
Improving Network Efficiency in Real-Time Groupware
with General Message Compression

Carl Gutwin, Christopher Fedak, Mark Watson, Jeff Dyck, and Tim Bell*

Computer Science Department
University of Saskatchewan

110 Science Place, Saskatoon, Canada

*Computer Science Department
University of Canterbury

Private Bag 4800, Christchurch, New Zealand

carl.gutwin, chris.fedak, mark.watson, jeff.dyck @usask.ca; tim.bell@canterbury.ac.nz
ABSTRACT
Groupware communicates by sending messages across the
network, and groupware programmers use a variety of formats for
these messages, such as XML, plain text, or serialized objects.
Although these formats have many advantages, they are often so
verbose that they overload the system’s network resources.
Groupware programmers could improve efficiency by using more
compact formats, but this efficiency comes at the cost of increased
complexity, reduced convenience, and reduced readability. In this
paper we propose an alternate approach for improving efficiency –
an automatic compression system that transparently minimizes
verbose formats. Our general message compressor – GMC –
automatically finds and removes redundancy in message streams,
without any knowledge of the contents or structure of the
message, and without any need for the programmer to change the
way they work. In tests with realistic message traces, GMC
reduced text messages to 20% of their original size, XML
messages to 8% of the original, and serialized objects to 9%.
Although not as compact as a hand-coded representation, GMC
provides most of the compression benefits with almost none of the
work – it allows groupware programmers to use convenient
message formats without compromising transport efficiency.

Categories and Subject Descriptors
H.5.3 [Group and Organization Interfaces]: Computer-supported
cooperative work; E.4 [Coding and Information Theory]: Data
compaction and compression.

General Terms
Algorithms, Design, Experimentation, Human Factors.

Keywords
Groupware performance, message compression, network delay.

1. INTRODUCTION
Groupware systems share information – such as data updates,
remote commands, lock requests, or user events – by sending
messages. Groupware programmers use a variety of formats for
these messages, such as XML, plain text, or serialized objects.
Each format has advantages: some are easy to construct (e.g.,

serialized objects), others fit well with existing tools (e.g., XML
messages with XML parsers), and others are easy for humans to
read (e.g., plain text). The drawback to all of these message
formats, however, is that they are verbose – that is, they use a
large amount of space to represent a small amount of information.
For example, the text telepointer message in Figure 1 uses 85
bytes to send a timestamp, a client ID and a new pointer location.
Serialized objects are even worse – a simple telepointer event
object can require 267 bytes in serialized form.

(timestamp: 803488132 sender_id: 12 session_id:
9357)(telepointer x: 1138.0 y: 601.0)

Figure 1. A text telepointer message

Inefficient message representations are a major problem because
messages must be sent across the network, and current groupware
systems regularly run out of network bandwidth. If a system tries
to send more data than it has bandwidth, messages will pile up,
and latency will increase to the point where many functions of the
system (such as telepointers, locks, and shared data structures) are
unusable. There are several situations that can result in low
available bandwidth for a groupware system: for example, low-
data-rate networks (wireless or dialup), high-bandwidth networks
that already have a large amount of traffic, or broadband
connections with asymmetric upload/download rates. In these
situations, groupware can exceed bandwidth with its own
messages, choking its own communication channel.

Even though network capacities are increasing in general,
situations of low available bandwidth are not going to disappear
in the foreseeable future. As a result, it is important to reduce the
amount of data sent by the groupware system. There are several
methods for reducing data rate (e.g., send messages less
frequently) – but the inefficiency of message formats is an
obvious place to start. In many groupware systems, the majority of
the data sent between clients is message structure or syntax, rather
than critical information. If messages could be represented more
efficiently, groupware applications would need less bandwidth,
and so would be usable in more network situations (or,
alternatively, would be able to send messages more often).

Groupware programmers can make their messages far more
efficient by designing compact representations – for example, by
using only the minimum number of bits necessary to represent
numbers, and by hard-coding the order of fields and parameter
lists. In fact, most networked games already do this, and it is clear
that they have greatly reduced their bandwidth requirements as a
result. However, there are problems with asking groupware
programmers to use efficient message representations: compact
formats are much more difficult to design and build, are less
flexible, and provide none of the benefits described above (such
as readability, convenience, or interoperability).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CSCW'06, November 4–8, 2006, Banff, Alberta, Canada.
Copyright 2006 ACM 1-59593-249-6/06/0011...$5.00

In this paper we propose an alternate approach: rather than asking
groupware programmers to design minimal representations, we
have built a groupware message compressor that minimizes
message representations automatically. GMC is designed
specifically to compress the message structure and syntax that is
useful for programmers, but inefficient at the transport level: it
does this by building a dictionary of sequences that are repeated
across a set of messages, and replaces those sequences with short
lookup codes. GMC can also further compress message data using
a Ziv-Lempel algorithm and Huffman coding. Furthermore, GMC
works with all networking designs, including priority scheduling
algorithms, aggregation policies, and network protocols, including
unreliable transport protocols such as UDP.

In tests with realistic message traces, GMC dramatically reduced
message sizes: text messages to 20% of their original size, XML
messages to 8%, and serialized objects to 9%. GMC performs
substantially better than per-message Ziv-Lempel compression,
which compresses XML to 57% but does not compress text
messages or serialized objects at all. In addition, compression
with GMC is fast (less than 2ms per message in our test setup),
and the system is fully under application control, so that the
compressor can fit into an overall application-level QoS scheme.

The main contribution of GMC is that it allows groupware
programmers to use representations that are convenient, without
sacrificing transport efficiency. GMC is easy to understand and
implement, and can be ported to any groupware system.

In the next sections we review the foundations underlying the
work, consider where repetition occurs in a groupware message
stream, introduce GMC and its compression techniques, report on
the performance of the system, and discuss ways that GMC or
similar compressors can be used in real-time groupware systems.

2. BACKGROUND
This research is based on four foundations: groupware messaging,
groupware network performance, data compression, and
techniques for compressing network data.

2.1 Groupware Messaging
Distributed groupware systems have to send information to one
another: information about state changes, requests for data,
commands, and notification of user events. This communication
happens through messages – parcels of information sent over the
network that encapsulate one update, request, command, or
notification [17]. Groupware systems use messages regardless of
whether the underlying system uses distributed data structures,
remote procedure calls, or a notification server, and regardless of
whether the model layers are centralized or replicated (since even
centralized systems must distribute information about user actions
and view changes).

There are several possible types of message, depending on the
application. Examples include model-layer updates, telepointers,
streaming multimedia such as voice or video, system-level control
and feedback messages, text chat, and session-management
messages. Different message types have different characteristics,
but two main groups can be considered [5]: transactions concern
longer-term changes to the system, such as modifications to data
structures or lock requests, and are usually infrequent; streaming
messages are much more frequent, and provide information about
the transient state of a user’s activity or communication. An

important further distinction within the category of streaming
messages is between awareness messages and multimedia. Since
video and VoIP transmissions are usually already compressed,
and are usually handled with established protocols such as RTP
[21], we are more concerned here with awareness messages (e.g.,
telepointers, avatar movements, intermediate locations of objects
during drag operations, or changes to view locations). Streaming
awareness messages have different QoS requirements than do
transactions: in particular, they do not all have to arrive, but they
do need low latency. This means that they are better sent using
UDP – which is faster but non-guaranteed – than TCP [5].

Both transactions and awareness messages are usually small
enough to be sent whole, and are routed to other clients depending
on the system’s distribution architecture. In centralized-
communication systems, each client connects only to the server;
in a peer-to-peer architecture, each client makes a connection to
every other client [17]. The distribution architecture plays a major
role in a groupware system’s overall data rate, since routing
determines whether each messages is sent once (to the server) or
multiple times (to each client, assuming no native multicast).

We are concerned primarily with real-time distributed groupware
systems that send awareness messages and transactions. This
covers several types of real-world groupware: shared workspaces,
shared editors, collaborative virtual environments, and networked
games. We do not focus on asynchronous awareness servers or
media spaces since awareness systems generally have minimal
data volumes, and since multimedia systems generally use well-
established protocols for sending information (such as RTP).

Although some effort has been made to establish standard
protocols for groupware (e.g., [12]), these are not yet widespread,
and in practice, groupware programmers must determine what to
send and how to send it. A groupware message must encode
several pieces of information, both data and metadata:
• the sender of the message (client ID)
• the message ID (for loss detection and ordering)
• the application ID (since several groupware applications may

be sharing the same network port to get through firewalls)
• a timestamp (required to control playback from a buffer)
• the message type (e.g., telepointer move, model update)
• field names for each parameter (e.g., x position, y position)
• data values for each field

This information can be represented in several ways. Different
representations have different advantages, but usually at the cost
of message size. However, the strengths of text, XML, and objects
are enough that most groupware systems have used these formats:
for example, text strings are used by GroupKit [19] and
TeamRooms [18]; XML by Disciple [14], and serialized objects
by JSDT (jsdt.dev.java.net/) and JAMM [2].

2.2 Groupware Network Performance
The performance of real-time distributed groupware over real-
world wide-area networks has been frequently criticized (e.g.,
[4,10,25]). These performance problems are primarily due to
network issues: latency, which is the time required for information
to travel between locations; jitter, which is variance in latency;
loss, which results from network packets not arriving at their
destination; and insufficient bandwidth. These problems are
common in today’s wide-area networks, and although networking
advances are aiming to reduce these problems, the problems will

be present for some time to come. In the meantime, groupware
applications must attempt to deal with these issues themselves.

Network delay has been shown to have serious effects on users. It
can cause difficulties in coordinating collaborative actions
[25,16], in predicting others’ intentions [8], and in interpreting
gestural communication [9]. The overall effect is that
collaboration breaks down – groups tend to decouple their
collaboration and work more independently. When latency
becomes extreme (as happens when systems exceed their network
bandwidth), the distributed parts of the application appear to grind
to a halt – telepointers freeze, locks are never granted, and
changes are never propagated.

Delivering network performance in real-time groupware is a
difficult task due to the diverse performance needs of the
applications, and the situational factors that affect performance
requirements [7]. There are many different genres of groupware
(including games, whiteboards, conferencing systems, shared
editors, virtual classrooms, and collaborative virtual
environments), and each application can have multiple interaction
techniques with diverse quality of service requirements. The
applications also need to keep model layer data synchronized and
these requirements vary based on the needs of the application. In
addition, performance requirements are affected by situational
factors such as proximity to other users, the level of coupling and
dependence between actions, and the level of awareness that a
user wishes to maintain of their collaborators.

The diversity of requirements in groupware means that no one
technique can solve all performance problems. However,
bandwidth restrictions are one of the most critical causes of
latency in distributed systems, and the size and efficiency of
groupware messages will play a major role in any attempt to
improve groupware performance.

2.3 Data Compression
Compression means making a piece of data smaller by finding a
more compact way to represent it. There are two main types of
data compression – lossless, which guarantees that the
decompressed data is exactly the same as the source, and lossy,
which accepts some reduction in the quality of a picture or signal
in order to achieve higher compression. For groupware messages,
we are almost exclusively interested in lossless methods, since all
of the parts of the message are required in order to interpret it
correctly. Lossy methods can only be used to compress certain
types of data elements within the message (such as pictures).
There are many lossless compression techniques. These are
generally categorized into statistical modeling and dictionary
methods (see [3] for more detail on these methods).

Statistical modeling. Statistical modeling schemes represent the
symbols of an alphabet using variable-length bit sequences, and
use shorter sequences for more likely symbols. For example,
standard ASCII characters are represented with 8-bit codes, but in
many cases some characters are more likely than others; if the
more frequent characters had shorter codes, many messages could
be shortened. Huffman coding [11] and arithmetic coding [3] are
the most common methods for generating optimal bit codes.
Sometimes ad-hoc approximations to these are used, such as
coding the 15 most common values in 4 bits.

A more powerful version of statistical modeling takes account of
the context in which a symbol appears in order to more accurately

determine its probability; for example, the likelihood of an ‘e’ in
English text becomes much higher if one knows that the preceding
two characters were ‘t’ and ‘h’. The more accurate probability
distributions improve coding efficiency. The most advanced
context-modeling technique is the PPM family [3], which is
usually coupled with an arithmetic encoding scheme. PPM
techniques usually achieve the highest compression, but are
slower than other techniques. A related method is the BWT
transform, which permutes the text using sorting so that characters
are ordered by their context. This approximates PPM, but is much
more efficient to compute, and is used in the popular utility
bzip2. It has the disadvantage that data must be compressed in
reasonably large blocks, so is unsuitable for an interactive system.

Dictionary compression. Dictionary techniques replace sequences
of several symbols in the source message with indexes into a
dictionary. For example, the string “moveTelepointer” could be
replaced in a message by a dictionary index (e.g. ‘1’) as long as
both the sender and the receiver are using the same dictionary.
The entries in the dictionary can either be determined beforehand,
or built up adaptively as messages are read. The most well-known
adaptive dictionary encoders are the Ziv-Lempel family (e.g.,
LZ77 [26] and LZ78 [27]) which are seen in common tools such
as gzip and deflate. Some Ziv-Lempel techniques work
without a separate dictionary, by replacing a sequence with a
pointer to a previous occurrence of that sequence in the message
itself. Thus the text is its own dictionary, and adaptation happens
naturally as the nature of the text changes.

2.4 Network Compression
Most data compression techniques are designed for use in
compressing files rather than a sequence of individual messages
sent out across a network. In the case of a stream of messages,
additional issues must be taken into consideration. One main
concern is reliability – some transport protocols (e.g., UDP) that
are commonly used to send groupware messages are not
guaranteed to arrive. These protocols are essential because they
provide a much better fit to the QoS requirement of streaming
awareness messages than reliable protocols such as TCP [5];
therefore, the message compression technique must be able to deal
with the loss of some parts of the overall data stream. As a result,
the Ziv-Lempel techniques that refer to previous parts of the
stream (e.g., LZ78 [27]) cannot be used for compressing the entire
stream as if it were one file (these techniques can still be used to
compress individual messages, however). In the network setting, a
variety of compression techniques have been used:
• Hardware compression. Some hardware manufacturers have

attempted to address the problem of bandwidth limits with
network compression modules. These devices compress
individual outgoing packets and then transport the resulting
message over a connection to another such device, which
decompresses it.

• Packet compression. There are a number of schemes for
compressing IP packets. These techniques use intra-message
compression (i.e., each packet has its own dictionary) or
probabilistic algorithms for compression [24]. For example,
HP packet-by-packet compression [22] uses per-packet
dictionaries, run-length encoding, and a reduced code set. In
one evaluation, this method compressed general network
packets to approximately 52% of original size. Although
these techniques have been used to improve performance for

some types of network connections (e.g., PPP), they are still
not commonly seen. One reason is that they are generally not
under application control – that is, they require additional
computation time, and in some cases, this additional time is
unacceptable to the application.

• Delta compression. Another manner in which network traffic
can be compressed is via delta compression (also called delta
encoding). Here, after an initial state is established, messages
that are transmitted contain only changes since the last
update. This is the technique used in screen-sharing systems
such as VNC [1]. Note that in most cases, delta compression
has strict reliability requirements, since the delta values are
relative to a previously-sent message.

• Tailored compression schemes. Some systems can have their
bandwidth use dramatically reduced if there is knowledge
about how the data in the messages will be used (or not
used). A good example of this is Compressed X
(www.vigor.nu/dxpc/), a protocol for sending X-Windows
messages more efficiently. Compressed X does several things
to reduce message size: it removes all unused information
from the message, recodes common remote procedure calls
(RPCs) using shortcuts, and recodes the data of these RPCs
with minimal bit-length representations.

• Game techniques. Multiplayer networked games represent a
highly evolved category of groupware. As such, game
programmers have had to address the problem of
compressing numerous messages sent over lossy connections
[23]. Games are strongly oriented towards using minimal
representations, but they achieve this in different ways. First,
some game networking libraries provide programming
abstractions that let the programmer specify representation.
For example, the Torque Network Library [6] provides
wrappers on all ‘writeToStream’ messages that allow the
programmer to specify the number of bits to use. Second,
some game libraries provide standard message structures that
the system knows how to compress. For example, Raknet
[20] provides standard object types that programmers must
use if they want their messages to be compressed. Third, all
games also employ dictionaries for remote procedure calls
and commonly-used strings.

• Binary formats for XML. ASN.1 (Abstract Syntax Notation
One) is a standard for the binary encoding of tree formatted
data. As such, it has been suggested as a less verbose
encoding method for XML [13]. This method requires that
the application programmer define an XML schema for the
messages, and then convert each message to a binary form.
The degree of compression is dependent upon how carefully
the designer constrains the schema [15].

Although each of these techniques is effective in some
circumstances, none are entirely appropriate for groupware
compression. In the case of IP-packet and hardware compression,
the techniques rely on within-message redundancy, which as will
be discussed below, offers relatively small savings for groupware
messages. Furthermore, hardware compression requires devices at
either end of the data link, which limits the generality of the
method. Delta compression is inappropriate because of its
reliability requirements; in practice (e.g., with systems like VNC),
this presupposes a TCP-style lossless transmission protocol. The
remaining techniques (custom formats, game formats, and binary
XML formats) are applicable to groupware, but require a non-

trivial degree of work on the part of the programmers and
designers. Much like creating minimal length encodings for
messages, these techniques make the process of developing and
modifying the application far more complex, and require that
programmers build their systems in particular ways.

Given that existing techniques are not perfectly suited to the
requirements of groupware, we next look in more detail at
groupware messages, and consider where savings could be found
from a groupware-specific compression scheme.

3. SOURCES OF INEFFICIENCY IN
GROUPWARE MESSAGES

There are three main sources of redundancy in groupware
messages that can be exploited for compression: repetition of
sequences within a single message; repetition across several
messages, and inefficient encoding of the symbols of the message.

3.1 Repetition within a single message
There are often repeated sequences inside groupware messages,
and these repetitions can be compressed using a dictionary
scheme. This is the approach taken by some existing packet
compressors. However, most groupware messages are relatively
short, and dictionary compression is less effective with short
source documents because there is less opportunity for sequences
to be repeated.

For example, the example moveObject message in Figure 2,
generated as a user drags an object across the screen in a shared
whiteboard, shows the sequences that can be replaced by pointers
to earlier occurrences of the text. Most of the repeated sequences
are short, and (in this case) none are repeated more than twice.
Only a small reduction is therefore possible by compressing the
message as an individual document.

[moveObject [senderID 168.142.1.101::5051] [objectID 153] [x 1537] [y 1035]] [moveObject [senderID 168.142.1.101::5051] [objectID 153] [x 1537] [y 1035]]

Figure 2. Within-message repetition.

3.2 Repetition between messages
In contrast, there is often considerably more repetition from one
message to the next, as long as messages are of the same type.
Figure 3 shows two example moveObject messages. Several
elements of the two messages are identical: the message type
indicator, the sender and object IDs, parts of the data elements,
and the field-delimiter syntax. As can be seen in the figure, all but
a few bytes of the message exactly are the same.

[moveObject [senderID 168.142.1.101::5051] [objectID 153] [x 1537] [y 1035]] [moveObject [senderID 168.142.1.101::5051] [objectID 153] [x 1537] [y 1035]]

[moveObject [senderID 168.142.1.101::5051] [objectID 153] [x 1538] [y 1036]] [moveObject [senderID 168.142.1.101::5051] [objectID 153] [x 1538] [y 1036]]

Figure 3. Between-message repetition.

This repetition of certain message patterns is the basis of the
GMC template compression scheme described below. The amount
of compression that is possible with this approach depends on the
amount of self-similarity in the messages. Most groupware
systems use several message types, and other types of messages
(e.g., telepointer or chat messages) will show much less similarity
to the object move message in Figure 3. For each message type,
however, there will be considerable self-similarity, and in many
systems, there are only a small number of message types.

Furthermore, at least some types are likely to be seen often (e.g.,
awareness messages such as object and telepointer moves).

3.3 Inefficient encoding
Groupware systems often encode the elements of a message
inefficiently. For example:
• Encoding of numbers. String representations of numeric

values takes more space than binary representations.
• Field widths for numeric data types. Some fields use more

space than is needed: for example, screen coordinates are
often represented as four-byte integers, even though they
have a much smaller possible range.

• Symbol frequency. The symbols (e.g., the characters) used in
groupware messages do not occur with the same frequencies,
but are often represented using the same number of bits. As
described above, schemes such as Huffman coding give the
more frequent symbols shorter codes.

• Structure as text. Field names and message types are often
represented as text strings; these could be represented as an
enumeration that would use considerably less space.

How small is an efficient encoding? As an example, Table 1
compares the text-encoded message of Figure 3 with a customized
minimal format that represents values in binary, and uses
minimal-width fields for the possible data ranges.

Table 1. Sizes of text and minimal representations. The
‘padding’ field is needed to reach a byte boundary.

Field Range Text format Minimal format
Message type 0..31 12 bytes 5 bits

Sender ID 0..63 31 bytes 6 bits

Object ID 0..1023 15 bytes 10 bits

X 0..2047 9 bytes 11 bits

Y 0..2047 9 bytes 11 bits

Padding 5 bits

Total 608 bits (76 bytes) 48 bits (6 bytes)

In the next section, we introduce GMC, a compressor that
performs both between-message and within-message compression.

4. GMC
The goal of GMC is to automatically and quickly obtain most of
the compression that is possible with a hand-coded representation,
but without requiring any extra work on the part of the application
programmer. GMC has two parts: a template compressor that
finds repeated structure and syntax elements between messages,
and a within-message compressor that uses Ziv-Lempel to reduce
the size of large, data-intensive messages.

4.1 Between-message (template) compression
The goal of between-message compression is to remove sequences
that are the same across several messages in a stream. The scheme
works by treating one message as a template and then comparing
subsequent messages to the template to determine which
sequences are repeated. Any repeated sequences are assigned a
code and entered into a dictionary; these codes can then be used
to replace the sequence in any new message. There are three parts
to the scheme: creation of a new template, compression of a
message, and announcement of new templates. These are
described below, and general algorithms are given in Figure 4.

Function createTemplate (message m)

• create new template T:
• build a suffix trie S from message m
• create a lookup table L

• compress the previous n messages with T and determine the overall
compression ratio

• if the ratio with T is better than the previous ratio:
• if there are fewer than the maximum number of templates:

• announce T as a new template
• else

• find the least efficient existing template Q
• announce T as a replacement for Q

Function compressMessage (message m)

• for each template T:
• remainder = m

• result(T) = Ø

• while remainder is not empty:

• find the longest prefix p of remainder in template T
• if there is a prefix:

• if p is in the lookup table:
• add the key for p to result(T)

• else
• add p to the lookup table and add the new key to result(T)

• remove p from remainder

• if there is no prefix of remainder in T:

• find the sequence of characters s that is not in T
• add the escape code and s to result(T)

• remove s from remainder

• if T has a Huffman code:
• encode result(T) with the code set

• record the compression ratio r(T) = size(result) / size(m)

• if no r(T) is lower than the desired compression ratio:

• create a new template from message m
• return the best result and the number of the associated template
Figure 4. Algorithms for creating templates and compressing

messages using templates.

Template creation. A new template is created for a message by
constructing three elements:
• a suffix trie from the bytes of the message, which allows for

fast determination of longest-substring matches in the
compression phase;

• a lookup dictionary (initially empty), which will be used to
store repeated sequences as they are found during the
compression phase;

• a Huffman frequency table, which keeps track of which
dictionary entries are used most often; after a number of
messages have gone by, the frequencies are used to create a
Huffman code set for the template.

Message compression. Compression of a new message involves
finding the longest substrings of the current message that are also
in the template. Whenever a substring is found, we replace it in
the original message with the corresponding dictionary key. If we
encounter bytes that are not in the template, we add them directly
to the output as an escape sequence. A compressed message
therefore consists of lookup codes and escape sequences.

Announcing new templates and dictionary entries. Whenever
GMC creates a new template, it must send the template to other
clients in the groupware system. Similarly, whenever the
compressor adds an entry to the dictionary, it must tell others to
add the entry to their dictionaries as well. We call these
notifications announcements, and we assume that they are sent
reliably (since messages cannot be decompressed correctly until
the announcements arrive). The number of announcements
depends on the characteristics of the message stream itself, but the
expected number of templates is low – in the evaluation below, a
stream of about 13,000 messages resulted in seven templates (of
about 700 bytes each) and 781 dictionary entries (6 bytes each).

There are a few message types for which templates are not useful
– in particular, one-of-a-kind messages, such as those that send
model-layer data to late entrants. In these cases, it would be
useless to have the other clients build a template: therefore, we do
not tell others to build the template until the second message of a
type comes in. That is, GMC only announces the new template
when it is used for a new message (showing that there is at least
one other message that is similar to the template).

4.1.1 Balancing compression ratio and time
The algorithm used in GMC has two variables that can be used to
tune the compression: the amount of time needed to compress a
message, and the desired compression ratio. GMC attempts to
automatically find a reasonable balance: with each message, it
gradually lowers the target compression ratio until compression
time exceeds a threshold (currently 2ms).

A third variable in GMC is the number of templates created by the
scheme. We assume that GMC must work on a heterogeneous
stream of messages, and so must create as many templates as there
are self-similar message types in the stream, in order to achieve
good compression. GMC does this automatically, by creating new
templates whenever the compression rate for a new message drops
below a threshold. GMC maintains a set of templates, and
compresses a message using the template that gives the best result.
Multiple templates means that each message must record the
template that was used to compress it, information that is placed
in the message header (see below).

GMC’s template compressor is completely unaware of the
structure or meaning of the messages that it processes. This means
that it will work with any message type, and also means that it is
naturally adaptive to changes in the message stream. That is, if
one type of message gives way to another, GMC will simply
create a new template for the new message type.

4.2 Within-message compression
The template compression scheme described above removes
repeated sequences that appear in every message in the stream.
Although this removes a main source of redundancy, there are still
cases where the data elements of the message contain repeated
information (e.g., the text part of a chat message). Since template
compression does not affect elements that are unique to a
message, data-intensive messages can be compressed further.

GMC identifies data-intensive messages by keeping track of the
size of the escape sequences; when this value exceeds a threshold
(currently 100 bytes), GMC runs a standard zlib algorithm
(deflate) on the output of the template compressor. Deflate uses a

mixture of dictionary compression and Huffman encoding to
compress the input. The resulting message size is compared with
the input: in cases where the algorithm actually increases the size
of the message, no compression is carried out.

Within-message compression is only valuable in a few cases (e.g.,
when participants send files to each other, or when the system
sends the model layer to a late entrant). Nevertheless, it is
inexpensive to include the functionality in GMC, since zlib is
built into many class libraries (we use java.util.zlib), and can
make a substantial difference for large messages.

4.3 A compressed-message protocol
A compressed message must be sent with information about how
to decode it. We assume that GMC has already sent the template
and dictionary announcements needed to decompress the
message; however, we must send additional information with each
message: namely, whether zlib compression is used, whether
template compression is used, and if so, which template.

We designed a simple message protocol for GMC messages that
contains this information (see Table 2). This protocol could easily
be integrated into a more complete groupware message protocol,
but for illustration, we have developed it to stand alone. The
protocol uses a variable-length header that can be up to 16 bits:
one bit to state whether deflate is used or not; one bit to state
whether template compression is used or not; and if template
compression is used, 14 bits to state the template number. This
allows for 16,384 templates across the entire system (e.g., 1,638
clients who each announce ten message templates). Note however
that this number of templates would only be used for
decompression: for compressing, each client only uses the small
number of templates that they themselves have generated.

Table 2. Message protocol for GMC-compressed messages

Header Payload
Deflate? Template? Template no. Compressed message

1 bit 1 bit 14 bits Variable length

4.4 An example of GMC in code
Figure 5 shows an example of the code that would be written to
use GMC in a Java groupware system. We assume that there are
generic Sender and Receiver objects that handle network
communication. As can be seen from the example, using GMC
requires only a few additional calls; in addition, if GMC were to
be integrated with the network layer, it could be made completely
transparent to the programmer.

Sender:

GMC gmc = new GMC();
String message = "(timestamp: 716626384 sender_id: 12

session_id: 9357)(telepointer x: 308.0 y: 78.0)";
Sender.send(gmc.encodeString(message));

Receiver:

GMC gmc = new GMC();
String incoming = (String) gmc.decodeString(Receiver.receive());
System.out.println(incoming);

Figure 5. Compressing and decompressing a text message

5. EVALUATION OF GMC
We tested our implementation of GMC by comparing its
performance with other compression schemes on three realistic

message traces. The goals of the evaluation were to compare
compression ratios and computation time, and to determine how
GMC compared both to hand-coded representations and to other
low-effort compression techniques.

5.1 Dataset
We used a GroupKit message trace, recorded from a drawing
program, as the basis for an evaluation dataset. The trace has
12,850 messages gathered over 47 minutes, and contains seven
message types: telepointer position, object create, object resize,
object move, text chat, text box edit, and late-entrant model-
update messages. The relative frequencies of each type are shown
in Table 3. Note that object-resize messages are common because
this function is used in creating a new object (i.e., objects are
created on mouse down, then resized as the mouse is dragged).

The messages were used to generate new traces in three different
formats: text, XML, and Java objects. Examples of each format
are shown in Figure 6. The overall compressability of the streams
was tested by running gzip on the text and XML traces as files:
text was reduced to 10.4% of its original size, and XML to 4.2%.

Table 3. Number and frequency of message types.

Message type # in trace % of total
Telepointer position 10593 82.4%
Object create 97 0.75%
Object move 265 2.1%
Object resize 958 7.5%
Text chat 20 0.15%
Text box edit 916 7.1%
Model update 1 <0.01%

Text:

(timestamp: 716626384 sender_id: 12 session_id:
9357)(telepointer x: 308.0 y: 78.0)

XML:
<group_event>
 <timestamp> 716626384 </timestamp>
 <sender_id> 12 </sender_id>
 <session_id> 9357 </session_id>
 <event_content>
 <telepointer_event>
 <x> 308.0 </x>
 <y> 78.0 </y>
 </telepointer_event>
 </event_content>
</group_event>

Objects (class definitions):
abstract class AbstractGroupEvent {
 int sessionID, senderID;
 Long timestamp;
}
class TelepointerEvent extends AbstractGroupEvent{
 int x, y;
}

Figure 6. Examples of the three test representations.

5.2 Compression techniques
We compared GMC to several other techniques: two types of
hand-coded representation, a within-message zlib compressor, and
an XML-specific representation called ASN.1.
• GMC operated as described above, in ‘fully automatic’

mode, with template compression and within-message
compression (deflate). The desired compression ratio started

at 30%, and was reduced for each message until compression
time exceeded 2ms per message. Two bytes were added to
each message for the message header (see Section 4.3).

• Hand-coded is a custom binary representation that uses no
syntax or delimiters, converts all field names and message
type names to enumerated types, and represents all data
values in a minimum number of bits. Table 1 above shows an
example of this type of representation. No padding was
counted in the experiment.

• Primitives is similar to the hand-coded representation
described above, but we assume that all elements of the
message are represented by the shortest primitive type (e.g.,
byte, short, integer) rather than minimal bit values.

• Deflate applies a Ziv-Lempel technique (deflate) to each
message individually. The technique is from the standard
Java library (java.util.zlib) and is set to ‘balanced’ mode,
which produced the best compression in pilot tests.

• ASN.1 is a standard for the representation of tree data that
has been proposed as a method reducing the verbosity of
XML messages. The schema for our messages was not highly
constrained, to simulate a groupware programmer who is not
focusing on compression. We encoded the messages using
the Unaligned-PER ASN.1 scheme [13].

5.3 Methods and Results
We built a test application in Java that would carry out
compression and decompression for each technique and for each
of the three message traces (text, XML, objects), and record
original size, compressed size, compression time, and
decompression time. The trials were run on a Macintosh PowerPC
G4 system running at 1.4 GHz. Table 4 shows the results of these
tests, and also shows each technique’s savings compared to the
original, and compared to the best technique (i.e., hand-coded).

Figures 7 and 8 show the compression ratios and times for the
different techniques (all decompression times were less than 1ms
for all techniques). GMC created seven templates for the text
trace, three for the XML trace, and four for the object trace.

Table 4. Results of compression tests with text, XML, and
serialized-object message traces.

Technique
Compress time

(ms) per message
Size (bytes)
per message

Percent of
Original

Percent of
Hand-coded

Text
Original 0.0 88.4 100% 920%
Hand-coded ≈0.0 9.6 11% 100%
Hand-primitive ≈0.0 12.2 14% 127%
GMC 1.0 17.7 20% 181%
Deflate 2.9 86.8 98% 903%

XML
Original 0.0 224.5 100% 2455%
Hand-coded ≈0.0 9.1 4% 100%
Hand-primitive ≈0.0 12.2 5% 127%
GMC 1.1 19.7 8% 199%
Deflate 2.4 134.4 57% 1398%
ASN.1 0.5 47.2 20% 491%

Serialized Objects
Original 0.0 277.5 100% 2887%
Hand-coded ≈0.0 9.6 3% 100%
Hand-primitive ≈0.0 12.2 4% 127%
GMC 2.8 25.3 9% 263%
Deflate 12.3 231.6 83% 2410%

0

50

100

150

200

250

300

Original Hand-
coded

Primitives GMC ASN.1 Deflate

A
ve

ra
ge

 b
yt

es
 p

er
 m

es
sa

ge
.

Text

XML

Objects

Figure 7. Message sizes (payload) for all compression
techniques (for GMC, size includes all overheads).

0

2

4

6

8

10

12

14

GMC ASN.1 Deflate

A
ve

ra
ge

 ti
m

e
pe

r m
es

sa
ge

 (m
s)

. Text

XML

Objects

Figure 8. Average compression time per message, for all
techniques (note that for the original trace, compression time
is zero; for the hand-coded representations, it is near zero).

5.3.1 Effects on actual bandwidth
The evaluation shows that compression provides a substantial
saving compared with the original messages. However, the results
include only the groupware messages themselves; if the messages
were to be sent across an actual network, they would have to be
sent inside packets, which would incur additional cost for the
packet headers. We do not include packet overheads in our
calculations, however, because there are different ways of sending
the messages that would result in different amounts of overhead
(and which have nothing to do with the compression techniques).

The most basic method for transmission is to send one message
per UDP packet, which adds 28 bytes (20 for the IP header, 8 for
the UDP header). This is often larger than the compressed
message itself (see Table 4), and so this method would
dramatically reduce any difference between the compression
techniques. However, there are other ways to send messages that
avoid this overhead. In particular, we assume that several
groupware messages will be aggregated into a single packet, and
that the payload portion of a packet will be much larger than the
header when it is sent. For example, if packets contain 10
messages of 25 bytes each, header overhead is reduced to 11%. In
this case, the total bandwidth requirement for sending 30

messages per second (for the object stream) is reduced from 6819
bytes/sec to 834 bytes/sec, enough savings to allow for a voice
link, a higher-quality video signal, or a higher message frequency.

5.3.2 GMC overhead in the evaluation
Overhead in GMC consists of three types of announcements: new
templates, additions to an existing template’s dictionary, and
frequency lists for templates that are Huffman-encoded. The data
sizes for all overheads are included in the results above, but are
reported separately here in Table 5.

Table 5. Details of GMC announcement overhead

Data
Type

Templates
Dictionary
Additions

Frequency Lists

Text 7 (718 bytes) 781 (6 bytes each) 5 (1K bytes each)

XML 4 (1077 bytes) 534 (6 bytes each) 3 (1K bytes each)

Note that we do not include packet-header overhead in these
results, for the same reason as given above – that there are several
ways that announcements could be sent, and packetization could
be different across these different schemes. For example,
announcements can be sent reliably (without requiring a separate
TCP channel) if new announcements are included at the front of
every outgoing aggregated UDP packet, until the receiver sends
an acknowledgement.

6. DISCUSSION
In this section we summarize our main results, and consider
several issues that arise from this research: whether programmers
should use GMC or hand-coded representations, how the GMC
results generalize to other groupware traffic, possible
improvements to GMC, and how GMC works with other network
infrastructure in a groupware system.

6.1 Summary of results
Our experiments show that GMC provides substantial
improvements both over uncompressed messages and over ‘low
programmer effort’ methods like ASN.1 and deflate (Ziv-Lempel).
Compared to the original text stream, the GMC-compressed
messages were 20% of the original size, and XML and serialized
objects were even better (8% and 9% of original). In contrast, the
Ziv-Lempel algorithm was not particularly effective on text or
serialized objects, and only reduced the XML messages to 57% of
original size. Last, the ASN.1 encoding reduced XML to 20% of
original size, but was still more than twice the size of GMC.

Furthermore, GMC was extremely fast in comparison to other
techniques: with our test setup, GMC used between 1.0 and 2.8
milliseconds to compress messages; in contrast, deflate used
between 2.9 and 12.3 ms per message.

However, GMC produces messages that are larger than hand-
coded representations (either minimal-bit or minimal-primitive
representations). GMC-compressed messages were approximately
twice the size of the hand-coded version for all three message
traces. Thus, although GMC represents a dramatic saving over
uncompressed messages, there is still room for additional
compression if the application programmer wishes to work for it.

6.2 GMC vs. hand-coded representations
Given the superior compression of the hand-coded representation,
it is worth asking whether groupware programmers should simply

use these minimal formats. There are three reasons why
programmers should consider GMC. First, the amount of effort
required to design and maintain the hand-coded format is
substantial; in contrast, GMC requires almost no effort. Second,
even though GMC messages are twice the size of hand-coded
messages, the actual effect on bandwidth is relatively small
(ignoring packet overhead): moving from GMC to a hand-coded
representation would change the bandwidth requirements (for 30
messages/sec) by only a small amount. Third, there are ways that
the compression of GMC can be improved (see below), which will
further reduce the difference between the two techniques.

There are, however, situations where the hand-coded
representation should be chosen over GMC. In particular, if a very
large number of messages is sent out per second (e.g., in a peer-
to-peer system with many clients), then the bandwidth savings of
a minimal representation will multiply. Although these situations
may happen, they are not likely, particularly given the popularity
of the centralized-message-server architecture that limits upload
bandwidth requirements for groupware clients.

Even when extreme compression is required, it may not be
required immediately in the development process; therefore, GMC
is valuable for prototyping groupware systems and testing them in
real-world conditions, even if the programmer wishes to
eventually move to a hand-coded representation.

Last, in some cases there may be tools other than GMC that can
provide a balance between programmer effort and compression.
Game libraries offer compression rates that are near hand-coded
levels, and if the programmer is willing to conform to the
abstractions dictated by the library, they can achieve good results
without doing the custom representation themselves. Similarly, if
a programmer wishes to carefully constrain the schema of an
XML message type, good compression can be achieved with the
ASN.1 format. In these cases, however, there is still a
considerable amount of effort required – game libraries generally
provide only low-level support, and constraining an XML schema
for ASN.1 still requires that programmers calculate much of the
representation themselves. No method other than GMC offers
high performance with minimal effort.

6.3 Generalizing the results
The main strength of GMC is in reducing between-message
repetition, and so GMC will work well in any groupware system
that uses message types that have some characteristics in common
with those seen in our experiments. In addition, the more verbose
the message structure, the better GMC will work – so if a
groupware programmer defines a less verbose text representation,
the savings from GMC will be reduced (although likely still worth
doing). Finally, some groupware systems will send more data-
intensive messages (e.g., pictures or sounds), and GMC will be
less effective on these messages. It will still compress both the
structure and the content of the messages, but its performance will
move towards that of a basic zlib implementation.

6.4 Possible improvements to GMC
There are several possible improvements that could be made to
various parts of the GMC scheme. Here, we consider three:
composite templates, recoding of numbers, and aggregation.

Composite templates

The structural elements of two similar messages are exactly the
same (see Figure 3), but GMC can only recognize contiguous
repetition: that is, wherever there is a variable data element in a
message, GMC must output two separate lookups: one for the
repeated sequence before the data value, and one for the sequence
after. If templates could have ‘holes’ in them for data values, then
an entire message structure could be saved in a single template,
saving several bytes in lookup codes.

One simple way to accomplish this is to build a second set of
templates on the output of the first pass. For example, if the
system repeatedly sees the lookup-code sequence L1 <esc> L2
<esc> L3 in the output of the compressor, it could form a new
template (L4), placing the two escape sequences at the end.
Although this method would only save a few bytes per message,
the messages are already so small (17-25 bytes) that a few bytes
could make a fairly large relative improvement.

Recoding numbers from text to binary

GMC currently treats all elements of text and XML messages as
strings; but encoding numbers as strings is inefficient. Encoding
numbers in binary representations can save a few additional bytes.
This could work as follows: when an escape sequence is written
out (i.e., a sequence of characters not in a template), GMC could
check whether the sequence is a number. If so, a different escape
code is used to indicate a number, and a binary representation is
written out instead of the characters. Table 6 shows how different
number ranges are represented, and the space savings that can be
realized. Note that this requires that one of the codes in the 256-
entry dictionary be reserved for the additional escape (this is not a
difficult requirement, since GMC almost never uses all the
dictionary entries).

Table 6. Savings from recoding numbers from text to binary.

Number range Text bytes Binary bytes Average saving
-127..+127 1-3 1 1.13 bytes/number

±128.. ±32767 3-5 2 2.67 bytes/number
±32768..±8388607 5-7 3 4.40 bytes/number

Aggregation

It is possible for several messages to be grouped together into a
single packet; if this is done, then there are additional
opportunities to compress the aggregated message. In particular,
Ziv-Lempel compression techniques are likely to be more
effective, since the ‘message’ is now longer. Aggregation can
happen in situations where the data-gathering rate is higher than
the send rate: for example, telepointer positions are collected at a
rate of 30/second, but are only sent at a rate of 5/second. This may
be done for a variety of reasons (e.g., to maintain a high-
resolution telepointer playback even in a low-send-rate situation),
and would require that GMC coordinate its activities with other
elements in a network layer (e.g., the aggregator).

6.5 GMC as part of network infrastructure
Although GMC can work as a stand-alone module (and the
reference implementation is designed in this way), it is best
thought of as one part in a larger network layer. A more
comprehensive network infrastructure for a groupware system
should deal with a wide variety of quality of service issues, and
should couple the use of compression to monitoring of available
bandwidth, rate control schemes, and latency tolerance.

Under the control of a network layer, GMC would no longer run
in automatic mode; parameters such as allowable compression
time, desired compression rate, and maximum number of
templates to create could all be under the control of the
application or the network infrastructure. Adjustments to these
parameters would be made to achieve overall quality-of-service
goals. In addition, having a network layer greatly simplifies
GMC’s announcement requirements, since we assume that a
network layer would already be handling all communication, and
could therefore deal with the reliability requirements of the
announcements.

7. CONCLUSION
Messages sent by groupware systems can take many forms, and
although different forms have different advantages, most common
formats are extremely inefficient. Rather than force groupware
programmers to build efficient representations, we designed
GMC, a message compressor that automatically reduces a wide
variety of formats without requiring knowledge of message
structure or content. GMC requires almost no effort or attention
from the application programmer, is fast, and dramatically
compresses text, XML, and serialized objects. Our next steps with
GMC are to implement the improvements discussed above, and
then integrate the system into a full networking layer for
groupware. The reference implementation of GMC is available at
hci.usask.ca/research/compression.shtml.

8. ACKNOWLEDGMENTS
This research was carried out as part of the NECTAR research
network, and is supported by the Natural Sciences and
Engineering Research Council of Canada.

9. REFERENCES
[1] AT&T Corp. VNC - How it Works, available at www.uk.

research.att.com/archive/vnc/howitworks.html, 1999.

[2] Begole, J., Rosson, M., and Shaffer, C., Supporting Worker
Independence in Collaboration Transparency, Proc. ACM
UIST 1998, 133-142.

[3] Bell, T., Cleary, J., and Witten, I., Text Compression.
Prentice Hall, Englewood Cliffs, N.J., 1990.

[4] Beigbeder, T., Coughlan, R., Lusher, C., Plunkett, J. Agu, E.,
Claypool, M. The effects of loss and latency on user
performance in unreal tournament 2003, Proc. ACM
SIGCOMM 2004 workshops on NetGames '04, 2004.

[5] Dyck, J., Gutwin, C., Subramanian, S., and Fedak, C. High-
Performance Telepointers. Proc. CSCW 2004, 172-181.

[6] GarageGames. Torque Network Library Design
Fundamentals, 2005. Available at:
opentnl.sourceforge.net/doxydocs/fundamentals.html

[7] Gracanin, D., Zhou, Y., and DaSilva, L. Quality of Service
for Networked Virtual Environments. IEEE Communications
Magazine, April 2004.

[8] Gutwin, C. The Effects of Network Delays on Group Work
in Real-Time Groupware. Proc. ECSCW 2001, 299-318.

[9] Gutwin, C., Penner, R. Improving Interpretation of Remote
Gestures with Telepointer Traces, Proc. CSCW 2002, 49-57.

[10] Gutwin, C., Benford, S., Dyck, J., Fraser, M., Vaghi, I., and
Greenhalgh, C. Revealing Delay in Collaborative
Environments. Proc. CHI 2004, 503-510.

[11] Huffman, D., A method for the construction of minimum
redundancy codes. Proceedings of the IRE, vol. 40, 1962,
1098-1101.

[12] International Telecommunication Union (ITU), Standard
T.120 - Data Protocols for Multimedia Conferencing, 1996.

[13] ISO/IEC 8824-1. Abstract Syntax Notation One:
Specification of Basic Notation. www.itu.int/ITU-
T/studygroups/com17/languages/X.680amd1.pdf, 2006.

[14] Marsic, I. Real-Time Collaboration in Heterogeneous
Computing Environments. Proc. ITCC 2000, 222-227.

[15] OSS-Nokalva Inc., Alternative binary representations of the
XML Information Set based on ASN.1, Proc. W3C
Workshop on Binary Interchange of XML Information Item
Sets, www.w3.org/2003/08/binary-interchange-workshop/32-
OSS-Nokalva-Position-Paper-updated.pdf, 2006.

[16] Park, K., Kenyon, R. Effects of Network Characteristics on
Human Performance in Collaborative Virtual Environments,
Proc. IEEE Virtual Reality 1999, 104-111.

[17] Phillips, W.G. Architectures for Synchronous Groupware.
Technical Report 1999-425. Department of Computing and
Information Science, Queen's University, 1999.

[18] Roseman, M., and Greenberg, S., TeamRooms: Network
Places for Collaboration, Proc. ACM CSCW 1996, 325-333.

[19] Roseman, M., and Greenberg, S., Building Real-Time
Groupware with GroupKit, a Groupware Toolkit, ACM
ToCHI, 3(1), 66-106, 1996.

[20] Rakkarsoft. Raknet Manual. Available at:
http://www.rakkarsoft.com/raknet/manual/. 2004.

[21] Schulzrinne, H., Casner, S., Frederick, R., Jacobson, V.
RTP: A Transport Protocol for Real-Time Applications,
Internet Engineering Task Force, Audio-Video Transport
Working Group, Jan. 1996. RFC-1889.

[22] Seroussi, G. and Lempel, A., Compression using Small
Dictionaries with Applications to Network Packets, United
States Patent 5389922, 1995.

[23] Smed, J., Kaukoranta, K., and Hakonen, H. A Review on
Networking and Multiplayer Computer Games. Technical
Report 454, Turku Centre for Computer Science, 2002.

[24] Tye, C., and Fairhurt, G. A Review of IP Packet
Compression Techniques. PGNet 2003, Liverpool, 2003.

[25] Vaghi, I., Greenhalgh, C., Benford, S. Coping with
Inconsistency due to Network Delays in Collaborative
Virtual Environments, Proc. ACM VRST 1999, 42-49.

[26] Ziv, J., and Lempel, A. A Universal Algorithm for Sequential
Data Compression. IEEE Transactions on Information
Theory, 23(3), 1977, 337-343.

[27] Ziv, J., and Lempel, A. Compression of Individual
Sequences via Variable Rate Encoding. IEEE Transactions
on Information Theory, 24(5), 1978, 530-536.

