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Improving Neural Radiance Fields with

Depth-aware Optimization for Novel View Synthesis
Shu Chen, Junyao Li, Yang Zhang, and Beiji Zou

Abstract—With dense inputs, Neural Radiance Fields (NeRF)
is able to render photo-realistic novel views under static condi-
tions. Although the synthesis quality is excellent, existing NeRF-
based methods fail to obtain moderate three-dimensional (3D)
structures. The novel view synthesis quality drops dramatically
given sparse input due to the implicitly reconstructed inaccurate
3D-scene structure. We propose SfMNeRF, a method to better
synthesize novel views as well as reconstruct the 3D-scene
geometry. SfMNeRF leverages the knowledge from the self-
supervised depth estimation methods to constrain the 3D-scene
geometry during view synthesis training. Specifically, SfMNeRF
employs the epipolar, photometric consistency, depth smoothness,
and position-of-matches constraints to explicitly reconstruct the
3D-scene structure. Through these explicit constraints and the
implicit constraint from NeRF, our method improves the view
synthesis as well as the 3D-scene geometry performance of NeRF
at the same time. In addition, SfMNeRF synthesizes novel sub-
pixels in which the ground truth is obtained by image interpola-
tion. This strategy enables SfMNeRF to include more samples to
improve generalization performance. Experiments on two public
datasets demonstrate that SfMNeRF surpasses state-of-the-art
approaches. Code is available at https://github.com/XTU-PR-
LAB/SfMNeRF.

Index Terms—neural radiance field, novel view synthesis,
optical flow.

I. INTRODUCTION

NEURAL Radiance Fields [1] have shown very impressive

results for novel-view synthesis. NeRF employ a con-

tinuous five-dimensional (5D) function to implicitly encode

the three-dimensional structure and appearance of a specific

scene which is represented by a training multi-layer perceptron

(MLP), and the novel view of the scene is synthesized by

volumetric rendering. NeRF explicitly constrain the synthe-

sized pixels to close the ground truth in which the employed

volumetric rendering enables NeRF to implicitly constrain the

3D-scene geometry. However, the emitted colors and volume

densities are entangled in the NeRF so that the NeRF require

dense input views to eliminate the geometric ambiguity. When

the input views are sparse, NeRF are prone to finding a

degenerate solution to the image reconstruction objective [2].

On the other hand, NeRF fail to synthesize good novel

views in the scenes with large texture-less regions such as

couches and floors because it is unlikely to acquire sufficient

correspondences cross view in NeRF.
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The poor performance of NeRF in the sparse inputs or the

scenes containing many texture-less regions comes from the

implicitly estimated inaccurate 3D shape. To overcome this

problem, some works leverage depth priors to improve the

novel-view synthesis performance of neural radiance fields.

These depth data are commonly estimated by running a

structure-from-motion (SfM) approach [3], [4] from the input

images. DS-NeRF [5] adopts the sparse 3D points from a

SfM as the supervision in the NeRF optimization. However,

the depth priors from SfM are commonly sparse and noisy.

To obtain dense depth priors, NerfingMVS [6] employs a

monocular depth network with the sparse depth from SfM

reconstruction as the supervision to obtain the depth priors,

and then using the adapted depth priors to guide volume

sampling in the optimization of NeRF. Roessle et al. [7]

propose a similar approach, they adopt depth completion to

convert these sparse points into dense depth maps, which

are used to guide NeRF optimization. However, this kind of

solution still treats depth estimation and view synthesis as two

separate processes that cannot benefit from each other.

Inspired by the self-supervised depth estimation approaches

[9], [10], we integrate the novel-view synthesis and depth

prediction into a single end-to-end procedure so they can

benefit from each other. The employed explicit depth esti-

mation can compensate for the weakly implicit 3D-geometry

constraint in NeRF. With the improvement of depth estimation,

the quality of novel-view synthesis is enhanced accordingly.

Specifically, we employ the epipolar geometry to eliminate the

pixels’ depth uncertainty by constraining the corresponding

points in another image of one point in one image must to be

on a ray called the epipolar line. Furthermore, we leverage

a patch photometric consistent loss across multiple views

in which the image warping is implemented to ensure the

identical region in different views has the same appearance.

To further reduce the 3D-shape ambiguity, the surface smooth

constraint in scenes and the position-of-matches constraint that

the identical feature in different views has the same world

coordinates are implemented. At the same time, we implement

sub-pixel rendering in which the 2D image coordinates of

pixels to be synthesized are not integer vectors but float vectors

that are sampled based on the coordinates of image pixels

with (0, 1) offset. The colors of the sampled sub-pixels are

obtained by bilinear interpolation on the images. This new

sampling strategy enables SfMNeRF to include more samples

to improve generalization performance.

To sum up, our main contributions include:

1) By employing the cross-view consistent patch-based

photometric loss, SfMNeRF explicitly constrains the 3D-scene

http://arxiv.org/abs/2304.05218v1
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geometry that reduces the geometric ambiguity to some extent

in NeRF.

2) The employed epipolar, smooth and position-of-matches

constraints enable SfMNeRF to be aware of the scene’s

structure, so the quality of novel-view synthesis improves.

3) The implemented sub-pixel rendering in SfMNeRF im-

proves the generalization ability of the NeRF.

II. RELATED WORK

We briefly review depth-aware NeRF and self-supervised

depth prediction in this section.

A. Depth-aware NeRF

NeRF have achieved the best results for novel-view synthe-

sis under static conditions. NeRF implicitly represent a scene

as a continuous five-dimensional (5D) function by training a

MLP and then use volume rendering to synthesize a novel

view. Many NeRF’s variants have been proposed, such as fast

training and inference [11], [12], modelling non-rigid scenes

[13], scalable [14], unbounded scenes [15], [16], editable [17],

[18], handling reflections [19] and generalization [20], [21].

Although NeRF can achieve better performance for novel-

view synthesis under rich texture and dense image inputs, they

synthesize unplausible results due to the inherited geometric

ambiguity when the scene is observed by sparse. Some works

enforce regularization to improve the novel-view synthesis

performance when the input is sparse, for example, by pe-

nalizing a semantic consistency loss [22] or introducing extra

unobserved viewpoints [23]. However, existing approaches

either regularize the depth with estimated sparse 3D point

clouds from a SfM, or heavily rely on a extra multi-view

dataset that might hard to collect or not be available. In

contrast, our approach introduces more samples by sub-pixel

rendering to enhance the generalization ability of the NeRF.

Depth priors are also employed as the supervision in the

NeRF optimization to guarantee a unique estimated 3D-scene

geometry to handle the artifacts in sparse input scenarios.

Here, we review the depth-aware Neural Radiance Fields in

both scene-level and cross-scenes-level.

Depth-aware NeRF are expected to learn an accurate 3D

shape to improve the novel-view synthesis performance [5],

[6], [7], [24]. DS-NeRF [5] employs the sparse depth infor-

mation from COLMAP [8] as the supervision to optimize the

depth value of the pixel rendered. NerfingMVS [6] proposes

a similar approach, but the depth priors are obtained by

finetuning a monocular depth neural network on its sparse SfM

reconstruction from the target scene. Dense Depth Priors [7]

uses a depth completion network to convert the sparse depth

data of each view obtained from the SfM into dense depth

maps individually, which are used to guide NeRF optimization

and supervise the depth of the pixel rendered. However, Dense

Depth Priors process each view individually that it is not

view-consistent. The depth priors in these approaches are

commonly pre-obtained by an independent approach and the

view synthesis and depth estimation are separated so that they

cannot benefit from each other. In comparison, our approach

estimates the 3D-structure of the scene and synthesizes the

novel view at the same time.

The per-scene NeRF optimize the representation of each

scene individually, so it is time consuming and lack of

generalization. To resolve these shortcomings, prior works

also present generalizable radiance-field-based methods [20],

[24], [25]. pixelNeRF [20] introduces a fully convolutional

architecture to extract the feature maps of input images which

are conditioned on the NeRF to learn a scene prior by training

across multiple scenes. However, the features in pixelNeRF

are aggregated from a multi-view 2D image. Point-NeRF

[21] leverages deep multi-view stereo (MVS) techniques to

reconstruct point clouds which are represented as anchors for

feature extraction.

B. Self-supervised Depth Prediction

Self-supervised depth prediction approaches aim to pre-

dict depth directly from monocular images, by enforcing a

photometric loss on corresponding stereo images [26] or on

temporally adjacent frames [9]. This kind of approach typically

synthesizes a new view by image warping to serve as the

supervisory signal. To eliminate the adverse effects of dynamic

objects or occlusions, a mask explained for the motion is

introduced to ignore certain regions that do not satisfy the

static scene assumption. Zhou et al. [9] trained two networks,

one for mask and another for depth estimation, to reconstruct

the depth of scene from monocular images. In practice, the

predicted mask is inaccurate that introduces more errors during

training. Instead of being learned from a network, Godard et

al. [26] introduce an auto-mask to eliminate training pixels that

violate camera motion assumptions. Other methods alleviate

this problem by either modeling the motion of individual

objects [27], [28], estimating dense 3D translation field [29],

or filtering by instance segmentation [30]. Garg et al. [31]

introduce photometric consistency constraint to recover depth

from stereo pairs, which is further improved by left-right con-

sistency constraints [26]. Furthermore, some works [32], [33]

use both temporal and spatial photometric warp errors to train

the model. Inspired by self-supervised learning methods, in

this work, we employed the patch-based multi-view consistent

photometric constraint to guarantee an accurate 3D-scene’s

shape.

III. PRELIMINARY

A neural radiance field is represented by a continuous 5D

function f that maps a 3D coordinate x = (x, y, z) and

viewing direction (θ, ϕ) to a volume density σ and an emitted

color c. The continuous function is implicitly parameterized

by a multi-layer perceptron, and the weights of the multi-layer

perceptron are optimized to synthesize the input images of a

specific scene.

fw : (β (x) , β (d)) → (c, σ) , (1)

where w denotes the network weights, and β represents a

predefined positional encoding applied to x and d.
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Given m training images and the corresponding camera

poses, a photometric loss is leveraged to optimize the NeRF

as

L =
1

m

m
∑

i=1

∥

∥

∥
Ii − Îi

∥

∥

∥

2

2
, (2)

where Ii and Îi are the ground-truth color of image i and

the corresponding synthesized image by volume rendering,

respectively.

For each pixel of Îi, casting a ray r (t) = o + td,o ∈
ℜ3,d ∈ S2, t ∈ [tn, tf ] from the camera center o through the

pixel along direction d, and its color ĉθ is computed using

alpha compositing:

ĉθ (r) =

∫ tf

tn

T (t)σθ (r (t))cθ (r (t) ,d) dt, (3)

where T (t) = exp
(

−
∫ t

tn
σθ (r (s)) ds

)

, and σθ (·) and

cθ (·, ·) indicate the volume density and color prediction of

the radiance field, respectively.

IV. SFMNERF

A. Overview

Fig. 1 shows the pipeline of our SfMNeRF framework for

view synthesis. Firstly, a set of three images was selected from

the dataset. In the set, one image is assumed to be the reference

image, and the other two images selected are those that have

an overlapping region with the reference image. Secondly, we

extracted scale-invariant feature transform (SIFT) features in

each image and obtained the matched SIFT correspondences

between them. Finally, the matched SIFT correspondences

were input into the neural radiance field to obtain their 3D

coordinates. We used the positions of matched features loss to

guarantee an accurate geometric shape based on the fact that

the identical features in different views have the same world

coordinates. Furthermore, we employed the epipolar constraint

to enforce the correspondence of one point in reference image

must lie in the epipolar line in another image by optimizing

the minimum of the difference between the 3D coordinates

of the point and the epipolr points. In addition, we leveraged

the patch-based multi-view consistent photometric constraint

to further constrain the estimated 3D-scene structure. We

randomly selected a patch from the reference image and added

random offset between (0, 1) to the image coordinates of each

pixel in the patch to obtain sub-pixels; then the coordinates

of sub-pixels (x, y) and the direction d were input into the

neural radiance field which output the color and depth of each

sub-pixel. The ground-truth of each sub-pixel was obtained by

a bilinear interpolator from the reference image. The pixels

in the patch of the reference image were warped into the

other view to synthesize a new patch, and a photometric

reconstruction loss between the patch in the reference image

and the new synthesized patch was implemented to constrain

the estimated depth of each sub-pixel from the neural radiance

field. In addition, the depth smooth loss was employed to

further constrain the estimated 3D-scene geometry.

B. Sub-pixel Rendering

To achieve sub-pixel rendering, we first sample a patch from

the reference image at random; the sampling region is denoted

as Ωp. For any point p = (x, y) ∈ Ωp in the patch, we add an

offset to it as

p = (x+ xoff , y + yoff) |xoff ∈ (0, 1) , yoff ∈ (0, 1) . (4)

The ground-truth color of the sub-pixel is obtained by lin-

early interpolating the color values of the four-pixel neighbors

(top-left, top-right, bottom-left, and bottom-right) as

Î(p) =
∑

i∈{top,bottom},j∈{left,right}
wijI

(

pij
)

, (5)

where wij is determined according to linearly proportional to

the Euclidean distance between p and pij , and
∑

i,j w
ij = 1.

According to NeRF [1], the rendering loss is formulated as

Lren =
1

m

∑

pi∈Ωp

∥

∥

∥
Î (pi)− Ĩ (pi)

∥

∥

∥

2

2
, (6)

where Î (pi) is the ground-truth color of point pi and Ĩ (pi)
is the corresponding synthesized pixel by volume rendering.

C. Positions of Matched Features Constraint

As introduced in SaNeRF [34], we also leverage the 3D

coordinates of sparse keypoints to guide the geometry opti-

mization in the NeRF, based on the fact that the identical

keypoints in different views have the same world coordinates.

The 3D coordinates of the SIFT features are formulated as

a weighted sum of all the samples volume densities σj output

from the NeRF along the ray, defined as

xs =

Nc
∑

j=1

wj (o
′ + tjd

′), wj = Tj (1− exp (−σjδj)) , (7)

where δj = tj−1 − tj represents the distance between two

consecutive samples and Nc denotes the number of samples.
We denote the 3D coordinates of matched correspon-

dences as
{[

x
k
r ,x

k
i ,x

k
j

]

|k = 1, · · · ,m
}

, and the positions-
of-matched features loss is formulated as

L3D =
1

nml

n
∑

i=1

m
∑

j=1

l
∑

k=1

∥

∥

∥
x
k
r − x

k
i

∥

∥

∥

2

2

+

∥

∥

∥
x
k
r − x

k
j

∥

∥

∥

2

2

+

∥

∥

∥
x
k
i − x

k
j

∥

∥

∥

2

2

,

(8)

where x
k
r , xk

i , and x
k
j are the estimated 3D coordinates of the

matched SIFT features k in the reference image and another

two images according to (7), respectively.

D. Epipolar Constraint

Given the pose between two images, we can calculate the

fundamental matrix. According to epipolar geometry, given

one point in the reference image, we can derive a ray called

epipolar line from the estimated fundamental matrix, the

corresponding points in another image must to be on the

epipolar line as shown in the Figure 2(b). In this work, we

use the epipolar constraint to regularize the predicted depth of

points from NeRF.
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Fig. 1. Overview of SfMNeRF. The blue points in the other images are the matched features of the blue point in the reference image.

Given a point in the reference image, the 3D coordinates of

this point is denoted as pr, and the points in the epipolar line

are denoted as {pi}, we define the epipolar constraint as

Lepi = min
i

{

‖pr − pi‖
2
2

}

, (9)

where pr and pi are estimated according to (7).

Actually, the number of epipolar points is very large, it is

necessary to eliminate the implausible points to improve the

computational efficiency. On the other hand, some points may

occluded that it is not possible to find the corresponding points

in the epipolar line. We use the color similarity to eliminate

the implausible points, only the points in the epipolar line in

which the color difference between them and the point in the

reference image below a threshold are filtered as the epipolar

points. We show the filtering visual results in the Figure 2.

E. Photometric Consistency Constraint between Multiple

Views

To eliminate the shape-radiance ambiguity in the NeRF

[1], for each view, we explicitly leverage the patch-based

photometric consistency constraint between multiple views to

constrain the depth value of every pixel in the patch.

Firstly, the 3D coordinates of each pixel p in the patch are

estimated by (7) and denoted as xp. Secondly, the pixel in

the reference image is warped by a back-project process onto

the other images (denoted as Ii and Ij , respectively) as the

following equation, take image i for example.

p̂i = KTr−>ixp, (10)

where K is camera intrinsic matrix, and Tr−>i = [r, t]
represents the relative pose between the reference image and

the image i and defined as

r = ri
−1

rr, t = ri
−1 (tr − ti) , (11)

where [ri, ti] , [rr, tr] are the global poses of image i and the

reference image, respectively.

Similar to (5), the color of the projected point p̂i is obtained

by a linear interpolator and denoted as Î(p̂i).

Finally, the patch-based photometric consistency constraint

is formulated as the combination of a photometric reconstruc-

tion loss Lpr and a structured similarity (SSIM) loss LSSIM ,

and defined as Lpc = Lpr + LSSIM .

The photometric reconstruction loss is defined as

Lpr =
∑

p(k)∈Ωp

M (p (k))
∣

∣

∣
Îr (p (k))− Îi (p̂i (k))

∣

∣

∣
+

∑

p(k)∈Ωp

M (p (k))
∣

∣

∣
Îr (p (k))− Îj (p̂j (k))

∣

∣

∣
,

(12)

where Îr (p (k)) is the pixel value of point k in the patch in

the reference image, and Îi (p̂i (k)) is the synthesized pixel

value of projected corresponding one in the image i. M (.)
represents the mask map for the patch to filter the pixels which

do not have the correspondences in the other images. We pre-

established a minimum rectangle to include all matched SIFT

features in the reference image, if any point p (k) in the patch

is in the minimum rectangle where its mask M (p (k)) is set

as one, otherwise set as zero.
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Fig. 2. Implausible epipolar points elimination. (a) The reference image with a white point. (b) The epipolar line is depicted by the white line in another
image and the white point is the corresponding point. (c) The obtained epipolar points after filtering which represented by the white points in the image.

The SSIM loss is defined as

LSSIM =
1

2
M

(

1− SSIMr−>i

2
+

1− SSIMr−>j

2

)

,

(13)

where SSIMr−>i is the structured similarity between the

patch in the reference image and the image i, and SSIMr−>j

is defined similarly. M is a binary mask that is set as one if

the patch is in the minimum rectangle, otherwise it is set as

zero.

F. Depth Smooth loss

Similar to [10], we enforce the depth smooth prior to the

estimated depth maps in the NeRF [1]. Since large image

gradients commonly mean depth discontinuities, we consider

the edge constraint in our approach by enforcing the L1 norm

of the depth gradients in the total loss, which is formulated as

the weighted image gradients across adjacent pixels.

Lds =
∑

p(k)∈Ωp

∣

∣

∣
∇D (p (k)) ·

(

e−|Î(p(k))|
)
∣

∣

∣
, (14)

where ∇ represents the 2D differential operator and D (p (k))
is the depth of pixel p (k).

G. Training loss

The total loss is formulated as a combination of the afore-

mentioned losses; each loss is controlled by a factor.

Ltotal = λrenLren + λ3DL3D + λprLpr

+λepiLepi + λSSIMLSSIM + λdsLds.
(15)

V. EXPERIMENT

A. Experimental Details

We employed the commonly used deep learning library

Pytorch to implement our approach. The performance of our

system is evaluated on the LLFF-NeRF [1], [35] and ScanNet

[36] datasets.

1) Datasets: The LLFF Dataset is established from eight

scenes captured by a cellphone, with 20-62 images each. The

resolution of each image in the dataset is 4032 × 3024. We

downsized each image 1/8 scale to 504× 378 dimensions in

pixels due to the limited capacity of NVIDIA RTX 2080Ti, and

held out 1/8 of these as the test set for novel view synthesis.

For the ScanNet dataset, we selected eight scenes in this

dataset to evaluate our method as the experimental setup in

[35]. In each scene, 40 images were selected to cover a local

region, and all images were resized to 648×484. As introduced

in NeRF [1], we held out 1/8 of these as the test set for novel

view synthesis.

2) Training Details: We set λren = 1.0, λ3D = 0.1, λpr =
0.001, λepi = 0.0001, λSSIM = 0.01 and λds = 0.001 in all

the scenes of each dataset. For fair comparison, the same MLP

architecture in NeRF [1] was employed in all experiments.

The patch size was set as 48× 48. The hierarchical sampling

strategy in NeRF [1] was adopted and numbers of sampled

points of both coarse sampling and importance sampling were

set to 64. We use the Adam [37] optimizer to optimize our

model with β1 = 0.9, β2 = 0.999 and the learning rate was

set as 1e-3. In all experiments, we used one NVIDIA RTX

2080Ti to training and testing.

3) Evaluation Metrics: We employed three kinds of metrics

to evaluate the quality of novel-view rendering: Peak Signal-

to-Noise Ratio (PSNR), Structural Similarity Index Measure

(SSIM) [38] and Learned Perceptual Image Patch Similarity

(LPIPS) [39].

B. Comparison with State-of-the-Art

Results on LLFF-NeRF dataset.

We compared SfMNeRF to NeRF [1] and three recently

proposed works: MVSNeRF [41], TensoRF [40] and Plenoxels

[12]. The quantitative comparisons for novel-view synthesis

are shown in Table 1, and the visual results for novel-

view synthesis and depth estimation are illustrated in Fig. 2.

From Table 1, we notice that SfMNeRF achieved the best

performance measured by PSNR in scenes (Fern, Leaves and

Orchids) because the rich texture in these scenes is good for

photometric consistency constraints between multiple views,

and our approach achieved the best performance in six scenes

on LPIPS.

Results on ScanNet dataset.

The quantitative comparisons for novel-view synthesis on

the ScanNet dataset are shown in Table 2. From Table 2,
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Fig. 3. Qualitative comparison between our SfMNeRF and other approaches on the LLFF-NeRF dataset.
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Methods Room Fern Leaves Fortress Orchids Flower T-Rex Horns

PSNR↑

NeRF [1] ECCV20 32.70 25.17 20.92 31.16 20.36 27.40 26.80 27.45

MVSNeRF [41] ICCV2021 26.95 21.15 17.51 26.03 17.85 24.74 23.20 23.57

TensoRF [40] ECCV22 32.35 25.27 21.30 31.36 19.87 28.60 26.97 28.14

Plenoxels [12] CVPR22 30.22 25.46 21.41 31.09 20.24 27.83 26.48 27.58

Ours 30.02 25.79 21.46 31.11 20.81 25.95 26.47 27.15

SSIM↑

NeRF [1] ECCV20 0.948 0.792 0.690 0.881 0.641 0.827 0.880 0.828

MVSNeRF [41] ICCV2021 0.951 0.638 0.667 0.872 0.657 0.888 0.868 0.868

TensoRF [40] ECCV22 0.952 0.814 0.752 0.897 0.649 0.871 0.900 0.877

Plenoxels [12] CVPR22 0.937 0.832 0.760 0.885 0.687 0.862 0.890 0.857

Ours 0.953 0.796 0.730 0.881 0.704 0.791 0.895 0.840

LPIPS vgg↓

NeRF [1] ECCV20 0.178 0.280 0.316 0.171 0.321 0.219 0.249 0.268

MVSNeRF [41] ICCV2021 0.172 0.238 0.313 0.208 0.274 0.196 0.184 0.237

TensoRF [40] ECCV22 0.167 0.237 0.217 0.148 0.278 0.169 0.221 0.196

Plenoxels [12] CVPR22 0.192 0.224 0.198 0.180 0.242 0.179 0.238 0.231

Ours 0.049 0.219 0.204 0.072 0.160 0.171 0.097 0.113

TABLE I
QUANTITATIVE COMPARISONS FOR NOVEL-VIEW SYNTHESIS ON LLFF-NERF DATASET.

we observe that the performance of SfMNeRF was inferior to

some supervised approaches, because the estimated geometric

shape of the scene in those supervised approaches served

as the supervision that constrainted the NeRF optimization.

Benefitting from the geometric constraints within the multi-

views, our approach outperformed the original NeRF by a

large margin. Fig. 3 illustrates the qualitative results about

novel-view synthesis and depth estimation. SfMNeRF suc-

cessfully recovered the accurate 3D-scene representation. In

contrast, NeRF [1] failed to reconstruct the corrected 3D-scene

structure, which in turn deteriorated the view synthesis.

C. Ablation Study

We conducted extensive ablation studies on the ScanNet

dataset to validate the effectiveness of the individual com-

ponents in SfMNeRF for view synthesis. Table 3 shows the

quantitative results. We explain items in Table 3 as follows:

Basic: Only the rendering loss is used.

3D: The positions-of-matched-features loss is included.

ds: The depth smooth loss is included.

pr: The photometric reconstruction loss between patches in

different views is included.

SSIM: The SSIM loss between patches in different views is

included.

sub-pixel sampling: The sub-pixel sampling strategy is

implemented during training.

epi: The epipolar constraint is included.

From Table 3, we observe that each loss employed in

SfMNeRF is able to improve novel-view synthesis accuracy,

especially, the sub-pixel sampling strategy improved the results

significantly.

VI. CONCLUSION AND FUTURE WORK

In this paper, we analyzed the limitation of NeRF and

proposed SfMNeRF, a neural radiance field is able to im-

prove the quality of novel view synthesis by self-supervised

depth constraints. The employed depth priors are obtained by

some constraints, such as patch-based photometric consistency

constraint between multiple views, epipolar constraint and

positions-of-matched-features constraint, without additional

data. In this way, our approach learns a multi-view consis-

tent geometry with depth constraints. The depth priors can

eliminate the geometric ambiguity to some extent and improve

the quality of novel-view synthesis accordingly. The employed

sub-pixel sampling strategy introduces more samples in train-

ing that further implicitly constrain the 3D-scene geometry in

NeRF. By employing explicit and implicit depth constraints,

our approach improves the novel-view rendering quality of

NeRF. In terms of comparison to other depth priors based

NeRF, our approach does not acquire to estimate the sparse

depth map by a SfM in advance. Our approach motivates the

future research to further exploit the structural priors in multi-

view inputs for view synthesis and other related tasks.

As with other photometry-based reconstruction methods,

SfMNeRF suffers from the scenes with repeated structures

which are likely to be caused by photometric ambiguity. In the

future, we will investigate how to incorporate the rich priors

of indoor datasets, and adapt the proposed approach to achieve

a generalized NeRF trained on across large scale datasets.
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