
mode, with template compression and within-message

compression (deflate). The desired compression sifirted

at 30%, and was reduced for each message untilressipn
time exceeded 2ms per message. Two bytes were added
each message for the message header (see Se8jion 4.

e Hand-coded is a custom binary representation that uses no
syntax or delimiters, converts all field names amessage
type names to enumerated types, and representdatll
values in a minimum number of bits. Table 1 abdwens an
example of this type of representation. No paddivas
counted in the experiment.

e Primitives is similar to the hand-coded representation
described above, but we assume that all elementtheof
message are represented by the shortest primyipee (e.9.,
byte, short, integer) rather than minimal bit value

e Deflate applies a Ziv-Lempel technique (deflate) to each
message individually. The technique is from thendad
Java library (java.util.zlib) and is set to ‘baladt mode,
which produced the best compression in pilot tests.

 ASN.lis a standard for the representation of tree tet
has been proposed as a method reducing the verhafsit
XML messages. The schema for our messages wasginty h
constrained, to simulate a groupware programmer ig/mot
focusing on compression. We encoded the messaieg u
the Unaligned-PER ASN.1 scheme [13].

5.3 Methods and Results

We built a test application in Java that would yaout
compression and decompression for each technigdidoareach
of the three message traces (text, XML, objectsy eecord
original size, compressed size, compression timad a
decompression time. The trials were run on a MasimfPowerPC
G4 system running at 1.4 GHz. Table 4 shows thalteesf these
tests, and also shows each technique’s savings arenhfo the
original, and compared to the best technique ¢iand-coded).

Figures 7 and 8 show the compression ratios andstifor the
different techniques (all decompression times vess than 1ms
for all techniques). GMC created seven templatesttie text
trace, three for the XML trace, and four for thgéeabtrace.

Table 4. Results of compression tests with text, XM and
serialized-object message traces.

Compress time| Size (bytes) Percent of Percent of
Technique | (ms) per messadeper message Original | Hand-codeq
Text
Original 0.0 88.4 100% 920%
Hand-coded ~0.0 9.6 11% 100%
Hand-primitive ~0.0 12.2 14% 127%
GMC 1.0 17.7 20% 181%
Deflate 2.9 86.8 98% 903%
XML
Original 0.0 224.5 100% 2455%
Hand-coded ~0.0 9.1 4% 100%
Hand-primitive ~0.0 12.2 5% 127%
GMC 1.1 19.7 8% 199%
Deflate 2.4 134.4 57% 1398%
ASN.1 0.5 47.2 20% 491%
Serialized Objects

Original 0.0 277.5 100% 2887%
Hand-coded ~0.0 9.6 3% 100%
Hand-primitive ~0.0 12.2 1% 127%
GMC 2.8 25.3 9% 263%

Deflate 12.3 231.6 83% 2410%
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5.3.1 Effects on actual bandwidth

The evaluation shows that compression provides kestantial
saving compared with the original messages. Howekierresults
include only the groupware messages themselvéise imessages
were to be sent across an actual network, theydvbave to be
sent inside packets, which would incur additionastcfor the
packet headers. We do not include packet overhé@adsur
calculations, however, because there are diffemays of sending
the messages that would result in different amoohtsverhead
(and which have nothing to do with the compressamhniques).

The most basic method for transmission is to sem& roessage
per UDP packet, which adds 28 bytes (20 for thedBder, 8 for
the UDP header). This is often larger than the aesged
message itself (see Table 4), and so this methodldwo
dramatically reduce any difference between the cesgion
techniques. However, there are other ways to sesabages that
avoid this overhead. In particular, we assume thaveral
groupware messages will be aggregated into a spagket, and
that the payload portion of a packet will be muatgér than the
header when it is sent. For example, if packetstaionlO
messages of 25 bytes each, header overhead irethut1%. In
this case, the total bandwidth requirement for Bend30

messages per second (for the object stream) isedduom 6819
bytes/sec to 834 bytes/sec, enough savings to dtova voice
link, a higher-quality video signal, or a higherssage frequency.

5.3.2 GMC overhead in the evaluation

Overhead in GMC consists of three types of annomecgs: new
templates, additions to an existing template’s idingtry, and
frequency lists for templates that are Huffman-elecb The data
sizes for all overheads are included in the resalisve, but are
reported separately here in Table 5.

Table 5. Details of GMC announcement overhead

Data Dictionary .

Type Templates Additions Frequency Lists
Text |7 (718 bytes) | 781 (6 bytes each) 5 (1K bysehe
XML |4 (1077 bytes)| 534 (6 bytes each) 3 (1K bytashy

Note that we do not include packet-header overheaathese
results, for the same reason as given above -thiba are several
ways that announcements could be sent, and paatetizcould
be different across these different schemes. Faampie,
announcements can be sent reliably (without remgia separate
TCP channel) if new announcements are includetieafront of
every outgoing aggregated UDP packet, until theivec sends
an acknowledgement.

6. DISCUSSION

In this section we summarize our main results, andsider
several issues that arise from this research: ehgttogrammers
should use GMC or hand-coded representations, heanGMC
results generalize to other groupware traffic, fes
improvements to GMC, and how GMC works with othetwork
infrastructure in a groupware system.

6.1 Summary of results

Our experiments show that GMC provides
improvements both over uncompressed messages amndiow
programmer effort’ methods like ASN.1 and defl&e/{Lempel).
Compared to the original text stream, the GMC-casped
messages were 20% of the original size, and XML serihlized
objects were even better (8% and 9% of original)cdntrast, the
Ziv-Lempel algorithm was not particularly effectivan text or
serialized objects, and only reduced the XML measdg 57% of
original size. Last, the ASN.1 encoding reduced X¥L20% of
original size, but was still more than twice theesof GMC.

Furthermore, GMC was extremely fast in comparisonother
techniques: with our test setup, GMC used betweératd 2.8
milliseconds to compress messages; in contrasiatdefised
between 2.9 and 12.3 ms per message.

However, GMC produces messages that are larger liaad-
coded representations (either minimal-bit or miripramitive
representations). GMC-compressed messages werexapptely
twice the size of the hand-coded version for ale¢hmessage
traces. Thus, although GMC represents a dramatimgaver
uncompressed messages, there is still room for tiaddi
compression if the application programmer wishesdd for it.

6.2 GMC vs. hand-coded representations
Given the superior compression of the hand-codpresentation,
it is worth asking whether groupware programmeisufth simply

substantial



use these minimal formats. There are three reasshg

programmers should consider GMC. First, the amaireffort

required to design and maintain the hand-coded dbris
substantial; in contrast, GMC requires almost rforefSecond,
even though GMC messages are twice the size of-btaaed
messages, the actual effect on bandwidth is relgtismall
(ignoring packet overhead): moving from GMC to adh@oded
representation would change the bandwidth requinésngor 30
messages/sec) by only a small amount. Third, taerevays that
the compression of GMC can be improved (see belahigh will

further reduce the difference between the two teples.

There are, however, situations where
representation should be chosen over GMC. In paaticif a very
large number of messages is sent out per secogd ifea peer-
to-peer system with many clients), then the bantiws@vings of
a minimal representation will multiply. Althoughete situations
may happen, they are not likely, particularly gitee popularity
of the centralized-message-server architecture ltmits upload
bandwidth requirements for groupware clients.

Even when extreme compression is required, it may e
required immediately in the development processetiore, GMC
is valuable for prototyping groupware systems astirng them in
real-world conditions, even if the programmer wishéo
eventually move to a hand-coded representation.

Last, in some cases there may be tools other thd@ at can
provide a balance between programmer effort andpcession.
Game libraries offer compression rates that are haad-coded
levels, and if the programmer is willing to conforto the
abstractions dictated by the library, they can eghigood results
without doing the custom representation themsel8esilarly, if
a programmer wishes to carefully constrain the sehef an
XML message type, good compression can be achigitbdthe
ASN.1 format. In these cases, however, there i sti
considerable amount of effort required — game tibeagenerally
provide only low-level support, and constrainingXL schema
for ASN.1 still requires that programmers calculatech of the
representation themselves. No method other than Gif&s
high performance with minimal effort.

6.3 Generalizing the results

The main strength of GMC is in reducing betweensage
repetition, and so GMC will work well in any groupre system
that uses message types that have some characsaristommon
with those seen in our experiments. In additior, riore verbose
the message structure, the better GMC will work o-ifsa
groupware programmer defines a less verbose tprésentation,
the savings from GMC will be reduced (although Ilkstill worth
doing). Finally, some groupware systems will sendrendata-
intensive messages (e.g., pictures or sounds),GM@ will be
less effective on these messages. It will still pogss both the
structure and the content of the messages, bpeifsrmance will
move towards that of a basic zlib implementation.

6.4 Possible improvements to GMC

There are several possible improvements that cbaldnade to
various parts of the GMC scheme. Here, we constieze:
composite templates, recoding of numbers, and ggtios.

the hand-coded

Composite templates

The structural elements of two similar messageseaeetly the

same (see Figure 3), but GMC can only recognizetiguous

repetition: that is, wherever there is a variakdéadelement in a
message, GMC must output two separate lookups:fan¢he

repeated sequence before the data value, and ptreefsequence
after. If templates could have ‘holes’ in them @ata values, then
an entire message structure could be saved inglesiemplate,
saving several bytes in lookup codes.

One simple way to accomplish this is to build aosetset of
templates on the output of the first pass. For etemif the
system repeatedly sees the lookup-code sequenceesd> L2
<esc> L3 in the output of the compressor, it cofaidn a new
template (L4), placing the two escape sequencethetend.
Although this method would only save a few bytes mpessage,
the messages are already so small (17-25 bytesptfeav bytes
could make a fairly large relative improvement.

Recoding numbers from text to binary

GMC currently treats all elements of text and XMlessages as
strings; but encoding numbers as strings is inefiic Encoding
numbers in binary representations can save a feliti@aaal bytes.
This could work as follows: when an escape sequénegitten
out (i.e., a sequence of characters not in a tar)pl&MC could
check whether the sequence is a number. If soffexretit escape
code is used to indicate a number, and a binameseptation is
written out instead of the characters. Table 6 shbaw different
number ranges are represented, and the space salatgcan be
realized. Note that this requires that one of thées in the 256-
entry dictionary be reserved for the additionalggc(this is not a
difficult requirement, since GMC almost never usas the
dictionary entries).

Table 6. Savings from recoding numbers from text tdinary.

Number range | Text byté8inary byted Average saving
-127..+127 1-3 1 1.13 bytes/number
+128.. £32767 35 2 2.67 bytes/number
+32768..4838860 5-7 3 4.40 bytes/numbér

Aggregation

It is possible for several messages to be groupegether into a
single packet; if this is done, then there are tmil
opportunities to compress the aggregated messagwarticular,
Ziv-Lempel compression techniques are likely to bwre
effective, since the ‘message’ is now longer. Aggt®n can
happen in situations where the data-gatheringisategher than
the send rate: for example, telepointer positioescallected at a
rate of 30/second, but are only sent at a ratésefcénd. This may
be done for a variety of reasons (e.g., to maintirhigh-
resolution telepointer playback even in a low-sestg- situation),
and would require that GMC coordinate its actitigith other
elements in a network layer (e.g., the aggregator).

6.5 GMC as part of network infrastructure
Although GMC can work as a stand-alone module (&mel
reference implementation is designed in this waly)is best
thought of as one part in a larger network layer.mfore
comprehensive network infrastructure for a grougwaystem
should deal with a wide variety of quality of seeiissues, and
should couple the use of compression to monitoofhgvailable
bandwidth, rate control schemes, and latency totera



Under the control of a network layer, GMC would Inager run

in automatic mode; parameters such as allowableprsrion
time, desired compression rate, and maximum numbfer
templates to create could all be under the conublthe

application or the network infrastructure. Adjustitgeto these
parameters would be made to achieve overall qualiservice

goals. In addition, having a network layer greasiynplifies

GMC’s announcement requirements, since we assurmae &h
network layer would already be handling all comneatibn, and
could therefore deal with the reliability requireme of the
announcements.

7. CONCLUSION

Messages sent by groupware systems can take memng,fand
although different forms have different advantagegst common
formats are extremely inefficient. Rather than égroupware
programmers to build efficient representations, designed
GMC, a message compressor that automatically redaceide
variety of formats without requiring knowledge ofessage
structure or content. GMC requires almost no eftorattention
from the application programmer, is fast, and diicaly

compresses text, XML, and serialized objects. Qut steps with
GMC are to implement the improvements discussed/eggband
then integrate the system into a full networkingela for

groupware. The reference implementation of GMCviilable at
hci.usask.ca/research/compression.shtml.
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