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ABSTRACT  
Groupware communicates by sending messages across the 
network, and groupware programmers use a variety of formats for 
these messages, such as XML, plain text, or serialized objects. 
Although these formats have many advantages, they are often so 
verbose that they overload the system’s network resources. 
Groupware programmers could improve efficiency by using more 
compact formats, but this efficiency comes at the cost of increased 
complexity, reduced convenience, and reduced readability. In this 
paper we propose an alternate approach for improving efficiency – 
an automatic compression system that transparently minimizes 
verbose formats. Our general message compressor – GMC – 
automatically finds and removes redundancy in message streams, 
without any knowledge of the contents or structure of the 
message, and without any need for the programmer to change the 
way they work. In tests with realistic message traces, GMC 
reduced text messages to 20% of their original size, XML 
messages to 8% of the original, and serialized objects to 9%. 
Although not as compact as a hand-coded representation, GMC 
provides most of the compression benefits with almost none of the 
work – it allows groupware programmers to use convenient 
message formats without compromising transport efficiency. 

Categories and Subject Descriptors 
H.5.3 [Group and Organization Interfaces]: Computer-supported 
cooperative work; E.4 [Coding and Information Theory]: Data 
compaction and compression. 

General Terms 
Algorithms, Design, Experimentation, Human Factors. 

Keywords 
Groupware performance, message compression, network delay. 

1. INTRODUCTION 
Groupware systems share information – such as data updates, 
remote commands, lock requests, or user events – by sending 
messages. Groupware programmers use a variety of formats for 
these messages, such as XML, plain text, or serialized objects. 
Each format has advantages: some are easy to construct (e.g., 

serialized objects), others fit well with existing tools (e.g., XML 
messages with XML parsers), and others are easy for humans to 
read (e.g., plain text). The drawback to all of these message 
formats, however, is that they are verbose – that is, they use a 
large amount of space to represent a small amount of information. 
For example, the text telepointer message in Figure 1 uses 85 
bytes to send a timestamp, a client ID and a new pointer location. 
Serialized objects are even worse – a simple telepointer event 
object can require 267 bytes in serialized form.  

(timestamp: 803488132 sender_id: 12 session_id: 
9357)(telepointer x: 1138.0 y: 601.0) 

Figure 1. A text telepointer message 

Inefficient message representations are a major problem because 
messages must be sent across the network, and current groupware 
systems regularly run out of network bandwidth. If a system tries 
to send more data than it has bandwidth, messages will pile up, 
and latency will increase to the point where many functions of the 
system (such as telepointers, locks, and shared data structures) are 
unusable. There are several situations that can result in low 
available bandwidth for a groupware system: for example, low-
data-rate networks (wireless or dialup), high-bandwidth networks 
that already have a large amount of traffic, or broadband 
connections with asymmetric upload/download rates. In these 
situations, groupware can exceed bandwidth with its own 
messages, choking its own communication channel. 

Even though network capacities are increasing in general, 
situations of low available bandwidth are not going to disappear 
in the foreseeable future. As a result, it is important to reduce the 
amount of data sent by the groupware system. There are several 
methods for reducing data rate (e.g., send messages less 
frequently) – but the inefficiency of message formats is an 
obvious place to start. In many groupware systems, the majority of 
the data sent between clients is message structure or syntax, rather 
than critical information. If messages could be represented more 
efficiently, groupware applications would need less bandwidth, 
and so would be usable in more network situations (or, 
alternatively, would be able to send messages more often). 

Groupware programmers can make their messages far more 
efficient by designing compact representations – for example, by 
using only the minimum number of bits necessary to represent 
numbers, and by hard-coding the order of fields and parameter 
lists. In fact, most networked games already do this, and it is clear 
that they have greatly reduced their bandwidth requirements as a 
result. However, there are problems with asking groupware 
programmers to use efficient message representations: compact 
formats are much more difficult to design and build, are less 
flexible, and provide none of the benefits described above (such 
as readability, convenience, or interoperability).  
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In this paper we propose an alternate approach: rather than asking 
groupware programmers to design minimal representations, we 
have built a groupware message compressor that minimizes 
message representations automatically. GMC is designed 
specifically to compress the message structure and syntax that is 
useful for programmers, but inefficient at the transport level: it 
does this by building a dictionary of sequences that are repeated 
across a set of messages, and replaces those sequences with short 
lookup codes. GMC can also further compress message data using 
a Ziv-Lempel algorithm and Huffman coding. Furthermore, GMC 
works with all networking designs, including priority scheduling 
algorithms, aggregation policies, and network protocols, including 
unreliable transport protocols such as UDP. 

In tests with realistic message traces, GMC dramatically reduced 
message sizes: text messages to 20% of their original size, XML 
messages to 8%, and serialized objects to 9%. GMC performs 
substantially better than per-message Ziv-Lempel compression, 
which compresses XML to 57% but does not compress text 
messages or serialized objects at all. In addition, compression 
with GMC is fast (less than 2ms per message in our test setup), 
and the system is fully under application control, so that the 
compressor can fit into an overall application-level QoS scheme. 

The main contribution of GMC is that it allows groupware 
programmers to use representations that are convenient, without 
sacrificing transport efficiency. GMC is easy to understand and 
implement, and can be ported to any groupware system.  

In the next sections we review the foundations underlying the 
work, consider where repetition occurs in a groupware message 
stream, introduce GMC and its compression techniques, report on 
the performance of the system, and discuss ways that GMC or 
similar compressors can be used in real-time groupware systems. 

2. BACKGROUND 
This research is based on four foundations: groupware messaging, 
groupware network performance, data compression, and 
techniques for compressing network data. 

2.1 Groupware Messaging 
Distributed groupware systems have to send information to one 
another: information about state changes, requests for data, 
commands, and notification of user events. This communication 
happens through messages – parcels of information sent over the 
network that encapsulate one update, request, command, or 
notification [17]. Groupware systems use messages regardless of 
whether the underlying system uses distributed data structures, 
remote procedure calls, or a notification server, and regardless of 
whether the model layers are centralized or replicated (since even 
centralized systems must distribute information about user actions 
and view changes). 

There are several possible types of message, depending on the 
application. Examples include model-layer updates, telepointers, 
streaming multimedia such as voice or video, system-level control 
and feedback messages, text chat, and session-management 
messages. Different message types have different characteristics, 
but two main groups can be considered [5]: transactions concern 
longer-term changes to the system, such as modifications to data 
structures or lock requests, and are usually infrequent; streaming 
messages are much more frequent, and provide information about 
the transient state of a user’s activity or communication. An 

important further distinction within the category of streaming 
messages is between awareness messages and multimedia. Since 
video and VoIP transmissions are usually already compressed, 
and are usually handled with established protocols such as RTP 
[21], we are more concerned here with awareness messages (e.g., 
telepointers, avatar movements, intermediate locations of objects 
during drag operations, or changes to view locations). Streaming 
awareness messages have different QoS requirements than do 
transactions: in particular, they do not all have to arrive, but they 
do need low latency. This means that they are better sent using 
UDP – which is faster but non-guaranteed – than TCP [5].  

Both transactions and awareness messages are usually small 
enough to be sent whole, and are routed to other clients depending 
on the system’s distribution architecture. In centralized-
communication systems, each client connects only to the server; 
in a peer-to-peer architecture, each client makes a connection to 
every other client [17]. The distribution architecture plays a major 
role in a groupware system’s overall data rate, since routing 
determines whether each messages is sent once (to the server) or 
multiple times (to each client, assuming no native multicast).  

We are concerned primarily with real-time distributed groupware 
systems that send awareness messages and transactions. This 
covers several types of real-world groupware: shared workspaces, 
shared editors, collaborative virtual environments, and networked 
games. We do not focus on asynchronous awareness servers or 
media spaces since awareness systems generally have minimal 
data volumes, and since multimedia systems generally use well-
established protocols for sending information (such as RTP). 

Although some effort has been made to establish standard 
protocols for groupware (e.g., [12]), these are not yet widespread, 
and in practice, groupware programmers must determine what to 
send and how to send it. A groupware message must encode 
several pieces of information, both data and metadata: 
• the sender of the message (client ID) 
• the message ID (for loss detection and ordering) 
• the application ID (since several groupware applications may 

be sharing the same network port to get through firewalls) 
• a timestamp (required to control playback from a buffer) 
• the message type (e.g., telepointer move, model update) 
• field names for each parameter (e.g., x position, y position) 
• data values for each field 

This information can be represented in several ways. Different 
representations have different advantages, but usually at the cost 
of message size. However, the strengths of text, XML, and objects 
are enough that most groupware systems have used these formats: 
for example, text strings are used by GroupKit [19] and 
TeamRooms [18]; XML by Disciple [14], and serialized objects 
by JSDT (jsdt.dev.java.net/) and JAMM [2]. 

2.2 Groupware Network Performance 
The performance of real-time distributed groupware over real-
world wide-area networks has been frequently criticized (e.g., 
[4,10,25]). These performance problems are primarily due to 
network issues: latency, which is the time required for information 
to travel between locations; jitter, which is variance in latency; 
loss, which results from network packets not arriving at their 
destination; and insufficient bandwidth. These problems are 
common in today’s wide-area networks, and although networking 
advances are aiming to reduce these problems, the problems will 



be present for some time to come. In the meantime, groupware 
applications must attempt to deal with these issues themselves. 

Network delay has been shown to have serious effects on users. It 
can cause difficulties in coordinating collaborative actions 
[25,16], in predicting others’ intentions [8], and in interpreting 
gestural communication [9]. The overall effect is that 
collaboration breaks down – groups tend to decouple their 
collaboration and work more independently. When latency 
becomes extreme (as happens when systems exceed their network 
bandwidth), the distributed parts of the application appear to grind 
to a halt – telepointers freeze, locks are never granted, and 
changes are never propagated.  

Delivering network performance in real-time groupware is a 
difficult task due to the diverse performance needs of the 
applications, and the situational factors that affect performance 
requirements [7]. There are many different genres of groupware 
(including games, whiteboards, conferencing systems, shared 
editors, virtual classrooms, and collaborative virtual 
environments), and each application can have multiple interaction 
techniques with diverse quality of service requirements. The 
applications also need to keep model layer data synchronized and 
these requirements vary based on the needs of the application. In 
addition, performance requirements are affected by situational 
factors such as proximity to other users, the level of coupling and 
dependence between actions, and the level of awareness that a 
user wishes to maintain of their collaborators. 

The diversity of requirements in groupware means that no one 
technique can solve all performance problems. However, 
bandwidth restrictions are one of the most critical causes of 
latency in distributed systems, and the size and efficiency of 
groupware messages will play a major role in any attempt to 
improve groupware performance. 

2.3 Data Compression 
Compression means making a piece of data smaller by finding a 
more compact way to represent it. There are two main types of 
data compression – lossless, which guarantees that the 
decompressed data is exactly the same as the source, and lossy, 
which accepts some reduction in the quality of a picture or signal 
in order to achieve higher compression. For groupware messages, 
we are almost exclusively interested in lossless methods, since all 
of the parts of the message are required in order to interpret it 
correctly. Lossy methods can only be used to compress certain 
types of data elements within the message (such as pictures). 
There are many lossless compression techniques. These are 
generally categorized into statistical modeling and dictionary 
methods (see [3] for more detail on these methods). 

Statistical modeling. Statistical modeling schemes represent the 
symbols of an alphabet using variable-length bit sequences, and 
use shorter sequences for more likely symbols. For example, 
standard ASCII characters are represented with 8-bit codes, but in 
many cases some characters are more likely than others; if the 
more frequent characters had shorter codes, many messages could 
be shortened. Huffman coding [11] and arithmetic coding [3] are 
the most common methods for generating optimal bit codes.  
Sometimes ad-hoc approximations to these are used, such as 
coding the 15 most common values in 4 bits. 

A more powerful version of statistical modeling takes account of 
the context in which a symbol appears in order to more accurately 

determine its probability; for example, the likelihood of an ‘e’ in 
English text becomes much higher if one knows that the preceding 
two characters were ‘t’ and ‘h’. The more accurate probability 
distributions improve coding efficiency. The most advanced 
context-modeling technique is the PPM family [3], which is 
usually coupled with an arithmetic encoding scheme. PPM 
techniques usually achieve the highest compression, but are 
slower than other techniques. A related method is the BWT 
transform, which permutes the text using sorting so that characters 
are ordered by their context. This approximates PPM, but is much 
more efficient to compute, and is used in the popular utility 
bzip2. It has the disadvantage that data must be compressed in 
reasonably large blocks, so is unsuitable for an interactive system. 

Dictionary compression. Dictionary techniques replace sequences 
of several symbols in the source message with indexes into a 
dictionary. For example, the string “moveTelepointer” could be 
replaced in a message by a dictionary index (e.g. ‘1’) as long as 
both the sender and the receiver are using the same dictionary. 
The entries in the dictionary can either be determined beforehand, 
or built up adaptively as messages are read. The most well-known 
adaptive dictionary encoders are the Ziv-Lempel family (e.g., 
LZ77 [26] and LZ78 [27]) which are seen in common tools such 
as gzip and deflate. Some Ziv-Lempel techniques work 
without a separate dictionary, by replacing a sequence with a 
pointer to a previous occurrence of that sequence in the message 
itself. Thus the text is its own dictionary, and adaptation happens 
naturally as the nature of the text changes. 

2.4 Network Compression 
Most data compression techniques are designed for use in 
compressing files rather than a sequence of individual messages 
sent out across a network. In the case of a stream of messages, 
additional issues must be taken into consideration. One main 
concern is reliability – some transport protocols (e.g., UDP) that 
are commonly used to send groupware messages are not 
guaranteed to arrive. These protocols are essential because they 
provide a much better fit to the QoS requirement of streaming 
awareness messages than reliable protocols such as TCP [5]; 
therefore, the message compression technique must be able to deal 
with the loss of some parts of the overall data stream. As a result, 
the Ziv-Lempel techniques that refer to previous parts of the 
stream (e.g., LZ78 [27]) cannot be used for compressing the entire 
stream as if it were one file (these techniques can still be used to 
compress individual messages, however). In the network setting, a 
variety of compression techniques have been used: 
• Hardware compression. Some hardware manufacturers have 

attempted to address the problem of bandwidth limits with 
network compression modules. These devices compress 
individual outgoing packets and then transport the resulting 
message over a connection to another such device, which 
decompresses it. 

• Packet compression. There are a number of schemes for 
compressing IP packets. These techniques use intra-message 
compression (i.e., each packet has its own dictionary) or 
probabilistic algorithms for compression [24]. For example, 
HP packet-by-packet compression [22] uses per-packet 
dictionaries, run-length encoding, and a reduced code set. In 
one evaluation, this method compressed general network 
packets to approximately 52% of original size. Although 
these techniques have been used to improve performance for 



some types of network connections (e.g., PPP), they are still 
not commonly seen. One reason is that they are generally not 
under application control – that is, they require additional 
computation time, and in some cases, this additional time is 
unacceptable to the application.  

• Delta compression. Another manner in which network traffic 
can be compressed is via delta compression (also called delta 
encoding). Here, after an initial state is established, messages 
that are transmitted contain only changes since the last 
update. This is the technique used in screen-sharing systems 
such as VNC [1]. Note that in most cases, delta compression 
has strict reliability requirements, since the delta values are 
relative to a previously-sent message. 

• Tailored compression schemes. Some systems can have their 
bandwidth use dramatically reduced if there is knowledge 
about how the data in the messages will be used (or not 
used). A good example of this is Compressed X 
(www.vigor.nu/dxpc/), a protocol for sending X-Windows 
messages more efficiently. Compressed X does several things 
to reduce message size: it removes all unused information 
from the message, recodes common remote procedure calls 
(RPCs) using shortcuts, and recodes the data of these RPCs 
with minimal bit-length representations.  

• Game techniques. Multiplayer networked games represent a 
highly evolved category of groupware. As such, game 
programmers have had to address the problem of 
compressing numerous messages sent over lossy connections 
[23]. Games are strongly oriented towards using minimal 
representations, but they achieve this in different ways. First, 
some game networking libraries provide programming 
abstractions that let the programmer specify representation. 
For example, the Torque Network Library [6] provides 
wrappers on all ‘writeToStream’ messages that allow the 
programmer to specify the number of bits to use. Second, 
some game libraries provide standard message structures that 
the system knows how to compress. For example, Raknet 
[20] provides standard object types that programmers must 
use if they want their messages to be compressed. Third, all 
games also employ dictionaries for remote procedure calls 
and commonly-used strings. 

• Binary formats for XML. ASN.1 (Abstract Syntax Notation 
One) is a standard for the binary encoding of tree formatted 
data.  As such, it has been suggested as a less verbose 
encoding method for XML [13]. This method requires that 
the application programmer define an XML schema for the 
messages, and then convert each message to a binary form. 
The degree of compression is dependent upon how carefully 
the designer constrains the schema [15].  

Although each of these techniques is effective in some 
circumstances, none are entirely appropriate for groupware 
compression. In the case of IP-packet and hardware compression, 
the techniques rely on within-message redundancy, which as will 
be discussed below, offers relatively small savings for groupware 
messages. Furthermore, hardware compression requires devices at 
either end of the data link, which limits the generality of the 
method. Delta compression is inappropriate because of its 
reliability requirements; in practice (e.g., with systems like VNC), 
this presupposes a TCP-style lossless transmission protocol. The 
remaining techniques (custom formats, game formats, and binary 
XML formats) are applicable to groupware, but require a non-

trivial degree of work on the part of the programmers and 
designers. Much like creating minimal length encodings for 
messages, these techniques make the process of developing and 
modifying the application far more complex, and require that 
programmers build their systems in particular ways. 

Given that existing techniques are not perfectly suited to the 
requirements of groupware, we next look in more detail at 
groupware messages, and consider where savings could be found 
from a groupware-specific compression scheme. 

3. SOURCES OF INEFFICIENCY IN 
GROUPWARE MESSAGES 

There are three main sources of redundancy in groupware 
messages that can be exploited for compression: repetition of 
sequences within a single message; repetition across several 
messages, and inefficient encoding of the symbols of the message.  

3.1 Repetition within a single message 
There are often repeated sequences inside groupware messages, 
and these repetitions can be compressed using a dictionary 
scheme. This is the approach taken by some existing packet 
compressors. However, most groupware messages are relatively 
short, and dictionary compression is less effective with short 
source documents because there is less opportunity for sequences 
to be repeated. 

For example, the example moveObject message in Figure 2, 
generated as a user drags an object across the screen in a shared 
whiteboard, shows the sequences that can be replaced by pointers 
to earlier occurrences of the text. Most of the repeated sequences 
are short, and (in this case) none are repeated more than twice. 
Only a small reduction is therefore possible by compressing the 
message as an individual document. 

[moveObject [senderID 168.142.1.101::5051] [objectID 153] [x 1537] [y 1035]] [moveObject [senderID 168.142.1.101::5051] [objectID 153] [x 1537] [y 1035]]  

Figure 2. Within-message repetition. 

3.2 Repetition between messages 
In contrast, there is often considerably more repetition from one 
message to the next, as long as messages are of the same type. 
Figure 3 shows two example moveObject messages. Several 
elements of the two messages are identical: the message type 
indicator, the sender and object IDs, parts of the data elements, 
and the field-delimiter syntax. As can be seen in the figure, all but 
a few bytes of the message exactly are the same.  

[moveObject [senderID 168.142.1.101::5051] [objectID 153] [x 1537] [y 1035]] [moveObject [senderID 168.142.1.101::5051] [objectID 153] [x 1537] [y 1035]] 

[moveObject [senderID 168.142.1.101::5051] [objectID 153] [x 1538] [y 1036]] [moveObject [senderID 168.142.1.101::5051] [objectID 153] [x 1538] [y 1036]]  

Figure 3. Between-message repetition. 

This repetition of certain message patterns is the basis of the 
GMC template compression scheme described below. The amount 
of compression that is possible with this approach depends on the 
amount of self-similarity in the messages. Most groupware 
systems use several message types, and other types of messages 
(e.g., telepointer or chat messages) will show much less similarity 
to the object move message in Figure 3. For each message type, 
however, there will be considerable self-similarity, and in many 
systems, there are only a small number of message types. 



Furthermore, at least some types are likely to be seen often (e.g., 
awareness messages such as object and telepointer moves).  

3.3 Inefficient encoding 
Groupware systems often encode the elements of a message 
inefficiently. For example: 
• Encoding of numbers. String representations of numeric 

values takes more space than binary representations. 
• Field widths for numeric data types. Some fields use more 

space than is needed: for example, screen coordinates are 
often represented as four-byte integers, even though they 
have a much smaller possible range. 

• Symbol frequency. The symbols (e.g., the characters) used in 
groupware messages do not occur with the same frequencies, 
but are often represented using the same number of bits. As 
described above, schemes such as Huffman coding give the 
more frequent symbols shorter codes. 

• Structure as text. Field names and message types are often 
represented as text strings; these could be represented as an 
enumeration that would use considerably less space. 

How small is an efficient encoding? As an example, Table 1 
compares the text-encoded message of Figure 3 with a customized 
minimal format that represents values in binary, and uses 
minimal-width fields for the possible data ranges.  

Table 1. Sizes of text and minimal representations. The 
‘padding’ field is needed to reach a byte boundary. 

Field Range Text format Minimal format 
Message type 0..31 12 bytes 5 bits 

Sender ID 0..63 31 bytes 6 bits 

Object ID 0..1023 15 bytes 10 bits 

X 0..2047 9 bytes 11 bits 

Y 0..2047 9 bytes 11 bits 

Padding   5 bits 

Total  608 bits (76 bytes) 48 bits (6 bytes) 

In the next section, we introduce GMC, a compressor that 
performs both between-message and within-message compression.  

4. GMC 
The goal of GMC is to automatically and quickly obtain most of 
the compression that is possible with a hand-coded representation, 
but without requiring any extra work on the part of the application 
programmer. GMC has two parts: a template compressor that 
finds repeated structure and syntax elements between messages, 
and a within-message compressor that uses Ziv-Lempel to reduce 
the size of large, data-intensive messages. 

4.1 Between-message (template) compression 
The goal of between-message compression is to remove sequences 
that are the same across several messages in a stream. The scheme 
works by treating one message as a template and then comparing 
subsequent messages to the template to determine which 
sequences are repeated. Any repeated sequences are assigned a 
code and entered into a dictionary; these codes can then be used 
to replace the sequence in any new message. There are three parts 
to the scheme: creation of a new template, compression of a 
message, and announcement of new templates. These are 
described below, and general algorithms are given in Figure 4. 

Function createTemplate (message m) 

• create new template T: 
• build a suffix trie S from message m 
• create a lookup table L 

• compress the previous n messages with T and determine the overall 
compression ratio 

• if the ratio with T is better than the previous ratio:  
• if there are fewer than the maximum number of templates: 

• announce T as a new template 
• else 

• find the least efficient existing template Q 
• announce T as a replacement for Q 

 

Function compressMessage (message m) 

• for each template T: 
• remainder = m 

• result(T) = Ø 

• while remainder is not empty: 

• find the longest prefix p of remainder in template T 
• if there is a prefix: 

• if p is in the lookup table: 
• add the key for p to result(T) 

• else 
• add p to the lookup table and add the new key to result(T) 

• remove p from remainder 

• if there is no prefix of remainder in T: 

• find the sequence of characters s that is not in T 
• add the escape code and s to result(T) 

• remove s from remainder 

• if T has a Huffman code: 
• encode result(T) with the code set 

• record the compression ratio r(T) = size(result) / size(m) 

• if no r(T) is lower than the desired compression ratio: 

• create a new template from message m 
• return the best result and the number of the associated template 
Figure 4. Algorithms for creating templates and compressing 

messages using templates. 

Template creation. A new template is created for a message by 
constructing three elements: 
• a suffix trie from the bytes of the message, which allows for 

fast determination of longest-substring matches in the 
compression phase; 

• a lookup dictionary (initially empty), which will be used to 
store repeated sequences as they are found during the 
compression phase; 

• a Huffman frequency table, which keeps track of which 
dictionary entries are used most often; after a number of 
messages have gone by, the frequencies are used to create a 
Huffman code set for the template. 

Message compression. Compression of a new message involves 
finding the longest substrings of the current message that are also 
in the template. Whenever a substring is found, we replace it in 
the original message with the corresponding dictionary key. If we 
encounter bytes that are not in the template, we add them directly 
to the output as an escape sequence. A compressed message 
therefore consists of lookup codes and escape sequences. 



Announcing new templates and dictionary entries. Whenever 
GMC creates a new template, it must send the template to other 
clients in the groupware system. Similarly, whenever the 
compressor adds an entry to the dictionary, it must tell others to 
add the entry to their dictionaries as well. We call these 
notifications announcements, and we assume that they are sent 
reliably (since messages cannot be decompressed correctly until 
the announcements arrive). The number of announcements 
depends on the characteristics of the message stream itself, but the 
expected number of templates is low – in the evaluation below, a 
stream of about 13,000 messages resulted in seven templates (of 
about 700 bytes each) and 781 dictionary entries (6 bytes each). 

There are a few message types for which templates are not useful 
– in particular, one-of-a-kind messages, such as those that send 
model-layer data to late entrants. In these cases, it would be 
useless to have the other clients build a template: therefore, we do 
not tell others to build the template until the second message of a 
type comes in. That is, GMC only announces the new template 
when it is used for a new message (showing that there is at least 
one other message that is similar to the template). 

4.1.1 Balancing compression ratio and time 
The algorithm used in GMC has two variables that can be used to 
tune the compression: the amount of time needed to compress a 
message, and the desired compression ratio. GMC attempts to 
automatically find a reasonable balance: with each message, it 
gradually lowers the target compression ratio until compression 
time exceeds a threshold (currently 2ms).  

A third variable in GMC is the number of templates created by the 
scheme. We assume that GMC must work on a heterogeneous 
stream of messages, and so must create as many templates as there 
are self-similar message types in the stream, in order to achieve 
good compression. GMC does this automatically, by creating new 
templates whenever the compression rate for a new message drops 
below a threshold. GMC maintains a set of templates, and 
compresses a message using the template that gives the best result. 
Multiple templates means that each message must record the 
template that was used to compress it, information that is placed 
in the message header (see below). 

GMC’s template compressor is completely unaware of the 
structure or meaning of the messages that it processes. This means 
that it will work with any message type, and also means that it is 
naturally adaptive to changes in the message stream. That is, if 
one type of message gives way to another, GMC will simply 
create a new template for the new message type.  

4.2 Within-message compression 
The template compression scheme described above removes 
repeated sequences that appear in every message in the stream. 
Although this removes a main source of redundancy, there are still 
cases where the data elements of the message contain repeated 
information (e.g., the text part of a chat message). Since template 
compression does not affect elements that are unique to a 
message, data-intensive messages can be compressed further.  

GMC identifies data-intensive messages by keeping track of the 
size of the escape sequences; when this value exceeds a threshold 
(currently 100 bytes), GMC runs a standard zlib algorithm 
(deflate) on the output of the template compressor. Deflate uses a 

mixture of dictionary compression and Huffman encoding to 
compress the input. The resulting message size is compared with 
the input: in cases where the algorithm actually increases the size 
of the message, no compression is carried out. 

Within-message compression is only valuable in a few cases (e.g., 
when participants send files to each other, or when the system 
sends the model layer to a late entrant). Nevertheless, it is 
inexpensive to include the functionality in GMC, since zlib is 
built into many class libraries (we use java.util.zlib), and can 
make a substantial difference for large messages. 

4.3 A compressed-message protocol 
A compressed message must be sent with information about how 
to decode it. We assume that GMC has already sent the template 
and dictionary announcements needed to decompress the 
message; however, we must send additional information with each 
message: namely, whether zlib compression is used, whether 
template compression is used, and if so, which template.  

We designed a simple message protocol for GMC messages that 
contains this information (see Table 2). This protocol could easily 
be integrated into a more complete groupware message protocol, 
but for illustration, we have developed it to stand alone. The 
protocol uses a variable-length header that can be up to 16 bits: 
one bit to state whether deflate is used or not; one bit to state 
whether template compression is used or not; and if template 
compression is used, 14 bits to state the template number. This 
allows for 16,384 templates across the entire system (e.g., 1,638 
clients who each announce ten message templates). Note however 
that this number of templates would only be used for 
decompression: for compressing, each client only uses the small 
number of templates that they themselves have generated. 

Table 2. Message protocol for GMC-compressed messages 

Header Payload 
Deflate? Template? Template no. Compressed message 

1 bit 1 bit 14 bits Variable length 

4.4 An example of GMC in code 
Figure 5 shows an example of the code that would be written to 
use GMC in a Java groupware system. We assume that there are 
generic Sender and Receiver objects that handle network 
communication. As can be seen from the example, using GMC 
requires only a few additional calls; in addition, if GMC were to 
be integrated with the network layer, it could be made completely 
transparent to the programmer. 

Sender: 

GMC gmc = new GMC(); 
String message = "(timestamp: 716626384 sender_id: 12 

session_id: 9357)(telepointer x: 308.0 y: 78.0)"; 
Sender.send(gmc.encodeString(message)); 

Receiver: 

GMC gmc = new GMC(); 
String incoming = (String) gmc.decodeString(Receiver.receive()); 
System.out.println(incoming); 

Figure 5. Compressing and decompressing a text message 

5. EVALUATION OF GMC 
We tested our implementation of GMC by comparing its 
performance with other compression schemes on three realistic 



message traces. The goals of the evaluation were to compare 
compression ratios and computation time, and to determine how 
GMC compared both to hand-coded representations and to other 
low-effort compression techniques. 

5.1 Dataset 
We used a GroupKit message trace, recorded from a drawing 
program, as the basis for an evaluation dataset. The trace has 
12,850 messages gathered over 47 minutes, and contains seven 
message types: telepointer position, object create, object resize, 
object move, text chat, text box edit, and late-entrant model-
update messages. The relative frequencies of each type are shown 
in Table 3. Note that object-resize messages are common because 
this function is used in creating a new object (i.e., objects are 
created on mouse down, then resized as the mouse is dragged). 

The messages were used to generate new traces in three different 
formats: text, XML, and Java objects. Examples of each format 
are shown in Figure 6. The overall compressability of the streams 
was tested by running gzip on the text and XML traces as files: 
text was reduced to 10.4% of its original size, and XML to 4.2%.  

Table 3. Number and frequency of message types.  

Message type # in trace % of total 
Telepointer position 10593 82.4% 
Object create 97 0.75% 
Object move 265 2.1% 
Object resize 958 7.5% 
Text chat 20 0.15% 
Text box edit 916 7.1% 
Model update 1 <0.01% 

 
Text: 

(timestamp: 716626384 sender_id: 12 session_id: 
9357)(telepointer x: 308.0 y: 78.0) 

XML: 
<group_event>  
    <timestamp> 716626384 </timestamp>  
    <sender_id> 12 </sender_id>  
    <session_id> 9357 </session_id>  
    <event_content>  
        <telepointer_event>  
            <x> 308.0 </x>  
            <y> 78.0 </y>  
        </telepointer_event> 
    </event_content>  
</group_event> 

Objects (class definitions): 
abstract class AbstractGroupEvent { 
    int sessionID, senderID; 
    Long timestamp;  
} 
class TelepointerEvent extends AbstractGroupEvent{ 
    int x, y; 
} 

Figure 6. Examples of the three test representations. 

5.2 Compression techniques 
We compared GMC to several other techniques: two types of 
hand-coded representation, a within-message zlib compressor, and 
an XML-specific representation called ASN.1. 
• GMC operated as described above, in ‘fully automatic’ 

mode, with template compression and within-message 
compression (deflate). The desired compression ratio started 

at 30%, and was reduced for each message until compression 
time exceeded 2ms per message. Two bytes were added to 
each message for the message header (see Section 4.3). 

• Hand-coded  is a custom binary representation that uses no 
syntax or delimiters, converts all field names and message 
type names to enumerated types, and represents all data 
values in a minimum number of bits. Table 1 above shows an 
example of this type of representation. No padding was 
counted in the experiment. 

• Primitives is similar to the hand-coded representation 
described above, but we assume that all elements of the 
message are represented by the shortest primitive type (e.g., 
byte, short, integer) rather than minimal bit values. 

• Deflate applies a Ziv-Lempel technique (deflate) to each 
message individually. The technique is from the standard 
Java library (java.util.zlib) and is set to ‘balanced’ mode, 
which produced the best compression in pilot tests. 

• ASN.1 is a standard for the representation of tree data that 
has been proposed as a method reducing the verbosity of 
XML messages. The schema for our messages was not highly 
constrained, to simulate a groupware programmer who is not 
focusing on compression.  We encoded the messages using 
the Unaligned-PER ASN.1 scheme [13].  

5.3 Methods and Results 
We built a test application in Java that would carry out 
compression and decompression for each technique and for each 
of the three message traces (text, XML, objects), and record 
original size, compressed size, compression time, and 
decompression time. The trials were run on a Macintosh PowerPC 
G4 system running at 1.4 GHz. Table 4 shows the results of these 
tests, and also shows each technique’s savings compared to the 
original, and compared to the best technique (i.e., hand-coded).  

Figures 7 and 8 show the compression ratios and times for the 
different techniques (all decompression times were less than 1ms 
for all techniques). GMC created seven templates for the text 
trace, three for the XML trace, and four for the object trace. 

Table 4. Results of compression tests with text, XML, and 
serialized-object message traces. 

Technique 
Compress time 

(ms) per message 
Size (bytes) 
per message 

Percent of 
Original 

Percent of 
Hand-coded 

Text 
Original 0.0 88.4 100% 920% 
Hand-coded ≈0.0 9.6 11% 100% 
Hand-primitive ≈0.0 12.2 14% 127% 
GMC 1.0 17.7 20% 181% 
Deflate 2.9 86.8 98% 903% 

XML 
Original 0.0 224.5 100% 2455% 
Hand-coded ≈0.0 9.1 4% 100% 
Hand-primitive ≈0.0 12.2 5% 127% 
GMC 1.1 19.7 8% 199% 
Deflate 2.4 134.4 57% 1398% 
ASN.1 0.5 47.2 20% 491% 

Serialized Objects 
Original 0.0 277.5 100% 2887% 
Hand-coded ≈0.0 9.6 3% 100% 
Hand-primitive ≈0.0 12.2 4% 127% 
GMC 2.8 25.3 9% 263% 
Deflate 12.3 231.6 83% 2410% 
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Figure 7. Message sizes (payload) for all compression 
techniques (for GMC, size includes all overheads). 
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Figure 8. Average compression time per message, for all 
techniques (note that for the original trace, compression time 
is zero; for the hand-coded representations, it is near zero). 

5.3.1 Effects on actual bandwidth 
The evaluation shows that compression provides a substantial 
saving compared with the original messages. However, the results 
include only the groupware messages themselves; if the messages 
were to be sent across an actual network, they would have to be 
sent inside packets, which would incur additional cost for the 
packet headers. We do not include packet overheads in our 
calculations, however, because there are different ways of sending 
the messages that would result in different amounts of overhead 
(and which have nothing to do with the compression techniques).  

The most basic method for transmission is to send one message 
per UDP packet, which adds 28 bytes (20 for the IP header, 8 for 
the UDP header). This is often larger than the compressed 
message itself (see Table 4), and so this method would 
dramatically reduce any difference between the compression 
techniques. However, there are other ways to send messages that 
avoid this overhead. In particular, we assume that several 
groupware messages will be aggregated into a single packet, and 
that the payload portion of a packet will be much larger than the 
header when it is sent. For example, if packets contain 10 
messages of 25 bytes each, header overhead is reduced to 11%. In 
this case, the total bandwidth requirement for sending 30 

messages per second (for the object stream) is reduced from 6819 
bytes/sec to 834 bytes/sec, enough savings to allow for a voice 
link, a higher-quality video signal, or a higher message frequency. 

5.3.2 GMC overhead in the evaluation 
Overhead in GMC consists of three types of announcements: new 
templates, additions to an existing template’s dictionary, and 
frequency lists for templates that are Huffman-encoded. The data 
sizes for all overheads are included in the results above, but are 
reported separately here in Table 5. 

Table 5. Details of GMC announcement overhead 

Data 
Type 

Templates 
Dictionary 
Additions 

Frequency Lists 

Text 7 (718 bytes) 781 (6 bytes each) 5 (1K bytes each) 

XML 4 (1077 bytes) 534 (6 bytes each) 3 (1K bytes each) 

Note that we do not include packet-header overhead in these 
results, for the same reason as given above – that there are several 
ways that announcements could be sent, and packetization could 
be different across these different schemes. For example, 
announcements can be sent reliably (without requiring a separate 
TCP channel) if new announcements are included at the front of 
every outgoing aggregated UDP packet, until the receiver sends 
an acknowledgement.  

6. DISCUSSION 
In this section we summarize our main results, and consider 
several issues that arise from this research: whether programmers 
should use GMC or hand-coded representations, how the GMC 
results generalize to other groupware traffic, possible 
improvements to GMC, and how GMC works with other network 
infrastructure in a groupware system. 

6.1 Summary of results 
Our experiments show that GMC provides substantial 
improvements both over uncompressed messages and over ‘low 
programmer effort’ methods like ASN.1 and deflate (Ziv-Lempel). 
Compared to the original text stream, the GMC-compressed 
messages were 20% of the original size, and XML and serialized 
objects were even better (8% and 9% of original). In contrast, the 
Ziv-Lempel algorithm was not particularly effective on text or 
serialized objects, and only reduced the XML messages to 57% of 
original size. Last, the ASN.1 encoding reduced XML to 20% of 
original size, but was still more than twice the size of GMC.  

Furthermore, GMC was extremely fast in comparison to other 
techniques: with our test setup, GMC used between 1.0 and 2.8 
milliseconds to compress messages; in contrast, deflate used 
between 2.9 and 12.3 ms per message.  

However, GMC produces messages that are larger than hand-
coded representations (either minimal-bit or minimal-primitive 
representations). GMC-compressed messages were approximately 
twice the size of the hand-coded version for all three message 
traces. Thus, although GMC represents a dramatic saving over 
uncompressed messages, there is still room for additional 
compression if the application programmer wishes to work for it.   

6.2 GMC vs. hand-coded representations 
Given the superior compression of the hand-coded representation, 
it is worth asking whether groupware programmers should simply 



use these minimal formats. There are three reasons why 
programmers should consider GMC. First, the amount of effort 
required to design and maintain the hand-coded format is 
substantial; in contrast, GMC requires almost no effort. Second, 
even though GMC messages are twice the size of hand-coded 
messages, the actual effect on bandwidth is relatively small 
(ignoring packet overhead): moving from GMC to a hand-coded 
representation would change the bandwidth requirements (for 30 
messages/sec) by only a small amount. Third, there are ways that 
the compression of GMC can be improved (see below), which will 
further reduce the difference between the two techniques.  

There are, however, situations where the hand-coded 
representation should be chosen over GMC. In particular, if a very 
large number of messages is sent out per second (e.g., in a peer-
to-peer system with many clients), then the bandwidth savings of 
a minimal representation will multiply. Although these situations 
may happen, they are not likely, particularly given the popularity 
of the centralized-message-server architecture that limits upload 
bandwidth requirements for groupware clients. 

Even when extreme compression is required, it may not be 
required immediately in the development process; therefore, GMC 
is valuable for prototyping groupware systems and testing them in 
real-world conditions, even if the programmer wishes to 
eventually move to a hand-coded representation.  

Last, in some cases there may be tools other than GMC that can 
provide a balance between programmer effort and compression. 
Game libraries offer compression rates that are near hand-coded 
levels, and if the programmer is willing to conform to the 
abstractions dictated by the library, they can achieve good results 
without doing the custom representation themselves. Similarly, if 
a programmer wishes to carefully constrain the schema of an 
XML message type, good compression can be achieved with the 
ASN.1 format. In these cases, however, there is still a 
considerable amount of effort required – game libraries generally 
provide only low-level support, and constraining an XML schema 
for ASN.1 still requires that programmers calculate much of the 
representation themselves. No method other than GMC offers 
high performance with minimal effort. 

6.3 Generalizing the results 
The main strength of GMC is in reducing between-message 
repetition, and so GMC will work well in any groupware system 
that uses message types that have some characteristics in common 
with those seen in our experiments. In addition, the more verbose 
the message structure, the better GMC will work – so if a 
groupware programmer defines a less verbose text representation, 
the savings from GMC will be reduced (although likely still worth 
doing). Finally, some groupware systems will send more data-
intensive messages (e.g., pictures or sounds), and GMC will be 
less effective on these messages. It will still compress both the 
structure and the content of the messages, but its performance will 
move towards that of a basic zlib implementation.  

6.4 Possible improvements to GMC 
There are several possible improvements that could be made to 
various parts of the GMC scheme. Here, we consider three: 
composite templates, recoding of numbers, and aggregation. 

 

 

Composite templates 

The structural elements of two similar messages are exactly the 
same (see Figure 3), but GMC can only recognize contiguous 
repetition: that is, wherever there is a variable data element in a 
message, GMC must output two separate lookups: one for the 
repeated sequence before the data value, and one for the sequence 
after. If templates could have ‘holes’ in them for data values, then 
an entire message structure could be saved in a single template, 
saving several bytes in lookup codes.  

One simple way to accomplish this is to build a second set of 
templates on the output of the first pass. For example, if the 
system repeatedly sees the lookup-code sequence L1 <esc> L2 
<esc> L3 in the output of the compressor, it could form a new 
template (L4), placing the two escape sequences at the end. 
Although this method would only save a few bytes per message, 
the messages are already so small (17-25 bytes) that a few bytes 
could make a fairly large relative improvement.  

Recoding numbers from text to binary 

GMC currently treats all elements of text and XML messages as 
strings; but encoding numbers as strings is inefficient. Encoding 
numbers in binary representations can save a few additional bytes. 
This could work as follows: when an escape sequence is written 
out (i.e., a sequence of characters not in a template), GMC could 
check whether the sequence is a number. If so, a different escape 
code is used to indicate a number, and a binary representation is 
written out instead of the characters. Table 6 shows how different 
number ranges are represented, and the space savings that can be 
realized. Note that this requires that one of the codes in the 256-
entry dictionary be reserved for the additional escape (this is not a 
difficult requirement, since GMC almost never uses all the 
dictionary entries).  

Table 6. Savings from recoding numbers from text to binary. 

Number range Text bytes Binary bytes Average saving 
-127..+127 1-3 1 1.13 bytes/number 

±128.. ±32767 3-5 2 2.67 bytes/number 
±32768..±8388607 5-7 3 4.40 bytes/number 

Aggregation 

It is possible for several messages to be grouped together into a 
single packet; if this is done, then there are additional 
opportunities to compress the aggregated message. In particular, 
Ziv-Lempel compression techniques are likely to be more 
effective, since the ‘message’ is now longer. Aggregation can 
happen in situations where the data-gathering rate is higher than 
the send rate: for example, telepointer positions are collected at a 
rate of 30/second, but are only sent at a rate of 5/second. This may 
be done for a variety of reasons (e.g., to maintain a high-
resolution telepointer playback even in a low-send-rate situation), 
and would require that GMC coordinate its activities with other 
elements in a network layer (e.g., the aggregator). 

6.5 GMC as part of network infrastructure 
Although GMC can work as a stand-alone module (and the 
reference implementation is designed in this way), it is best 
thought of as one part in a larger network layer. A more 
comprehensive network infrastructure for a groupware system 
should deal with a wide variety of quality of service issues, and 
should couple the use of compression to monitoring of available 
bandwidth, rate control schemes, and latency tolerance.  



Under the control of a network layer, GMC would no longer run 
in automatic mode; parameters such as allowable compression 
time, desired compression rate, and maximum number of 
templates to create could all be under the control of the 
application or the network infrastructure. Adjustments to these 
parameters would be made to achieve overall quality-of-service 
goals. In addition, having a network layer greatly simplifies 
GMC’s announcement requirements, since we assume that a 
network layer would already be handling all communication, and 
could therefore deal with the reliability requirements of the 
announcements.  

7. CONCLUSION 
Messages sent by groupware systems can take many forms, and 
although different forms have different advantages, most common 
formats are extremely inefficient. Rather than force groupware 
programmers to build efficient representations, we designed 
GMC, a message compressor that automatically reduces a wide 
variety of formats without requiring knowledge of message 
structure or content. GMC requires almost no effort or attention 
from the application programmer, is fast, and dramatically 
compresses text, XML, and serialized objects. Our next steps with 
GMC are to implement the improvements discussed above, and 
then integrate the system into a full networking layer for 
groupware. The reference implementation of GMC is available at 
hci.usask.ca/research/compression.shtml. 
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