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IMPROVING NETWORKS RELIABILITY

Jamal H. Nouh, Ph.D.

Western Michigan University, 1990.

One of the basic concepts associated with a network is reliability. In this 

dissertation some new techniques to improve network reliability are introduced. 

Several new network structures are defined by adding multiple edges. Chapter I 

gives a brief overview of the history of network reliability and different reliability 

measures. It also provides a background for the chapters that follow.

In Chapter II a new sequence associated to the edges of a graph G is defined. 

The traffic vector of an edge of G  of order n is defined as

TV(e)  =  (T1(e),7r2(e ),...,7 rn_1(e))

where 7r,(e) is the number of paths of length i that contain e and is studied in the 

case in which the graph is a tree.

A probabilistic graph is a graph G =  (V, E) together with a probability as

signment to the edges and vertices of G. The vertices and the edges G  are subject 

to failure with probability q, where 0 <  q <  1. In this dissertation we assume 

that the vertices of G  axe absolutely reliable (never fail), but the edges of E  are 

down (i.e., in the fail state) independently with probability q.

In Chapter III we introduce pair-connected reliability of a graph G. It is the 

expected number of vertices that are connected in a probabilistic graph G. In 

order to maximize the pair-connected reliability, we use the concept of a traffic 

vector to characterize those edges in G which are the best choice to be improved, 

in order to maximize the pair-connected reliability .
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In Chapter IV the global reliability of a graph G  is defined as the probability 

that a graph G  is connected. Two methods are described for improving the global 

reliability of a network G.

The first method is multiple edge enhancement and the second is edge improve

ment or replacement. The first method consists of adding to a given network G, 

multiple edges between vertices that are already joined by an edge in G. The 

second method consists of replacing or improving existing edges in G by more 

reliable ones.

In Chapter V the K-terminal reliability is defined as the probability that, in 

a given probabilistic graph, the vertices in the set K  C E(G)  are connected. The 

effect of enhancement or replacement edges on the K-terminal reliability for several 

classes of graphs are stated. Chapter VI is devoted to possible other extensions 

of this research.
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CHAPTER I

INTRODUCTION

1.1 Definitions, Notation, and Historical Review

Reliability is concerned with the ability of networks to carry out certain 

network operations. An important step is the identification of necessary net

work operations. A widely used model for communication networks in which 

elements (vertices and edges) are subject to failure is that of a probabilistic 

graph G. Given a graph G with vertex set V(G) =  {ui, v2, . . . ,  vn} and edge set 

E (G ) =  {ei, e2, . . . ,  em}, G is called a probabilistic graph, if each element in V{G ) 

and E(G)  is assigned a certain probability, say p(u;) and p(ej), for i =  1, 2, . . .  ,n  

and j  =  1 ,2 ,.. .,m . The number p(v{) denotes the probability tha t ut- exists in 

V(G)  and p(ej) denotes the probability that e,- exists in E(G).  If the vertex u,- 

exists in V(G),  then it is considered to be in the up state; otherwise, it is in 

the failed state. Similarly, if et- exists in E(G),  then it is in the up state;, other

wise, it is in the failed state. We call a graph G with n vertices and m  edges, 

an (n,m)-graph. Here it is assumed that vertices are fail safe (i.e., never been in 

the failed state) but tha t each edge e € E(G)  is down (that is, in a failed state) 

independently with probability q, where 0 < q < 1, and p = 1 — q will denote the 

probability tha t each edge is in the up state. For S  C E{G), the graph G is said 

to be in the up state S', if the edges that are in the up state are precisely those in 

S.  The spanning subgraph of G induced by a set of edges S  is denoted by <  S >.

Perhaps the most common operation is communication from a source node s 

to a target node t.

1
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For a probabilistic graph G, and specified nodes s , £, we define the two-terminal 

reliability to be the probability that there exists at least one st-path in G and the 

probability will be denoted by R Sit(G,q). In the directed case, the problem is 

called st-connectedness (see Colbourn [15]). The K-terminal reliability R k (G ,  q) 

is one which measures the probability of having all pairs of vertices in K  connected 

in £', where I< C V{G).

Another common operation in networks is broadcasting. In order to model 

such an operation, we define the all-terminal reliability to be the probability that 

for any pair ui, v2 of vertices in G, there exists a path from zq to v2 ( equivalently, 

G has a t least a set S  in the up state and < S  > is spanning tree) and probability 

will be denoted by R(G,q).  If G is a directed graph (digraph), then R u(G,q) 

is the probability tha t the digraph G contains a directed path from a vertex 

u to every other vertex in G. Recently, a new reliability measure called pair- 

connected reliability has been introduced for graphs (see Siegrist and Slater [6] 

and Boesch [10]). The pair-connected reliability of a given graph G is the expected 

number of pairs of connected vertices.

These reliability measures have the following practical application: Assume 

the graph G models a system in which a subset K  of vertices in G represents 

sufficient processing capability and/or data storage capacity for a processor to 

execute efficiently. It is important in this case to have the vertices in K  connected. 

The K-terminal reliability measures the probability of having all vertices in K  

connected. On the other hand, if our graph G represents a communication system, 

in which it is im portant for each node to communicate with others, in this case, 

what is im portant is the expected number of vertices in the probabilistic graph G 

which stay connected. Pair-connected reliability measures the expected number 

of pairs of vertices in G which are connected.

Herein, we survey some of the known results, and graph theory notions which 

are relevant as models to the analysis and synthesis of the network problem.
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3

For the graph-theoretic ideas and reliability notation, we follow the books by 

Chartrand and Lesniak [13] and Colbourn [14], respectively.

In addition to the above reliability measures, other reasonable measures can 

be defined. A general mechanism for defining a reliability problem is therefore in 

order. Given a probabilistic graph G =  (F, E), we define

« ( « , l / l = I / ( S ) - l | S |  (1.1)
sen

to be a general reliability measure of G, where fi is the power set of E  (that is, the 

set of all possible states for the system). If 5  € fi, then R ( S ) is the probability 

that G is in the up state S,  which under the assumption of independent and equal

probability of failure q, means R{S)  =  pkqm~k where l^l =  k and m  =  \E(G)\.

Note that (fi, R)  is a probability space, /  is a random variable1 defined in this 

space, and R(G, q, f ) is the expected value of / .

Different choices for the function /  provide a variety of reliability measures.

For the global reliability (all terminal reliability), the formula in (1.1) becomes

R (G ,q) = Y . f ( S ) - R { S )  (1.2)
sen

where
1 if < 5  > is connected

m  =
0 otherwise.

The function /  is dropped from R ( G ,q , f )  for simplicity. Since f ( S )  takes the 

value 0 or 1 and (fi, R) is a probability space, the formula in (1.2) measures the 

expected value that G is connected, namely it is the probability that G contains 

a spanning tree, in the up state. Observe that 0 < R(G, q) < 1.

For the k-terminal reliability, the function /  in (1.1) is defined as follows:

1 if < K  > is connected in G — S  

0 otherwise.

In this case, the function R ( G ,q , f )  is Rx(G,q).  If \I(\ =  2, it is called a two- 

terminal reliability. If K  = {s,£}, then formula (1.1) is written as R Sit{G,q) =  

real function defined on fi.

m  =
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4

R(G ,q , f ) .  Thus 0 <  R3<t(G,q) <  1 represents the probability tha t there exists 

an st-path in G.

For the pair-connected reliability of G, the function f ( S )  in (1.1) is denoted 

by PC(S) ,  and it is equal to the number of pairs of vertices that are connected in 

< S >. In the case of the pair-connected reliability, formula (1.1) can be written 

in the form

R(G,q) =  ■£ PC(S) ■ R(S).  
sen

This is the expected value of the number of pairs of vertices tha t are connected 

in G.

Ball and Provan [9] showed that computing RSjt(G , q) is NP-hard, even if G is 

a planar graph of maximum degree 3. Moreover it can be shown that computing 

PC(G,q)  is NP-hard in the case where G is planar of maximum degree 4 .

All the reliability measures we have introduced are number P-complete prob

lems (see Colbourn [15]). Moreover, Gilbert [20], and Frank and Gaul [19] estab

lished formulas for the all-terminal and two-terminal reliability of the complete 

graph K n of n vertices.

Theorem  1.1 ( [19]) I f  G — K n is the complete graph o fn  vertices, then

An = R(I<n, q) = 1 -  £  Cjz? Ajqj{n~j) 
j =  1

where Aj  =  R(Kj ,q ).

Note that A n has a recurrence relation in terms of Aj, for j  < n.

In the case of the two-terminal reliability, the following formula is obtained for 

the complete graph.

Theorem  1.2 ( [19]) For the complete graph K n

q) =  1 -  £
1=1

where Aj  =  R{Kj,q),  and £ £  =
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5

Similar formulas can obtained for complete bipartite graphs.

Two graphs Giand G2 are in series connection, if G\ and G2 have only one 

vertex in common. Such a connection is denoted by Gi • G2. In general, a set of 

graphs G i,G 2, . . . , G r is in series connection if no two graphs have more than one 

vertex in common, and the only cycles are those in G,-, i =  1,2, ...,r.

The following results can be found in Amin, Siegrist and Slater [2]. Let A be a 

set of graphs Gi, G2, ..., Gr. If G is a graph obtained from A  by series connection, 

then

R(G,q) = f [ R ( G i,q) ,
1=1

For pair connected reliability, suppose G =  G\ • G2 is a graph obtained from G\ 

and G2 by series connection, and let u be the common vertex between G\ and G2, 

define PC(Gi(u),q)  to be the expected number of vertices tha t are connected to 

u in G\.  This function can be written in the form

PC (G 1(u),q) = £  Ep(IGl(u,v))
v e v - { u }

where
1 if u is connected to v

/(?,(«, u) =
0 otherwise

and ^ ( / g i  {u, v)) is the probability that u and v are connected in the probabilistic 

graph G.

The following result is due to Amin, Siegrist and Slater [3].

T heorem  1.3 ( [3]) I f  G =  Gi ■ G2, then

PC(G,q)  =  P C iG ^ q )  +  PC(G 2 ,q) + P C ^ u U )  • PC{G2(u),q)

For a given tree T,  the calculation of R (T , q) can be computed easily. Given a 

tree T  of order n, then R(T, q) = pn, where p is the probability of having the tree 

T  in state {e} for all e 6 E(T).

In general the calculation of global and K-terminal reliability are not triv

ial. Moore and Shannon [26] used the following reduction formula in finding 

K-reliability.
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Let G /e  be the graph obtained from G  by contraction of the edge e, and let 

G — e be the graph obtained from G after deleting the edge e.

T heorem  1.4 (R eduction Formula) I f G  is a graph, then

Rk(G,q) =  pRK(G/e ,q) +  (1 - p ) R { G - e , q ) .

For K-terminal reliability, the above reduction formula uses the following trans

formation:

If e\ and e2 are two parallel edges (edges connecting the same vertices), assume 

ei has probability of failure q\ =  1 — px, and e2 has probability failure q2 =  1 — p2, 

then ei and e2 can be replaced by one edge e with reliability (probability of being 

functional) p , where p =  1 — qx • q2.

On the other hand, if ej =  uiv, and e2 =  vu2 are incident edges and v is the 

common vertex with v £  A',then we can replace e\ and e2 by e, with p(e) = p1 -p2; 

for v € K ,  ei and e2 can be replaced by e with probability p =  .

For global connectivity, the function R(G, q) in (1.1) can be expressed in terms 

of the number of induced connected subgraphs of G,

\E\

£ (G ,,)  =  X > r/ ( l -
r = 0

where mr is the number of induced connected subgraph in G of size r and \E\ is 

the size of G.

An (n,m)-graph G is said to be uniformly optimally reliable if

R{G,q) > R{H,q)

for all (n,m)-graphs, and all q, 0 <  q < 1. Boesch [II] conjectured that uniformly 

optimally reliable graphs always exist. In fact, he showed that such graphs exist 

for classes of graphs with order at most 6.

■Opposite to uniformly optimally reliable graphs is the uniformly least reliable 

graph, it is the one in which every other graph, with the same order and size, is
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Figure 1.1

more reliable. Boesch [10] observed that all trees with n vertices have the same 

reliability.

Several authors studying the area of network reliability (see Evans and Smith [17]), 

have concluded tha t the synthesis of reliable networks is not a pure graph theory 

problem, because the decision of which of two graphs is better, is dependent on the 

probability q. Given two (n,m)-graphs, G\ and G2, let R(Gi,q),  and i?(G2,<7), be 

the global reliability polynomials of G i and (S'2, respectively. For different values 

of q the two functions R(Gi,q),  and R{G2,q) may cross. This can be seen by the 

following example Kelmans [25] which is the smallest example where two R{G, q) 

functions cross.

Example : The graphs G\ and G2 shown in Figure 1.1 has the global reliability 

R(Gu q) =  4?! (1 -  q f  + 24,s(l - q f  + Y  C |p ‘ (l -  p)8'*
fc=4

R(Gt , q) = 3 ,2(1 -  q f  +  26?3(1 - q f  +  Y ,  Cfd*(l -  ?)8- ‘ .
k=4

Comparing the two functions R(Gi,q)  and i?(G'2, q), the following can be con

cluded:

R(Gi ,q) > R(G 2,q) fo r  0 < q <

R eproduced  with perm ission of the copyright ow ner. Further reproduction prohibited without perm ission.



8

R(G u q) =  R(G 2,q) f o r  9 =  ±,

<  R(G 2,q) f o r  i < ? < l .

The definition of optimally reliable graphs can be extended to pair-connected 

reliability. For the pair-connected reliability, Amin, Siegrist, and Slater [6] showed, 

that the star is the uniformly optimally reliable tree with n  vertices. In

the same paper, it was shown that the path Pn is the uniformly least reliable 

tree on n  vertices. In [6] the same authors have shown that there do not exist 

uniformly optimal (n,m)-graphs, except in the extreme cases when m  <  n — 1 or 

m  >  C% — 1, where CJ =  When m < n — 1, it follows easily from the fact

that all graphs with m  < n — 1 have the same reliability; namely 0, and the star 

Ri,n-i  is the uniformly optimal graph for m  — n — 1. On the other hand, when 

m  >  C% — 1, all (n, m)-graphs are isomorphic.

For trees, the computation of PC(T,q)  is straightforward (see Siegrist [29]). 

For an arbitrary graph G, the distance distribution of G is defined as D(G) = 

{cli(G), d2(G) , ..., dn_i(G)),  where d,(G) denotes the number of pairs of vertices 

at distance i. The following result shows how to compute the pair-connected 

reliability of a tree T  from its distance distribution.

Theorem  1.5 The distance distribution D ( T ) of a tree T  completely determines 

PC(T,q),  namely P C (T ,q ) =  dt(T)p''.

For any graph G,

R s A G , q ) > p dist{s't].

where q) is the two-terminal reliability of G and, dist(s, t) is the distance

between s and t. The next result follows.

T heorem  1.6 For any graph G,

1 = 1
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For trees and series-parallel graphs, efficient algorithms for computing PC(G ,q) 

are described in Amin, Siegrist, and Slater [3]. For certain classes of graphs 

formulas for P C (G , q) have been determined (see [5], [6]). Here, we present the 

formula for the n-cycle Cn and the wheel Wn+i =  K x +  Cn on n +  1 vertices.

q 2

P C {W ^ q) =  » P  -  _ £ _ ] [ !  -  <*)•] -

pq4 r- n 2{pq)n +  n2{pq)n+1 +  npq -  n(p$)n+1 n2(l -  n)
( T ^ i -------------------- ( T r ^ j i -------------------------------— (M) 1

A lot of work has been done on network synthesis. The result of such work is 

important for the design of reliable networks.

If a network is described by its underlying graph G, then the cost of building 

a network could be measured by the number of edges. We assume the cost of each 

edge is constant. Such an assumption is sometimes valid in practical problems 

which allow for a simplified model. Various optimization problems are suggested 

by this model; for example, one might try to find the maximum value of the edge 

connectivity A over the class of all graphs with prescribed values of n  and m . This 

is an example of an extremal graph problem. If k and A represent the vertex and 

edge connectivity of G, respectively, then one may ask for the maximum value of 

k or A in the class of (n,m)-graphs. The first publication related to this topic can 

be found in Harary [21]. His result is stated in the theorem below. Let (n, A >  k ) 

denote the size of the graph of order n and edge connectivity at least k. Similarly, 

let (n , k > k) denote the size of the graph of a  graph of order n, size m  and vertex 

connectivity at least k.
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min(n , A >  k) — m in (n , k > k) — <

Theorem 1.7 ( [21])

\ n k / 2] i f  X, k > 2

n — 1 i f  X = k = 1

Note that [x"| denotes the smallest integer not smaller than x; [xj is the largest 

integer not larger than x. The graph used by Harary [21], to prove the theorem 

is called the elementary Harary graph and is denoted by H(n,k) .  If n vertices 

are labeled 0 , 1 , 2 , n — 1, then H(n, k ) can be constructed by joining each node

i,0  <  i <  n — 1, to the node i ±  l , f  ±  2 , i ±  |_|J. The graph H (n ,k )  has 

m =  C t I ’ * = X = k and is regular when both n, k are not odd. For further 

discussion about optimization on graphical parameters, see Harary [21].

In the following section, we study network synthesis from a different perspec

tive.

1.2 Back-up Links in Networks

As mentioned in Section 1.1, most studies in the area of network synthesis 

concentrate on finding reliable (n,m)-graphs for specified values of n and m. In 

this dissertation, we describe how to optimize the reliability of a given graph G 

by means of adding multiple edges to G or by replacing some edges in G, by more 

reliable edges.

There are many cases where a network already exists, or the logical design of 

an (n,m)-graph does not follow an optimal reliable graph. For a given network, 

one may ask the following question: If the reliability of a  set of r  edges in a given 

(n,m)-graph G is to be improved, what is the best choice among all subsets of r 

edges in G, that should be considered in order to optimize a given a reliability 

measure of G?

In this dissertation we introduce two methods to enhance network reliability: 

(1) multiple edge enhancement, and (2) edge improvement or replacement.

The first method consists of adding in a given network multiple edges to  a net

work with the restriction that edges may only be added between vertices which are
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already joined by an edge. The latter method consists of replacing or improving 

existing edges.

Let G be an (n,m)-graph. If some edges in G are replaced by more reliable 

edges or enhanced by multiple edges, then the new graph has a  new probability 

assignment to its edges. Such an assignment will be denoted by I \  If the edges in 

G are labeled ea, e2, ..., em, then

r  {(ei, Apx), (e2, Ap2), •••, (em, Apm)}

where the ordered pair (e,-, Ap,) indicates tha t there is an increase in the relia

bility of e,- by an amount Ap;. Under the assumption tha t edges in G have the 

same reliability, namely p, the new reliability of the edge e,- will be p +  Ap,- after 

enhancement. The restriction of only improving or replacing existing edges or 

adding multiple edges is to preserve the functionality of the network.

Throughout the discussion, we always assume that edges in the graph G (which 

represents the network) have the same reliability. Hereafter, the additional edges 

used to improve reliability of the network are assumed to have the same reliability 

as the edges in G, unless otherwise stated.

In this dissertation we investigate the improvement of three different net

work reliability measures: the global reliability, K-terminal reliability, and pair- 

connected reliability. We present some examples to illustrate the above stated 

measures, and possible ways to improve those measures.

Example 1: In this example we consider the question: Is there an optimal 

method, with respect to the global reliability, to add two edges to a path of length 

4, P5 and is the method independent of p?

Let P5' [2] be any graph obtained from P5 by adding two multiple edges. Let 

ei ) e25e35e4 be a labeling of the edges of P5 taken according to their order from 

one of its end vertices. The answer to the above stated question can be resolved 

by the following cases:

Case 1: No more than one multiple edge is added between a pair of vertices of 

P5. Let G\ be a graph obtained from P5 by adding one multiple edge to ei and
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one to e2. Then R(G\,  Ti) =  p\ • p2, where pi =  2p — p2, and

Ti =  {{ei,p -  p2),(e2,p -  p2),{es ,0),(e4, 0)}.

In this case, the choice of the edges in E(T)  to be improved has no effect on the 

global reliability.

Case 2: Allow more than one multiple edge between two vertices of P5. Let 

G2 be the graph created from P5 by adding two multiple edges to the edge ei, 

then P (G 2, T2) =  p2.p3, where p2 =  3p -  3p2 -f p3-

r 2 =  {(ex, 2p -  3p2 +  p3), (e2, 0), (e3, 0), (e4, 0)}

Again, as in Case 1, the choice of the edge e,- has no effect on the global reliability. 

To observe which one of the above cases increases the global reliability the most, 

consider the following difference:

A R(p) = fl(G2, r 2) - i ? ( G 1, r 1)

= P v P 2 -  P2P3 =  p2(p? -  P2P)

= p2[p2(4 — 4p3) — p2(3 — 3p +  p2)]

=  P4[l — p]-

For p £ (0 ,1), the difference function A R(p) is always positive. Therefore the 

choice in Case 1 is always better for all values of p.

Example 2: Is there an optimal way with respect to K-terminal reliability to 

add two multiple edges to the cycle C6, with vertex set V  and edge set E  , such 

that the K-reliability for K  — {s, t] where s and t are two vertices in V  with 

d(s , t ) =  3, is maximum? (see Figure 1.2). Suppose the vertices of Cq are labeled 

Vo, i>i,. . . ,  Us such tha t e; =  v;V(j+1)m0Ct6 are the edges. W ithout loss of generality 

we assume tha t s = u0 and t = v3. Let the path from s to f containing vx be 

Pi and the path from s to t containing us be P2. We proceed by considering two 

cases:
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Figure 1.2

Case 1: Both additional edges are added to Pi. Let Gi be the graph obtained 

from Ce by adding one multiple edge to both els e2 on Pi.

pi = 2p — p2, and I \  =  {{eu p -  p2), (e2,p  -  p2)} U {(et-,0)}

for i =  1, 2,..., 6

Case 2: One edge is added to Pi and the other is added to P2.

Let G2 be the graph obtained from C6 by adding one multiple edge to both ea 

and e4 on Pi and P2, respectively

R s,t(Gi, Tj) =  1 -  [1 -  p\p\[l -  p3]

where

R s A G i ,  r 2) =  I -  [1 -  P i p 2] [ l  -  p i p 2] 

=  [1 - P iP 2]2

where px = 2p — p2 and

r 2 =  { ( e i ,p - p 2),(e4, p - p 2)}U {(e,-,0)}
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for all i =  1,2, The graphs in Figure 1.3 show the above cases.

To see which case is better, consider the following difference:

AR{p) =  R s A G u U )  -  R s<t(G2 ,T 2)

=  [1 -  p l P 2)2 -  [1 -  p3][l -  P 2p]

=  [p8 -  4p7 +  4p6 +  2p4 -  4p3 +  1] -  [1 -  2p2 +  2p5 -  p6}

=  p8 - 4 p 7 +  5p6 - 2 p 5 +  2p4 - 4 P 3 +  2p2.

The graph of the function AR(p) is shown in Figure 1.4. Observe that AR(1) = 

Ai?(0) =  0, and AR(p) > 0, for 0 < p <  1. We conclude choice 1 is the better 

choice, namely improving one path rather than two paths.

If a probabilistic graph G is given, and m  is a positive integer m <  |j?(G)|, 

a  natural question is: Which is the best set of edges in E(G ) of size m  to im

prove, so we obtain the most reliable graph from G with respect to pair-connected

reliability? We consider the following example:

Example 3: Let i -5 be the path in Example 1. Let m  be the number of extra 

edges needed to be used in the enhancement. W hat is the best choice of one 

edge among E(P5), so we can increase PC(P 5,q) the most? By Theorem 1.3, the
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pair-connected reliability of the tree T  is

P C ( T , q ) = n̂ D iPi
l — l

where, D{ is the distance distribution of .the vertices in T.  The above formula can 

be modified as follows

( r , r )  =  y ;I ii(p i)-
i= l

Note that the sum is taken over all paths Pt- of length i, R(Pi) is the probability 

that Pi is connected, and T is the probability distribution of E.  This modification 

allows us to find the pair-connected reliability of the tree when the edges have dif

ferent probability assignment. Now label the edges in P$ as e2, e3, e4 according 

to their location from one of the end vertices of T, By symmetry of the edges in 

Ps, it is necessary to consider the following two cases:

Case 1: Enhancing the edge ei.

Let G\ be the graph obtained from the path P5, by adding new multiple edge 

on ei. Then

PC(C?i,Ti) =  (pi +  3p) +  (pip +  2p2) +  (pip2 + p3) -  (pip3)

where

Ti =  { ( e i ,p - p 2),(e2, 0),(e3, 0),(e4, 0)}
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and pi =  2p — p2.

Case 2: Enhancing the edge e2.

Let G2 be the graph obtained from P5 by adding one multiple edge to e2, then

PC(G 2 , r 2) =  (p! +  3p) +  (2pipp + p2) +  (2pip2) +  (pip3)

where,

r 2 =  {(e2,p  — p2), (e i,0), (e3, 0), (e4, 0)}.

To see the difference between pair-connected reliabilities, consider the following :

PC(G 2,T 2) ~ P C ( G i ,  Ti) = (pip + p2) + (pip2 + p 3) 

= p ( p l - p )  + p2( p l - p )  

=  (P l - p ) ( p  + p2)

> 0

for all p € (0,1). From the above analysis, we conclude that improving the edge 

e2 is the best choice, for all values of p. -

In Chapter II we define the traffic vector of an edge for a given graph, and 

we study the traffic vector distributions of the edges of trees. The set S  of traffic 

vectors is said to be graphic, if there exists a tree T  of order |5 | + 1 , such that the 

set of edges in T  has the set S , as its traffic vector distribution. We prove that 

the problem of whether a set of traffic vectors is graphic or not is an NP-complete 

problem.

In Chapter III, we use the traffic vectors in improving the pair-connected 

reliability. In particular, if k edges in T  are to be improved, then we use the 

traffic vector analysis to find a subset S,  with |S| =  k, and S  C E(T) ,  such that 

improving S,  increases the pair-connected reliability of T  the most.

In Chapter IV, we study how to improve, global reliability of tree networks, 

unicyclic networks and multi-ring connection networks.
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In Chapter V, we present the analysis of improving the two-terminal reliability 

for parallel and series connection graphs.

In Chapter VI, new reliability measures are presented with some suggestions 

to improve these reliability measures by using the two methods mentioned in this 

chapter. In addition, open questions and possible research problems are given.
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CHAPTER II

TRAFFIC VECTORS

2.1 Traffic Vectors

A sequence for a graph is simply an invariant which consists of a list of numbers 

rather than a single number. In this chapter, we would like to introduce the 

concept of the traffic vector sequence. A number of graph sequences are discussed 

in literature (see Buckley and Harary [12]). Given a graph G and a set S  of edges 

in G, the induced subgraph on S  is denoted by Ind(S). The traffic vector of S  will 

be a sequence of numbers which describes the number of paths of different lengths 

containing S. In the following chapters, we will use the the traffic vector sequence 

in investigating of improving network reliability . We shall adopt the notations of 

Harary and Buckley [12].

D efin ition  1 Let G =  (V ,E ) be a graph with order n and let E  C S. The traffic 

vector distribution o f S  is defined as:

rV G(5) =  (7r1(5),7r2( 5 ) , . . . , 7rn_1(5)),

where ^i{S) denotes, the number of paths of length i in G which contain all the 

edges of S.

We restrict the study of traffic vectors to acyclic graphs.

18
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Figure 2.1

R em ark  1 Given a forest F  and a set S  o f edges in F, i f  k is the length o f a 

minimal path in F  which contains S, then iu(S) =  0 for all 0 < i < k.

We will write 7r,(e) for 7r;(5) when 5  =  {e}. If F  is known, we can drop the

subscript F  in TVp(S)  and simply write T V (S ) .  In a forest F  =  (V ,E),  if

E  =  {ei, e2, . . . ,  en_!} then the set of traffic vectors of the edges in E  is called the 

Traffic Vector Distribution of F.

An edge e =  uv is called an end edge if one of the vertices u or v  has degree one. 

In a tree T , the traffic vector of an edge e in T  doesn’t identify e uniquely. In fact, 

the following example contains two non-isomorphic edges which have the same 

traffic vector in T. (see Figure 2.1). We proceed to construct two non-isomorphic 

trees T\ and T2, such tha t the end edges in both have the same traffic vector (see 

Figure 2.2).

TVT(ei) =  TVr’ie'i) = (1 ,1 ,4 ,7 ,4) ,- i =  1 ,2 ,3 ,4

T V ( ei) = TVr'fe'i) =  (1 ,2 ,4 ,6 ,4) , i =  5 ,6 ,7 ,8

TV(e9) =  TV (e10) =  (1 ,4,8,4)
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Figure 2.2

The traffic vector distribution of the set of end edges in T i, and T2 are

{(1 ,1 ,4 ,7 ,4 )4,(1 ,2 ,4 ,6 ,4 )4,(1 ,4 ,S ,4 )2},

where the notation [TV]* indicates tha t there are i edges with the same traffic 

vector TV .  The two trees T\ and T2 have different traffic vectors distributions. 

For example, in the tree Ti, T V (e ) =  (1,5,11,11,4) but there are no edge in T2 

has this traffic vector. The question of whether the traffic vector distribution of 

E(T)  uniquely determines T remains open.

Let G =  (V ,E ) be a graph of order n, for any v G V,  the Distant Degree 

Sequence of v in G is D D S g ( v ) =  (d0(v), d ^ v ) , . . .  , d n _ i ( u ) ) ,  where d,(u) is the 

number of vertices of distant i from v. Note tha t d0(v) =  1 for all v. Given a tree 

T  and an edge e =  uv, the subtrees in T  — e which contain u and v will be denoted 

by Tu and Tv respectively. The Edge Degree Distribution of an edge e =  uv in T is 

the sequence E D D (u v ) =  ( S i ,S 2), where Si = DDxu(u) and S2 =  DDTt (v),Si
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is sequence Si written in reverse order. Note that the sequence EDD(uv)  is 

dependent on the order uv.

Example: Consider a tree T, let e =  uv be an edge in T  with

D D tu(u) =  (1>2,3) and

D D jv{v) =  (1,4,6).

The Edge Degree Distribution of e =  uv is EDD(uv)  =  (3 ,2 ,1 ,1 ,4 , 6)

L em m a 1 Suppose t  — uv is an edge in a tree T. I f

ED D (uv) = (n i ,n i_ i , . . . ,n 0,m 0, m i , . . . ,m k ) ,  where n0 =  mo =  1 

with k > I, then

i—1
7r>'(e) =  Y l ^ m i - k -1 V i, i = 1 ,2 , . . .  ,(l  + k -  1).

k=o

Proof: This follows directly from the fact that any path of length i containing e 

consists of a path of length k in Tu and a path of length i — k — 1 in Tv together 

with the edge e. □

T h eo rem  2.8 Let T  be a tree of order n and n > 2 , let S  be a non-empty set in

E (T). I f  k is the smallest integer such that iTk{S) ^  0 then

t ^  v-1 / ^  rn -  k +  1i i n ~  k +  1 i
1 <  <  I— ^— 1 L— 9— J •

*=sl w

P roof: Since ffk(S) ^  0 this implies that there exists a uv-path P  of length k

which contains all edges of S. If k > |5 |, then P  contains edges not in S  and

hence \E{P)\ >  |S |..

Let Tu and Tv be the subtrees of T  in T  — E{P)  which contain u and v 

respectively. The to tal number of paths containing S  is

£  M S )  = |F ( r j r ( r „ ) |  =  \V ( T M n  - M -  I V(T,)U (2 .1)
1 = 1
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where

M  = \ V ( T ) \ - \ V ( T v) \ - \ V ( T u)\

The fact that M  > |i£(P)|, together with |V(TU)| >  1 and |y(T„)| >  1 implies 

tha t n -  1 >  M  > k -  1. Observe that |y (T ) | =  \V{Tv)\ +  |K(TU)| +  M  . 

Therefore \V(Tv)\ = |1/(T)| -  |V (ru)| -  M . Letting |V(T„)| =  x, equation (2.1) 

can be written as
n - l

f (X) =  X  *i(S) =  *(n ~  M  -  x). 
i= l

For x > 1, the function f ( x ) has a minimum value at x  =  1 a maximum value at 

x  = (2=^). Since x assumes only integer values, f ( x )  has a minimum values at 

x  =  1 and maximum value at x = [y jy j  or T • The fact that M  > k — 1 

implies that

r ^ i  <

and
. n - M  ^  . ra -  & +  1 .

2 2

Therefore

| <  r ^ i  ( » -  L: i ^ ± + i j

and
71— 1

X  7rf(-s) ~  m  ~  !)•
:'=1

□
The graphs G\ and G2) shown in Figure 2.3 illustrate that the upper bounds 

given in the above result are sharp.

C o ro lla ry  1 I f  T  is a tree of order n and S  =  {e} C E (T ) then

n - i  <  x > .- ( c) ^  r f i  L^J •
t = l
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P ro o f: The upper bound follows immediately from Theorem 2.8 with k =  1 and 

with the fact that the size of the minimal path which contains e is one. To show 

the lower bound, let e =  uv with Tu and Tv be the components in T  — e which 

contains u and v respectively. Observe that 7Tj(e) =  |V(TU)| • |V(Tv)|. If 

IV^Tu)! =  x , then Z^Ti17r»(e) =  x(n — a;). This is a function of x which has 

maximum value a t x = 1. Therefore Z fJi1 vr^e) >  n — 1. □

Lem m a 2 Let T  be a tree o f order n. I f  S  C E(T), then 7r|5|+1(5) <  n — (|5 | +1)

Proof: Let P  be a minimal uv-path which contains S. Since any path containing 

S  must contain E (P ),  it follows that TTk(S) =  itk{E(P)) for all k. Therefore,

*‘|S|+i(S') <  * \ E ( p ) \ + i ( E ( P ) )  < deg(u) + deg(v) < n -  (|5 | +  1)

□

T heorem  2.9 A n edge e  =  uv in a tree'of order n is an end edge, i f  and only i f

X>,-(e) = ( » - ! ) .
1=1
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Proof: Let T  be a tree of order 1, then T  has no edges and Yfi=i n*(e) =  0 =  

1(1 — 1). Assume n >  2. For any edge e =  uv € E (T ),

X > i(< 0  =  |V (T .)M V (T ,) |
z=l

where, Tu and Tv are the component o f T  — e which contain u, and v respectively. 

If e is an end edge, then one of the subtrees Tu or Tv is isomorphic to A \ and
n —1

E
»=i
^ 7 r ,( e )  =  l(n  — 1).

Conversely, let e be an edge in T  with E ”=i1;r«(e) =  (n -  1). Thus, |V(TU)| •

|V(r.)| = (n-.l)
and |V(TU)| +  |F(T„)| =  n. Therefore e is an end edge. □

D efinition 2 Let T  be a tree of order n and let Si and S 2 be two subsets of 

E(T) having the same cardinality. The traffic vector T V (S i)  dominates T V (S 2), 

ifV j, where j  = 1 ,2 , . . . ,  n  — 1

I > i ( S i )  > £ * ,;(S2)
2 =  1 2 =  1

T V  (Si) strictly dominates T V ( S f ) , i fT V (S i)  dominates T V (S f)  and there exists 

j  such that

2 > . ( S i )  > 5> .-(5 '2).
2 =  1 2=1

We will simply denote dominates and strictly dominates by T V  (Si) > T V (S 2) 

and T V (S i)  >  T V (S i) ,  respectively.

An edge e0 in T  is called a dominant edge if

rV (e 0) > TV(e)

for all e € E (T )  An edge set S  is called a dominant set, if Vj, j  =  1 ,2 , . . . ,  n — 1,

and I  € E(G) with |S| =  |J |.

0
2 = 1  2 = 1

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



25

2.2 Analysis of Dominant Edges

Theorem 2.10 I f  an end edge in a tree T  is a dominant edge, then T  is isomor

phic to K \ tn.

Proof: Suppose T  is a tree which is not isomorphic to Ki,n, let e be an end edge 

of T. The fact tha t T  £= K l n implies tha t there exists an edge e0 in E(T)  such 

tha t eo is incident to e and e0 is not an end edge.

Claim: TV (eo) >  TV{e). In order to see this, let A  =  { P i,P 2, . .  . ,P„^e)} be 

the set of paths of length i which contain e. The set A  can be partitioned into 

two sets Ai and A 2. The first set, A1? consists of paths which contain both e

and eo and the second set, A 2, consists of paths which contain e but not eo- If

Pi € A 2 then P; can be modified by replacing e by e0 to become a path containing 

e0. Hence, ir,(e0) >  ir,(e). To show T V (eo) > TV(e), note that if e =  uv and 

e0 =  vw , then

7r2(e) =  deg(y) -  1

and

^(eo) =  deg(v) +  deg(w) — 2 > deg(v) — 1.

Hence, 7r2 ( e 0 ) > and this implies the result. □

Rem ark 2 I f  P  is a minimal path containing a set S  in a tree T , then T V ( S ) =  

T V (E (P )) .

R em ark  3 I f  T  is a tree o f order n and S  is a set of end edges in T , then

n — 1 for  |5 | =  1

E 7r«('? ) = i  1 f°r\s\ = 2
i=i

0 otherwise.

Observe that, i f  e0 is a dominant edge in a tree T  then the number o f paths 

containing eo is maximum, namely

V e e E (T ) .
i= i  ;= i
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R em ark  4 I f  e\ and e2 are dominant edges in T, then

Wf(ci) =  V* =  1 ,2 ,. . .  ,n  — 1.

Proof: The fact that ej and e2 are dominant edges implies

5^ (7r,-(ex) -  7r,(e2)) =  0, \ / j , j  = 1 ,2 ,. . .  ,n  -  1
«=i

which implies 7r,(ex) =  7r,(e2), Vi. □

T h eo rem  2.11 A complete binary tree T  has a dominant edge if and only if  the 

height o f T  is at most 2 ..

P roof: Let T  be a binary tree of order n (note that n must be odd), and height 

K , K  >  3. Assume to the contrary that eo is a dominant edge, then

X > i( e 0) >  X > ( e ) ,  V e e £ (T )  '
i=i t=i

Let v be the root of T  and let ex and e2 be the two edges in T  which are incident 

to v. Necessarily, e0 =  e1 or e2 see figure 2.4. This follows from the fact that

£  ffi(ei) =  £  7Ti(e2) =  fn/21 L^/2J =  -
»=i t=i ^

which is an upper bound on the number of paths containing edge of T  when n is

odd. Since ex and e2 are symmetric in T, let us assume that eo =  ex. Let e3 be

an edge incident to ex in T  , such that e3 ^  e2. Observe the following:

2 2 

J 2  7r*'(c3) =  4  >  X )  Ti ( e l )  =  3 -
t=l ! = 1

But this contradicts the fact tha t ex is a dominant edge, therefore T  has no 

dominant edge. □

A tree Fv is called a fan , if Fv has exactly one vertex v with degree more than 

two and the vertex v is called the root.
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T h eo rem  2.12 Given a tree T  with edge e =  uv. Let Tu and Tv be the two 

components in T  — e which contain u and v respectively. I f  Tu and Tv are two 

isomorphic fans, then e is a strictly dominant edge.

P roof: Let T  be a tree which has the property that T  — e0 consists of two identical 

fans, Fv and Fu and let e € E{T) — eo- W ithout loss of generality, we assume 

e € E{FU).

Claim: e0 strictly dominates e. Let A  = {Pi, P2, ..., P^(e)} be the set of paths 

with length i which contain e. The set A  can be partitioned into two sets, A\ and 

.<42, where Ax consists of paths which contain e and eo and A 2 consists of paths 

containing e but not e0. By definition, 7r,(e) =  ] | +  |A2|. Next, we will show 

that for each path in A2, there exists a path containing eo but not e. If P  € A2, 

then P  contains only edges from E(Fu). By using the second copy Fv, one can 

construct a path P' corresponding to P  which contains eo but not e. Therefore, 

7r<(e0) >  7Ti(e).
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Figure 2.5

In order to show that T V (e0) > TV(e), let e =  xy  define Tx and Ty to be the 

two components in T  — e containing x  and y , respectively. Since e ^  eo either 

IV^T*)! < k or | ^ ( r y)| <  k, where the order of Fv is k. W ithout loss of generality, 

let \V(TX)\ = l < k .

X] *r*(e) =  l{n -  I) < k2 =  7r,(e0 )
t = l  :=1

Therefore ^^ (eo ) >  TV(e). □

The next result shows tha t there exists a tree T with arbitrary number of 

dominant edges.

The Power Star K™ with a tree constructed by identifying every end vertex 

in K i<n to the center of the star A'1>m.

Example: The star K$ is shown in Figure 2.5.

Lem m a 3 I f  n and m are two positive integer such that n > 2m + 1 then there 

exists a tree T  of order n, such that T  has exactly m  strictly dominant edges.
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P roof: The proof is by construction. Let I — -]• Construct a tree T,

from the power s tar K lm by attaching to the center of K lm an extra r edges, where 

r = (n — m — 1) — . It is not difficult to see that the tree T  has exactly

m  strictly dominant edges. □

Next, exhibit the traffic vector distribution for paths. Let Pn+i be a path of 

length n. Label the edges in Pn+i according to their location from one of the two 

end vertices, say e1? e2, ■ ■., en. By simple analysis, it is not difficult to see that, 

for all i =  1, 2, . . . ,  fn /2]

TV(e{) =  (1 ,2 ,. . . ,*  — — 1 , . . . , 2 , 1), V* <  f a /2]

and by the symmetry of the edges on the path

T V  (a)  =  T V (en_i), V i>  fn/21.

Now, if n is odd then the path Pn+l has an edge e fn/2l with traffic vector

r 7 ( e rn/21) =  ( l , 2 , . . . , r n / 2 l , . . . , 2 i l )

which dominates TV(e,), Vi, i =  1, 2 , . . . ,  n. For even re, the path  Pn+1 has two 

dominant edges, namely e\n/2 \ and e\n/2\ which have the traffic vector

TV (ern/2l) =  7 V (eLn/2j ) =  (1, 2, . . . ,  fn/21, fa/21 , - - - , 2, 1).

Let T  =  (V, E) be a tree and let u and v € V. A contraction of T  on u ,v  is a 

tree T' which is the tree constructed from T  in the following way: If P  represents 

the path between it, and v in T, then define Tu and Tv to be the two components 

in T  — E (P ) which contain u, and v respectively. Now construct T '  by joining the 

vertices u and v in the two trees Tu, and Tv by an edge. If uv is an edge, then the 

contraction of T  on u and v, is T. Figure 2.6 shows a contraction of a tree on two 

vertices u and v. The contraction defined above exists and is unique for any two 

vertices of a tree.
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T,uv

Figure 2.6

R e m a rk  5 Given a tree T , let Pk+i be uv-path in T, then

7Tk+j(E(Pk+i)) in T  is equal to TTj+1(uv) in Tuv

where Tuv is the tree obtained from T , by a contraction on u and v.

R e m a rk  6 I f  Pk+i is the minimal path which contains the edge set S in a tree T , 

then T V (E (P k+1)) =  T V (S ) .

T h eo rem  2.13 Let Si and S2 be two subsets o f E(T) with |5 i| =  IS2I and let 

Pi and P2 be the minimal paths which contain Si and S2 respectively. I f  Pi is a 

subpath o f P2, then T V (S i)  > T V (S 2).

P roo f: Using Remark 6 it is enough to show that TV(E(Pi) )  > T V (E (P 2)). Let 

Pi be a subpath of P2, then every path of length i which contains E (P2) must 

contain E(Pi).  Hence, iri(E(Pi)) >  iTi(E(P2)). In fact if Pi is a proper subgraph 

of P2 then TV(E(Pi) )  > .TV(E(P2)). To show this, note that 7Tj(E(P2)) =  0 for
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all i, 0 <  i < k where k = \E(P2)\. Since Pi is a proper subpath of P2 there exists 

an edge e in E{P2) — E(Pi). Therefore \E(Pi)\ < k — 1 which implies

Kk- i ( E ( P i ) ) > l > w k_i(E(P2)) = 0 '

□

Theorem  2.14 Let T  be a tree, with diameter d and let S  C E (T ) with |S”| < d. 

I f  Ind(S) is disconnected, then S  is not a dominant edge set.

Proof: Let T  be a tree with S  C E(T).  The fact that T  has diameter d implies 

that there exist a path  of length L in T  for all L ,L  < d.

Case 1: There is no minimal path in T  which contains S. In this case T V (S )  

is the zero vector, since the traffic vector of a path P  of length |5 | in T  has a 

nonzero traffic vector, therefore, T V (P )  strictly dominates T V (S ) ,  and S  is not 

a dominant edge set.

Case 2: There is a minimal xy-path P  in T  which contains S. Since Ind(S) is 

not connected, there exists an edge e in E (P )  such that e £  S  (see Figure 2.7). Let 

ei =  xv  be the edge in E (P )  which is incident to x. The set (S  — {ei})U{e0}) =  S' 

has cardinality equal to |5 |. If the minimal path which contain S' is P ', then P'  is a
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subpath of P. By theorem 2.14, TV{E{P')) > T V (E ( P )) and T V  {S') > TV{S).  

Again, this implies tha t S  is not a dominant edge set. □.

Rem ark 7 I f  S  is a dominant set, then Ind(S) contains a path of length |5 |.

Caveat lector: a dominant edge set has different meaning than a set of dominant 

edges. A set Si in a graph G is a dominant set if T V ( S \ ) >  T V (I) ,  

for all /  C E (G ), with |Si| =  |/ |.  On the other hand, the set S 2 is called a set of 

dominant edge, if S2 C E(G) and for all e € S 2, e is dominant edge.

2.3 Characterizing the Set of Dominant Edges

Let S  be the set of dominant edges. A natural question to ask is: what is the 

structure of the induced subgraph on S?

T h eo rem  2.15 Let S  be a subset of the edges of a tree T  with the property that 

e € S  implies that the total number of paths containing e, is maximum, then 

Ind(S) is a connected subtree.

Proof: If |S'! =  1, then Ind(S) is connected. Let |5 | >  1 and assume to the 

contrary tha t Ind(S) is disconnected. There exists two edges — xy  and e2 =  uv 

such that ei and e2 6 S  and Ind(e i,e2) is disconnected graph. W ithout loss of 

generality let x and u be the two vei'tices in {x, y, u, v} with maximum distance 

between them. Let eo be an edge on xu-path, incident to ei such that eo ^  S. 

(see Figure 2.8).

Define the fallowing:

Tx be the component in T  — ei which contain x.

Ty be the component in T  — {ei, eQ} which contain y.

Tc be the component in T  — {e2,e0} which contain u.

Tv be the component in T  — e2 which contain v.
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Figure 2.8

Let a =  \V(TX)\, b =  \V(Ty)\, c =  |V(TU)| and d = \V(Tv)\. Since e i, e2 € 5,

X > ( ei) =  E 7r(e2) (2.2)
t=i ;=i

Claim 1: a =  d.

In order to see this, observe tha t there are a • d different paths containing both

ei) e2- By using and equation (2.2), we have the following:

a(b +  c) =  d(b +  c)

This implies a =  d.

Claim 2: b • c = 0.

Assume to the contrary that b > 1, and,c > 1, then

n —1

7r»'(eo) =  (d + c)(a + b)
i= l

n - 1

Y  7r‘(ei) = a{b + c + d).
i =1
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By claim (1), a =  d. Therefore, together with the fact that e! is a dominant edge 

we have:

JL  x) “  £  *i(eo) = (a + c)(a +  b)+
1=1 1=1

a(b +  c +  a) =  —6c <  0.

Therefore, be =  0. Hence, eo does not exist. Therefore, Ind(S)  is a connected 

subtree. □.

T heorem  2.16 I f T  is a tree, and S  is a set of edges in T  with the property that 

e € S, then e is contained in a maximum number of paths, then Ind(S)  =  -Ki,|S|-

Proof: For |5 | =  1 or 2, the result follows from Theorem 2.15. Let 151 > 3, 

by the previous theorem < S  > is connected. Assume to the contrary that 

Ind(S) ^  Afi,|s| • In this case there exists a path P  of length 3 in Ind(S) , say 

V(P)  =  {«i) U2, u3,u 4}, and E ( P ) =  {ei, eo, e2}. If e0 is the edge which is incident 

to ei and e2, then by using exactly the same argument as in Theorem 2.15, we 

can show that J27=i ^ i^o )  > IT^i1 fft(ei)i which contradicts the fact that e0 and 

ei belong to the same total number of paths. Therefore, <  S  >= K \  ■|S|- □

Corollary 2 I f T  is a tree and S  is a set of dominant edges in T, then Ind(S) 

= Ki,\s\-

We will denote the set of dominant edges in a tree T  by SDE(T).

Corollary 3 The only tree T  which has SD E {T) = E(T) is the tree K \ <n-

T h eo rem  2.17 Let v be a vertex with degi'ee m, in a tree of order n where m  > 1, 

and let N (v)  = {vi,V2, . . .  ,vm} be the neighbor set o fv .  I f  DD-r(yi) =  DDx{vj) 

for all 1 <  i , j  <  m, then for evry 1 < i < n

n —1 n —1

]T  7Ti(wi) = m a x{Y ^  7T.(et)|e € T]
t=i i=i

1 <  i < m} has the property that 2̂7=1 v i{ei) zs maximum in T .
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Figure 2.9

Proof:

Let TV1, TV2, and Tv be the components in T  — { vv i , vv2} which contain Vi, v2, 

and v,  respectively. Let

D D Tvi (u i)  =  (m 0 , m u  . . . ,  m<)

and

D D Tv2(v2) = (n0, n u . . . n k).

First: We will show that D D ^ i y i) =  DDf;V2(y2). Consider the subtree Tq in T  

which consists of the subtrees TVl and TV2, together with the edges vv\  and vv2. 

(see Figure 2.9).

Claim: D D To(vi) = D D To(v2).

To show the claim, observe tha t, every vertex is the same distance from vt as it is 

from v2. Using this observation together with the fact that D D t ( v i )  =  D D t ( v 2),  

we see that the number of vertices at distance i from Vi in TV1 is the same as the 

number of vertices at distance i  from v2 in TV2, namely D D t 0(v1) =  D D t 0(v2).
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Therefore =  (no,nx,. . . n*), which implies I = k. Since vvi,vv2

are arbitrarily taken from N(v), the Distance Distribution of u,- in TVi is the same

for all i =  1 ,2 , . . . ,  m.

Second: Let eo be an edge of T  which is not incident to v.

Claim:

n —1 7i—l

1=1 i- 1

Let

* = \ V { T V1)\

since D D Tvi (ux) =  DDTv2 (i>2)

\V(TV1)\ = \V(TV2)\.

Since v\ and u2 are taken arbitrarily from N (v)  , it follows that,

\V(TVi)\ =  \V(TVj)\

for all 1 <  i , j  < m. Therefore
n —1

Y .  ^ f(w i) =  x[(m — l)x  +  1] =  x(n — x) = x(m x  — x  +  1).
t=i

The fact eo G E (T )  — S  implies that eo € TVj for some 1 <  j  < m. Let eo =  uw, 

let Tu, and Tw be the two components in T  — eQ which contain u ,w  respectively, 

and |V(TU)| =  Xi and |y(Tu,)| =  x2. Assume x\  <  x2 then xi < x. Therefore

l^(T„;)| =  x2 > (m -  l)x  +  1.

The following is true:
n —1

Y  7r,(e0) =  Xix2 =  x 1(n — Xx) =  x i(m x  +  1 — x x).
i'=i

Suppose H(x) = x(n  — x), then H (x)  is an increasing function of x in [0,n/2]. 

Therefore, if xi < x, then H(x) > H (x l ). Thus
n —1 n —1

J2  >  £  7r,-(e0).
i=i i=i
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Hence, e,- has maximum number of paths containing e,- in T, for all i = 1, 2 , . . . ,  m.

a
In the above theorem, the fact tha t DDx{vi) =  DDr(vj)  for all neighbors of 

a  vertex v in T  does not imply th a t the edge e; =  uv; is the dominant edge in T. 

This can be shown with the example of a complete binary tree.

Theorem  2.18 Let T  be a tree o f order n and let K i<m be a subtree in T  where 

m  > 1. Suppose E(Ki^m) =  {e,-,e,- =  vu{, 1 < i <  m} be a set o f dominant edges, 

then

DDr{ui) = DDj{uj)

V i and j;  1 < i and j  < n — 1.

Proof:

Let TU1 be the component in T —e\ which contains u\ and TU2 be the component 

in T  — e2 which contains u2. By an argument similar to the one in the previous 

theorem, we see that

TVx(ei) =  rV j(e 2) implies TVj<{ef) =TVj<{e2) (2.3)

where T'  is the tree consisting of the two subtrees TUl and TU2 together with the 

two edges uiv  and vu2. The fact tha t t \  and e2 are dominant edges, implies tha t

£  ’’’.(ei) =  £  7r;(e2).
«=i (=i

Therefore, |V(TUJ)| =  1V(T„2)|. Let D D Tui{u i) =  {n0,n u  . . .  , n k) and L>L>rU2(^2) =  

(mo, m i , . . .  ,m /). By using (2.3) we see that ir2(ei) = ir2(e2), and n x +1 =  + 1 .

We use induction on j  to show tha t nj — mj  for all 0 <  j  <  m in(k, I). The result 

is true for N  =  1,2. Assume the result is true for all j ] j  < N .  In the tree T'

i = N  N

7TiV+i(ei) = Y ,  nN-imi and 7r̂ +1(e2) = Y mN-ini-
t=0 n=0

Since 7Tjv+i(ei) =  ^;v+i(e2) we have
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N - 1 N - 1

m N  +  5 3  n N - i T T l i  =  TljV +  5 3  n i W N - i -  
*'=0 i= 0

By the induction hypothesis
JV -l N - 1

n/v_tm t- =  5 3  nimN-i- 
i= 0 i=0

Therefore = m ^ .

Claim: A: =  /

Assume to the contrary tha t k > I, then
. k - 1 ( -1

5 3  Wfc-i-rm,- =  5 3
«=0 t=0

that is rij = 0  for all K  <  j  <  L which results in a contradiction. Let Tv be 

the component in T  — {e1,e 2} which contains v. By adding the distance degree 

sequence of v in the tree T„, properly, one can see that DDx(ui) =  D D t (uj) Vi, j . 

□

C o ro lla ry  4 I f  T  is the tree in the previous theorem DDxu.{u{) = DDxu,{uj) f or 

all 1 <  i , j  < m .

C o ro lla ry  5 Let S  = {ei, e2,...,em} be a set o f a dominant edges. I f  e,- =  (u, w,-) 

i = 1,2, then E D S (e{) =  E D S(ej) ,  for all i , j ,  where 1 < i , j  <  m.

P roof: This follows from Theorem 2.18 together with the definition of an Edge 

Degree Sequence EDS(e). □

C o ro lla ry  6 Let T  be a tree o f order n, let

S  — {uu,-, i = 1,2,3, ...,m}

be a maximal dominant edge set. I f  eo =  wv is an edge in T  then Vi =  1,2, ...,m

|V(rw)| < |v(r„,)|

where TW) and TUi are the components in T  — (5U  {e0}) which contain w and u,-, 

respectively.

R eproduced with perm ission of the copyright ow ner. Further reproduction prohibited without perm ission.



3 9

P ro o f: By Corallary 4, D D rUi(ui) = D D Tu.(uj), Vi, j  : 0 <  i , j  < m. Therefore, 

Vr(Tu.)| =  |V (rtti)| for all 0 <  i , j  < m. If 

\V(TW)\ =  L and \V(TUi)\ = N

then

JT TTi(vuk) = N ((m  -  1 )N  +  L  +  1)
»=i

for all 1 <  k < m  and
n — 1

y ;  7Ti(vw) =  L (m N  +  1).
1=1

Since vui is dominant edge, then

N ((m  - 1 ) N  + L + 1)>  L (m N  +  1) 

m jV2 - N 2 + N  > m N L  - N L  + L 

N ( m N  — N  + 1) > L {m N  -  N  + 1).

Since N  and m  are greater than 1, and m N  — N  + 1 ^  0, it follows that N  > L. 

□

By Theorem 2.14 and Remark 7 we know that a dominant set is always a path 

thus, throughout the following discussion we will refer to a dominant set 5  as a 

path P|5|+i-

2.4 Dominant Edges and the Center of a Tree

The center of a tree is the set of all vertices in T  with minimum eccentricity;

(see Chartrand and Lesniak [13]). If Ind(S(T)) and Ind(C(T)) denote the induced

subtrees of the dominant edge set and the center of T, respectively, then we can 

show tha t Ind(S(T)) and Ind(C(T)) may can arbitrarily far apart in T.

L em m a 4 Let T  be a tree constructed by identifying the center of Ki,n with an 

end vertex of the path Pm+l- I f n > m  — 3 then T  has a dominant edge.
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U

m +1

Figure 2.10

P roof: Label the vertices in E (Pm+i) according to their distance from the center 

of the star K x,n, i.e. E(Pm+1) = { e 1?e2, . . . , e m}. For any e,- , i  =  1,2,3, ...,m

T V (a )  =  (1 ,2 ,.. . , i , n  +  * ,... ,n  +  i ,n  +  i — 1 ,.. .  ,n  +  l ,n )

T V (ex) =  ( l ,n  +  l , . . . , n  +  l ,n )

where TV(et) and T V (e x) are vectors of dimension m  + 1. It is not difficult to see 

that the following is true, for all k, 0 <  k <  m  +  1
k

5 I 7ri(el) “  ^  0
z=l

if and only if, n  >  m  — 2i +  1 (see Figure 2.10). Therefore, ex is a dominant edge 

in T  whenever n > m  — 2i + 1. □

Let G i and G2 be two subgraphs of a graph G. Then the distance for Gx to G2 

denoted by d(G i,G 2), is defined to be the minimum. {d(ut-, u,)|u,- € F (G i),i;t- € 

V(G2)}.

T h eo rem  2.19 Given a positive integer n € Z +, there exists a tree T  such that

d(Ind(S (T )) ,Ind (C (T )))  > n
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P ro o f  Consider the tree constructed in Lemma 4, the center of T  can be located 

with arbitrary distance from the center v of K \<n. This can be done simply by 

choosing m to  be large enough, so tha t the center of T  is a t distance n  from v. 

Now choose n so tha t n >  m  — 3 and Lemma 4 will guarantee that ex is a dominant 

edge. Observe that the location of the center at the tree T  is independent of n 

for n >  1. □

Given a tree T,  let v be a vertex in V (T).  The neighbor vertices of v denoted 

by N(v)  is the set of all vertices adjacent to  v.

T h eo rem  2.20 Let v be a vertex of a tree T  of order n and let

' K h m = Ind({v}  U N(v)).

I f m  >  2 and E {K i>m) is the dominant edge set in T, then v is the only center of 

T.

P ro o f  Let T  be a tree of order n and let v E V ( T ), with N (v)  =  {ux, u2, u m}. 

Define TUi to be the tree in T  — {to,} which contains U{. By Theorem 2.18,

DDTu.{ui) =  DDr^Uj)

for all 1 <  i , j  < m. Let e(x) be the eccentricity of the vertex x. e(uj) =  

e(uj), V z,j,l <  z ,j <  m. By the symmetric structure of /G.m, e(u) =  e(ui) -f 1. 

We will show that if x  E V(T) — {u}, then e(x) > e(v). Since x  ^  v, , it follows 

tha t x E V(TUi) for some i, 1 <  i < m. Let y be a vertex in V(TU.), j  ^  i, such 

tha t d(y,v) = e(v). Such a vertex exists, since m >  2. Now

d(x, y) = d(x, v) +  d{v, y) =  d(x, v) +  1 +  e(v) > e(v) +  1.

Therefore e(x) > e(w); hence x  is not a center vertex. □

2.5 Traffic Sequences

A sequence (7rl5 7r2, . . . ,  tt*,) is called a traffic sequence, if 7rx =  1 and 7r,- is a 

positive integer, for all i =  1,2,..., k. Such a sequence is denoted by TV .  Recall
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Figure 2.11

that for a set S  of traffic sequence, S  is realizable (graphical), if there exists a 

forest F  which has S  as its traffic vector distribution.

Lem m a 5 For any traffic sequence T V , there exists a tree T  such that T  has an 

edge eo with T V (eo) =  T V .

P ro o f  Let T V  = (I,7r2,7r3,. . .  ,7^). The required tree can be constructed as in 

Figure 2.11.0

For any set S  of traffic vectors, the above lemma suggests a method for con

structing a forest F  with a subset A  in E(F),  such tha t A  has the same traffic 

vector distribution as S.

R em ark  8 Given a set of traffic vectors S  =  {TVX, T V . . . ,  TVn}. Where TV{ = 

(1 ,7T.-2,7T,'3,..., 7r,-n), z =  1,2,..., m. The following is true:

(1) S  is not graphic i f  there exists T V  G S, such that, ttj > 0 for some j  > m  + 1.

(2) I f  S  contains TV\, with 7rtJ- > (m /2)2, then S  is not graphic.
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Figure 2.12

D efin ition  3 Let e be an edge in a directed tree o f order n. The directed traffic 

vector is defined to be TV (e)=  ( ^ ( e ) ,  7r2(e ),. . .  ,7rn_x(e)); where ir,(e) is the num

ber of directed path in T  which contains e.

R em ark  9 Let T V  be a given traffic sequence. There exists a directed tree T  

which has an edge e, having T V  as a traffic vector.

P roo f: Let T V  =  (^1, ^ 2 , • • • i^n-i)-  We will construct the directed tree T  as 

shown in Figure 2.12. It is not difficult to see that the edge e0 in E(T)  has T V  

as its traffic vector. □

T h eo rem  2.21 Given a set o f  directed traffic sequence S, there exists a directed 

tree T, such that E (T) has a subset E\, with \E\\ =  |5 |, and the directed traffic 

vector distribution of the edges in E \ is the same as S.

P roof: We will show that the required set S  is graphic by construction. Let S  =  

{TV i,TV 2, TVjs|} where TVJ =  (7rtl, 7ri2, . . . ,  7ri(n-i))- The graph in Figure 2.13
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illustrates a tree with a subset S '  of edges with | S'' [ =  151 and the set 5 ' =  

{ei, e2, . . . ,  e|5|}. This can be seen in Figure 2.13. It is not difficult to see that the 

set of edges {ei,e2, . . .  ,ej5|} has traffic vector distributions exactly as in 5. □ 

Our next result shows tha t the problem of determining whether a set of traffic 

sequence is graphic or not is NP-complete. This is accomplished by showing that 

the known /VP-complete partition problem (see [24]) is reducible to a particular

ization of the decision problem for tree realizability when given a set of traffic 

sequence.

E ven  P a r ti t io n  P ro b lem :

In s ta n t:  A finite set A  with \A\ =  2k, and a ‘size’ 5(a) 6 Z + for each a € A. 

Q uestion : Is there a subset A' of A  such that \A'\ = k and T,aeA'S(a) — 

12ae(A-A') 5(a)?

T h e  R ea liza tion  P ro b lem lG :

In p u t:  A set 5  =  {7r,i, 7ri2, . . . ,  7r,n|7r,j is a positive integer for i < i < m  and 1 < 

3 ^  **}■

Q uestion : Does there exist a tree with 5  as its traffic vector sequence to its 

edges?.

T h eo rem  2.22 The Realization Problem is a NP-complete problem.

P ro o f: It is enough to show that the realization for trees of diameter 5 is a NP- 

complete problem. We reduce the partition problem to the realization problem. 

In s ta n t  of P a r ti tio n  P ro b lem :

A set A  =  {n,|l < i < 2K }  and n; is a positiv integer, and 5(n;) =  n .̂ Define 

2N  = ni and n =  2K  +  2N  +  2. We define the following set of traffic 

sequences:

C =  {(1 ,2 K ,2 N  + I< \2 N K ,  N 2)

(1, n,- +  K , n;K  -f K  +  N  — n,-, n ,( /f  +  N  — n,) +  N, rc,-iV), 1 < i < 2k
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n

2k-x

Figure 2.14

(1, m, K , K  + N -  m, N )ni, 1 <  i < 21<}

where Y%=i ni =  2iV and n =  2N + 2 K  + 2 and {T V )1 means there are i occurrence 

of the traffic vector TV .

We show that the set C  is graphic if and only if the answer to the partition 

problem is yes. Let A  be the instant of the partition problem with answer no. We 

show that C  is not graphic.

Assume C  is graphic, and let T  be a tree of order n and C  is the traffic vectors of 

its edges. Let e0 =  uv be the edge in T with TV {e0) = { l ,2 K ,2 N  + K 2,2NI<, N 2) 

since TV (eo) has only five components, there are three possible structures for T. 

First structure:

Let Tu and Tv be the two components T  — {e0} which contain u and v respectively. 

Let A\  and H\ be the set of vertices of distance 1 and 2 from u respectively and 

let A 2 and Ho be the set of vertices with distance 1 and 2 from v respectively 

(see Figure 2.14). If |AX| =  x, then \A2\ = 21< -  x. Let |t f : | =  y, \H2\ = z. By
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2k-  xx

Figure 2.15

considering TV (e0) it follows 

y +  x(2K  — x) + z = 2N  +  K  

yz  = N 2

y{2K -  x) +  x(z) = 2 N K .

Solving the above system implies the following: x  = K  and y = z = N . 

Second structure:

Define Tu and Tv as in the first structure and let A 2, H x and H2 be the set of 

vertices in Tv with distance 1, 2 and 3 from v. Let A x be the set of vertices of 

distance 1 from u in the the tree Tu (see Figure 2.15). Let|^4i[ =  x, \A2\ =  2K  — x 

and let li^ l =  y, \H2\ = z. Since

' t * i ( e o )  = (N  + I< + l ) 2 = (n /2)2.
i= l

This implies that (x  +  1)(21< - x  + y + z + l )  = ( N + I< +  l )2. Moreover, observe 

that

^3(^0) =  x(2K  -  x) +  y = 2N  +  K 2
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w

Figure 2.16

and z +  xy  =  2N K .  It can be shown that the above system of equations implies 

that y <  0, which is a contradiction.

Third structure:

Define the trees Tu and Tv as above. This structure has \V(TU) =  1. Let A 1, A2, 

Hi  and H2 be the set of vertices with distance 1,2,3 and 4 respectively from v (see 

Figure 2.16).

£ 7ri(e0) =  {I< +  N  +  l ) 2 £  1(2I< +  21V +  1)

for all K, N  E z+. Hence, this is impossible.

We consider the first structure: Since |if i | =  N x and |Ai| =  K,  there are 

exactly K  edges from H\  to A\.  Let E\ — {ei, e2, . . . ,  ex} be the set of edges from 

u to A\  and E 2 =  {e^, e'2, . . . ,  e'N} be the set of edges from Ai  to H x. Since edges 

in Ex are sharing the same vertex u, this implies that 7r2(et) = K  +  r,-, where r,- is 

the number of edges in E 2 which are incident to e,-. By the structure of the tree 

£ r.- =  N.
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Figure 2.17

Next we claim that the edges in E 2 are those with a traffic vector equal to 

(1, re,-, K, K  +  N  — re,-, N ). This follows from the fact that

1 +  re,- +  k +  I< +  N  -  re,- +  N  = 2N  +  2N  +  1 =  l(re -  1).

By the result of Chapter II the edge corresponding to this traffic vector must be 

an end edge (see Figure 2.17). There are exactly 2N  end edges in T, and exactly

n —1

£  re,- =  2N
i=i

as traffic vectors. Therefore, the end edges in T  must have traffic vectors of the 

form (1 ,re,-,/C, A" +  N  — re,-, A'’). Clearly, if such a tree exists, then the 2K  traffic 

vectors which are of the form

(1 , re,- +  K , N{K +  K  +  N  — ni ,  re,-( K  +  N  -  re,-) +  N,  re,-iV)

must be assigned to the edges in Ex. Since there are 2K  edges in Ex , this assign

ment is one to one.
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Let e7l € Ei  be an edge connecting a vertex W{ in Hx to a  vertex y7l in Ax. Let 

Byi be the set of vertices in E 2 which are adjacent to ?/7l, for e7l), ) =  n7l

where n71 =  n, for some i, 1 <  i <  2K.  Therefore, \B1X | =  n71 — 1; namely, y~n 
is adjacent to n7l vertices in H\. By a similar argument, we can show that each 

vertex y, in A\ is adjacent to exactly rc,-.

Observe that if yni is a vertex in Ax which is incident to the edges e1? e2, . . . ,  eni 
in Hi, then

T V (e s) =  TV(e t) ,V s , t ; 1 <  s , t  < rii

and 7T2(es) =  n,- VI <  s <  n,. This follows from the fact tha t we have exactly 

n :- traffic vectors of those. But this implies that the set of traffic vectors n,- — 

( l,n ;, k, k +  iV — rii,N) form a star with a center: say y, € Ai.  There are k sets 

of those, hence we have k stars, with k distinct centers {7/1, 7/2? • • • > Dk] in ^ i-

By exactly similar analysis, the structure of the edges from A2 to H2 is similar 

to the one from Ai to Hx. It consists of K distinct vertices, each representing a 

center of a star Ki,ni for some 1 <  n t- < ‘IK.
Next, we study the structure of the edges connecting the vertex u to vertices in 

Ax. Let e71 be the edge uy. Then we have degree u = k +  1, degree y71 =  n71 +  1. 

Therefore, 7T2(e7l) =  n7l +  k (see Figure 2.18). Thus

T V ( e ^ )  = (1 ,7i7l +  K,mK + K + N- n{,m{K + N- m) +  N,mN). (2.4)

Next we show that, if there is a partition to A, then C is graphic. There are 

exactly K edges from u to Aj, and K edges from v to A2, where each edge has 

a traffic vector exactly as in 2.4. The fact that \HX\ =  \H2\ =  N implies that 

there exist n7l, ..., n7K such that n7l =  N. Therefore the set {n71, ..., n7/f} is 

partition to the set A, which is a contradiction.

Suppose A =  {nx,n 2, . . . ,  U2k} has a partition. Let

Ax =  {nx, n 2 , . . . , n k}
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0 2

Figure 2.18

and

A 2 = {m 1 , m 2, . .  . , m fc}

be a partition on the set A  with the following property J2i n i =  Hi m i =  N.  The 

tree shown in Figure 2.19 has three sets of edges: the set E 0 which consists of one 

edge, namely uv and has

E 0 = {(1,2k, 2N + k2 ,2Nk,  N 2)}

as its traffic vector. The second set Ei  consists of edges incident to uv and has 

the following traffic vectors:

E\ = {(l,rii +  k^riik +  k + N  — rii,ni(k + N  — m) + N,niN)-, i  =  1 ,2 ,. . .  ,2fc}. 

The third set is E-i =  E(T )  — (Eo U ^ i )  and has the following traffic vectors:

E3 =  {m  -  (l,n,-,&, k +  N  -  rii, N)]i = 1 ,2 , . . .  ,2k}.

The union of the above three sets of traffic vector is equal to C .
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Figure 2.19

Assume A has no partition. We show that such a tree does not exist. Assume 

to the contrary tha t such a tree exists, then it should be of the form as shown 

in Figure 2.20. Moreover, the degree of the vertices in Ai or A 2 are of the form 

n i +  1; 1 * <  2&; namely. Each vertex in A* or A2 is adjacent to n; vertices in

Hi or H2, respectively. By the same analysis in this theorem, \Hi\ =  \H2\ = N. 

Therefore, there exists a set of elements n a i, na2, . . . ,  n ak, such that Xjf-i n al =  N,  

which contradicts the fact that A has no partition, and this completes the proof.□ 

Our next result gives an algorithm which allows us to calculate the traffic 

vector distribution of a tree from the set of degree sequences.

Theorem  2.23 Let e =  uv be an edge in a tree T ,  i f  DDS(u)  and D D S ( v ) are 

given, then TV{e) can be calculated.

P roof Let T  be a tree of order n. Let e  =  uv be an edge with 

D D S t {u) =  (d0(u), d i ( u ) , d n_i(u))
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n2

Figure 2.20

D D S t (v) =  ( d 0( u ) , d i ( u ) , . . . , d n- i ( u ) ) .

Let Tu and Tv be the components in T  — e which contain the vertices u and v, re

spectively. First, we evaluate D D S tu(u) and D D S tv{v ) from D D S t {u ), D D S j {v ).

If

and

D D Tu{u) =  (50(u ) ,5 i(u ) ,. . . ,  5„_i(u)

D D S Tv(v) =  (5b(«),Si(») 5 b- iW )

then the following is true:

Sk(u)  =  dk(v ) -S k - i ( u )  and Sk(v) = dk{ u ) - S k-i(v),  where d0(v) =  0 ,d 0(u) =  

0. By using the above recursive formula we can now evaluate the traffic vector of 

e. If TV(e) = (7ri(e),7r2(e ) ,.. . ,7 rn_1(e)) then

n—1
*i(e) =  X) Sk(u )S n-k-i{v), i = 1 ,2 , . . . ,  n -  1 

fc=i
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□

This algorithm can use the known algorithm for finding the distance degree 

sequence to evaluate the traffic vector.
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CHAPTER III

IMPROVING PAIR-CONNECTED RELIABILITY

3.1 Introduction

In this chapter the improvement of pair-connected reliability of trees is dis

cussed. We characterize those edges of a tree whose improvement maximizes the 

pair-connected reliability.

Let G =  (V, E)  be a graph and let S  € E.  Define PC(S)  to be the number 

of connected pairs of vertices in < S  > . Recall tha t the function PC(G,q)  gives 

the expected number of pairs of vertices that are connected in the random graph 

(probabilistic graph) G. The function PC(G,q) seems particularly appropriate for 

communication networks, in which the goal is to maintain communication between 

as many pairs of sites as possible. Basic results on algorithms and computational 

complexity for pair-connected reliability can be found in [3], and [6].

In Chapter I, we defined the pair-connected reliability of a graph G =  (V, E)  

to be

P C ( G ,q ) =  Y ; P C ( S ) R ( S )  (3.1)
sen

where R(S)  is the probability that G is in the state of S.  In general determining 

the pair-connected reliability for a graph is difficult. In fact, there is no known 

polynomial time algorithm for finding the pair-connected reliability for a given 

graph. In order to illustrate the concept of pair-connected reliability, we consider 

the following example:

55
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a

c

Figure 3.1

Let G =  I<3 be the complete graph of order 3, and label the vertices in G 

by a, b,c (see Figure 3.1). The three states corresponding to one edge in a failed 

condition are: S\  =  {ab, be}, S2 = {bc,ca}, S3 — {ca,ab}. Because PC(Si)  =  

P C (S 2) =  P C (S3) =  3, the three terms in the summation (3.1) are 3p2q1,3p2q1 

and 3p2ql .

In general, the pair-connected reliability polynomial can be written as

PC(G, q) =  B lPqm- '  +  B 2p2qm~2 +  . . .  +  Bm^ ~ lq +  B mpm (3.2)

where each B{ represents the total number of pairs of connected vertices taken 

over all subgraphs with exactly i edges. For the graph G in Figure 3.1, we have

PC(G-,q) = 3p3 + 9p2q1 +3pq2

or recalling that q = (1 — p)

P C (G ; q) = 3p + 3 p2 — 3p3.

Recall from Chapter I, tha t for trees, the computation of P C ( T , q) is straight

forward. Let D(G)  =  (di(G), d2(G) , . . . ,  dn_x(G)) be the distance distribution
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of G, where d;(G) denotes the number of pairs of vertices in G with distance i 

between them. The distance distribution D ( T ) of a tree T  completely determines 

PC(T,q) ,  namely

PC(T ,q)  = ' t d i(T)pi. (3.3)
i=l

Slater [29] shows that the star is the optimal tree on n vertices, with respect

to pair-connected reliability and the path Pn is the least reliable tree on n  vertices.

As in Chapter I, we consider a probabilistic graph G =  (V, E)  in which each 

edge e € E  fails independently with probability q. In this chapter, we will improve 

the pair-connected reliability of trees by using the edge replacement or improve

ment and by multiple edge enhancement. For the following discussion, our basic 

probabilistic graph is tree T. If S  = {ei, e2, . . . ,  e*} is the set of edges in E ( T ) 

which will be improved, then S* = {(ei, A i), (e2, A2) , .. •, (e^, Afc)} denotes the 

new probability assignment of the edges in S,  where (e,-, A;) indicates tha t the 

edge e:- has been changed to have new reliability p +  A,-. Note that the reliability 

of the edges in E(T) — S  remains p . Next we find the pair-connected reliability 

in a tree T  when the edges on T  have different probability. The pair connected 

reliability of a graph G may be formulated in terms of two terminal reliability 

Ru,v(G,q) (The probability that u and v are connected in G (see [6])). If G is a 

graph,then

PC(G,q)  =  £  RuAG,q)  (3.4)
u,«€K(G)

where the sum is taken over all undirected pairs of distinct vertices in V(G),  and 

R v,v{G, q) is the probability of having u and v connected in G. For a tree T  there 

exists a unique path between every pair of vertices in V ( T ), therefore if u and 

v are two vertices in T , then the probability that u and v are connected is the

same as the probability that no edge in the path from u to v has failed. If P  is a

uv-path in T  with E(P)  =  {ex, e2, ...,e,}, then

Eu,v{T,q) =  IJpj(ej) 
i=i
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when Pj(ej) is the probability th a t the edge ej is functioning. For the trees we 

simply denote /^ ( T ^ g )  by R(Ii+1), where 7j+1 is the uu-path. For a tree T,  if F 

denotes the probability assignment of E(T),  then formula (3.4) becomes

P C ( T , r ) =  Z  W i + i )  (3.5)
U+i <T

where the sum is taken over all paths 71+1 in T,  of length i and 72(7,+1) is the 

probability of having 7t+1 connected. If 7?(7t-+1) =  (ei, e2, ..., e,}, and p(ef) =  p: , 

for j  =  1,2 ,..., i, then 72(7t+1) =  11}=i Pj■ By convention, if S* (the new probability 

assignment of the edges in S ) is known, then R(T,  T) =  R(T, S ' , q).

L em m a 6 Let e be an edge in a tree T  of  order n . I f  {ex}* =  {(e^Ap)} then 

RC(T ,  {ei}*,q) = -7Ti(ei)]p‘ +  7ri(e1)p,_1(p + A p )
i=i

where 7),- is the number of the paths of length i in T, and 7Ti(ei) is the number of  

paths of length i in T  which contain the edge e\.

Proof: If A{ is the set of paths of length i in T,  then A( can be partitioned into 

two sets, Au  and A 2,-, where A u  consists of paths of length i in T  which do not 

contain ei, and A n  consists of paths of length i in T  which contain e^  Necessarily, 

jAj| =  |Ax,| +  |A2,| =  D{. Let

T V (ex) =  (7Ti(ei),7r2(e1),...,7rn_1(e1))

be the traffic vector of e1? then by definition of wfe-i), it follows that: |A1{| =  

Di — Tr^ex) and |A2j| =  7rt(ex). By using the equation in (3.5)

72(T,{ex}*,9) =

£ | A x i | p ‘ +  |A 2 i |p i - 1 ( p  + A p ) =  ■ 
i = l

-  7T.(ei )]p* +  7T,(ex)p,-1(p +  Ap).
i=0

□ Next we use the concept of traffic vectors, for measuring the effect on pair- 

connected reliability by edge improvement.
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T h eo rem  3.24 Suppose T V (e i) =  (7r(ei),. . . ,  7rn_ i(ei)) and 

TV(e  i) =  (7ri(ei),7r2(e2 )...,7 rn_i(e2)) are traffic vectors of  e\ and e2 in tree T  

respectively. Le te j and e2 be edges of  tree T , of  order n + l.  I f  {e 1}* =  {(ei,Ap)}, 

and {e2}* =  {(e2, Ap)} then,

PC(T ,  {ex}-, q) -  PC(T ,  {e2}-, q) =  A p X > i( e ,)  -  *,(e2)]p‘- 1
t=l

P roof: Let D(T) = (Di,L>2, . . . ,  Dn) be the distance distribution of T.  By using 

Lemma 6 the following is true:

P C (T ,{ e x}*,q) =  ~  *i(ei)]p‘ +  Ap)
t'=i

and

P C ( T , {e2}*, q) =  -  w-«(e2)]p* +  7r:-(e1).p‘" 1(p +  Ap).
«=l

By taking the difference in the above equations,

A PC  = P C (T , { e l } \ q ) -  PC(T,  {e2}*, q) =

l O M e a )  -  *i{ei)]pl +  k i(c2) -  ar,-(ei-)]p*'-1 (j> +  Ap)) =
i= 0

£ ( M e 2) -  JTi(ei)]p'’ +
i'=0

K '(ex) -  7rt-(e2)]p') +  ^[ar,-(ci) -  ?r,-(e2)]p‘-1 • Ap = 
i=o

a p £ M ci ) -  7r»(e2) b ‘_1-
t'=0

The above result indicates that the choice between edges is independent of the 

amount of improvement Ap  but depends on the traffic vectors of the edges ei and 

e2 or the probability p.

C o ro lla ry  7 Let ei and e2 be the edges of  a tree T  of  order (n +  1) with

TV(e i)  > TV (e2).
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U M *  =  {(e1,Ap)},and {e2}* =  {(e2,A p)}; then

PC{T,{e i}* ,q) > P C (T ,{ e i } m,q)

P roo f: Let A P C  = PC(T,  {ei}*, q) — PC(T,  {e2}*, q). By Theorem 3.24

A  . P C  =  A p ^ f o f o )  -  7T t(e2 ) ] p 1 - 1 .
i=i

Since T V (e i) >  TV(e2), this implies that

5 3 fa (e i)  -  7r*(e2)] >  0 
:'=1

for all j  =  1,2, Hence for each term in A P C  with negative coefficient,

we can associate one or more terms of lower exponents for which the sum of its 

coefficients equals the absolute value of the negative coefficient. By noting that 

for j  > i and p* >  p7, we conclude tha t A PC  >  0, for 0 < p < 1. □

D efin ition  4 An edge eo of a tree T  is called a uniform edge i f

PC(T,  {(e0, Ap)},q) >  PC(T,  {(e, Ap)}, q)

for all e € E(T) and for all 0 <  Ap <  1 — p.

We now address the relationship between the uniform edge and the dominant 

edge.

C o ro lla ry  8 I f  e is a dominant edge in T,  then e is a uniform edge.

P roof: The result follows immediately by using Corollary 7. □

The above result shows tha t a tree T with a dominant edge always has a 

uniform edge.

T h eo rem  3.25 The only tree in which an end edge is a uniform edge is the tree
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2

Figure 3.2

P ro o f: Suppose Co € E ( T ) is both a uniform and an end edge. Assume that 

T  ^  I<x<n. By Theorem 2.10, there exists an edge e € E(T)  such tha t TV(e) > 

T V (e o). By Theorem 3.24 and Corollary 7, we have the following:

PC{T,  {(e, Ap)}) — PC(T,  {(e0, A p)},?) > 0.

Hence, e0 is not a uniform edge, which is a contradiction. □

If an edge ex dominates an edge e2, then it follows from Corollary 7, that 

P C ( T , { e x}*,q) > PC(T,  {e2}*, q). The converse to this statement is not true. 

This can be seen in the following example. Let T  be the tree shown in Figure 3.2. 

The tree T  has two edges ex and e2 with the following traffic vectors: T V (e x) =  

(1 ,5 ,6 ,6  +  N,  hi, h2, . . .)  and TV(e2) =  (1,2,10,10, / i , /2, . ..) respectively. Since 

’Tt(ci) — 7r,(e2) =  —1, the edge ex does not dominate e2. On the other hand,

let

H(p) = P C (T , {(clf Ap )Y ,  q) -  P C ( T , {(e2, Ap)}*, q).

By using Theorem 3.24,

H(p) =  Ap[3p* -  V  +  (JV -  4)p3 +  £ [ ^ ( 6 , )  -  ^ (e jJ lp '-1].
i=5
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n

Figure 3.3

It is not difficult to see that 5Zf=sE r̂*(ei) -  7rt(e2)]p‘_1 >  0 for all i > 5. Therefore

H(p) > Ap[p(3 - 4 p + ( N -  4)p2].

For p € (0,1), the sign of H(p) depends upon the sign of the quadratic function 

(N  — 4)p2 — 4p 3 which has no real root when N  satisfies 16 — 12(N — 4) < 0. 

Therefore, for N  > 6,

(N  -  5)p2 -  4p +  3 >  0.

For Ap, H(p) > 0 for all N  > 6.

The above example, with the fact that any dominant edge is a uniform edge, 

suggests the following question: Is there a uniform edge which is not a dominant 

edge? This question remains open.

In the process of improving network reliability the choice between edges does 

not depend only on their traffic vectors. The value of the probability p for the 

edges in T  may change the decision. The following example shows an edge e 

contained in a number of paths which is not a uniform edge.

Example: Consider the tree T  (see Figure 3.3). In T, T V ( e x) =  ( l,2 ,2 n  +
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1,2n ,n 2) and T V (e 2) =  ( l ,n  +  l , n  +  l,2 n , n2).

A P C  =

PC(T,  {(elf Ap)}*, q) -  PC(T,  {(e2, Ap)}*, q) =
2n+3

Ap £  k i(e i) ~  )]p‘_1 =
»=1

p • Ap[np +  (1 — n)].

For positive values of Ap  and p, we have the following: np +  (1 — n) > 0 if and 

only if p > 2=1. Therefore,

A P C  =
> 0  for p > 2=1— ~ — n

< 0 otherwise.

Thus, the edge e\ is a better choice for p > 2 —1 ( and the edge e2 is a  better choice 

for p <  2=1 ? with respect to improving pair-connected reliability.

T h eo rem  3.26 Let T  be a tree of  order n -f 1. I f  eo is a uniform edge in T , then

> f^TTi(e)
t=i !=i

for all e € V(T).

P roo f: Let TV (e 0) =  (7Ti(e0), 7r2(e0) , . . .  ,7rn(e0)) and TV(e)  =  (7Ti(e),7r2(e ) ,. . .  ,7r„(e)) 

Thus

A P C  =

P C (r ,{ (e 0,A p)},g) -  PC(T,{(e,  A p ) } ,q )A P C  =

]C t,ri(eo) “  7!'»(e)]p‘_1A PC  =
t=i
aip° + a2p2 +  . . .  +  anpn~l =  H{p)

where a,- =  7r;(eo) — 7rt(e). Assume to the contrary that e0 is a  uniform edge and 

£?=i 7r,(e0) <  E"=i TTi(e). This implies that < 0, therefore limp_ i H(p) <

0. Thus, there exists p €  (0,1) such that H(p) < 0, which contradicts the fact 

tha t H(p) > 0 for all p. □
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C o ro lla ry  9 Let T  be a tree of  order n, and let S  be the set of  edges in E(T)  

with the property, Yfi=i ^ ‘(e) is maximum. Given eo G S  and e € E(T)  — S, there 

exists p0, 0 <  p0 <  1 such that Vp 6 (p0, 1); 0 <  Apleq <  1 — p

PC(T ,{e0,A p } ,q ) > PC (T ,{e ,A p} ,q ) .

P roo f: Let e0 be an edge in S,  then

£  7r,(e0) > J2  7rt(e) Ve € E(T).  (3.6)
•=i »=i

Hip)  =  PC(T,  {e0}*, q) -  P C (T , {e}*, q) =

-  7ri(e))p,_1
t=i

The above expression is a polynomial function of p. If H{p) = a2pl +  a3p2 +  . . .  +  

an_ipn~2, then by using (3.6) we have > 0- Therefore, limp_ i//(p )  > 0.

Thus there exists p0 with 0 < p0 < 1 such that H(p) > 0 for all p >  p0, which 

implies the desired result. □

C o ro lla ry  10 I f  e is a uniform edge in a tree T y then the number of  paths con

taining e is maximum.

C o ro lla ry  11 I f  S  =  {ei, e2, . . . ,  em} is a set of  uniform edges then the Ind(S) is 

isomorphic to K i t\s\.

P roo f: This follows from Theorem 3.26 together with Theorem 2.15 for the re

sult.

3.2 Improving More Than One Edge

Let T  be a tree of order n -f 1. Given S = {el5 e2, . . . ,  e^} C  E{T)  and a 

positive number r , the set A  =  { t i , t2, . . .  ,tk} is called A:-partition to r if t,- is 

non-negative for all i =  1 ,2 , . . . ,  k and £)L i L =  r. Define the set

S* = {(e1? Apx), (e2, Ap2) , . . . ,  (efc, Ap*)}
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to be a new probability assignment to the edges in S,  where Ap  =  Ap,-, and 

Ap <  k( 1 —p). We wish to find a partition of Ap, which maximizes the increase in 

the pair-connected reliability of T.  The following result shows the best partition 

of Ap in the case of |5 | =  2. Throughout the following sections, S  will denote 

a set of edges in the graph which are to be improved and S* will be the new 

probability assignment for the edges of S.

T h eo rem  3.27 Let e* and e2 be edges in a tree T  o f  order n +  1. Suppose S  =  

{el5 e2} and S*(t) =  {(e^tA p), (e2, (1 — i)Ap)}, where 0 < t < 1 , and Ap <  1 — p 

then the function

H(t)  =  P C ( T ,S * { tU )  -  P C (T ,{ (e x, Ap)},</) 

has a maximum value when

1 E k . ( e i )  ~  7r« (e 2 ) ] p * ~ 1

2 E M S ) ] p - 2 '

P roof: Paths of length i in T  can be partitioned into three sets:

Set 1: paths containing e\ but not e2.

Set 2: paths containing e 2 but not e x .

Set 3: paths containing both ei and e2. Therefore,

P C (T ,S - ( t ) ,q )  =  E ( [ A  -  M e , )  +  T,(e2) -  T ,(S )))p ‘+
t = l

[Ti(e2) -  7T;(S)][p +  (1 -  0Ap]p'-1 +  [^(eO  -  7Ti(S)][p 4- *Ap]p’-1-f

[7r,(5)][p 4- iAp][p 4- (1 -  t)Ap]pl~2) (3.7)

where, D, is the number of ordered pairs of vertices in T  with distance i between

them, 7T,(ei) and 7T;(e2) are the number of paths of length i which contain e\ and 

e2 respectively, and 7r,-(5) is the number of paths of length i which contain both 

edges ex and e2. Simplifying the equation in (3.7) gives the following:

PC(r,S"(i),?) = i;[A->ri(5)]pi+
» '= !
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[(7r»(ei))A pt +  (1 -  t)Ap7r,(e2) -  Ap7r,-(S)]p* 1 +  (7r,(5)(Ap)2(< -  t 2)p*-2.

On the other hand,

PC(T,  {(ex, Ap)}) =  Y^[Di -  iri(ex)]p‘ +  7ri(e1)p*'-1(p +  Ap).
x=i

Now the function

H(t)  =  PC(T ,S-( t ) ,q )  -  P C (r ,{ (e „  A p )} ,,) =

n

X ) -  jri(‘S,)p' +  [7r,(ei)Ap t -  Ap Tr^ex) +  (1 -  f)Ap 7T,(e2) -  Ap 7r,(S')]p,_1 +
t=i 

i(A p)2(l -  t)7Ti(ei, e2)p‘~2.

The function f/(f) has a maximum value in [0,1] at the critical points. Thus, if 

H'(t) is the derivative of H(t),  then

H'{t) =  A p M ei) ~*iCe2)]p‘~1 +  7ri(5)(Ap)2(l -  2i)p*’"2.

Letting H'(t)  =  0, and solving for t implies

i , ErJiM^bi) -  ^ M p *"1 
0 2 +  T&foiS)]?-* •

Since H"(t) < 0 for all t  E (0,1), this implies that H(to) has no minimum value 

in (0, 1) at t = to.d

C o ro lla ry  12 In the previous theorem suppose TV{e{) = TV(e2), then the max

imum value of  H{t) occurs when t =

Given S  =  {ex, e2, . . . ,  e*} C E ( T ) and

=  {(ei,irA p),(e2, t 2A p ) ,. . . ,( e fc, t fcAp)}

where A  = { t i , t2, . . . , tk) is A;-partition to 1, what is the best &-partion of 1 which 

maximizes PC(T,  S'*(A), q) the most ? We conjecture the following: If A  contains 

zero element, then PC(T, S*(A),q) is not maximum.
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Figure 3.4

The increase in reliability depends not only on the way we distribute Ap among 

the set of edges which are to be improved, but also upon the choice of the edges 

to be improved. To see this, consider the example:

Let T  be the  path P 9 . Label the edges in E ( P9) according to their location 

from one of the ends, say E(Pg)  =  {el5 e2, ..., es}. Assume we wish to improve two 

edges in this path, each edge by the amount of ^p where, p < ^p <  1 (see Figure 

3.4). If S  =  {ex,e 2} then 5*(A) =  {(ex,-fA p), (e2, -|A p)} where A = {-5, 41- 

Note tha t we are taking a fixed partition to 1, namely {-5, -5}.

Consider the following choices of improving two edges in E(Rg):

(1) e4, es are the two edges needed to be improved.

Let p0 =  p +  Ap. 5 X =  {(e4, Ap),(e5, Ap)} then

PC(T,SZ,q)  =  (6p +  2po) +  (4p2 +  2pp0 + P o )+

(2p3 +  2p2p0 +  2ppo) +  (2p3po +  3p2po) +  (4p3p2) +  3p4po +  2p5Po +  l P&Po-

(2) e$ and e6 are the two edges which need to be improved.

Let S% = {(e3, A p),(e6, Ap)}, then

PC(T,S%,q) =  (6p +  2p0) +  (3p2 +  4pp0) +  (6p2p0)+

(4p3p0 +  V2Vq) +  (2p4p0 +  2p 3po +  3p4Po +  2p5po +  P6Po)-
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Consider the difference

A P C  =  P C ( T , srlf q) -  P C (T , s ; ,  q) =

(Po -  p )2 + 2(p0 -  p)[2pp0 -  2p2] +  2p2p0(p0 - p )  + 2p3po{p0 -  p).

For po > p we get A P C  > 0. Therefore e4 and e5 is a better choice than e$ and 

e3-

Next we improve network reliability by adding multiple edges. Let e be an 

edge in a tree T.  If n new multiple edges are added to e then the new reliability 

assignment of e is {(e, Anp)}, where A np = (1 — p)(l — (1 — p)n). Note that 

0 <  Ap <  1 — p. If 5* =  {(ei, Anp)(e2, Anp ) , . . . ,  (e*, A„p)}, then we will denote 

S * by simply S*(ei, e2, . . . ,  e*)-

D efin ition  5 An edge set S  = {ei, e2, . . .  ,e m} is called an m-uniform set in T,  

i f  a given S* =  {(e,-, Ap); i = 1, 2, . . . ,  m )  then

P C ( T , S % q ) > P C ( T , r , q )

for all I  =  {e'j, e'2, . . . ,  e'm} C E(T)  with |/ | =  m and /* =  {(e'-,Ap);e =

1,2

T h eo rem  3.28 Let e4 and e2 be two dominant edges in a tree T. / /{ e 1?e2} is a 

dominant set, then {e!,e2} is a 2 -uniform set.

P roo f: Let 5* =  {(ei, Ap), (e2, Ap)}, and let e\ and e'2 be two edges in E (T )  and

I* = { (ei,A p),(e ,2,Ap)}.

Let X, be the number of paths of length i which contain ei but not e2, y,- be the 

number of paths of length i which contain e2 but not ex, and z,- be the number 

of paths which contain both ex and e2. Similarly, let x\ be the number of paths 

containing e[ but not e2, y\ be the number of paths of length i which contain e2
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but not e'l5 and z\ be the number of paths of length i which contain both e[ and 

e'2. If Di denotes the number of paths of length i in T, then the following is true:

PC(T, S% q) =  £ [ A  -  (Xi +  Vi +  2,)]p‘+
t=l

(*i +  Pi)p‘-1(P +  Ap) +  Zip'~2(p +  A P )2

and

P C ( T ,P ,  q) =  +  Vi +  zt')]p' +  (x i +  P»)p,_1(p +  Ap) +  zipt~2(p +  A P )2.

Consider the difference:

A P C  =  PC(T , S*q) -  PC(T,  r ,  q) =

^2(x'i- xi+y'i- y i+Z' i - zi)p,+[(xi - x ,i)+(yi-y ' i)]p'~1(p+Ap)+(z i -z l )p t- 2(p+AP)2. 

Observe that

Xi  +  z { =  K i f a )  

y{ + Zi = x,(e2) 

x i + A  =  7r* (ei )

y'i +  A  =  ^ '(4 )-

Therefore,

A ^C  =  5^[wi(ei) -  ^-(e;) +  7Tj(e2) -  ^ ( e ^ jp ^ 1 Ap +  (z,- -  z')p*'-2(Ap)2.

The fact that e\ and e2 are dominant edges and {ei, e2} is a dominant set implies

that A P C  >  0 for all Ap and for all p € (0,1). □

T h eo rem  3.29 I f  e\ and e2 are the only dominant edges in a tree T  and the

common vertex has degree 2 , then {e1?e2} is a 2 -dominant set.
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Proof To the contrary, assume there exist two edges e[ and e'2 in T  such tha t

i  i
Y  [, e2) >  Y  7T.(ei, e2).
i=i i=i

For some 0 <  j  < d iam(T ) we show that ei or e2 is not a dominant edge. Without 

loss of generality, let Ind(e[ , e'2) be the path u[v'u2. Let A x be the set of paths of 

length L < j  which contain (ei, e2}. Suppose tha t TUl, and TU2 are the components 

in T  — {ex,e 2}, which contain ux and u2, respectively. Let TUi(Ax) \ i  =  1,2, be 

the subtree induced from the two parts of those paths in A x which are contained 

in Tu, and TU2 respectively. Let yx =  |V(TU,(A X))|, and y2 =  |V(TU2(Ai))|, then

i
5^7ri(e1,e 2) =  yxy2 
i = i

(see Figure 3.5). Similarly, let A2 be the set of all paths containing e[ , e2 with 

length L < j .

Let Tut and Tui be the components oi T  — {e^, e'2) which contain u[ and u2, 

respectively and let x x =  \V(Tu>i (A2))\, and x 2 =  \V{TU>2 {A2))\. Then

j
m(e'x,e2) = x x ■ x 2.

i=1

B y  a ss u m p t io n  x x • x 2 >  yx ■ y2. W ith o u t  lo ss  o f  g e n e r a lity , a s s u m e  x x <  x 2, an d  

2/i ^  2/2 - T h e  n u m b er  o f  p a th s  o f  le n g th  L , w h er e  L  <  j , w h ic h  c o n ta in  e x is 

2/ i (1  +  y 2).  O n  th e  o th e r  h a n d , th e  n u m b er  o f  p a th s  o f  le n g th  L  <  j  w h ic h  c o n ta in  

e'2 is  (xx +  l ) x 2. If x xx 2 >  yxy2, x x <  x 2 a n d  yx <  y2, th e n  x 2 >  yx w h ic h  im p lie s  

(xx +  l)x 2 >  yx(1  +  y2). T h is  c o n tr a d ic ts  th e  fa c t  th a t  ex is  a  d o m in a n t e d g e . □

C o ro lla ry  13 A tree T  with exactly two dominant edges ex and e2 has {ei,e2} 

as a 2 -uniform set, i f  the common vertex has degree two.

Proof Using Theorem 3.28 together with Theorem 3.29 will imply the result. □ 

The improvement of network reliability by changing the probability of more 

than two edges is not easy to analyze. Our goal is always to come up with the
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Figure 3.5
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/ e

Figure 3.6

best choice of a  set of edges, and having it remain the best for all values of p with 

0 <  p <  1. Unfortunately, for most networks no such choices exist, unless we 

restrict the value of p.

The next result shows tha t the set of dominant edges contains a K-uniform 

set when the value of p is restricted.

T h eo rem  3.30 Let e\ and e2 be two dominant edges in a tree T  of  order n. I f  

p > then the set {ei,e2} is a uniform set.

Proof: Let e[ and e'2 be any two edges in E{T).  Let x\ and y\ represent the 

number of paths of length i , which pass through e\ but not e'2, and e2 but not e[, 

respectively. Moreover, let a:,- and yi be the number of paths which pass through 

ei but not e2 and e2 but hot ex, respectively (see Figure 3.6 and 3.7).

Let 7Tt(ei,e2) =  Z{ and ef) = z\. By an analysis similar to the one given 

in the proof of Theorem 3.28, if

S * =  {(e1? Ap), (e2, Ap)}
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2
X i 2’.

Figure 3.7

then

r  =  {(e'1 ,A p),(e',A p)}

&R =  P C ( T , S - , q ) - P C ( T , I - , q )
n —1

=  Xrf[7r«(ei) “  +  7r«(e2) -  ^(eaJJp’^ A p  +  (zf -  z-)p' 2(Ap ) 2
t=i 

n —1
=  D ^.'Cei) -  ff,(ei) +  x,(e2) -  +  (z,- -  z-)Ap]pt_2Ap.

i=l
The fact tha t x,- — xj- >  z\ — Zi and ?/,• — ?/,■ > z,- — z,- implies the following: 

h' =  ^(ea) -  Ki{e\) +  7 r , ( e 2)  -  7T,(e'2 )  >  2(z- -  z.) =  2h

Therefore, A il >  0 if and only \ i h '  ■ p — kAp  >  0 or

A .  ^  1 A P > TA P >  j A p

□
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Figure 3.8

T h eo rem  3.31 Let e i,e 2, e3 be three dominant edges in T  o f  order n +  1. I f  

p >  Of, then {e!,e 2 , 6 3 } is a 3-uniform set in T.

proof: Observe that if {ei,e2,e3} =  S' is a set of three dominant edges, then 

<  S  > =  Ki,3. Since S  =  {ei,e2, 63} is a  set of dominant edges, then the number 

of paths which contain exactly one edge in S  is independent of the edge. Moreover 

the number of paths of length i which contain exactly two edges in S  is independent 

of the pair of edges. Let be the number of paths of length i which contain exactly 

one edge in S  and let z,- be the number of paths of length i which contain exactly 

two edges in S. (See Figure 3.8 and 3.9) Now, let I  =  {e^e^e^}  C E(T).  For 

j  =  1,2,3, let x\ denote the number of paths of length i which contain e'- but do 

not intersect I  — {e'}. If irj(e',e£) =  z f  ; 1 <  s,< <  3 then

3Xi -  ( x j  +  x] +  x] )  >  Zi -  z f  +  Zi -  z f  +  Zi -  z f

Let

S* =  {(e1? Ap), (e2, Ap), (e3, Ap)}.
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Figure 3.9

and

I* =  {(e^ Ap), (e'2, Ap), (e'3, Ap)}

PC(T ,S*, q) -  -  (3®« +  32,)]p’ +  3x,p,_1(p +  Ap) +  3z,p,-2(p +  Ap)}
<=i

and

PC(T, r ,q )  = £ {[A  -  (*.! + *? + *? + */ + *? + *?)tf+
1=1

(zj  +  X? +  X?)p’'- a(p +  Ap) +  (z}2 +  z f  +  2j3)p*'"2(p +  Ap)} 

7 /  A P C  = P C { T ,S * ,q ) ~  PC{T,I* ,q) . then  

A P C  =

App,-1{[3xt- +  6Zi -  x\  -  x? -  xf -  2z}2 -  2z f  -  2 z f ] +
i=l

(AP) V - J[3Z i- ^ - # - . - ; 3]} =

E { A p p i' ! [(3*i -  xj -  xf  -  xf  +  6z( -  2 z ! !  -  2 z f  -  2 z/3) p -  
1=1
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Ap(zf  + z f  + z f -  3*))]}

Observe th a t, for all i — 1 , 2 , . . . ,  n

Xi -f 2 z; 

x} + z f  + z f  

x} +  z f  +  z f  

x3i +  z f  +  z f

Equation(3.10) can be written as

A  PC =  A p / - 2 [(7rt(e i ) -  TTt( î) +  ^ ( 6 2 ) -  ^ ,( 4 ) +

7r.(e3) -  7ri(4))P -  &P(zi2 +  zf  +  z f  +  32,-)].

Using the fact that el5 e2, e3 are dominant edges in T, we have

h' =  3^(6!) -  ir^ej) -  -  Ki(e'3)

>  2[zf  + z f  +  z f  -  32,-]

=  2 k.

Therefore, A PC >  0 if and only if ph! — hAp > 0, or

^  h ^  A p  
P >  j , A P  ^  “

□
The above argument can be extended to obtain the following result.

T h eo rem  3.32 Let S  =  {e1} e2, . . . ,  e*,} be a set of dominant edges in a tree T  of  

order n, such that k < n.  I f  p > then S  is a k-uniform set.

For some k, k <  |5 |, the following example shows that a set of dominant edges S  

does not always contain a k-uniform set. Consider the tree in Figure 3.10. The 

set

S  = {e1? e2, e3, e4, e5}
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Figure 3.10

is the maximal set of dominant edges. We show that there axe no 2-uniform 

sets in S.  W ithout loss of generality, assume that {ei,e2} be a 2-uniform set. 

TV(ei)  =  TV(e2) = (1 ,5 ,8 ,4), and TV ({ex,e2}) =  (0,1,2,1). Let e' be an end 

edge incident to ex, then TV(e[)  =  (1 ,1,4,4), and TV({e{, ex}) =  (0 ,1,4,4). Let

S* =  {(ei,A p),(e2,Ap)}

r  =  {(e i,A p),(e ;,A p)} .

Then

A P C  =  PC(T,  5*, q) -  PC(T,  /*, q) =

J 2  Ap • P,_2[(7r,(ei) +  7r,(e2) -  n f a )  -  ir,(ei))p+

A p(jr,(ei,e2) -  5r,(ex,ex)] =

Ap[(4p) +  OAp] +  pAp[(8 — 4)p — 2Ap]pAp[lp — 3Ap] =

4pAp +  4p2 Ap — 2p(Ap)2 — 3p(Ap)2 +  p2Ap =
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2pAp[2 +  2p — Ap — 1.5Ap +  pAp] =

2App[2 +  2p — 2.5Ap +  pAp].

Letting p —» 0 .and Ap —> 1 implies there exist p and Ap for which A P C  is 

negative.

Observe that for p >  |  and 0 <  Ap <  1 — p we have p >  Ae. In most network 

applications, the reliability of the layout of the network is at least | ,  therefore one 

can apply the above result in improving pair-connected reliability. In general, if 

p >  |  then p >  Ae for all 0 <  Ap <  1 — p.

3.3 k-Reliable Trees

Suppose that we wish to improve the pair-connected reliability of one of two 

trees of network T\ or T2 which have the same order. Let k be the number of 

edges whose probability we decide to improve. One can ask whether we should 

choose the network Tx or T2. A tree T0 of order n is called a k-reliable tree, if for 

any other tree with the same order, there exist S  =  {ex, e2, . . . ,  et} C E(Tq) and

PC(T0 , {(e,-, Ap)|* =  1, 2, . . . ,  k},q) > P C (T , 5*, q)

where S * =  {(eJ,Ap)|i =  1, 2 , . . . ,  fc; ej- € S}. In this section we investigate the 

question of finding the k-reliable tree of given order.

T h eo rem  3.33 There exists a 1 -reliable tree To of order n for any n > 1.

P roof: The proof is by construction. Let To be the tree obtained by identifying 

the centers of the stars K x and K 1jn - 2-\ with the end vertices of K 2 (see 

Figure 3.11). To show that To is a 1-uniform tree, let e0 be the edge in To which 

is not an end edge. Note that

T V (e  o) =  ( l , L ^ J , f ^ l ) .
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Figure 3.11

Let T  be a tree of order n, let e be an edge in T.  Claim: TV (e0) > TV(e). 

Observe that 7T2(eo )  =  n — 2 which is an upper bound, and

E ^ W  =  ( L | j ) ( r | l )

which is an upper bound. Therefore TV(e0) >  TV(e).  The fact that

P C (T0, {(e0, Ap)}, q) -  P C (T , { ( e ,  Ap)} =  Ap X ^ M e 0) -  Jr<(e)]p' -1 >  0
i=i

implies the result. □
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CHAPTER IV

GLOBAL RELIABILITY

4.1 Tree Networks

In this chapter a study of network enhancement is introduced using two meth

ods:

(1) multiple edge replacement, and

(2) reliability improvement of edges.

The first method consists of adding additional edges to the network, with the 

restriction that edges are added only between vertices which are already joined 

by an edge. The latter method consists of replacing edges of the network by more 

reliable edges. Throughout this chapter, we will .only consider global reliability 

measure.

Recall from Chapter I that the global connectivity of G, under the assumption 

of independent edge failure is given by:

R(G,q) = - £ f ( S ) . R ( S )  (4.1)
sen

where q is the probability of failure of any edge in G, f2 is the power set of E,  and 

f ( S )  is defined as

1 if < ^  >  Is a connected spanning subgraph of G 

0 otherwise.

If G is a A-edge connected graph, we need at least A edges to disconnect G. 

Therefore f ( S )  =  1 for all |5 | >  m — A -f 1.

80
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For a global reliability, Formula 4.1 can be rewritten as follows

R(G,q) = ^ m iR(S)  (4.2)
sgn

where m* is the number of induced connected subgraphs of size i in G. Observe 

that for (n,m)-graph G, rrii =  0 for all i < n — 1.

In general, given a graph G of order n, if T =  {pi,pz, ■ ■. ,pm} is the probability 

assignment of the edges in E(G),  then Formula 4.2 can be rewritten as

«(G,r) = Z  f(s)  ■ R{S).
Sgfi

where f ( S )  is defined as above and R(S)  is the probability that G is in state S. 

If S  = {ei, e2 . . . ,  ejfc}, then

R ( S ) = I I  P ( e 0  • [! -  P ( e *)]
i=i

where p(et) is the reliability of the edge e,- (the probability of having G in state 

{«})•
If the p ,’s in T, are equal to p, then R(G , T) =  R{G , q), where q = 1 — p. The 

function R(G, T) gives the probability tha t for every pair iq and v2 of nodes in G, 

there is a path from Ui to v2\ equivalently, that is the probability that the graph 

G contains at least one spanning tree. If G is a directed graph and s is a source 

node, then in 4.1

1 if <  S  > contains a directed path from s to every other vertex in G
f w )  —

0 otherwise.

This chapter is devoted to studying the analysis of improving global reliability in 

tree networks, using the stated methods.

If T  is a tree of order n, then Tn[k] will denote the class of all graphs obtained 

from T  by adding k multiple edges. The graphs in Tn[k] may have different 

reliabilities, depending on how the k extra edges are added. In this section, we 

investigate the problem of finding an optimally reliable graph with respect to 

global reliability in Tn[k].
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As in Chapter III, if the only edges in a graph G which are improved by 

multiple edges or by edge replacement are S', then the global reliability of G is 

denoted by R{G, S*,q) where S* is the probability assignment to S. If there is no 

ambiguity, then we simply write i?(G, S*).

Example: Consider the following graphs, Gi and G2 from the class Ti[3] which 

are shown in Figure 4.1. Let {e*, e2, 63} be any labeling of the set E (T 4) and 

A- =  {ei,e2} with A* =  {(e1,2 p - p ) , ( e 2,2 p - p ) , ( e 3,2 p - p ) } ,  then

R{Gi, A*) = (2p -  p)3.

Let B  = {e2,e3} with B* =  {(e2,2p -  p2), (e3,3p -  3p2 + p 3)} then

R (G *  B*) =  p • (2p -  p)(3p -  3p2 + p3).

We can easily show that R (G i,A )  > i?(G2, B), for all 0 <  p < 1. Therefore, the 

graph G\ is more reliable than the graph G2.
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In general, if T =  {pi,p2, ■ ■ ■ , Pn-i} is the probability assignment of the edges 

in a  tree T  then

R (T ,T )  =  f f K .
1=1

D efin ition  6 I f T  is a tree o f order n and the edges in E ( T ) are labeled

{ex, e2, . . . ,  en_i}, then Tn(fx, t2, . . . ,  tn_x), will denote the graph obtained from T

by enhancing the edge et- by t{ extra edges.

Example: In graphs Gx and G2 of the previous example the new graphs are 

represented by 74(1, 1, 1) and T4(0, 1, 2) respectively.

Recall from Chapter II that the probability of having two vertices u and v 

connected, if there are k edges between them, is 1 — (1 — p)k. The increase in 

reliability between u and v is

1 -  (1 ~  P)h ~  P =  (1 ~  P) ~  (1 ~  P)k = Ap.

Let A  =  {<1, t2, . . .  ,<n-i}  be a partition of a positive integer k and let F  be 

the set of all one-to-one functions from E ( T ) to A. For / x and f 2 in F  define

G\ = Tn( / x(ex), / x(e2) , . . . ,  / i(e n_x))

G2 =  T„(/2(ex), f 2(e2) , . . . ,  f 2{en^i)).

G\ and G2 have the same global reliability. To see this, consider

* (G i,« ) =  f f [ l - ( l - p ) /,(*‘)+1]
t'=l

and

R(G 2,q )=  n i l - a - p ) * ' * ' * ’]-
i—1

The terms in the first product are exactly the same as in the second, except the 

order may be different, therefore R(G X, q) =  R(G 2 ,q):

The graphs in Figure 4.2 and Figure 4.3, represent Gx =  T4(2, 0,0), and G2 =  

T4(0 ,2,0) respectively. The two graphs are not isomorphic, even though G\ and 

G2 have the same global reliability.

The following combinatorial result will be useful for the next theorem.
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L em m a 7 Let A  and B  be two sets with |A| =  k — s, and |i?| =  k +  s, where 

0 < s <  k. Let H (s ,r)  be the number of ways of choosing r element from A U B, 

such that at most |A| —1 and \B\ — 1 elements are taken from A  and B  respectively. 

For fixed r, 0 <  r  < 2 k — 2, the function H (s , r)  has a maximum value when 5 =  0.

P ro o f: The number of ways of choosing r  elements from A u B  without restriction 

is

J 2 c k+s- c rk~s = C f .
t= 0

If the function H( s ,  r)  denotes the number of ways of choosing r  elements from 

A U B  when at least one must be left, then H( s , r )  can be described as

C f  0 < r < k

C 2rk - 2 C k_k k < r  < 2 k  — 2
H (0,r) =

and for s >  1

C 2k

H (s ,r)  =  < C 2k - C k% s
/̂ <2k \/ik+s . s~ik—sOr — [Or_A:+J) +  L'r_k_s

Claim : H (0 ,r) > H ( s , r ) for all r.

Case 1: 0 < r < k  — s then H(0,r)  =  H (s,r) .

Case 2: k — s < r < k

0 < r  <  k — s 

k — s ^  r ^  k s 

k + s < r < 2 k - 2 .

i / ( S.r )  =  Cr“ - C , ‘+*+„  and  i / ( 0 ,r )  =  C f

hence H (0, r) > H(s, r) for all s =  0, 1, . . . ,  k 

Case 3: k  <  r  < 2 k — 2

H{0, r) =  C f  -  2Ck_k, H (s , r) =  C f  -  Ck% s

It is enough to show tha t Ck±k+S > 2Ck_k. To see this, observe the following:

C k+s (k + s)l
r~k+s (r -  k + s)\(2 k -  r)\
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2 r k -  -
T~k (2k -  r)!(r -  Jfc)!

The fact that

(k +  s)\(k  +  s -  1) , . . . ,  (k +  l)(&!)(r -  &)! >

2(r — k +  s)(r — k +  s — 1) , . . . ,  (r — k +  l ) ( r  — k)\kl

implies

(k -f s)!(r — &)! > (2&)!(r — k +  s)!.

Thus
{k + s)\ {2 k)\

(r — k +  s)! > (r — k)!'
Therefore Ck±j!+a > 2Ck_k. and H (0 ,r) > H (s , r) iov k < r < k + s 

Case 4: k < r < 2 k — 2 .

The fact that

c t U ,  +  c t L ,  >  >  2c i ,

implies H (0 ,r)  > H (s ,r) .  O

Recall from Chapter III that, if S  =  {ei, e2, . . . ,  e*} C E(G)  is the the set of 

edges which receive a new probability assignment, namely 

S* = {(e i , AO, (e2, A i ) , . . . ,  (efc, Ai)}, then R(G, T) =  G(G, S*,q).

L em m a 8 Let G be the graph constructed from the vertex set {x, y , z} by joining 

k +  s edges of the form xy and k — s edges of the form yz (see Figure 4-4)- U  

m 2k-T is the number of induced connected subgraphs of size 2 k — r  in G then 

m 2k-r — H (s ,r ) ,  where H (s ,r)  is the function defined in Lemma 7.

P ro o f: The fact that any induced connected subgraph of size 2 k — r has to use 

at least one edge of the form xy, and another edge of the form yz  together with 

Lemma 7 implies the result. □

R em ark  10 Given two (n,m)-graphs G\ and G2, i f  m ^ ^ r(Gi) > m N -r(G2) for  

all r =  0 ,1 ,2 ,..., N  where m ^_r (Gi) andm ^_r (G2) are the numbers o f the induced 

connected subgraphs o fG \ and G2 respectively, then R(Gi,q) > i?(G2,g).
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k-s k + s

Figure 4.4

where,

r i{ (ei>p(ei))> (e2,p(e2)), • . . ,  (e|E(Gi)|,p(ei))

and

r 2 { ( e i > P ( e l ) ) 5  ( e 2 > P ( e 2 ) ) >  • • • > ( e | E ( G 2 ) | ’ P ( e l ) )  

are the probability assignments of E(Gi) and E(G2) respectively.

Proof: Let m ^_r be the number of connected subgraphs with size N  — r, where 

N  =  n +  2k.

In G\, without loss of generality, let e\ — xy and e2 =  yz  be the two edges 

which receive k extra edges each. Let Tx, Ty and Tz be the components in T  — 

{ei,e2} which contain x,y  and z respectively. If r  is number of the edges which 

are in the failed state in each of G\ and G2, then

m ^_r (G1) =  # ( 0 ,r )  and mN„r(G2) =  H (s,r )

where H(x,y)  is the function described in Lemma 7. The fact tha t mpf-.r(Gi) >
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e .

Figure 4.5

for all r, follows from the same lemma; therefore:

J 2 m N - r ( G i ) p N ~ r >  Y ,  m N - r { G 2) p N ~ r . 
r=0 r=0

Thus, i?(G^i,Ti) >  R(G 2 ,T 2). D
r

D efin ition  7 The graph Tn+i(f +  1, t  +  1, +  1, f) will be denoted by

Tn+i{( t  +  l , r ) } ,  where r is the number o f  edges in Tn+i which receive t +  1 extra 

edges.

T h eo rem  4.35 Among all enhanced trees in Tn+i[fc], where k =  tn  + r,

0 <  r  <  n, the most reliable graph is Go —

P ro o f: Let r„ +1(t1,<2, ••.,<«) £ Tn+i [A:] and Tn+1{(< +  l , r ) }  e  Tn+1[fc] . Observe 

tha t

A  =  • • • ?*n}
r

B  = {t + 1, t  +  1, • • • , t  +  1,4, . . . ,  <}
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P ro o f: Let Tn+x(tx, t 2, . .  . , t n) € r n+1[fc] and r n+i{ (i + l , r ) }  <E T„+1[fc] . Observe 

tha t

A  =  { tx, t 2, ■. - , t n}
r

jB = {i +  l , f + l , . . . , f  +  l , i ,  . . .  ,t}

are two partitions to k. If A  ^  B, then there exist f,- and tj in A  such tha t 

\ti — > 2. W ithout loss of generality, let f,- >  tj. Assume e:- =  xy  and ej = yz

are two incident edges in Gx (see Figure 4.5). Let G2 be the graph obtained from 

Gx by moving one xy  edge to yz  edge.

Claim: R{Gx,q) > R{G2,q).

Let m7v_r(Gi) and rn^_T{ G 2) be the count of the induced connected subgraphs 

with size N  — r in G\ and G2 respectively, where r is the number of failed edges 

in both Gi and G2. The number m ^ _ r{G\) can be written as X\ {r )  + a;2(r) where 

Xj(r) is the number of the induced connected subgraphs when the failed edges are 

of the form x y  or y z  and x 2(r)  is the number of the induced connected subgraph 

when the failed edges are not of the form x y  or y z .  Similarly m ^ _ T{G2) can be 

written as y i ( r )  +  y 2(r)  where y i ( r )  is the number of failed edges of the form x y  

or y z ,  and y 2(r)  is the number of edges when the failure edges are not of the 

form x y  or yz .  Necessarily Xi(r) =  y 2( r )  and by using Theorem 4.35, we have 

y 2(r)  >  x 2( t )  for all r  =  0 ,1, . . .  ,2k. Therefore, the graph Gi is not an optimally 

reliable graph in Tn+i[fc], with respect to the global reliability. □

The above result shows that a tree T  with k extra edges is more reliable when 

the edges are distributed evenly.

Given two trees Tx and T2, if |F (T i)| <  then R(Tx,q) > R(T2, q). This

follows from the fact that px > py if x < y, for all 0 <  p <  1.

We will denote the change in global reliability after multiple edge replacement 

or improvement in the optimal way by A R(G,S*),  where S* is the probability 

assignment of the set S  which gives the optimal reliability.
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T h e o re m  4.36 Let T\ and T2 be trees of order n \ and ra2, respectively and let m  

be the number of extra edges. For S  C E(Ti) and I  C E{T2) with |5 | =  |/ | ,  the 

following is true: I f  n 2 >  n 1; then AR(Ti,S*)  >  A-R(T2, /*).

P roof: Let m  = nk + r

A R (T „ S -)  =  p; +1 - p i - ' -

a  R(T 2, I - )  =  P; +1 • p t ’ ■ ?“»-* -  vn

where p,- =  1 — (1 — p),+1

A i2(T i,S * )-A ii:(T 2, r ) : =

- p ”!]

=  r t + v  r f - V *  -  p " - ‘ ] -  p‘ [p”' - ‘ -  ? ”■-*].

Since p£+1 • p£-r  >  p£ implies Af?(Ti, 5*) > A-R(T2, /*). □

Enhancing tree networks, can be done by replacing the edges of T  by more 

reliable edges. Let S  =  {ex, e2, . . . ,  e*} be the set of edges to be improved in T, 

and

S * =  {(ex,Apx)}.(e2, Apa), . . . ,  (efc, Apfc)}.

Let Ap =  £ f =1 Ap,-. The next result shows that the best distribution of Ap is the 

one when Ap,- =  for a l i i  =  1, 2, . . . ,  k. As in Chapter III, let T„[Ap] denote 

the class of trees of order n  and a total increase in edge reliability of Ap.

T h eo rem  4.37 Let Ap =  £*=1 Ap,- where k < (n -  1). The graph

Tn(Apx, Ap2, . . . ,  Apfc, 0 , . . . ,  0) foas maximum global reliability when 

A pi = for all i =  1 , 2 , . . . ,  k.

P roof: Let Tn(Apx, Ap2, , Ap*, 0 , . . . ,  0) be a graph in Tn[Ap]. Without loss of 

generality, let Apx >  Ap2, we will show that G% can be modified to a more reliable 

graph G2, without changing the value Ap. Let A px +  Ap2 =  x  and consider the 

graph

Gt = Tn{ t x , { l - t ) x ,  Ap3, . . . ,  Apt, 0, . . .  , 0).
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Let

H(t)  =  R(Gt) = pn~k • (p +  Ap3)(p +  ApA) . . . ( />+ Ap*) • (p + tx)(p  +  (1 -  t)x).

The function H(t)  has maximum value at t =  to if and if only if the function 

h(t) =  (p + tx)(p  +  (1 — t )x ) has maximum value at t =  to. But latter one is 

just a quadratic function of t which has a maximum value at t =  There

fore the function H (t ) has a maximum value at t =  Letting Gi =  G\ji = 

Tn(x /2, x/2, Ap3, . . . ,  Apk, 0 , . . . ,  0) implies that G2 is more reliable than G\. This 

implies that any partition of Ap into k distinct equal numbers will result in a 

graph which is not the most reliable. Hence Ap must be partitioned into k equal 

numbers, namely
Ap* Ap* Ap*

'  k ’ k k
□

In the above theorem, if the set S  of edges which are to be improved by a 

total of Ap is E (T ), then it is always better to improve all edges in E(T),  and 

the distribution of Ap among E{T) must be done evenly.

4.2 Ring Networks

The ring network has been one of the most commonly used network topologies 

in the design and implementation of local area networks. This is due to its sim

plicity and expandability. The ring network can be modeled by the cycle Cn of 

n vertices. In this section we analyze the enhancing of ring networks by the two 

methods mentioned in Section 4.1.

Given a positive integer k and a cycle Cn, the class of graphs obtained from 

Cn by enhancing the edges in E(Cn) by k multiple edges, is denoted by Cn[k]. In 

this chapter we show that G € Cn[k] is an optimally reliable graph with respect 

to the global reliability, if k extra edges are distributed evenly among E(Cn).
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D efin ition  8 Let A  =  {Gi, G2, ..., Gn} be a set o f graphs. A graph Go in A  is 

called optimally reliable in A, i f  Go is the most reliable graph in A  with respect to 

the global reliability.

Throughout this discussion, the term optimally reliable graph refers to the 

global reliability.

L em m a 9 Assume Cn is a cycle o f order n. Then R(Cn,q ) =  pn + npn~1q, where 

p =  1 — q and q is the probability o f failure o f the edges in Cn.

P roof: By definition of global reliability R(Cn,q) =  Y lse n f(S )  ’ P(S)- Since 

any two edges in E(Cn) will disconnect C„ therefore, f ( S )  =  0 for all jS| <  n — 1. 

This leaves only two cases to consider. If |5 | =  n then there is only one induced 

connected subgraph. On the other hand if (S’) =  n — 1 then there are n different 

ways to chose S  so that the induced subgraphs of S  is connected. Therefore 

R(Cn,q ) =  lp ” +  (n)pn~ V  □

R em ark  11 I f T  =  {pi,P2 , ■ • • , P n}  is the probability assignment o f G(Cn), then

* t a » r ) - n * + £ < i - w ) n f t -
1 = 1  1 = 1  j j t i

In Cn[k], if the edges in Cn are labeled ei, e2, . . . ,  en then the graph 

Cn(ti, h , . . ., tn), denotes the cycle G„ with extra t,- edges are added to the edge 

ei, z — 1, 2, . . . ,  n.

T h eo rem  4.38 I f  7 is any permutation on the set { t i , t2, . . .  , t n} then the two 

graphs

C n { t \ i  t2, . . . , fra)

G n ( t - y ( l ) ,  f-v (2 ) i  • • • •> f - y (n ) )

have the same reliability.
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P ro o f: Let Gi =  G„(ti,<2>—,*n) and G2 =  Gn(iy(i),iy(2), —>^(n)). By definition 

if uv =  e,- 6 £?(Gi), then there are f,- +  1 edges of the form uv. This implies that 

p(et) =  1 -  (1 - p ) ‘S we simply denote p(e:) by p,-. By remark 11, the global 

reliability of Gi  is

.R(G1, r I ) =  f t p ,  +  0 1  -  K ) f t p ,
«=1 issl j t̂i

where is the probability assignment of E(G\) .  Moreover,

fi(G 2. r 2) =  f t p ; + £ ( ! - ? ; ■ )  f t p ;
t'=l :=1 j^i

where p\ =  1 — (1 — and p'- =  1 — (1 _  p)'i'(t>)+1 for all 1 <  i , j  < n.

r 2 is the probability assignment of f?(G2). Since 7 is a permutation on the set 

{t i , f2, tn}, this implies that for every edge et- £  E (G i) ,  there exist an edge 

e' €  E (G 2), such that p{&i) =  p(e') or pi =  p'-. Therefore

n n

I I P ‘ =  I I P i  
1 = 1 ! = 1

and

E a - p . ) n P i  =  E a - p : ) f [ p ; -
t=i i=i j#!

Thus, i?(G1, r 1) =  JR(Ga, r 2). □

The formula 4.2 can be modified to

r )  =  £ r n N _ r ( G )  • p N - r ( l  -  q ) r
r = 0

where mjv_r (G) is the number of induced connected subgraphs in G after the 

failure of r  edges in G.

T h eo rem  4.39 R(Cn(k , k, 0 , . . . ,  0)) >  R(Cn(k +  s, k — s, 0 , . . . ,  0)), for all s =  

0, 1, . . . ,  k.

P roof: Suppose Gi =  (Gn(&,&,0, . . .  ,0)) and G2 =  (Gn(A; +  s, k — s ,0, . . .  , 0)) 

and let mjv-r(Gi) and m ^_r(G2) be the number of connected induced subgraphs
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in Gi and G2 with size N  — r respectively, N  = n + 2k and r  is the number of 

failed edges.

By simple combinatorial analysis we have the following:

= ( n -  2)C 2rk_X2 +  C f +2

and

m N-r(G 2) =  (n -  2) £  [C? _s+1 • + C f +2
x=0 
k—s+1

=  (n -  2) £  -  C t t t l  • C j ja l+ d  +

=  (n -  2)[C'?;t2 -  Cr‘« i ' +2] +  C 

Since rn^_r{Gi) > ^N -r{G 2) for all r , therefore R{G\) > R(G2). □

T h eo rem  4.40 I f  G = Cn(ti, t2, • ■•,tn) € Cn[&] is an optimally reliable graph, 

then |i,- — fjj <  1.

P roof: Let G G Cn[k], with G =  Cn(t\, #2, . . . ,  tn). Assume that there exist t ,• 

and tj such that t,- — tj > 1.

Claim: Gi is not optimal reliable graph in Cn[k\.

In order to show this, let u,u,+1 be the edge e,- and n,+itit+2 be the edge ej 

(see Figure 4.6). Let G' be a graph in Cn[k] constructed from G\ by taking 

an edge of the form U£U,+i and placing it in parallel between the vertices u !+1 

and u,-+2. Suppose tha t A x and A 2 are the sets of edges of the form n,ui+1 or 

u,-+1'ut-+2 in G1 and G2 respectively. Let fj( i)  represents the count of the induced 

connected graphs in Gj — Aj  with |E(Gj  — Aj)\ — i edges, j  =  1,2 and let 

<7j( r  — i) represents the count of the induced subgraphs with |Aj| — (r — i) edges 

in Gi — E(Gj  — A j ) , j  =  1, 2. Define m ^ _ r{Gj) for j  = 1,2 to be the count of a 

connected subgraphs in Gj with size N  — r, where N  =  n +  k. One can see the 

following:

m N. T(Gi) =  ^ 2  f i ( i )  ■ gi(r -  i)
;=o

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



95

Figure 4.6

and

mjv_r(C?a) =  Y , M i )-9‘2(r ~  0 -  
i=0

Observe that

G\ — Ai = G2 — A 2.

Therefore f x{i) =  f 2(i) for all i = 1,2, Thus, in order to prove that

mN-r(Gi)  >  mN-.r(G2) it is enough to show that 5ZJ_05i ( r —i) ^  Y7i=od2{ r - i ) ,  for 

all i. If i > 1 the result follows from Lemma 8. Therefore m N_r(Gi) > m iv_r (G'2) 

for all r. □

We will denote the optimal ring in Cn[k] by Cn{(r, t)} which means that there 

are r  edges in Cn which receive an extra t +  1 edges and n — r edges in Cn which 

receive t extra edges. Let T be the probability assignment of f?(Cn{(r,t)}). Since 

the notation Cn{(r,t)}  describes T uniquely, one can replace R(G ,T)  (the global 

reliability of G) by R(G). By convention, if r > n then R(C n{(r,t)})  =  0.
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Rem ark 12 For the ring Cn{(r,t)}, the global reliability is

m.c.(r,t))= + c0>;+lPr r~'(i -  ?<)+c k j o  -

where pt+\ =  1 — (1 — p ) t+2 and pt =  1 — (1 — p ) t+1

Lem m a 1 0  I f C n and Cm are two cycles and n < m, then R(Cn,q) >  R(Cm ,q).

Proof: Observe that

R{Cn,q) =  pn + npn~1( l - p )  and

R(Cm,q ) =  pm + mpm~1( l - p ) .

Letting m  — n =  k > 0 then

R{Cn, q) -  R{Cm, q) =  pn[ 1 -  pk] +  (1 -  p)[n -  mpk)pn~lp

=  (1 -  p)pn~l \p + p2 + p3 +  . . . + p k + n -  mpk]

=  ■ [ ( ! -  P)P"_1[P + p2 + p 3 + . . . +  +  n -  (m -  l)p*].

but

n + p + p2 + . . . +  pk~x >

(k — l)p fc_1 +  npk~x 

= (k + n — l)pk~x 

= (m — l)pk~x 

> (m — l)^".

Therefore R(Cn, q) -  R(Cm,q) > 0. □

Let Cn[Ap] be the class of all cycles which have a total of A p  increase in the 

reliability of the edges of Cn. The following result show that G € Cn[Ap\ is an 

optimally reliable graph if and only if G =  Cn[Ap/n, . . . ,  Apjn\.

Theorem  4.41 The graph G =  Cn[A p /n , . . . ,  Ap/n] is the optimally reliable 

graph in (^[Ap].
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P roof: Let G — Cn(Api, Ap2, • • •, Apn) be a graph in Cn[Ap]. W ithout loss of 

generality let Api >  Ap2.

Claim: G is not an optimally reliable graph.

Let x =  Api +  Ap2 and let Gt =  Cn(tx, (1 — t)x , Ap3, . . . ,  Ap„). First we find 

the optimal reliable graph in {G t,t  € [0,x]}.

R(Gt) =  H(t) = [p +  tx\\p +  (1 -  f)x] I J b  +  Ap,-] +
i=3

[p +  <®][i -  p -  ( i  -  0®] f [ b  +  Ap,-] +i—3
[p +  (1 -  i)*][l - P ~ t x ]  f [ [p  +  Ap,-] +

t'=3

[p+ tx \\p+ (i -  t)x] f^[i -  p ~  Ap,-] n b + &Pj]\
t=0 jyti

m  =

[®2(1 ~  2t)j +  Ap,-] +
i=3

n
[2tz2 -  x 2 +  x] • J |[ p  +  Ap,-] +

i'=3
n

[2tx 2 -  x 2 -  x] J |[ p  +  Ap,-] +
1=3

[x2(l -  2 i ) ] ^ { [ l  - P -  Ap,-] n  [p +  Apj-]}.
i=l ĵ i,i>3

Differentiating with respect to t, we get :

H'(t) =  [ar2(l — 21)][JJ[p +  Api] +
t=3

^ { [ i - p - A p , ]  n  [p+ Apj]}~ i
2x2[1 -  2t] JJ[P +  Ap,-].

t=3

Solving for t  and using the second derivative test, one can show that the  function 

H(t) has a mimum value at t =  Therefore, the graph Gi is the optimally 

reliable graph in {Gt}. Observe tha t G € {Gt}, hence R ( G i) > R{G) and G is 

not a optimally reliable graph in Cn[Ap]. □
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4.3 Unicyclic Networks

D efin ition  9 A graph G is called a unicyclic graph i f  G contains exactly one 

cycle.

Here we analyze the improvement of unicyclic networks by adding multiple 

edges.

Given a unicyclic graph G, the edges in E(G) can be partitioned into two 

sets: set A , the edges located on the cycle and set B,  the edges in E(G ) — A. 

The induced subgraph Ind(A) from A  is the cycle C , and the induced subgraph 

Ind(B) is a forest F. We denote the family of unicyclic graphs with |A| =  n.and 

\B\ =  m  by {Cn • Fm} with a cycle Cn and forest Fm.

T h eo rem  4.42 I f  G € {Cn - Fm) then

R (G , q) =  pn+m +  npn+m- \ l  -  p).

P roo f: The graph G has order N  — n +  m. If m ^ -r  is the number of induced 

connected subgraph <  S  > of size N ,  then

R(G,q) = Y ,  m N_rpN~r(l -  q)r.
r= 0

If l^l <  n -1- m  — 2, then f ( S )  = 0. Therefore, the only cases which need to be 

considered are 151 >  n + m  — 2. If |5 | =  n +  m, then m ^  = 1 and R ( S ) =  pn+m~1. 

If |5 | =  n +  m —1, then m ^ _ r = n and R (S) = pn+m-1(l — p). Substituting these 

values in the formula of R(G, q) implies the result. □

T h eo rem  4.43 Among all an (N,N)-graphs the cycle Cn  is the most reliable 

graph.

P roof: Let G =  G„ • f m be an (N,N)-graph, where Cn is the cycle in G and Fm 

is the induced subgraph Ind(E{G ) — E(Cn))

R{G,q) = p N + npN~l ( l - p )
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Figure 4.7

and

R(CN,q) =  pN +  N pN-1(l  — p) 

R(CN, q ) - R ( G , q )  =  piV-1(l — p)[N — n)

>  0.

for all N  > n. Therefore Cn  is the most reliable (N,N)-graph. □

Next we improve the unicyclic graph by the method of adding multiple edges. 

Given a unicyclic graph G  =  Cn • Fm. We denote the family of graphs Cn • Fm 

which have k  extra edges by Cn • -Fm[fc].

Example: Let G = C4 ■ F4. Figure 4.7 and Figure 4.8 show two graphs Gi and 

(?2 respectively from the family C ^.F ^] .  The global reliability of G\ and Gi are

R{Gi, q) = v\pA +  4p4p i( l “  P)

and

R(Gi, q) = p\pA +  4pjp3(l -  p),

where pi =  2p — p2. Since pi >  p, it is not hard to see tha t Gi is more reliable 

than Gi.
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Figure 4.8

Lem m a 1 1  Let G be a graph constructed by identifying one vertex from a graph 

Gi with a vertex of another graph Gi- Then R(G,q) =  R(Gi,q)  • R(G2,q).

Proof: Let the graph G  be in state S =  Si U S2 where S\ =  S C\ E{G\)  and

Si =  SC\ E(Gi). <  S >  is connected if and only if <  Si > , <  S2  >  are connected.

R ( 0 , q )  =  £ / 0 ( S ) - P(5 )  
sen

R(Gi,q)  =  Z f G i W - p i S )  for  * =  1 , 2  

sen,

where,

fo (S )  =

Note tha t, for i =  1,2 we have:

fGt(S)  =

1 if <  S  > is connected in G,

0 otherwise.

1 if <  S  > is connected in Gj. 

0 otherwise.

Observe that / g (S )  =  f d ( S  D £ (G ,)) • f Gi(S  f"1 E(G 2)). Moreovere p(S) =  p(S  0  

E(Gi))  •p(S  fl E (G 2)). Thus it follows tha t R(G,q) = R(G i,q)  • R(G2 ,q). □
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Figure 4.9

D efin ition  10 Given a set of graphs A  =  {Gi, G2, . . . ,  G*}. The graph G is said 

to be a series connection from A, i fG  is constructed from A  in the following way:

(1) No two graphs have more than one point in common,

(2) G is a connected graph and has a number of cycles equal to the number of  

cycles in UjLjG,-.

Figure 4-9 shows a series connection graph constructed from the set 

A = {I<3 ,C 4 , K 2}.

C o ro lla ry  14 I fG  is in series connection from A =  {Gi, G2, ■ ■ ■, Gk}, then

R(G,q) = l [ R ( G i,q).
:'=1

Lemma 11 and Corollary 14 can be extended to any probabilistic graph G.

Given a unicyclic graph G =  G„ • Fm let k be the number of extra edges. If 

we label the edges of the cycle C„ by {ei, e2, ..., en} and the edges of the forest by 

Fm by {e'l5 e'2, e ' n} , then the graph

Gq =  G„(ii, i2, • • • 11n') ■ Fm(s 1, s2, . . . ,  5m)
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denotes the graph with U extra edges on the edge e,- in the circle, and s,- extra edges 

on the edge e\ of the forest. If Cn or Fm has no extra edges, then Cn(0 ,0,..., 0) 

and Fm(0 ,0, ...,0) will simply be replaced by Cnand Fm, respectively..

L em m a 12 I f  G\ =  C i ( l , 0 , . . .  ,0) • Fm and G2 = Ci-  Fm( l , 0, . . .  ,0), then 

R(G\) < R{G2).

P roof: It follows from Corollary 14 tha t

W G i )  =  p” [p“ +  p " - 1( i - p . )  +  ( » - i ) p ”- 2 - p , ( i - p ) ]

=  pm_l -pi[pn +  npn_1(l  - p ) ]

where pi = 2p — p2

R(G2) — R{Gi) =  pm~1pn~1[n +  nppx +  p i +  PPi — npi — np — p — pp]

= pm~xpn~l [n( 1 +  ppi -  pi -  p) +  (pi -  p) +  (ppi -  pp)}

=  pm_V _1[n(l - p ) ( l  -  Pi) + (pi - p )  +  p(pi - p ) ]

>  0

for all n > 3, m  > 1, 0 <  p < 1. □

C o ro lla ry  15 Given a graph G =  Cn[ki]-Fm[k2\, i fT  is the probability assignment 

ofG , then

R(G,T) < R i C n W u n ) }  ■ Fm{(t2 ,r2)} 

where ki =  nti  +  r x and k2 — m t 2 +  r 2.

P roo f: In the graph G, let Tx and T2 be the probability assignment of the edges 

in Cn and Fm, respectively. We have T =  I \  U P2, therefore

R(G ,T)  = • R(Cn,Ti) ■ R(Fm,T 2)

R(Cn, r x) <  R{Cn{{tu n )} 

and R(Fm,T 2) < R{Fm{{t2 ,r2)}).
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Therefore,

R(G,T) < R(Cn{(t i ,r i)}  ■ Fm{(t2, r 2).

□

L em m a 13 Let G = Cn(t i , t2, . . .  , t n) ■ FTO(sx, s2, . . .  , sm) and let Pm+X be the 

path of size m .  / /T x =  {ix, i2, . . .  , i ra} and T2 =  {sx, s2, ..., sm} are the probability 

assignments o f the edges in Cn and Fm respectively, then

R(G, r )  =  R ( c n, r x) • R {p m+1, r 2).

P roof: R (G , T) =  R{Cn, r x) • ^ ( ^ ^ 2). Let F  = Tx U T2 U . . .  U Ti, where T{ is 

a nontrivial component in G — E{Cn).

B(G, r )  =  f l ( c „ , r 1) [ r i i ? ( r i, r ' ) ]
! = 1

where TJ- is the probability assignment of the edges in T,- with order exactly the 

same as in Fm: Since

n ^ r ' H ^ p ^ r a ) .
»=i

we have

R(G, T) =  R(Cn, Tx) • R(G, r 2).

□
By using the above lemma we can find the global reliability of graph

G — Cn(t\ , t2, . . . ,  tn) • Fm(su  s2, . . . ,  sm)

by simply considering the graph

G =  Gn(ti, t2, . • ., tn) • Pm+x(sx, s2, . . . ,  sm).

That is, by replacing the forest Fm with the path Pm+X. This replacement will 

make the analysis of improving unicyclic.graphs much easier.

If the variable in R(G,T ) is the number of extra edges fc,then R(G, T) is defined 

to be R(G, r (t)) ,  where t =  0 ,1 , . . . ,  k. The function R(G, T(t)) is not continuous
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on [0, k]. In the coming discussion we will allow this function to take any value 

between[0, &]. The modified function T(i)) is continuous and differentiable 

for all values of t. If the modified function R(G, T(t)) is monotonic on [n, n + 1] for 

all n =  0 , 1 , . . . ,  k, then R (G , r ( i) )  has maximum or minimum value at t0, then 

the original function has maximum or minimum value at [toj or [to].

R em ark  13 fl(Cn{(0, s)}) =  p\pn~a -f (n — s)p\pn~s~l +  spo-1 (l — P)2 ■ Pn~s-

T h eo rem  4.44 Given a graph G = Cn ■ Fm, let k be the number of edges to be 

used in the enhancement o f G. I f  k < m, then Cn • Fm{(0 ,k )}  is the optimally 

reliable graph in Cn • Fm[k].

P roof: By the previous lemma, it is enough to show that Cn ■ Pm+1{(0, k)} is the 

optimal graph in Cn • Pm[&]- Let t be the count of the enhanced edges used to 

improve Pm. By using Corollary 15, the optimal graph in

G n \ f \  '  R m + 1 [&  —  t ]

is

c ,„{(o,o}-Jpm+1{(o,&-f)}.

Let

A  = {Gt \Gt =  Cn{(0, *)} • Pm+1 {(0, k -  f)}}.

be the set of all graphs with t and k — t extra edges distributed evenly among 

E(Cn) and E(Pm+l) respectively. Next we show that G'o is the optimally reliable 

graph in A.

R(Gt) = R(Cn{(0 ,t)})-  R(Pm+1{(0 , k - t ) } )

=  [Pi • P""‘ + ( n ~  t)( 1 -  p)pn~t~l • p\ +  t( 1 -  • p " -‘] • p*-* ■

=  p\ • pn+m~K + ( n -  t)( l - p ) p n+™~K- '  . +  t { 1 -  p ^ p f - 1 •

This is a linear function of t which has a maximum value at t = 0. Therefore Go 

is the optimally reliable graph in A, and hence in Cn • Fm[K]. □
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The above result shows an efficient way to improve a given unicyclic graph 

Cn • Fm, but only if the number of additional edges is not greater than m.

C o ro lla ry  16 In the previous theorem, i f k > m  and no more than two edges are 

allowed between two vertices, then the set

A  =  {Gt \Gt =  Cn{(0,*)} • Pm+i{(0, k -  *)}}

is the optimal reliable graph, when t =  k — m .

P ro o f: Using Theorem 4.44 we have

R(Gt) =  Pi • Pn+m~h +  (n -  t){ 1 -  p)pn+m - k- 1 • pk +  t ( l  -  Pl)pk~l • pm+n~k.

R(G t) is a function of t. By finding the second derivative of R(G t), we have 

R{Gt)' =  0 for all t £ [k — m, n]. Therefore the maximum of R(Gt) in [k — m ,n ] is 

at the end points. By comparing R(Gn) and R(Gk-.m), one can see that R(G k_m) 

is the maximum value. Therefore, Gk-m is the optimally reliable graph in A. □ 

If a and b are two vertices connected by L edges, then the probability of having 

a and b connected will be denoted by pL_x. Notice tha t p^-x =  1 — (1 — p)L. By 

convention po =  p. Now, we study the case when the number of extra edges 

available to enhance the network is k where n +  m  <  k < 2 n +  2 m.

If each edge in the graph G is enhanced by k — 1 edges then the new graph is 

denoted by Gk.

T h e o re m  4.45 Let k < n  be the number o f extra edges. The graph 

Cn[t] • Pm+i[k ~  the optimally reliable graph when t =  k.

P roo f: It is enough to find the optimally reliable graph for the following set of 

graphs

G =  C ,{ ( 0 ,t ) } - iS +1{ ( 0 , i - ( ) } .

M(G) =  H(t)

= P t ‘ ■ P T * * • P”-*'1 • [PiP + <(1 - 1 ?  ■ P + (» - i)(l - p)p -  !]■
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In order to  find the maximum value for H(t),  we will first find all critical values 

of H(t). Let H'{t)  be the derivative of H(t)  then 

H*(t}
=  —D  log p2 +  2D log pi -  D\ogp + p{p -  l )3 =  0

where

D =  pip  +  t ( l  -  p f  ■ p +  (n -  f)(l -  p)pi 

solving for t we have the following

t =  n +  n ( l -  p) +  p{\— - )  +  —— —  =  t0 
1 — p s

where s =  logp2 +  logPi +  logp. By using the second derivative test, one can show 

that H  (t ) < 0, therefore, H(t)  has a maximum value at to- For 0 < p < 1, it can 

be shown tha t to > n, therefore, the function Hit )  is increasing in [0, 60], which 

implies tha t H(t )  has maximum value at t = k. □

4.4 Multi-Ring Graphs

Given a set of cycles {Ctl, Ct2, ..., Ctn] =  A , where £,■ is the order of the cycle 

Cti, the graph G constructed from A  by series connections (see Chapter I) is called 

a multi-ring graph. Given a set of cycles A , in order to identify the graphs G which 

result from series connection from A, we need to introduce some new notation. If 

G is a multi-ring graph of n cycles, we construct a labeled tree T  of order n from 

G in the following way: each cycle C; in G will be replaced by a vertex V{ and 

two vertices are adjacent in T  if the corresponding circles are share a vertex. The 

order of T  is equal to the number of cycles in A. The tree T  uniquely describes G, 

and G will be denoted by T(A) ,  where A  is the set of cycles and T  is the labeled 

tree which describes the connection between the cycles in G.

R em ark  14 Let A  =  {Ctl, Ct2, ..., Ctn} and let T  he any tree of order n, then

R( T( A) , q ) =  n  R(Ci,q).
Ci€A
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Next we show how to best improve multi-ring networks. Let T(A)[fc] be the 

class of graphs obtained from T{A)  by adding k multiple edges.

T h e o re m  4.46 The set B  =  {Gt =  C „ { ( 0 , m-  t)} • Cn+A'{(0, i)} t G [0,m]} has 

an optimally reliable graph when

m Kt —---- 1---- n
2 2

where m  is the number of the extra edges.

P ro o f: Let Gt be the graph T( A)

R(Gt) =  P(Cn{(0, m -  <)}) • i?(Cn+A-{(0, t)}) 

R(Cn{ ( 0 , m - t ) } )

= p™-4 • pn~m+t +  (n -  m  + . (i _  p)

+  (m  -  1 -  p f  • pn~m-^R(Cn+K{(0, t)})

= P\ • Pn+K~l + (n + I< - t ) - p \ -  + t p \ ( l -  p )2 • p'+K-*.

Let

Hi =  pip + ( n - m  + t)(l -  p)pi +  (m -  f)(l  -  p)2p

and

H 2 = p i p +{ n  + K  - t ) (  1 - p ) p i  + t( 1 - p ) 2p.

By Remark 14

R(G t) = P f 2 • p2»+«--»-3 . [Hi{t)][H2(t)].

Maximizing the function R{Gt) is equivalent to maximizing [Hi(t)][H2(t)]. Let 

H(t)  =  [Pfx(i)][Pr2(i)], then

H'{t) = H 1( t ) [ ( l - p ) 2p - p 1( l - p ) ]  + H2(t)\p1( l - p ) - p ( l - p ) }

=  [Hi(t) -  Lf2(0][(l ~  p)(p(1 -  P) ~  Pi)]

=  [ H i { t ) - H 2{ t ) \ { l - p ) { - p ) .
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Letting H'(t) =  0 and solve for t we have that Hi(t) — H^ft) =  0 or 

2t[pi -  p( 1 -  p)] =  (m +  I<)pi -  m p(l -  p) 

where pi =  1 — (1 — p)2 =  2p — p2

m  +  2/ f  — /fp

=  7  +  
m  Kt = ------1--------- p.
2 2

Calculating H"{t), we find

#"(*) =  - ( 1 - p ) p M 1 - p ) - p ( 1 ~ p ) - ( 1 - p ) 2p + - P i( i - p ) ]  =  —2p2(i —p)2 <  0

for all 0 <  p <  1. Therefore the function H(t) has maximum value at

m  K
t = j  + j - p  = t0

a

In the above theorem, note that to is a function of m, K  and p. If p is small, 

then the effect of K  becomes small and edges are evenly distributed.

If the two cycles have the same order, the function H(t)  has maximum value 

at t = y . We will generalize this for any set of cycles of the same order having a 

series connection.

T h eo rem  4.47 Given a set o f cycles A = {Cni, Cn2, ..., Cnk\, where ri{ =  rij 

for all 1 <  let m  be the number of extra edges, where m  < Y^= i ni ■ Let

{mi, m 2, . . .  ,mfc} be a partition to m  such that |m,- — rrij\ <  1 for all 1 <  i , j  < k . 

For any tree T  o f  order k, the class T(A)[k] has

G0 = Cm {(0, 7m )} • C„2{(0,m 2)} • • • C„fc{(0,m fc)} 

as an optimally reliable graph.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



1 0 9

P ro o f: The proof is by induction on k =  |A|. The result is true for k  =  1. Assume 

the result is true for |A| <  k. Let A  =  {Cni, Cn2, ..., Cnk+y]  Let G e  T(A)[m], 

First we need to show tha t if G  is optimal, then

G  =  T(A% where A' =  {C„{ (0 ,

Consider the graph

Gt =  Cni{(0,*x)} • • • C„fc{(0,tfc)} • Cnk+i{(0,tk+i)}

where { t i , t2, . .. ,tk,tk+i} is any partition to m.

R(G.) =  {(0,(*+,)} n  fi(C^{(0,(i)}
t ' = l

The function R(Gt) has maximum value when both n£=i R{Cth{(Q, U)} and 

•^(^"^{(Ojtfc+i)} are maximum. Assume t -  1{. By induction hypothesis,

the t units should be distributed evenly among the k cycles. It is enough to 

consider the graph

<?,. =  C„, « 0 , b } ...C „ , {(0 i ) }  • <7„+, {(0, m -  ()}.

^(Gio) =  (pf 1 -p" ^ *[piP +  (n -  | ) p i ( l  - p )  +  | ( l  - P ) 2p)‘ l •

[Pi ~ <"'1 • Pn~ m+t' l \p iP  +  (n -  m  +  t)pi(l -  p)  + (m  -  f)(l -  p f p ) } .

I f  Hi{t) = pip + n  -  | p i ( l  - p )  + | ( 1  - p ) 2p. 

and H2(t) =  p1p + ( n - m  + t)(p i(l -  p) + (m -  t)( 1 -  p)2p,

then R (G t) =  p ? - [k+1) ■ pn(k +  1) • [Lfx(t)]fc • H2(t).

The function R(Gt) is maximum at t0, if and only if the function
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has a maximum at t0. Differentiating H(t)  with respect to t, we have 

H \ t )  =  • H[(t) • H 2(t) +  [^ ( t)]*  • H'2{t).

Observe that H\(t) ^  0 for 0 <  p <  1. Therefore H'(t)  =  0 implies

+ H ^ H r i t )  = 0

or

H2{t)\p(l -  p) -  Pi] -  H x{t)\p{l - p ) - p i = 0 .

The fact that p (l — p) — pi ^  0 for 0 < p <  1 implies H\(t) =  H 2(t). Namely

(n -  t /k )p i( l  - p )  + t /k (  1 -  p)2p =

( n - m  + i)px(l -  p) + (m -  t)p( 1 -  p) 2 

or 1 — k) = —m; solving for t, we get

km  k
 ̂ =  T 7 I  =  I T r ,

and

The second derivative test shows that at this point H(t) has maximum value.

Since the number of edges takes on only integer value, it follows tha t the 

maximum value of H(t) is Lŷ jrJ or (i-e if m  = t(k  + 1 ) + r  then r cycles will 

receive only t +  1 edges, and k + l  — r cycles will receive only t edges). Therefore, 

if m; represent the number of extra edges, the cycles Cni will receive, then for 

all 1 <  i , j  < k +  1, |m,- — mj\ the graph T(A')  is the optimal reliable graph in

T(A)[m]- D

D efin ition  11 A graph G is said to be n-cyclic graph i fG  has only n cycles and 

the induced subgraph on those cycles is a multi-ring graph.
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Figure 4.10

T

Example: The graph in Figure 4.10 shows 3-cycles graph of order 13. If G is an 

n-cyclic graph then G  can be written in the form T (A ) -Fm, where T  is the labeled 

tree which describes the connection between the cycles. The tree T  is constructed 

as follows: If Cni and C„2 are two cycles in G  having the vertex x  in cqmmon, 

then we will replace the cycle Cni by the vertex vni and the cycle Cn2 by the 

vertex i>„2 and we join the vertex x  to the vertices vni and vn2 by two edges. The 

tree corresponding to the graph mention above is shown in Figure 4.10.

Lemma 14 I f T ( A )  • Fm is an n-cyclic graph, then

R (T (A ) ■ F „, q) =  n  R(C„,, , )
i= 1

where A  — { Cni, Cn2 Cnit}•

Remark 15 I f T ( A )  • Fm is an n-cyclic graph, then

R ( T ( A ) - F m,T) =  R ( T ( A ) - P m,T)
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where Pm is the path of length m.

T h eo rem  4.48 Let G — T(A)-Fm be an n-cyclic graph with A  =  {Cni, Cnj, . . .  Cnk}. 

Let M  be the number o f the extra edges with M  < m . T (A ) • .Fm{(0, M )} is the 

optimally reliable graph in G{m\.

P roof: We will use induction on k the number of the cycles in G. The result is 

true for k — 1 (see Theorem 4.44). Assume the result is true for a graph with 

a number of cycles less than or equal to k. Let G = T(A) ■ Fm be (k+l)-cyclic 

graph, where A = {Cni ,C n2, . . . ,  Cnit+1}. Suppose B  =  {e0, h , . . . ,  tk, ffc+i} is any 

partition to M . By Remark 15, it is enough to consider the graph G0 = T(A) ■ Pm, 

where Pm is the path of length m. If t =  £ii=i ti, then t k+\ = M  — t. We will 

consider the graph

Ga =  Pm{((Mo)} • Cni {(0, ti)} • Cn2{(0,*2)} • ■ • CBfc{(0,<fc)} • Cnk+1{( 0,^ )} . 

R(Ga ) = jR(/^{(0,to)} - /2(OWfc+I{(0, Af -  0}) * r i
i=1

By the induction hypothesis

R (pm{ ( o ,M } - n ^ ( ^ ,{ ( o ,f O } )
t=i

has maximum value when t0 = t. Observe that Cre, {(0,0)} is the cycle CUl without 

any change in the reliability of the edges. Thus, we consider the graph

G'a =  Pm{(0 , t ) } . C nk+1{(0 , M - t ) } - C n i -C n2 . . . C nk

R(G'a ) -- R(Pm{{0 , i)} • {(0, M  - ( ) } ) ■ n
t=l

This is a  function of t and the maximum of R{G'a ) is independent of 

n L i  R(Cni{(0,«,)}). Therefore

H(t) = R(Pm{(0 ,0}  • R(Cnk+1 {(0, M  - t ) } ) .

By an argument analogous to the one used in the proof of Theorem 4.44 we can 

show that H(t)  has maximum value at t — M .  Therefore T(A )  • Fm{(0, M )}  is an 

optimally reliable graph in T(A) ■ Fm[M]. □
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CHAPTER V

IMPROVING K-TERMINAL RELIABILITY

5.1 Improving K-Terminal Reliability I

Recall from Chapter I tha t the K-terminal reliability of a graph G is the

probability that the vertices in K  are connected. We denote this by R^-(G,q)

where q is probability of edge failure. The function R k (G, q) can be written as :

R K ( G , g ) = Z f ( S ) - R ( S )
sen

where R(S)  is the probability of having G in state S  and

{ 1 if <  K  >  is connected in <  S  >,

0 otherwise

In case of having only two vertices in K , we call such reliability, st-reliability and 

R k (G, q) =  R s<t(G,q). If E(G) has T as its probability assignment, then the st- 

reliability will be denoted by R S}t{G, T). A graph G is called a multistage graph 

if V(G) can be partitioned into Vi, V2, . . . ,  Vt, such that if e =  xy  is an edge in 

E(G)  then x  and y  must be located in two consecutive sets, namely Vi and V+i, 

for some 1 <  i < k — 1. The sets V , V2, . . . ,  14 are called stages.

Example: The graph G in Figure 5.1 shows a multistage graph of order 6. 

The set V(G) is partitioned into four different sets, V , V2, V3 and V4. If |Vi| =  

|Vfc+i| =  15 then such a  graph is called an st-multistage graph, and it is denoted 

by M a,t(G).

113
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Figure 5.1

Since the st-reliability measures the probability that s is connected to t, it follows 

that R Stt(G,q) is the probability of having at least one st-path in G. If q (the 

probability of edge failure) is known, we drop q and simply write R s t {G) instead 

of R Stt(G , 9). In the st-multistage graph, if all st-paths are vertex disjoint, then G 

is denoted by M Slt(k, /), where k = dist(s, t ) and / is the number of vertex disjoint 

st-path in G.

T h eo rem  5.49 I f  G =  M a>t(k , l ) is an st-multistage graph, then

R,, ,(ff,«) = l - ( l

P roof: In the graph G, the two vertices s and t are connected if and only if there 

exists at least one st-path in G. The probability of having an st-path P  in G is 

equal to pfc_1. Hence, the probability of not having an st-path P  is 1 — pfc_1. If 

Pi, P2, .. ■, Pi are the st-paths in G , then the probability of having no st-path is
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(1 — p*-1)*. Therefore, the probability of having an st-path in G is

i 2Sit(G ,?) =  i - ( i - Pfc- i y.

□
As in Chapter I V , we improve the st-reliability of a graph G  by either adding 

multiple edges or by replacing the edges in G by more reliable ones.

R em ark  16 I f  s and t are the two end vertices o f the path Pn+li then

Rs,t{Pn+l j?) =  R(Pn+ii q) — pn)

where R(Pn+i,q ) is the global connectivity o f the path Pn+i-

P roo f: If s and t are the two end vertices of the path Pn+i, then the probability 

of having an st-path is the same as the probability of Pn+i being connected. □ 

As in Chapter IV ,  G[k] denotes the set of all graphs obtained from G by 

adding k new multiple edges. The graph G0 <E G[k] is called an optimal st-reliable 

graph if R 3it(G0 ,q) > R Sft{G',q) for all G' G G[k}.

R em ark  17 I f  s and t are the end vertices o f  the path Pn+i, then the the optimal 

st-reliability graph is obtained by evenly distributing the k extra edges.

P roof: This follows from the fact that R s<t(G ,q ) =  R(G,q) together with the 

results in Chapter IV .  □

Given a multistage graph G =  Ms<t(k, I), let G[k] be all graphs obtained from 

G by adding k new multiple edges to G. Assume the st-paths of G are labeled 

P i,P 2, . . . ,Pi. Let t{ be the number of extra edges added on the path Pi of G, 

i =  1 ,2,..., /; then the new graph is denoted by G{t\, t2, ..., ti}, where £ - =1f< = k. 

We investigate the question of how to partition k into I numbers t \ , t 2 ,...,ti, so 

that the graph G {t\ , t2, ...,ti} is an optimal st-reliable graph in G[k\. Throughout 

our discussion we assume that the /,■ edges assigned to the path P, are distributed 

evenly on the edges of Pf.
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If the variable in i2a,t(G ,r(J)) is the number of extra edges, then R s,t(G, T(i)) 

takes values only a t t =  0 ,1 , . . .  k, where k is the number of the extra edges. As in 

Chapter IV we will allow the function R 3tt(G, r(f))  to take any values of t between 

0 and k.

T h eo rem  5.50 Among all multistage graphs M s<t(k, 2) with m  extra edges, where 

m  <  k, the graph G{m,0} is the optimal st-reliable graph.

P roof: We will consider the graph G{m  — t,t} .  The st-reliability G{m  — t , t}  is

=  1 -  [1  - P r - y - ” + ' ] [ l  - p Sp ‘ " ' I
where pt = 2p — p2 (the probability tha t two vertices are connected, when two 

edges between them are present). Let R(G{m  — t , t} )  =  H it) ,  and consider the 

function

H0(t) =  [i -  y - m+‘][ i -

The function H{t) has maximum value at t if and only if Ho(t) has minimum 

value at t. If H ^ t)  represents the first derivative of i/o(t), then

H'0{t) = p ? - tpk- m+tlnpl -  Pr - y - m+t/n.p -  p[pk~tlnpi +  p l p ^ l n p  =

p™~tpk~m+t[lnpi — Inp] — p[pk~t[lnpi — Inp],

Since Inpi — Inp 0, this implies H'0 {t) =  0 if and only if

pm-tpk-m+t =

Now solving for t, we get

(k — m  +  t)lnp +  (m — t)lnp  =  tlnpi +  {k — t)lnp

lnp{2 t — m) =  lnpi(2 t — m)

(2 t — m)(lnpi — Inp) — 0.

Since Inpi — Inp ^  0 for 0 < p < 1, implies t =  y .  By using the second derivative 

test, one can show that H^it)  <  0. Therefore, fLo(y) is maximum in (0, m). Since
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Ho(t) has a maximum value in (0, m), this implies that H0(t) has a minimum value 

at the end points of [0,m]. By comparing the two values

and H„(m) =  [1 -  pl ][l -

one can see that the minimum of Ho(t) occurs at the end points of [0,m]. There

fore, H(t) has maximum value a t t =  0, or t =  m, namely the optimal reliable 

graph in G{m  — t, t} is G{0, m} or G {m , ()}.□

In the process of improving the above result shows tha t it is always

better to improve one path rather than two paths.

In a graph G, two vertices s and t are connected in parallel if all the st-paths 

in G are edge disjoint.

Example: Assume G is the circle Cn,n  > 3, then any two vertices in G are 

connected in parallel.

The next results show how to improve st-reliability when the two vertices 

s and t are in parallel connection. If G is a graph consisting of two vertices 

s and t together with a set of st-paths {Pi, P2, ..., Pi}, then G is denoted by 

M Stt[Pi, Pi-, •••, P/j. Sometimes, we refer to such a graph as an st-parallel connection 

graph. If all paths in A  have the same length k, then G is just the multistage 

graph MSit(k , /).

As in the multistage graph, if G is the graph Ms<t[Pj, P2, ..., Pt], then G{ti, t2, ..., f/} 

denotes the graph obtained from M s<t[Pi, P2, ..., p ]  by adding new edges on the 

path Pi, i =  1, 2,...,/.

The following summary should illustrate the meaning of the different notation 

used in this chapter.

(1)- G[m\ : a graph with m  multiple edges.

(2)- MSit(k, I) : an st-multistage graph with I disjoint st-paths, each of length k.

(3)- Ms<t[Pi, P2, . . . ,  P/] : The st-multistage graph with I different st-paths, namely 

Pi, P2, . . . ,  P/. Sometimes we refer to such a graph as an st-parallel connection
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graph.

(4)- G {t\ , t2, • • • ,<j} : The graph obtained from M Sit[Pu P2, ■ ■ •, Pi], by adding t{ 

multiple edges on the path P,-, for all i =  1, 2, . . . , / .  Here we assume that the /,• 

multiple edges are distributed evenly on to the path P,-, for i =  1 , 2 , . . . ,  /.

(5)- R 3>t(G,q) : The st-reliability of the graph G, when all the edges have the 

probability of failure equal to q.

(6)- R{G , q) : The global reliability of the graph G, when all the edges have the 

probability of failure equal to q.

T h e o re m  5.51 LetG  = M s,t[Pi+i, Pk+i] and I < k. Form  <  /, the graph G (m ,0 ) 

is an an optimally reliable graph in G[m\.

P ro o f: Since G contains only two st-paths P/+1,-P*+1; we will consider the graph 

G{t, m — t} where t € [0, m]. The st-reliability of G {t,m  — /} is

H(t) =  G{ t , m -  t) = l - [ l - p r V ' - " +'][l-pSp'-‘]

=  Pi P +  PiP -  Pi P ^ 

where p\ =  2p — p2. If H'(t)  denotes the derivative of H(t), then

H'(t)=in pi [pip(-t - Pr y _m+<] -1 np[p|p'-‘ - j>ry-"n
If the function P ( t)  has a critical point at t then P '( t)  =  0. This implies that 

W f *  -  p r - y - m+i][lnp! -  Inp] =  0.

Since In pi — In p ^  0 for all 0 <  p < 1 this implies that

p\ p1- *  =

Solving for t, we have the following:

■ _  /npx[m] — lnp[m +  I — &]
0 2[lnpi — Inp]
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where to is the critical point for H(t). By using the second derivative test we have

e x t )  =

Since all factors are positive in H"(t) for t 6 [0, m], then H"(t) > 0. The function 

H(t)  has minimum value at t 0. Thus, H (t)  has maximum value at the end points 

of [0, m]. By inspection:

H (0) =  p?pk- m + p l - p ? p ,+k' m

H (m ) = p™pl~m +  pk -  p™pl+k' m 

H ( m ) - H ( 0 ) =  pm\p‘ - p k] \ p ? - p m}-

For k >  I, the difference H (m ) — H (0) >  0, which implies H (m)  has a maximum 

value for k > /; namely it is more efficient to use all m  edges to improve the 

shortest path Pi+x.O

The next result shows th a t it is always best to improve the shortest st-path 

for the st-multistage graph M ,tt[P/1+i, P,2+1, P j n+i].

T h eo rem  5.52 Given G =  M ait[Pi1+i,Pi2+i,.. . ,P iN+i] with lx < l2 < ... <  In, 

where m  <  lx, the graph G{m, 0 ,0,..., 0} is the optimal st-reliable graph in G[m}.

Proof: We use induction on N  (the number of st-paths). The result is true for 

tV =  1. Assume the result is true for all graphs with the number of st-paths less 

than or equal to N .

Let G be the graph

Ms,t[Pli+l, P/2+1) •••)

(see Figure 5.2). The graph G can be decomposed into two subgraphs, G\ and G2- 

Gx is the subgraph induced by the first N  paths and G2 is the graph induced by 

the path PiN+1+1. Let {<1, t2, • • •, £ac, ^ + 1} be a partition to m  and let t =  U- 

Consider the graph G’t = G {tx, t2, . . . ,  tN+i}- To maximize the st-reliability of
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Figure 5.2

is distributed evenly among the edges of P/w+,+1- Therefore, we will consider the 

graph G t =  (_?{t,0, 0, — t}.

=  1 -  ( 1  -  r f p M ) ( l  -  J J (1  _  ^
«=2

Let

/Tow = (i - pVi_<)(i -prVw+i'm+<) • na-p'o.
«=2

The function i2s,<(£?*) has a maximum value at t  if and only if the function Ho(t) 

has a  minimum value at t. Since n ^ 2(! ~  Ph) is constant, one can drop it from 

Rs,t(Gt),  for the calculation of the minimum value of Ho(t).  Therefore we only 

consider the function

H{t)  =  1 -  +p™p l' + lN +».

Let H'{t)  be the derivative of H(t) ,  then

# '(* ) =  -IPiP*1'* + p f ~ y w+1-m+t]'.

As in the proof of the previous theorem, H(t)  has a  critical point at

In Pi[m] -  In p[m + h ~  lN+i]
° 2[lnpi —Inp]
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As in the proof of the previous theorem, H (t) has a critical point at

Inpx[m] -  lnp[m + h -  In +i]
0 2[lnpi — Inp]

By testing the second derivative H "(t), one can see tha t H "(t) < 0 for all t 6 

(0, m). Therefore, H (t0) is a minimum value, which implies tha t R Stt(Gt) has 

maximum value a t the end points of [0,m]. By inspection, we have H (m ) < H (0). 

Therefore, the m  edges should be used to improve p/15 the shortest st-path.□ 

Next we generalize the above result to cover the case when only the probability 

of the paths Pi,P 2 , . . . ,P t are given. Consider the graph G =  M Stt[Pi, P2 , •••, Pi]- 

Assume that edges in each path of G has the same reliability, but edges in different 

paths may has different reliability. Let pi denote the probability that the path 

Pi to be connected (up state). Suppose Ap represents the total increase allowed 

to be used in improving the st-reliability of the paths. The next result shows 

how to distribute Ap among the paths of the graph G =  M s,t[Pi, ..., Pi], where 

Ap < 1 — p0, and

p0 =  max{p{Pi) | i = 1 ,2 ,...,/} .

Let G[Ap] represent all graphs obtained from G by increasing the reliability of 

the paths in G by a total amount of A p.

T h eo rem  5.53 Given a graph G =  M s>t[Pi, P21 •■■,Pi\ with

p{Pi) < ?{P2) < ... <  p(Pi)

and Ap < 1 — p(Pi), the graph G{0,0, ..,Ap} is an optimal st-reliable graph in 

G[Ap].

P roof: We use induction on I (the number of si-paths in G). The result is true 

for I =  1. Assume it is true for /, where I < N .  Let G =  M Sit[Pu  P2, .., -FV+i] with

p{P\) < p(Pi) < -  <  p (Pn +1) 

and Ap <  1 — p(PN+i).
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Let t be the total increase in the reliability of the paths P1? P2, •••) Pw, and Ap —t be 

the total increase in the reliability of Pn +i , where 0 <  t < A  p. By the induction 

hypothesis t  must be used to increase the reliability of P/v- Thus, the reliability 

of G after increasing p(P/v) by t and p (Pn +i) by Ap — t is

H(t) = R s,t( G { 0 ,0 , . . . , t ,A p - t } )  = 

i  -  [i -  (P( p „ ) + t)][i -  (p(pn+1) + a p -  i>] n V  _  p(p,)).
j=i

The function H(t)  has maximum value at to if and only if

HQ(t) =  [1 -  (p(P/v) +  t)][l -  (p{PN+i) + Ap -  f)] 

has minimum value at t =  t0. Differentiating H0 (t) with respect to t, we get 

=  [1 -  (p (P at) +  t)} -  [1 -  ((p{Pn+i) - A p -  t))].

For H'0{t) = 0,
' Ap p(Pn +i ) -p (P iv ) 4 t = —  + ----------     =  t0.

Since Ho(t) = —2 < 0, it implies that Ho(to) is maximum in [0, Ap]. Therefore, 

ILo(fo) has a minimum value at the end points in [0, Ap]. By inspection, Ho{0) < 

H0(Ap). Therefore, the function H(t) has a maximum value when t =  0. Hence 

Ap should be used to improve the most reliable path, namely Pn+i-^

T h e o re m  5.54 Let p\ and P2 denote the reliability of the edges in the two st- 

paths, say pi and p2 o f the graph G =  Ms,t[Pi, jP2] respectively. I f  p\ >  p2) then 

the graph G{rn, 0} is an optimal reliable graph in G[m], 0 <  m < k.

P ro o f: Consider the graph G {t,m  — t}, where 0 <  t < m, If an edge e =  uv 

in E{P\)  receives an extra edge from the enhanced set, then the probability of 

having u and v connected is 1 — (1 — p i)(l — p) — Poi- Similarly, if an edge e =  wz  

receives an extra edge, the new reliability is 1 — (1 — p2)(l — p) =  Po2- Observe
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that poi >  p02, for pi > p2. The st-reliability of G after the above assignment is

R a,t(G{t, m - t } )  =

m  =  i  -  [i -  ?;,?{-■][! -

Suppose

B o ( t )  =

=  -P m P i- ,P02- ,P2+‘- ’"-

Then the function H(t) has a maximum value at t0 if and only if Ho(t) has a 

maximum or a minimum value at tQ. Let H'0(t) be the derivative of Ho(t); then

H 'S )  =  Pa\PaftPi~tVk2 rt~m[lnPo\ +  In p2 -  In pi -  In p02]

~  PoiPi'* [In Poi -  In pi] -  Po2 lP2+t~m [In p2 -  In p02].

Hq (0  =  PoiPo2_<P i_ V2+‘_m [In poi +  In p2 -  In pi -  In p02]2

-  PoiPi“ ‘[lnpoi -  In p i]2 -  p™2~tP2+t~m [In p2 -  lnp02]2.

Observe that

[lnpoi +  In p2 — In pi -  lnp02]2

=  [(Inpoi  — I n p i )  — ( l n p 02 — l n p 2) ]2 

<  [ I n p o i  — In  p i ]2 +  [ l n p 02 — l n p 2]2 .

Moreover the following is true:

P l i P o 2 t P i ~ t P 2 + t ~ m [ { l n P o i  ~  l n P i )  ~  ( l n P o 2 ~  l n p 2 ) \ 2 <  

PoiPom2- ^ P 2fc+<- m[Jnp01 -  I n p i } 2 +  t i i P % 2- t p \ - t P K2 + t - m [ l n p o 2 ~  l n p 2 ] 2 <  

PoiPi~t[lnPoi ~  lnPi}2 + P ^ 2" iP2+i_m[/nP2 -  l n p o 2 } 2 - 

This shows tha t H{f(t) <  0, for all t £ [0,m]. Hence, the function Ho(t) has a 

minimum value at the end points of the interval [0,m]. By inspection, it can be 

shown that Ho(m) <  Ho(0). Therefore the function H(t)  has a maximum value 

at t  =  m, namely the graph G{(m, 0)} is the optimally reliable graph in <3[m].n
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C o ro lla ry  17 Given G =  Af3ii[P 1,P (2, . . . ,P iN], with h  < k  < ... <  In , i f  Ap  <

1 — p*1, then the graph

G {A p,0,0,...,0} 

is the optimal st-reliable graph in G[Ap],

P roof: For each si-path P,+1 in G the probability of having Pt+1 connected is 

p(Pi) =  P'- Observe that if lx <  /2, then p(Plx) >  p(P(2). The result follows 

immediately by using this observation together with Theorem 5.53 □

Given a set of graphs A  =  {Gi, G2, ••., Gn} where Gt- is the st-parallel connec

tion graph

M aitti[Pil,Pi2 , •••, Pir,}

i =  1, 2, . . . ,  n, we construct a graph G by identifying the vertex U in Gt- with st+1 

in Gt+i for all i =  1, 2, . . .  , n — 1. The resulting graph G is in series connection 

from A, and is denoted by Gj • G2 • • • Gn. The st-reliability of G is defined to be 

the probability of having an s ^ - p a th  in G.

The following result will be used in the analysis of improving st-reliability for 

the series connection of the graphs in A. In the next lemma, we assume that 

Ap is used only to improve one edge in the given graph. Given a path Pn+1, 

let E(Pn+i) =  (ei, e2, . . . ,  en) be the labeling of the edges in Pn+l- Recall from 

Chapter IV that Pn+i(A pi, Ap2, • ■ •, A pn) denotes the path obtained from Pn+i 

by improving the reliability of the edge e; by Ap,-, for all i =  1, 2 , . . . ,  n.

L em m a 15 Let Pn+1 be an st-path and P (P n+1) =  (el5 e2, ..., en) be the labeling 

o f the edges o /P n+i. Let p(et) denote the reliability of the edge e, and suppose

p(ei) <  p(e2) <  ••• <  p(e„).

I f  only one edge is to be improved and A p  <  1 — p{en), then P«+i(Ap, 0, ...,0) is 

the optimal st-reliable graph in Pn+i[Ap\.
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P ro o f: Let e,- be the edge in E(Pn+i)  which receives an increase of Ap in its 

reliability. Since R a,t(Pn+i, T) =  R(Pn+i,T ) ,  where T is the probability assignment 

of E (P n+1), it follows that :

J?(Pn+1(0 ,0 ,...,A p ,0 ,...,0 )) =  n ? ( ei) ]b (e»') +  Arf

n

= ]Ip(ei) + AP ' I l K ei)
j=i j^i

=  H ipia)) .

This function of p(e;) which has a maximum when flj^i p(et) is maximum. The 

fact tha t n ^ iP (e i )  is maximum when p(et) is minimum implies that i/(p (ex)) is 

the maximum value. Therefore Ap should be used to improve the least reliable 

edge in jE(Pn+1).D

If Ap is used to improve more than one edge of E(Pn+x), then the previous 

result is not true, as can be seen in the following example:

Consider the path P3 with E(P3) =  {ex,e 2}. Let p(ei) =  px, and p(e2) =  p2. 

Suppose edges ex and e2 are improved by Ap — t respectively, where Ap <  2 — 

p(ex) — p(e2). Let s and t be the end vertices in P3 and let p(s ~  t) denote the 

probability of having an st-path. Then

p(s ~  t) = (Pi + t)(P2 + Ap  — t)

= P1P2 +  Pi Ap +  tp2 + tAp — pit — t2

= m -

Let H'(t)  be the derivative of H(t), then

H \ t )  =  p2 +  Ap -  pi -  2 t =  0.

Solving for t gives us

i =  £ L ^ !  +  ^  =  io.
2 2

By testing H"(t), one can show that H (t0) is maximum. Therefore, it is better 

to improve both edges {ex,e2}, rather than just one. The best distribution of Ap
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among all the edges on the path Pn+i becomes tedious when n  is large and the 

reliability is not the same for all edges.

Given st-multistage graph G =  M 3it[Pi, P2, . . . ,  Pn], let G[[Ap]] denote the set 

of all graphs obtained from G  by increasing the st-reliability of the st-paths in 

G  by a total of Ap. If the path Pi receives an increase Ap,- in its st-reliability, 

then £"=i Ap; =  Ap. The resulting st-reliability depends on the values of Ap,-’s. 

Observe that a graph Go in G[[Ap]] is called an optimal st-reliable graph if 

R s,t(Go, r 0) >  R Stt(G',  T') for all G'  € G[[Ap]], where Ti and r 2 are the prob

ability assignments of Go and G', respectively.

Assume A  =  {Gi, G2, ..., G n},  where each Gi  is the s t-f,-parallel connection 

graph M 3i,ti{Pih  •••, Let G =  Gi ■ G2 . . .  • G n be a graph obtained from A  by 

series connection. We will study the optimally reliable graph in G[[Ap]].

We will assume that, if Ap; is the portion of Ap to be used on the graph G',-, 

then Ap, should.be used in an efficient, way to improve the -reliability of G’,-. 

Namely, we will consider the optimal s,f,-reliable graph in G,-[Ap,-j.

T h eo rem  5.55 Let G  be the graph defined above and let R Si,ti(Gi)  < i?Sl,ti(G,-+1) 

for all i — 1, 2, — 1. Assume Ap < R Siyti(Gn), i f  Ap is allowed to be used only

on the edges o f  one subgraph Gi, i =  l , 2, ...,n  assume then the optimal graph in 

G[[Ap]] is the one in which G\ has been optimized.

Proof: The graph G can be converted to a path Pn+1 in the following way. Each 

graph G{ in G is replaced by an edge e,- =  s,f,- with p(e,-) =  R Si t̂i{Gi). The new 

Sitn-path has p{e\) <  p(e2) <  ... <  p(en), and the s i tn-reliability is the same as 

the Sitn-reliability of G. By using Lemma 15, we should use Ap to improve p(ei). 

Therefore, the best subgraph in G to improve is G\  in G.Q
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5.2 Improving K-terminal Reliability II

In section 5.1, the study of improving st-reliability was restricted to the case 

of having at most double edges between the adjacent vertices. In this section we 

allow any number of multiple edges.

Given a multistage graph G  =  M s>t(k, I), with m  multiple edges, where m >  k, 

one can ask: W hat is the optimal st-reliable graph in G[m]?. The following 

example illustrates how the distribution of the m  edges changes the value of the 

st-reliability of the graph G.

Example: Consider the graph G =  M Stt{4,2). Let k =  6 be the number of 

extra edges. Define the following: G\ =  G(4,2), G2 =  G (5 ,l) and G3 =  G(6, 0). 

By previous result the edges in each path must be distributed evenly. Consider 

the following functions:

R i (p ) = R s,t(Gi) =  l -  [l -  [1 -  (l -  p)2]4][i -  [i -  (i -  p)2] V ]

Jfe(p) =  #s,t(G2) =  1 — [1 — [1 — (1 — p)3]][l -  (1 -  P)2f ] [ l  -  (1 ~  p)2]?3]

R 3(p) = — l — [i — [l — ( l — p)3]2][1-- .[ i  -  (i -  p )2]2][i -  p%

The graph of the three functions R\(p), -ff2(p) and P 3(p) are shown in Figure 5.3. 

For 0 <  p <  1, the graph shows tha t P 3(p) are always greater than Ri and R 2. 

This implies tha t the best distribution of the 6 extra edges occurs when we use 

them to improve one path. In fact this result turns out to be true in general.

Let P,t+1(/) denote the path  of length k , with / multiple edges between any 

two adjacent vertices.

Example: The graph G = P3(2) is shown in Figure 5.4.

T h eo rem  5.56 Let x  +  y =  I be a positive integer. The graphs in the set A  = 

{GX\GX =  M Stt[Pk+i(x), Pk+i(l — x)] with x + y = 1} have a st-optimal reliability 

graph when x  = I.

P roof: The proof is by contradiction. Suppose x ^  y and assume x > y > 2; we 

will show that the graph G =  M3]4[Pfc+1(x), Pfc+1(y)] is not an st-optimal reliable
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graph in A. For the path Pk+X(x), the reliability between any two adjacent vertices 

is pE_i =  1—(1— p)x and for path Pk+i(y), the reliability between any two adjacent 

vertices is py- X =  1 — (1 - p ) y. For x > y we have px_x > py_x. Now construct the 

graph G' =  M s>t[Pk+x(x +  l),Pfc+i(y +  1)] by removing k  edges from Pk+X(y) to 

enhance the path Pk+\{x). Theorem 5.54 implies that the graph G' is more reliable 

with respect to the st-reliability than G , which is the required contradiction.□

T h eo rem  5.57 I f  G = M Stt[k, 2], then for any positive integer m, G(0,m ) is an 

st-optimal reliable graph in G[m\.

P roof: Let A  =  {Gj|Gj =  G (i,m  — i)}, we show that Go is an st-optimally graph 

in A. To the contrary, assume there exists a positive integer t such tha t Gt is an 

st-optimal reliable graph in A. Let t =  klx +  x. and m — t = kl2 + y; we proceed 

by case analysis.

Case 1: lx =  l2.

Subcase 1: x =  y =  0. In this case Gt = M Sit[Pk+x(lx +  1 ) ,P k+1(lx + 1)]. Since m  

is positive integer, it follows that lx > 1. By using a similar arguments to those 

in Theorem 5.56, we can show that the graph Go =  M Stt[Pk+x(lx +  2), P t+1(/i)] 

is more reliable than Gt with respect to st-reliability. Therefore, Gt is not an 

st-optimal reliable graph, which is a  contradiction.

Subcase 2: x  +  y ^  0. We consider two possibilities:

(1) If x 0, then by Theorem 5.54, the graph G0 =  G(t — x, m  — t + x)  is more 

reliable with respect to the st-reliability than Gt, which again is a contradiction.

(2) i ^ O .  Construct the graph G' by taking k edges from the path Pk+X{(l, 2 )} 

and use them to improve the path Pfc+i{ (/,7/)}. The fact that the probability 

of having two adjacent vertices connected in the path Pfc+i{(/,?/)} is equal to 

the probability of having adjacent vertices connected in the path

together with Theorem 5.54, implies th a t G' is more reliable than G<, which is a 

contradiction.

Case 2: lx ^  l2; Without loss of generality, let lx ^  l2. For this case the probability
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tha t two adjacent vertices are connected in the path Pfc+i{(/2, a:)} is less than the 

probability that two adjacent vertices are connected in Pk+i{(h, 2/)}- Construct 

the graph G' =  Ma,t[Pit+1{(/1 +  l,x)},Pfc+i {(/2 -  1,2/)} by taking k edges from 

Pfc+i{(/2, ?/)} and use them to construct Pk+i{(k +  1, x)}. By using Theorem 5.54, 

it can be shown that G' is more reliable than Gt) which is again a contradiction. □

L em m a 16 The graph P t+i(2) is more reliable than Ms<t[k,2].

P ro o f: Consider the graph P t+i(2) with

R(PM (2)) = (2 p - p 2)i = p t (2 - p ) i

and the graph MSlt[k, 2] with

Observe that

R(PM (2 )) -  -R(MS,,[M ]) =  / [ ( 2  -  p)k -  (2 -  p*)J.

The function H(x) — (2 — p)® — (2 — p)x is a positive and increasing function, for 

all 0 <  p <  1. Therefore R(Pk+i{2)) — R(M s<t[k, 2]) >  0 for all p and for all k. 

Hence Pfc+1(2) is more reliable than M 3tt[k, 2]. □

C o ro lla ry  18 Given a graph G =  JWSit[P i,P2], let pi and p2 be the probability of 

the edges on the paths Pi and P2, respectively. Let P  be the path whose vertices 

are connected by two multiple edges, one with probability px and the other with p2, 

then R (P ) > R(G) (see Figure 5 .5).

T h eo rem  5.58 The graph Pk+i(l) is more reliable than M s<t[k,l\.

P ro o f: The proof is by induction on I. The result is true for 1 = 2. Assume the 

result is true up to N .  Suppose G = M Sit[k, N  + 1] and let P l5 P2, . . . ,  Pn , Pn +i 

be the set of st-paths of G. Let Gx be the induced subgraph by PX,P2, . . . ,  Pn -
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Construct a graph G' from G by replacing G\ by the paths P i, P2, . . . ,  Pyv. By the 

induction hypothesis, the st-reliability of the graph G' is more reliable than G\. 

Therefore the graph G' is more reliable than G, with respect of the st-reliability. 

Since the graph G' consists of two paths, one has edge reliability equal to piv-i 

and the other has edge reliability p. By using Corallary 18 the graph Pk+i{N +  1) 

is more reliable than G'. Therefore, Pk+i(N +  1) is more reliable than G.

We next study improvement the multistage graphs M Sit[k, /] when m  (the num

ber of extra edges ) is more than k.

T h eo rem  5.59 Let G — M 3it[k,l]; the graph G\ in G\m] is an optimal st-reliable 

graph, when the m  edges are used to improve only one path.

Proof: The result is true for k =  1 or / =  1. That can be seen by observing 

that the graph MS|i[l, /] has just I multiple edge between s and t, and the graph 

MStt[k, 1] is just the path Pk+i- Assume k > 2 and / >  2. We use induction 

on I (the number of the disjoint st-path). Assume the result is true for all I <
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N .  Consider the graph G = M Sit[k,N  +  1]. Let m  = rk + d-, we show that 

the graph Cr[Pi{(r, d )} ,P 2, • • •, Pv+i] is an optimally reliable graph in G[m\. Let 

{<i, t2, In, Tn — t}  be a partition of m  which produces the st-optimally reliable 

graph, where t =  J2iLi U- Let G' be the st-optimally reliable graph obtained from 

G  by adding i,- edges to the path P,-, for all i =  1 ,2 , . . .  , N  and m  — t edges to 

the path Pn+i- We show that G1 is not an optimally reliable graph. Consider 

the graph G[, constructed by adding t extra edges to the path Pi and m — t 

extra edges to the path Pn+i • By the induction hypothesis, the graph G\ is more 

reliable than G', which is a contradiction. □

Let A R m denote the increase in st-reliability after the improvement process of 

the graph; where m  is the number of extra edges. The following result measures 

A P TO, when m  is given.

R em ark  18 Given a path Pn+i, let m  be the number o f extra edges with s and t 

the two end vertices o f Pn+\. I f  m  < n, then the increase in the st-reliability of 

Pn+1 after the enhancement is

P roof: The result follows from the fact tha t the

P ^ ( P n+i(0,m )) =p™pn~m

and R s,t{Pn+1) =  Pn, where p i = 2 p -  p2. □

Given a graph Gt =  Pn+1(l), we study the increase in AR m on Gt for different 

values of I.

R em ark  19 For m < n ,  A R m{Gt) =  [1 -  (1 -  p)']7l([1f ^ ^ ] m -  1).

P roo f: Let Gi =  Pn+i(/), then

R .A G ,)  =  [ i _ ( i  _ ,)■ ]“

= [1 -  (1 - ( 1  - P ) '] " - ”*.
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By taking the difference of R s<t{Gi) and R Sit(G[(m)) we get the result.□

Given a graph G  =  MS,<[P/1,P;2], let P ^ P J  =  Pi and R s,t(Pi2) =  p2 be the 

probability that the two end vertices of and P;2 are connected. Let A x be 

the increase in P S,<(P/J when we improve P/, and A2 be the increase in R s,t(Pi2) 

when we improve P;2. Suppose pi > p2 and Ai >  A2. If we have only the choice 

to improve P/j or Pi2 but not both, we can ask the question: W hat is the best 

choice so as to increase the st-reliability of G the most ? For the st-reliability, if 

we choose Pil , we have

Ps,t(P/1 ) =  Pi +  A i  +  p 2 — p 2( p i  +  A i )

where P/_1 is the path obtained from P^ by increasing its reliability by A i. Sim

ilarly,

Rs,t(Ph) =  P2 + A2 +  pi — Pi(p2 +  A2)

where P{2 is the path obtained from_P/2 by increasing its reliability by A2. Observe 

that R s ^ P fJ  -  R s,t(Pi2) =  Ai ( l  -  p2) -  A2(l -  pi). Since Ai >  A 2 and 1 -  p2 > 

1 — pi, it follows that the choice of improving Pi2 is better to improve R s,t(G). 

In improving the multistage graph G — M s,t[k, 2], let G contain the two paths 

P t+ i(0 , Pk+i(l)- The results in this section show that AR m(G) is maximum when 

all the m  edges are used to improve the path Pk+i(l) but not P*+1(l) for / >  1.
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CHAPTER VI

CONCLUSION AND FUTURE DIRECTIONS

6.1 Traffic vectors

For simplicity we restrict our discussion to a graph G, or digraph D  which is 

free of loops and parallel edges.

Let G  be an (n,m)-graph. Recall from Chapter II that the traffic vector of 

a set 5  of edges in E(G)  is a sequence which describes the number of paths of 

length i  which contain 5 , for all i =  1 , 2 , . . . ,  n — 1. We extend the definition to 

a case of digraph D.  A digraph D  is called (n,m)-digraph, if the order of D  is n 

and the size is m. Given an (n,m)-digraph D  and e €  E(D),  the traffic vector of 

e is TV(e)  =  (jri(e), jr2(e), . . . ,  7rn_i(e)), where 7r,(e) is the number of the directed 

paths which contain e. Note that the direction of the paths is determined by 

the direction of the edge e.

Example:

Consider the digraph in Figure 6.1. The traffic vector of the edge e is 

TV(e) =  (1,3,1).

As in the definition of the dominant edge for the graph, the edge e0 € E(D)  is 

a dominant edge, if for a different edges e € E(D)  and for all j  =  1 ,2 , . . .  ,n — 1 

it implies that

^ n » ( eo) >
i—1 i=l

The study of characterizing the set of the dominant edges in a graph or a digraph 

in general can be interesting problem.

134
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Figure 6.1

For the case of directed trees, several results have been obtained but are not 

included in this dissertation.

A digraph D  is called a probabilistic digraph if the elementing in V(D)  and 

E(D)  cure assigned positive real numbers which represent the probability that a 

given element exists in the set V(D)  or E(D).  If u,- is assigned the number p(v,), 

then the probability of having u; in V(D)  is p(u,). Observe that 0 <  p(ut) <  1. 

Similarly, p(e,) denotes the probability of having e,- in E{D).  For the following 

discussion, we assume that the probability assigned to the vertices in D  is always 

1 (the vertices of D  are absolutely reliable). Two vertices in V(D)  are connected if 

there exists a directed path from u to v. Define the pair-connected reliability of the 

digraph D  to be the expected number of connected vertices in D.  The problem of 

finding the pair-connected reliability of D in general is an open problem. Moreover 

the study of improving the pair-connected reliability for a general digraph by the 

methods outlined in this dissertation can be cited as a good research problem. For 

the case of a directed tree D(T),  several results are obtained by using the directed 

traffic vectors.
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6.2 K-Terminal Reliability

The study in this dissertation is done only for special classes of graphs, which 

are commonly used in computer networks and other applications. One may extend 

the study to other types of networks. For complete graphs and bipartite graphs 

the study of improving different types of reliability measures is still needed.

Consider for example a graph G of order n, and positive integer k < n. To 

find the subset S  £ E(G) with |5 | =  k to be improved in G so the increase in the 

K-terminal reliability is maximal has not been analyzed as the complexity goes.

There are many types of reliability measure for networks tha t can be improved 

by the two methods mentioned on this dissertation.

To improve network reliability for a probabilistic graph G = (V , E)  we assumed 

that vertices were fail-safe, but each edge e 6 E (G ) is down (that is, in failed 

state) independently with probability <?, 0 <  q < 1. Moreover, assume that the 

node failures are equal and independent. A natural question is ask: How does 

one improve the reliability measures associated with G by using the two methods 

used in this dissertation, where both vertices and edges are subject to failure.

6.3 General Reliability in Probabilistic Graphs

A method of studying reliability in general for G can be extended to find the 

probability or the expected value of having any property in G. Namely, G  contains 

a complete subgraph of order k , where k < |Vj; or G has a set of independent 

number of edges. To improve any of the network reliability measures mentioned 

above using the methods outlined in this dissertation can be interesting to study.
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