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Abstract

This paper shows how semantic attribute features can be used to improve object

classification performance. The semantic attributes used fall into five groups: scene

(e.g. ‘road’), colour (e.g. ‘green’), part (e.g. ‘face’), shape (e.g. ‘box’), and material

(e.g. ‘wood’). We train classifiers from representative images for 60 semantic attributes.

We first assess the accuracy of the individual classifiers, and show that they can be used to

predict semantic annotations for test images. We then use output from the set of trained

classifiers to create a new low-dimensional image representation. Experiments on data

from the PASCAL VOC challenge show that the semantic attribute features achieve an

object classification performance close to that of high-dimensional bag-of-words fea-

tures, and that using a combination of semantic attribute features and bag-of-words fea-

tures gives a better classification performance than using either feature set alone.

1 Introduction

Object classification has been a central area in computer vision research in recent years. Cur-

rent computer vision systems perform well at recognising specific objects, but have trouble

recognising many object categories: while humans typically find matching categories easier,

machine vision systems are better at finding exact matches than learning more general cate-

gories. Even specific objects may appear in different poses, under varied lighting conditions,

in cluttered images where irrelevant objects may add confusion or occlude the object of in-

terest, but to recognise object classes we also need to deal with the often large appearance

variations between class members.

When humans learn about new object classes, we make use of our existing knowledge

of visual categories. For example, if we see a new animal we can immediately apply to it

previously-learnt concepts of ‘grey’, ‘head’, ‘hooves’, and ‘wings’, and use these to recog-

nise the class in future. As well as colours and object parts, this kind of shared ‘semantic

attribute’ might describe common scene types (e.g. road), common shapes (e.g. box) and

common materials (e.g. wood). Semantic attributes can also be used by computer vision

systems, to guide learning to focus on common features of real-world images.
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Figure 1: Semantic attributes predicted for example images: global attributes (first row), and

local attributes (second row, oblique text). Predictions in bold text match the images’ manual

annotations.

This paper shows how semantic attributes can be used to improve object classification.

We train a set of classifiers for individual semantic attributes, and use them to make predic-

tions on new images (Figure 1). We can then use the scores from the set of classifiers as a

low-dimensional image representation. The object classification performance of the seman-

tic attribute features alone is close to that of a much higher-dimensional bag-of-words image

representation, while using the semantic attributes together with the bag-of-words features

consistently improves performance.

Section 2 discusses previous work related to the approach taken here. Section 3 describes

the set of semantic attributes we use, and how we create semantic attribute classifiers. In our

experiments we first evaluate the performance of the individual semantic attribute classifiers

(Section 4.1), then look at using the semantic attribute features and bag-of-words features

for object classification (Section 4.2). We also compare the semantic attribute features with

other methods for image feature dimensionality reduction (Section 4.3). Section 5 discusses

the results and suggests future directions.

2 Related work

The most popular current approach for object classification is to extract local regions from

images, assign them to clusters, and use the count distribution across clusters to describe

the images as input to a general classification method (see [16]). Some other approaches

try to locate the object within the image, and to take into account the spatial relationship

of the image regions which trigger potential matches (e.g. [3, 4, 15]), but these methods

tend to have high computational complexity, making it feasible to learn about only a small

number of object parts, and so limiting their descriptive power. The ‘bag of words’ approach

instead uses the histogram of counts across the whole image to predict whether or not the
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image contains the class of interest. While the image background may create confusion in

recognising object classes, the background can also provide useful cues to aid recognition,

since many objects tend to occur in particular types of scene [8, 11]. Simple bag-of-words

methods have shown impressive performance for object classification when used with large

numbers of region descriptor types and optimised parameter settings [9].

The local features used in bag-of-words methods typically lack any clear semantic mean-

ing. The individual features do not usually have strong discriminative power, and the meth-

ods perform best when provided with very high-dimensional image descriptors which al-

low the discovery of significant differences between different classes’ feature distributions.

Learning features with more specific meanings might help improve classification perfor-

mance. Some previous work has looked at explicitly learning semantically meaningful fea-

tures. For example, van de Weijer et al. [12] learnt to map from image colour to the colour

names people use to describe objects. Ferrari and Zisserman [5] also learnt simple texture

attributes such as ‘stripes’ and ‘dots’.

Recent work has embraced more complex attributes. Vogel and Schiele [13] used at-

tributes describing scene, material, and shape to retrieve images of coasts, rivers/lakes,

forests, plains, mountains, and sky/clouds. Quattoni et al. [10] proposed learning a set of

classifiers to predict the presence or absence of content words in the captions associated with

images in auxiliary training data. They then use SVD on the learnt classifier parameters to

create a new image representation which reflects the semantic content of images. Farhadi

et al. [2] used a set of semantic attributes such as ‘hairy’ and ‘four-legged’ to identity famil-

iar objects, and to describe unfamiliar objects when an image and bounding box annotation

is provided. Lampert et al. [6] showed that high-level descriptions in terms of semantic at-

tributes can be used to recognise object classes without any example images, once semantic

attribute classifiers are trained from other classes’ data.

Like [2] and [6], we will use diverse semantic attributes with explicit meanings to de-

scribe the visual content of images. As in that work, we will learn classifiers for the semantic

attributes then predict them from the low-level features of new images. Notable differences

include that our set of semantic attributes is extended to include some relating to the overall

scene, e.g. indoor/outdoor, ‘sky’ and ‘street’, providing contextual information which is im-

portant for object classification, and that we do not use any manual semantic attribute labels

for images from the data set we test on, instead collecting a separate set of representative im-

ages. We hope that the semantic attribute classifiers learnt in this way are more general than

those learnt on a specific data set. In our experiments below we evaluate the performance of

semantic attribute features on the large data set used in the 2007 PASCAL VOC challenge

[1], obtaining state-of-the-art results; we believe this is the first time that the performance of

semantic attribute features has been tested on a standard object classification benchmark.

3 Semantic attributes

In this paper we will use five groups of semantic attributes to describe images: ‘scene’,

’colour’, ‘part’, ‘shape’, and ‘material’. Figure 2 lists the semantic attributes, grouped by

type, along with some representative images for some attributes. We will learn a set of inde-

pendent classifiers for these attributes, and use them to construct semantic image descriptors

which can be used in object classification. While the previous work mentioned above used

only attributes of the objects themselves, we include attributes describing the overall image,

since contextual information often helps in recognising objects.
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Figure 2: Semantic attributes used, grouped by type, including representative images for

some attributes.

The attribute classifiers were trained from a data set of images obtained from Google im-

age search. For each attribute we downloaded a set of image results from Google and manu-

ally rejected false positives, to leave about 400 true positive examples as representative im-

ages for the attribute. For most attributes negative examples were sampled from all the other

attributes’ representative images, while in the pairs ‘indoor’/‘outdoor’ and ‘city’/‘landscape’

two attributes provided positive and negative examples for a single classifier.

The attribute classifiers produce two types of feature, global and local. The global fea-

tures are the result of running attribute classifiers on a whole image. However, in real-world

images, the object of interest often occupies only a small area of an image. In this case, it

may be better to predict semantic attributes from image patches rather than from the whole

image. In addition to global features, we will use local features obtained by calculating the

average response of an attribute classifier for 100 patches sampled from an image for ran-

domly selected positions and scales (with scale from 100 to 200 pixels). The local features

are intended to help recognise attributes which only occur in localised areas of an image, so

we do not use local attribute features for the attributes ‘indoor’/‘outdoor’, ‘city’/‘landscape’,

‘bedroom’, ‘dining room’ and ‘living room’ because these attributes describe whole images.

By concatenating the classifier output from 60 global semantic attributes and 55 local se-

mantic attributes we obtain a 115-dimensional semantic attribute feature descriptor.

In our experiments below each attribute classifier is a linear SVM, with each real-valued

SVM score providing one dimension in the overall semantic descriptor. We use non-negative

SVM scores obtained by fitting a sigmoid function to the original SVM decision value to

estimate the attribute probability. The SVM parameter C is set to 10, as determined by five-

fold cross-validation. Four image feature types are used as input to the SVMs: SIFT, texton

filterbank, LAB and Canny edge detection. Specifically, SIFT features are computed for

2000 image patches with randomly selected positions and scales (with scales from 16 to 64

pixels), and are quantised to 1024 k-means centres. Texton and LAB features are computed

for each pixel, and quantised to 256 and 128 k-means centres respectively, while Canny
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Figure 3: Accuracy achieved by SVM classifiers for individual semantic attributes. The

colours show the groups of attributes: x scene, x colour, x part, x shape, x material.

Figure 4: Semantic attributes predicted for example images: global attributes (first row), and

local attributes (second row, oblique text). Predictions in bold text match the images’ manual

annotations.

edge features are quantised to 8 orientation bins. Combining these features gives a 1416-

dimensional feature descriptor. When using these features directly as a bag-of-words image

representation, we additionally use spatial pyramid matching, as in [2]. Using a three level

pyramid, 1× 1, 2× 2, 3× 1, gives final bag-of-words features with a dimensionality eight

times as high, but for semantic attribute prediction we keep the original single-level features

as input to the classifiers to reduce the computational cost. Before feature computation,

the images were scaled to be at most 300× 300 pixels, with their original aspect ratios

maintained.
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4 Experiments

In this section we first evaluate the performance of the semantic attribute classifiers and show

how they can be used to predict attributes for new images (Section 4.1), then look at using the

semantic attribute features and bag-of-words features for object classification (Section 4.2).

Finally we compare the semantic attribute features with other methods for image feature

dimensionality reduction (Section 4.3).

4.1 Semantic attribute prediction

Figure 3 shows the accuracy achieved by our individual semantic attribute classifiers. Five-

fold cross-validation was used to compute the accuracy of the SVM classifiers on the database

of representative images. The negative examples for each attribute were sampled to balance

the positive examples, so making the same prediction for every image would give 50% accu-

racy. Most of the classifiers achieve more than 80% accuracy; the lowest accuracies are seen

on the ‘material’ attributes, while on average the ‘scene’ attribute classifiers perform best.

We will use these attribute classifiers to make soft predictions of which attributes apply

to an image, and use those predictions as features for object classification. Figures 1 and 4

show attribute predictions for some test images. The five strongest global (first row) and local

(second row, oblique text) attribute predictions are listed for each image, with the predictions

which matched manual annotations shown in bold. In many cases where the prediction does

not match the manual annotation, it is possible to understand why the attribute classifier gave

too high a score. For example, the train windows in Figure 4(a) look like screens, and no

sky is visible to show that it is an outdoor scene, and the window shutters in Figure 4(b) look

similar to doors.

4.2 Combining semantic attributes and bag-of-words features

We tested our semantic attributes as features for object classification on the large data set

used in the 2007 PASCAL VOC challenge [1]. (This is the last PASCAL VOC challenge for

which the test data annotations are publicly available.) The data set contains 9963 images,

with 24640 objects annotated for 20 object classes. The images were collected from users’

uploads to the Flickr website, so the objects appear in cluttered scenes, with a high degree of

variation in viewing, illumination and object appearance. For the challenge’s classification

task, we must determine whether or not each image contains each object class of interest.

Performance is measured by calculating the average precision for each class, i.e. the area

under the precision/recall curve.

Table 1 shows the average precision achieved on each class by a chi-squared kernel SVM

using the semantic attribute features, a chi-squared kernel SVM using the original bag-of-

words features, and three methods of combining them, along with the best results for each

class submitted to the 2007 PASCAL VOC challenge and more recent results obtained using

locality-constrained linear coding [14]. In the original challenge, the best results for every

class except ‘sofa’ were given by using a genetic algorithm to optimise the parameters of a

generalised radial basis function kernel for an SVM, learning weights over a large number

of low-level feature channels [9]. We tested three methods of combining the scores of SVM

classifiers trained separately using bag-of-words image features and semantic attribute fea-

tures derived from them: taking a weighted sum, their product, or the maximum. Taking a

weighted sum performed best, with mean average precision 61.4%. The weight used was
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 MAP

VOC [1] 77.5 63.6 56.1 71.9 33.1 60.6 78.0 58.8 53.5 42.6 54.9 45.8 77.5 64.0 85.9 36.3 44.7 50.9 79.2 53.2 59.4

LLC [14] 74.8 65.2 50.7 70.9 28.7 68.8 78.5 61.7 54.3 48.6 51.8 44.1 76.6 66.9 83.5 30.8 44.6 53.4 78.2 53.5 59.3

semantic 70.5 53.7 55.6 61.6 31.4 50.2 71.6 53.6 57.3 32.7 51.1 43.6 65.6 59.3 85.5 31.4 30.3 52.9 74.1 54.4 54.3

BoW 71.8 63.1 53.6 67.2 29.5 60.2 77.5 59.2 56.9 41.6 55.2 41.6 75.2 63.8 85.2 30.0 44.3 52.4 75.3 54.5 57.9

sum 76.2 66.4 59.2 70.3 35.4 63.6 79.4 62.4 59.5 47.9 58.8 44.9 78.3 67.4 87.9 32.9 46.9 53.8 78.6 58.9 61.4

product 76.3 65.7 58.8 71.8 31.4 64.3 79.5 61.2 58.8 44.1 59.7 45.7 76.4 65.4 87.9 38.1 46.8 54.5 77.4 58.7 61.1

max 74.7 65.3 58.2 69.5 32.9 63.2 80.0 60.4 55.4 47.9 56.2 46.5 77.6 65.0 86.7 34.5 40.8 52.0 77.2 56.2 60.0

Table 1: Average precision on the PASCAL VOC challenge 2007 data [1] of the best

results from the challenge, and of Locality-constrained Linear Coding [14], compared

with our results using bag-of-words features or semantic features alone, and using the

sum/product/maximum of the bag-of-words and semantic feature scores. Classes: (1) aero-

plane, (2) bicycle, (3) bird, (4) boat, (5) bottle, (6) bus, (7) car, (8) cat, (9) chair, (10) cow,

(11) diningtable, (12) dog, (13) horse, (14) motorbike, (15) person, (16) pottedplant, (17)

sheep, (18) sofa, (19) train, (20) tvmonitor.

Figure 5: Average precision achieved using bag of words features, semantic attribute fea-

tures, and both together, on the PASCAL VOC 2007 object class data.

learnt by cross-validation, but taking an unweighted sum of the two scores led to a mean

average precision of 61.2%, only slightly lower.

Figure 5 compares the performance achieved by classifiers using bag-of-words features,

the semantic attribute features, and a weighted sum combination of the two classifiers. On

the majority of classes the classifier based on semantic attribute features performs worse than

that using the original bag-of-words features, but it is impressive that this low-dimensional

representation of the bag-of-words features performs almost as well on average, and outper-

forms the bag-of-words features on seven classes (‘bird’, ‘bottle’, ‘chair’, ‘dog’, ‘person’,

‘potted plant’, ‘sofa’). The performance on every class is increased by combining the two

feature types rather than using either one alone.

BoW + 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 MAP

scene 73.5 63.4 53.7 67.5 33.5 60.7 77.3 60.7 56.4 47.5 56.5 40.5 76.8 66.3 86.6 38.4 45.3 52.8 75.7 58.2 59.6

colour 74.6 63.8 53.5 67.7 32.8 58.5 77.0 59.9 56.9 48.5 54.3 42.5 75.8 64.5 86.0 33.4 42.3 50.8 75.4 56.0 58.7

part 74.7 64.5 52.3 68.0 32.3 61.5 78.4 60.0 58.4 48.4 55.6 43.3 76.0 63.8 87.3 33.3 44.0 49.9 75.1 58.0 59.2

shape 73.0 64.5 54.5 66.6 32.7 58.0 77.3 60.6 56.2 48.7 53.8 42.1 76.8 64.4 86.1 37.5 42.3 51.6 74.2 56.6 58.9

material 74.5 64.8 55.6 67.9 33.4 59.9 77.6 60.5 58.9 49.2 54.9 40.9 75.4 64.5 86.6 33.4 40.8 51.7 75.2 56.9 59.1

Table 2: Average precision achieved using the bag-of-words features combined with subsets

of the semantic attribute features. See the caption to Figure 1 for the list of class numbers.
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d = 120 d = 200 d = 300 d = 400 d = 500

BoW 35.2 38.4 40.5 42.4 43.4

PCA 39.0 41.2 43.7 45.4 45.6

random 32.3 36.0 37.8 39.5 40.1

Table 3: Mean average precision achieved on the PASCAL VOC challenge 2007 data [1]

by low-dimensional bag-of-words features, principal component analysis dimensionality re-

duction of high-dimensional features, and random low-dimensional projections, according

to feature dimensionality d.

Table 2 shows the average precision achieved on each class when subsets of the semantic

attribute features are used in combination with the bag-of-words features. A weighted sum

was used to combine the outputs of classifiers trained for the groups of semantic attribute

features and for the bag-of-words features. Every combination performs better than using

the bag-of-word features alone, and worse than including all the semantic attribute features,

showing that all the groups of attributes provide useful information for object classification.

The least benefit is given by the colour attributes, while the most benefit comes from the

scene attributes.

4.3 Semantic attributes and dimensionality reduction

Since our semantic attribute features are obtained from bag-of-words features by linear

SVMs, they can be viewed as a dimensionality reduction method. Table 3 and Figure 6

show the performance achieved on the PASCAL VOC 2007 data when three other dimen-

sionality reduction methods are used to produce image descriptors of varying dimensionality

from the original bag-of-words features. The first method simply varies the number of vi-

sual words produced when the low-level features are quantised by k-means clustering, the

second method uses principal component analysis to project the larger bag-of-words feature

set used previously into a lower-dimensional space, while the third method selects random

directions in the high-dimensional space and projects onto those (we report the average per-

formance from 10 runs with different sets of random directions). In each case a linear SVM

is learnt in the low-dimensional space. The mean average precisions achieved using these

features are much lower than the 54.3% from the SVM using semantic attribute features.

The chi-squared kernel which was used with the histograms of semantic attribute features,

cannot be used with these alternative feature sets, which are not histograms and may include

negative values; using a linear kernel with the 115-dimensional semantic attribute features

gives a lower mean average precision of 46.8%, but this is still better than the results with

these alternative reduced-dimensionality features.

5 Discussion

In this paper we showed that semantic attribute features can be used to improve object clas-

sification performance. We trained classifiers from representative images for 60 semantic

attributes, and used the classifier output to create a new low-dimensional image representa-

tion. Tested on a standard data set, the semantic attribute features by themselves achieved an

object classification performance close to that of high-dimensional bag-of-words features,

and combining the two feature types improved the performance on every class.
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Figure 6: Mean average precision achieved on the PASCAL VOC challenge 2007 data [1]

by low-dimensional bag-of-words features, principal component analysis dimensionality re-

duction of high-dimensional features, and random low-dimensional projections, according

to feature dimensionality. The semantic attribute features have 115 dimensions.

We obtained the semantic attribute predictions from the high-dimensional bag-of-words

features using linear SVMs. This linear projection may not be optimal, and we expect to

be able to enhance the accuracy of the individual semantic attribute predictions by using

alternative classifier types.

Experiments with ordinary bag-of-words features have shown increased performance

by using a spatial pyramid to partition the image into increasingly fine regions, computing

histograms for each region at each level of the pyramid, and concatenating all the pyramids

to provide the final image representation [7]. It is likely that spatial pyramid matching could

also enhance the performance of our semantic attribute features, at the cost of an increased

feature dimensionality. Our semantic attribute predictions could also be used for object

localisation. Even in cases where none of the learnt attributes apply to an object of interest,

they could help recognise its context, and also help separate the object from background

clutter.

We collected images for each attribute from the results of a web search, then manually

rejected irrelevant images. It would also be possible to train classifiers directly from the

noisy data, without any manual annotation, at the cost of degrading the classifier accuracy.

This approach would become more compelling if larger numbers of attributes are used in

future work.

This research was funded by the ANR-R2I and OSEO-QUAERO projects.
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