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Improving Object Detection Performance Using

Scene Contextual Constraints
Faisal Alamri, Nicolas Pugeault, Member, IEEE,

(Invited Paper)

Abstract—Contextual information, such as the co-occurrence of
objects and the spatial and relative size among objects, provides
rich and complex information about digital scenes. It also plays
an important role in improving object detection and determining
out-of-context objects. In this work, we present contextual models
that leverage contextual information (16 contextual relationships
are applied in this paper) to enhance the performance of two
of the state-of-the-art object detectors (i.e., Faster RCNN and
YOLO), which are applied as a post-processing process for most
of the existing detectors, especially for refining the confidences
and associated categorical labels, without refining bounding
boxes. We experimentally demonstrate that our models lead to
enhancement in detection performance using the most common
dataset used in this field (MSCOCO), where in some experiments
PASCAL2012 is also used. We also show that iterating the process
of applying our contextual models also enhances the detection
performance further.

Index Terms—Neural network, object detection, contextual
information, re-scoring, relabelling, out-of-context, semantic, spa-
tial, scale.

I. INTRODUCTION

HOW do we interpret visual scenes? A mere glance at

an image is usually sufficient for us to recognise what

objects compose the scene, and to understand its contents. This

task remains challenging for computer vision systems, in spite

of rapid improvements in the field, lead in particular by the

development of deep learning approaches [47].

Object detection aims to determine whether an object for

some predefined classes is present in some given images,

where it outputs both the what and the where objects are in

images. It is one of the most fundamental problems in the field

of computer vision. Object detection has been used in a variety

of applications such as sectary, robot vision, autonomous

driving and scene captioning [30]. Object detection can be

grouped into two categories, upon the aim of each type. First,

detection for single object, which aims to detect an instance of

an specific object class. However, the second type, known as

multiple object detection, which seems to be more complex,

aims to detect multiple objects of the pre-defined classes [30].

Figure 1 shows the differences between both types. Figure 1a

shows different instances of the same object category, whereas

in Figure 1b, it is shown different categories with two instances

for each category, which is meant to present the latter detection

type, as it is the main focus of the paper.
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(a) Single Object Detection (b) Object Category Detection

Fig. 1: Types of Object Detection

Fig. 2: Importance of Contextual Information

Contextual information plays an important role in visual

recognition for both human and computer vision systems.

Figure 2a shows an object isolated from its context, which

seems hard to be identified not only by systems but even by

some humans, whereas when presented in context (Figure 2b),

it can be classified with less effort (i.e., it is a cup). This

example illustrates the fact that contextual information carries

rich information about visual scenes. In terms of object recog-

nition, it could be defined as cues captured from a scene that

presents knowledge about objects locations, size and object-

to-object relationships. Due to the importance of contextual

information, it has been widely studied [6, 12, 18, 32, 37, 48].

In this paper, which is en extended version of our conference

paper [1], we are proposing two models that leverage contex-

tual information for re-scoring confidences in object detections

and relabeling them when appropriate. Those models are

applied as a post-processing process for most of the state-of-

the-art detectors, for refining detected objects confidences, but

without refining bounding boxes. The models obtain higher

mAP, F1 and AUC scores compared to two of the state-of-

the-art detectors (i.e., Faster RCNN and YOLO). Some key

features of the proposed models are:

1) They improve the detection performance of the state-of-

the-art object detectors due to the inclusion of semantic,

spatial and scale contexts, which are observed to be

effective in this regards.
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2

Fig. 3: Typical CNN Structure

2) They can be integrated as post-processing to most

CNNs-based object recognition frameworks, whether de-

tectors are one-stage or two-stages. This is in contrast to

[41], which is specific to their end-to-end pipeline. See

Section II for more details about CNNs-based detectors.

3) Rather than only evaluating whether the detected regions

are correctly detected, eg, as in [7, 12], the proposed

models also re-score and relabel detections.

4) They are defined from 16 contextual relationships, as

presented in Section III, unlike other models that use a

smaller number of relationships such as [3, 8, 12].

5) Compared to [13, 25, 37], which mainly re-score objects

probabilities, the proposed relabeling model steps further

to relabel objects and re-score them based on their

relationships with other detected objects.

This paper is organised as follows: First, we review some

of the state-of-the-art CNN-based detectors (Section II). The

16 contextual relationships proposed in this paper, including

the datasets and methods applied for the proposed models

are presented in Sections III and IV, respectively. Finally, the

rescoring and relabelling models are illustrated in Sections

V and VI, including some results and comparisons with the

baseline detectors (i.e., Faster RCNN and YOLO).

II. RELATED WORK

A. Object Detection

Interestingly, a leap in the performance of object detection

and recognition methods took place from 2012, when Convo-

lutional Neural Networks (CNNs) were reintroduced. Ross et

al.[21] claim that ”progress has been slow during 2010-2012,

with small gains obtained by building ensemble systems and

employing minor variants of successful methods”. CNNs were

first proposed in 1998 [27], but they were not widely used

due to the limited improvements in computers and datasets.

However, since 2010, due to the emergence in computers

and datasets, CNNs have been the dominant in the computer

vision tasks and the state-of-the-art detectors [46]. Typical

CNNs consist of some main layers; input layer, convolutional

layer, pooling layer, fully-connect layer and an output layer, as

illustrated in Figure 3. In 2012, Alex Krishevsky proposed a

CNN architecture interspersing five convolutional layers with

max-pooling layers, followed by three fully-connected layers

[26]. Noticeable improvement is seen in the field of computer

vision since then, hence, CNNs have been widely used and

enhanced.

CNNs-based detectors can be categorized into two main

groups; 1) Two-Stage Detection and 2) One-Stage Detection

[30]. The former is known as Region Based CNNs, which

includes a prepossessing step where features are extracted

and then passed into the pipeline. The latter is called unified

Fig. 4: FasterRCNN Structure, adopted from [42]

pipeline. As its name suggests, this group of CNNs has only

one stage where feature extraction, predication of classes are

happening. Below, a brief about these groups is presented.

Two-stage detectors process detection in a ”coarse-to-fine”

manner, meaning that they process images in low-resolution

then gradually increasing the resolution and propagating the

results to the ’finer’ image. Detection process occurs in two

steps: first, the model proposes a number of regions of interest

(RoIs) using some algorithms (e.g. selective search [43]),

where those regions are then feed into the CNNs networks.

Second, classifiers are applied to provide boundary boxes and

probabilities for each detected objects. Some of this group

detectors are RCNN [21], Fast RCNN [20], Faster RCNN[42],

RFCN [15] and Mask RCNN [23]

• Faster RCNN:

Faster RCNN, proposed by Shaoqing et al.[42], uses a

network that can be trained to take features and inputted into

an ROI pooling layer, hence, it feeds the entire image into

the CNN, where regions are extracted and then fed to other

layers (ROI pooling, fully connected layers). An illustration of

Faster RCNN structure is presented in Figure 4. Faster RCNN

has been implemented in a variety of articles studying the

importance of contextual information (e.g. [24, 25]), and it is

still one of the state-of-the-art detection methods, and due to

some of its advantages (e.g. speed, accuracy), it is also used

as the baseline detector in this paper.

One-stage detectors as also known as unified pipeline

detectors. This group of CNNs has only one stage where

feature extraction, predication of classes are happening. YOLO

(You Look Only Once) [41], SSD [31] and RetinaNet [29] are

examples of this group of detection.

• YOLO:

YOLO was proposed by [41] in 2015. It is considered as

the first detector of this detection group. It processes image

by dividing it into regions then predicts bounding boxes

and probabilities for each region simultaneously, where those

processes are taking place in one single network. YOLO is

fast, and thus it can be used as real-time detector. It was tested

on VOC07 obtaining mAP as 52.7%. Refer to Figure 5 for an

illustration presenting YOLOv1 architecture.

For a comparison and discussion of those two groups of

detection, we refer the reader to [46, 47].
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3

Fig. 5: YOLO Structure, adopted from [41]

B. Contextual Information

Contextual information is defined as “a statistical property

of the world we live in and provides critical information to

help us solve perceptual inference tasks faster and more ac-

curately” [37]. We add that contextual information is any data

obtained from an object’s own statistical property and/or from

its vicinity including intra-class and inter-class details. Such

a definition is claimed due to the information we observed

while studying the importance of context in digital images.

It is said that contextual information is a tool used more

with multiple objects, so that relationships among objects can

be deeply understood [16]. Roozbeh et al.[37] also state that

in digital images, objects with clear appearance (e.g. large

objects) are easy to detect, whereas some small objects are

harder. Lubor et al.[39] also claim that contextual information,

therefore, can be a solution here as it provides stronger cues in

detecting small objects due to the context where those objects

are present. Hence, contextual information is described as “a

natural way to improve detection” [3].

Contextual information in the field of object detection can

help to understand and explore object vicinity (i.e., scene-level

context) as applied in [4, 45], and also provides object-object

relationships (i.e., object-level context) as in [9, 40]. Moreover,

Contextual information has been also studied in different areas,

such as object localization [12], image segmentation [22],

out-of-context detection [11], image annotation [34], scene

modeling [6], image understanding [14] and cognitive robotics

[48].

• Types of Contextual Information:

Context can be classified upon the sources of information

extracted from images. Biederman et al.[5] state that there

are five categories of object-environment dependencies, which

are categorized as “(i) interposition objects interrupt their

background, (ii) support: objects often rest on surfaces, (iii)

probability: objects tend to be found in some environments but

not others, (iv) position: given an object in a scene, it is often

found in some positions but not others, and (v) familiar size:

objects have a limited set of sizes relative to other objects”.

Galleguillos et al.[18] grouped those relationships into three

main categories, which are: (i) Semantic (Probability), (ii)

Spatial (interposition, support and position) and (iii) Scale

(familiar size).

III. PROPOSED CONTEXTUAL RELATIONSHIPS

In this work, we are following the division of contextual

information types proposed by [18]. However, we propose

sixteen contextual relationships, as discussed below.

A. Category One: Semantic Context

Semantic context, known also as the co-occurrence statis-

tics, records whether objects classes statistically tend to occur

in the same scenes. Semantic context is defined as “the

likelihood of an object to be found [presented] in some scenes

but not others” [18]. Such contextual information encodes

co-occurrence statistics among objects, thus we can have a

clear picture of objects that are more likely to appearing

in the same images. This can, therefore, help detectors to

refine confidences. Semantic relationship has been widely

studied and implemented in a variety of studies, showing an

improvement in detection performance such as in [36, 40].

Andrew et al.[40] state that semantic contextual information

is essential, as it helps minimising the ambiguity in objects’

visual appearance, as it was applied as a post-processing tool

with local detectors showing that semantic “greatly improves

categorization accuracy”.

In this work, semantic relationship is the first relationship

applied. We analysed the training dataset isolating images

with single object (e.g., images with more than one objects

are used). A matrix, as shown in Figure 6 is built from

the MSCOCO2017 training images following the information

presented in the annotations. If object X is presented with

object Y, then co-occurrence among objects is positive. If both

objects are within the same category (i.e., person) such as a

man and a child, co-occurrence will be considered positive as

well. This information is used to obtain an overall view of the

co-occurrence statistical in MSCOCO dataset, which helps to

build the proposed models, as presented in Sections IV and

VI.

B. Category Two: Spatial Context

Spatial context is defined as “the likelihood of finding an

object in some position and not others with respect to other

objects in the scene” [18]. Spatial information provides deep

information about scenes more than semantic as it concerns

not only the co-occurrence (i.e., in an implicitly manner), but

also the location and relationships among objects (e.g., a car

is above the road).

Although semantic relationship provides a strong cue for

disambiguating objects, adding more relations is expected to

improve detection even further. Spatial relationships have also

been examined and studied in several researches. According

to Moshe and Shimon [2], who examined the consequences

of pairwise spatial relations between objects, suggesting that

encoding proper spatial relations among objects may decrease

error rates in recognizing objects. Many studies have included

spatial context concerning only above, below, left and right

relationships such as [37]. Others also added other types of

spatial features such as around and inside [19]. Lu et al.[33],

furthermore, add more relations such as taller than, pushing,
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Fig. 6: Co-occurrence Matrix

carrying. Choi et al.[10] propose a contextual relationships

model that is developed to leverage co-occurrences and spatial

relationships among objects, using a tree graphical model,

which is built to encode the dependencies among objects,

as parent-child pairwise relationships. The output of this

developed model is then combined with the outputs of the

local detectors and the global image features. As reported,

applying this model increases the performance of detection.

In this work, as we believe spatial information is a vital cue

in improving detection, we propose four novel sub-groups of

spatial information among the reference object and all other

detected object. Note that the reference object is chosen by

the model to compute its relationships with all other detected

objects, where the same process is repeated for all detected

objects. Upon the best of our knowledge, none of those

relationships have been observed in the literature review.

• Boundary Spatial Relationships:

Boundary relationships consists of four relationships (i.e.,

above, below, left, right). They occur when the boundary of

the reference object is not attached or overlapped with other

objects. In other words, this contextual constrains represents

relationships between objects when there is a gap between ob-

jects’ boundaries—see Table I for the mathematical equations.

• Central Spatial Relationships:

Similarly, the central spatial relationship calculate relationship

upon the centers of the reference object and other objects. For

example, central above relationship occurs when the center and

the top boundary of the reference object is above the center

and the top boundary of the other object, respectively. It can

be said that this relationship may include several relationships

such as overlapping and size. We say yes, and this is what

makes it unique as it focuses on the centers of objects but

also encodes other relationships that are implicitly counted—

see Table I for the mathematical equations used for group of

relationships.

• Distance Relationships:

Distance relationship between objects is expected to enrich the

context and provide deep knowledge about objects. Distance

relationships consist of two types, which are near and far. The

distance is measured to be near/far upon the diagonal of the

TABLE I: Spatial Relationships Mathematical Equations.

Boundary Relations

Above (Refy +Refh) < Objy
Below Refy > (Objy +Objh)
Left (Refx +Refw) < Objx
Right Refx > (Objx +Objw)

Central Relations

Above
((Refy +Refh)× 0.5) < ((Objy +Objh)× 0.5)

where Refy < Objy

Below
((Refy +Refh)× 0.5) > ((Objy +Objh)× 0.5)

where (Refy +Refh) > (Objy +Objh)

Left
((Refx +Refw)× 0.5) < ((Objx +Objw)× 0.5)

where Refx < Objx

Right
((Refx +Refw)× 0.5) > ((Objx +Objw)× 0.5)

where (Refx +Refw) > (Objx +Objw)
Distance

Near (Refx − (Objx +Objw)) <
p

(Refw)2 + (Refh)2)

Far (Refx − (Objx +Objw)) >
p

(Refw)2 + (Refh)2)
Overlapping

Yes Overlapping > 0
No Overlapping < 0

reference object, as in Table I. If the boundary of X object is

far by a distance that is larger than diagonal of the reference

object, relationship is considered far, and vice versa.

• Overlapping Relationship:

Overlapping relationship, which is the fifth sup-group of

spatial relationships, measures whether the reference object is

overlapping with other objects or not, thus, it consists of two

types (positive and negative overlapping). Overlapping ratio,

as in Equation 1, is considered positive when the Intersection

over Union (IoU) value is 0.5 or above.

IoU =
area(Ref

T
obj)

area(Ref
S
obj)

(1)

C. Category Three: Scale Context

Scale contextual information concerns the size of the refer-

ence object with respect to other objects in the scene. It has

been studied in many researches such as [3, 11, 12, 18, 37].

Those proposed scale relationships are divided into three

groups, which are larger, smaller and equal. Refer to Table
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TABLE II: Scale Relationships Mathematical Equations.

Scale Context

Larger
p

(Refw)2 + (Refh)2) >
p

(Objw)2 + (Objh)2)

Smaller
p

(Refw)2 + (Refh)2) <
p

(Objw)2 + (Objh)2)

Equal
p

(Refw)2 + (Refh)2) =
p

(Objw)2 + (Objh)2)

II for equations used to measure scale contextual information

among objects. Measurement in this case are counted only

upon the diagonals of objects. If the diagonal of reference

object is larger than the diagonal of X object, relationship will

be considered larger. We propose three scale relationships as

we expect that the more we study objects context, the more

details and knowledge about the scene we obtain.

IV. PROPOSED CONTEXTUAL MODELS METHOD

Contextual information is an effective property that im-

proves object detection performance. In this section, we are

showing how the proposed re-scoring model, which exploit

semantic, spatial and scale contexts, improves the detection ca-

pacity and analysis various properties of the contextual object

detection problem, as experimented on MSCOCO datasets.

Nowadays, as mentioned earlier, CNNs-based detectors

have been widely used in the field of object detection, as

they are performing as the-state-of-art detectors. However,

contextual constrains are still not fully employed by such

detectors. They mainly depend on regions of interests, which

do not include contextual information.

There are some models proposed to address such an issue

by incorporating contextual information into the detection

processes by adding further layers into their CNN networks

such as [4, 28]. However, as claimed by [3], those models

even though seem to improve the detection performance by

including context, the contextual knowledge included are “un-

clear”. They are still unable to ”reason about object relations

in a manner invariant to viewpoint”, where they require “all

meaningful relations between all groups of objects [to be

observed] from all relevant viewpoints” in the training data.

Therefore, it seems a need to develop a model that can leverage

contextual information, where contextual relationships among

objects are clearly presented, as we are proposing in this paper.

In the remainder of this section, we detail our rescoring

model and analyse its performance. As shown in Figure 7, the

model, in the training stage, first takes images from the training

dataset, then passes it into the baseline detector. Detector, then,

produces the prediction including the bounding boxing and

objects labels, which are then encoded and inputted into the

classifiers. Encoding features is explained Section IV-A. In

addition, in the testing stage, similar steps are followed, but

rather than taking an image from training, it is taken from the

validation dataset, where the trained classifier applied produces

the new scores as the output of the model.

A. Encoding Classifier Inputted Features

Features inputted into the classifiers in both training and

testing stages are encoded as follows. Once the detector

Input Image

Run Detector

Contextual
Information
Extraction 

Train Contextual
Model

Input Image

Run Detector

Contextual
Information
Extraction 

New Confidence
(scores)

Apply Trained
Contextual Model

TestingTraining

Fig. 7: Procedure of the Proposed Re-scoring Model

TABLE III: Length of Feature Vector Per Relation.

Relationship Number of features per relation Length of the feature vector

Co-occurrence 1 (either co-occur or not) 81
Overlapping 2 (Yes, No) 161

Scale 3 (Large, Small, Equal) 241
Spatial 1 4 (above, Below, Left, Right) 321
Spatial 2 4 (above, Below, Left, Right) 321
Near Far 2 (Near, Far) 161

All Relations Sum of all above 1281

outputs the bounding boxing and object confidence scores, the

desired relationship(s) is/are calculated following the mathe-

matical equations presented in Tables I and II. The length of

those features varies upon the number of relationships used.

In other words, the length of the feature vector inputted into

the classifiers is the confidence value of the reference object

+ (the length of relationships × the number of the objects

as in MSCOCO annotations (i.e., 80)), as presented in Table

III. For example, the length of feature vector in terms of the

co-occurrence relationship is 1 + (1 × 80) = 81, if there is

an image containing two objects only, the feature vector is

still 81, as only positions of detected objects are encoded and

others are zeros.

B. Classifier

For the experiments in this paper, we use a trainscg

(scaled conjugate gradient back-propagation) Neural Network

approach, as implemented in MATLAB [35]. Scaled conju-

gate gradient (SCG), a supervised learning algorithm, is a

network training function used to update weight and bias

value according to the scaled conjugate gradient method [38].

trainscg was implemented as explained in [35]. The standard

network consists of a two-layer feed-forward network, with a

sigmoid transfer function in the hidden layer, and a softmax

transfer function in the output layer. Several numbers of hidden

neurons were tested (i.e., 25, 50, 80, 100, 150, 200, 500, 1,000,

2,000, 5,000), and classifiers with 1,000 Hidden Neurons

(HNs) performed the best, as presented in Figure 8. Therefore,

1,000 (HNs) classifier is chosen to be used in all experiments

presented in this paper, which is used to re-score detected

objects confidence and relabel them.
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Fig. 8: Implementation of the classifier with different numbers

of Hidden Neurons on MSCOCO2017

TABLE IV: AUC Scores: All-Relationship Vs. Faster RCNN.

Threshold Value Baseline detector All-relationships model

0.7 0.76472 0.77057

0.6 0.77911 0.78562

0.5 0.79303 0.80423

V. RESCORING

In this section, several experiments have been attempted to

examine the impact of the proposed re-scoring model on the

Faster RCNN detector using MSCOCO dataset.

A. Contextual Relations Analysis

In this experiment, we examine each relationship and a

combination of relationships to investigate their impacts on

the performance of the detection, and how they can re-score

detected objects’ confidences based on context. As presented

in Table VII, AUC scores for the relationships and the baseline

detectors are presented, where most relationships models over-

perform the detector, whereas, we can also see that detector

shows better scores in some cases (e.g., Boundary Relations)

which could be due to the high variations between the con-

textual relationships among the detected objects. Standard

Deviation (STD) values for each relationship is also presented

as shown between brackets to show the difference in scores

where five trials were used for each relationship.

B. Combined model

As shown in Section V-A, the proposed re-scoring models

obtain higher AUC scores than the baseline detector in the

majority of the cases. We, therefore, combined all relationships

into one model. Detector threshold values are set as [0.5,

0.6, 0.7] in this experiment, because we assume applying

different threshold values may enable the detector, in some

cases, to detect more objects. Table IV shows a comparison in

AUC scores between our approach (all-relationships model)

and Faster RCNN detector. AUC scores of our contextual

model is higher than the detector in all three cases. Figure

9, furthermore, shows some outputs for our model to illustrate

the performance compared with the detector on how objects

confidences are re-rated based on their vicinity.

Noticeably our model drops the the scores of the dining

table) from 0.7143 to 0.2166, which is incorrectly detected.

TABLE V: AUC Scores: Re-scoring Model Vs. YOLOv1

Baseline detector (YOLOv1) All-relationships model

0.66977 0.67894

TABLE VI: AUC Scores: Re-scoring Model Vs Faster RCNN

on PASCAL Dataset

Baseline detector (Faster RCNN) All-relationships model

0.78432 0.79369

We assume dining table often appears in different spatial

and scale configuration with regards to other detected objects.

YOLOv1 is also examined, as it is a detector that implicitly

includes contextual information into its end-to-end detection

pipeline. The proposed re-scoring model performs better than

this baseline detector using MSCOCO2017 dataset, as pre-

sented in Table V, where only one threshold value (i.e., value

is 0.7) is used.

Furthermore, we also examined our re-scoring model on

PASCAL2012 dataset [17] where the baseline detector is

Faster RCNN (threshold value is 0.7). As presented in Table

VI, our model also performs better than Faster RCNN on this

dataset.

C. Out-Of-Context

As preset ed earlier, all-relationship model (i.e., re-scoring

model) shows good results, and outperforms the performances

of Faster RCNN on both MSCOCO2017 and PASCAL2012,

and YOLOv1 on MSOCOC2017. Therefore, we deeply studied

the model to trying to examine if the performance would

be even higher by iterating the process of re-scoring, where

this experiment is only run on Faster RCNN as the baseline

detector. Yes, the performance has increased from 0.77057 to

0.80702 (in the 12th iteration), which is a great step in re-

scoring the detection outputs, as presented in Figure 10, where

TABLE VII: AUC Scores and STD: Different Relationships

One Contextual Relationship Model

Relation AUC Scores (STD)

Co-occurrence 0.766 (0.0015)

Boundary 0.758 (0.0016)

Central 0.758 (0.0011)

Overlapping 0.773 (0.0017)

Near/Far 0.766 (0.0010)

Scale 0.766 (0.0012)

Detector 0.764
Two Contextual Relationships Model

Relations Boundary Central Overlapping Near/Far Scale

Co-occurrence 0.763 (0.0010) 0.764 (0.0015) 0.772 (0.0012) 0.767 (0.0017) 0.758 (0.0017)
Boundary - 0.756 (0.0005) 0.771 (0.0011) 0.767 (0.0018) 0.768 (0.0013)
Central 0.756 (0.0005) - 0.767 (0.0010) 0.752 (0.0010) 0.766 (0.0017)

Three Contextual Relationships Model

Relations AUC Scores (STD)

Co-occurrence +Boundary+Scale 0.768 (0.0018)

Co-occurrence +Central+Scale 0.765 (0.0015)

Co-occurrence +Boundary+Central 0.759 (0.0019)

Boundary+Central+Scale 0.768 (0.0021)

Four Contextual Relationships Model

Relations AUC Scores (STD)

Co-occurrence +Boundary+Scale+Overlapping 0.771 (0.0007)

Co-occurrence +Central+Scale+Overlapping 0.767 (0.0017)
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Original image Baseline Detector Our Approach

Fig. 9: All-Relationships model vs. Detector outputs: green boxes represent correct detection, whereas red are incorrect (not

in the ground-truth)
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Fig. 10: Running the Re-scoring Model in Iterations

the AUC scores increase from the 1st run to 12th iteration run.

This iterated process is done as follows: First, we apply the

rescoring model (i.e., all-relationship model) to the detector

outputs. Scores obtained from the rescoring model are then

fed again to the rescoring model for 12 times, where the final

outputs (i.e., the 12th run outputs) are considered as the iterated

model outputs.

Furthermore, Figure 11 shows results of running the model

in 12th iterations, where the detector output is also shown. As

presented, the scores change in the 1st run, but even improved

in the 12th iteration run. Zebra objects scores have increased,

where one instance reaches 1, which is likely to occur due to

the context presented and the other detected objects present.

However, elephant class score was dropped considerably as

in the 1st run, and even more in the 12th iteration, where this

object was detected incorrectly.

Due to the success obtained during running the model in

iterations, examining whether this model can be an effective

tool in re-rating out-of-context objects. The answer, as shown

in Figure 12, is yes. In the first row, we can see how the model

decreases the confidences of cat due to its location and scale.

However, it can be seen how cars and persons confidences

increased apart from cars that overlap with the cat (e.g. the car

next to the cat head), which were lower compared to other cars.

We assume this is because the detector is 2D based and having

a car in such location compared with the cat is unlikely.1 This

is a great result that the model shows, which can be said that

this model is a good tool for out-of-context objects. In the

1Image is taken from Instagram with permission from account @fransditaa

second row, the model reduces the confidence of elephant,

which we assume is due to the present of couch. This may

raise a question, why only the elephant score was reduced,

and not the couch, as person usually appears with both objects.

We suggest that the answer is that due to the location and the

size of person compared with the couch, the elephant is seen

out-of-context in this scene, and this could be why the model

reduces its confidence.2

VI. RE-LABELLING

In this experiment, we researched further on how to im-

prove the performance, and upon the success of the proposed

contextual re-scoring model (Section V), we decided to move

one step further to not only rescore objects confidences but

also to re-label them upon their contextual vicinity.

A. Relabelling Model

In this experiment, Faster RCNN is used as the baseline de-

tector and examined on MSCOCO2017. This is implemented

as follows. First, we set a minimum threshold value for our

contextual re-rating model as 0.4. Second, any detected objects

re-scored by the re-scoring model with less than the threshold

are passed into our relabelling model. Third, the top five

possibilities obtained from the detector including the reference

objects are passed into our re-scoring model. If any of the

possibilities are re-scored with a higher value than threshold,

then the object(s) with maximum value is considered as the

new labelled object, if none is higher, then the reference object

will be removed and considered as background. Fourth, after

new labels are determined, all objects including the new labels

are passed again into our re-scoring model, to obtain the new

confidences.

The proposed relabelling model is illustrated in Figure 13,

where the process from inputting the images until outputted

are shown. Note that all steps in the red squared are the core

processes involved in this approach.

Furthermore, re-labelling model, as presented in Table VIII,

obtains higher AUC scores than the baseline detector and the

re-scoring model. This is because the proposed re-labelling

model is not only re-rating objects confidences, but also

suggesting new objects labels and removing objects with

lower confidences than the set threshold value, based on the

2Image is taken from SUN dataset: Out-of-context images [44].
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Baseline Detector Re-scoring Model (1st) Re-scoring Model (12th) Scores Change

2 4 6 8 10 12

Detector Vs. The Rescoring Model in Iterations

0

0.2

0.4

0.6

0.8

1

O
b
je

c
ts

 C
o
n
fi
d
e
n
c
e
s

Zebra 1

Zebra 2

Zebra 3

Elephant

1 2 3 4 5 6 7 8 9 10 11 12

Fig. 11: Results: Running the re-scoring model in Iterations
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Fig. 12: Results: Out-of-Context: Yellow boxes represent out-

of-context objects, blue boxes represent other objects regard-

less whether they are correctly detected or not.
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Fig. 13: Relabelling Approach

contextual information encoded from the scene. In addition,

we also use average precision (AP) and its mean (mAP), where

IoU threshold is 0.5, and F1 score as other evaluation metrics

to show the effectiveness of this proposed re-labelling model.

Results of using such evaluation metrics are presented in Table

IX. The relabelling model achieves a better performance than

the baseline detector in terms of improving both mean average

precision (mAP) and Fl.

Table 14 shows some results of the proposed relabelling

TABLE VIII: AUC Scores: Faster RCNN VS. Re-Scoring and

Relabelling.

Threshold Value Detector Re-Scoring Relabelling

0.7 0.76472 0.77057 0.78278

0.6 0.77911 0.78562 0.79446

0.5 0.79303 0.80423 0.81084

TABLE IX: AP and F1 scores in percentages [%] for the

baseline detector and our proposed re-labelling model.

Threshold Value Baseline Detector Re-labelling Model

mAP0.5 F1 mAP0.5 F1

0.7 62.82 57.34 65.50 58.95

0.6 57.55 52.77 64.14 56.35

0.5 51.38 48.68 63.14 55.02

model outputs. Starting from the first row, where threshold

value for the detector is 0.6. We can see how the relabelling

model corrects labelling chair to bench. In details, the detector

detects the two cats correctly which confidences of 0.9955 and

0.9964, but incorrectly detects the bench and as a chair with

a confidence of 0.6294. The re-scoring model is run, which

decreases the chair scores to 0.0816, making it ready for the

relabelling model to figure out if there are another object that

is more likely to fit. The relabelling model is run to improve

the detection, which then suggests the bench with confidence

of 0.8485.

Detector with threshold of 0.7, as the main baseline detector

of all experiments in this work, is run as well. As seen

in the second row, where the model correctly relabels three

incorrectly detected objects (i.e., 2 carrots and a book). A

knife was incorrectly detected as a book, where the re-scoring

model re-rates as 0.2149, then the relabelling model relabels

as a knife with confidence of 0.7895. Similarly, in the third

row. The relabelling model removes the incorrectly detected

objects (i.e., traffic light), where it also increases the confi-

dences of the correct detected objects. We believe this great

improvement is achieved by the model due to the spatial and

scale relationships, particularly the overlapping relationships

among the detected objects. In other words, traffic lights are

unlikely to be smaller than person and overlapped in such a

way. Because the detector did not suggest a better fitting for

such objects in such location, the model suggests relabelling

as background, which results to correct detection.
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TABLE X: AUC scores for some MSCOCO object classes:

Faster RCNN and Re-Scoring and Relabelling Models.

Class ID Class Label Detector Re-Scoring Relabelling

1 Person 0.84345 0.84646 0.84568
2 Bicycle 0.76073 0.76984 0.78006

10 Traffic light 0.78979 0.78690 0.79083

18 Horse 0.92223 0.89649 0.88535
: : : : :

34 Kite 0.73866 0.76852 0.78292

: : : : :
43 Fork 0.66847 0.79619 0.81545

44 Knife 0.69595 0.59494 0.56944
: : : : :

72 Sink 0.76167 0.78766 0.79756

78 Teddy bear 0.80049 0.78015 0.77897

Mean - 0.76472 0.77057 0.78278

It is usually said that perfection is unattainable, which is the

case in applying to this relabelling model. Yes, the relabelling

model still makes mistakes. As illustrated in the last row, we

can see that the relabelling model suggests a kite instead of

surfboard, making this incorrect detection, which also reduces

all objects scores including the correctly detected objects.

Furthermore, due to the high number of object classes in

MSCOCO, only a few objects AUC scores are presented for

a comparison between baseline detector, re-scoring model and

re-labelling model as in Table X, where detector threshold

value is 0.7.

B. Iterated Relabelling Model

Upon the success that the relabelling model shows (Section

VI-A), it is expected to obtain a much higher performance

when applying the relabelling model on the top of the iterated

rescoring model due to the great performance it shows (V-C),

compared to the re-scoring model with no iteration (V-B).

As presented in Figure 10, the re-scoring model performance

increases when iterated, until the 12th iteration, due to this

great performance, applying the relabelling on the 12th iterated

re-scoring model, named Iterated Relabelling Model (IRM) is

expected to perform greater than when applied on the plain

re-scoring model. Table XI shows the AUC scores comparing

the performance of the baseline detector (Faster RCNN) vs.

the iterated re-labelling model. It can be seen that the IRM

shows a very great increased performance compared to the

detector, which is expected, as it corrects labels and changes

object confidences.

In addition, as the IRM has corrected object labels, it

seems essential to present the F1 and mAP0.5 and mAP

(IoU=[0.5:0.05:0.95]) scores. Table XII shown the F1 and

mAP scores in percentage for the baseline detector, relabelling

model and iterated relabelling model, where the threshold used

for the detector is 0.7. IRM obtains the highest scores with

an improvement of 8% is achieved compared to the detector

performance.

Figure 15 shows some results obtained when IRM is ap-

plied. As the comparison in this figure is intended only to

compare the outputs of the detector (i.e., Faster RCNN) and

IRM, only their outputs are illustrated. The results obtained

from Faster RCNN and IRM are shown in the left and right

TABLE XI: A comparison between 10 MSCOCO object

classes AUC scores for Faster RCNN (threshold is 0.7) and

the iterated Relabelling Model.

Class ID Class Label Faster RCNN IRM

1 Person 0.84345 0.99955

2 Bicycle 0.76073 0.99170

: : : :
5 Airplane 0.88300 1

21 Elephant 0.74058 0.96282

25 Backpack 0.61494 1

27 Handbag 0.67471 1
: : : :

37 Skateboard 0.84024 0.97560

44 Knife 0.69595 0.97878

45 Spoon 0.65490 0.57254
: : : :

67 Keyboard 0.75925 0.96692

Mean - 0.76472 0.95314

TABLE XII: AP and F1 scores in percentages [%] for the

baseline detector and our proposed re-labelling models.

Model mAP0.5 mAP F1

Baseline Detector 62.82 33.48 57.34

Re-labelling Model 65.50 34.07 58.95

Iterated Re-labelling Model 70.10 40.43 64.84

columns respectively. In the first row, three objects are detected

(i.e., a person, a sports ball, and a tennis rackets). All objects

were correctly detected with confidence higher than 0.94.

Once inputted into the IRM, the model even increases the

performance of each object with a minimum of 0.98. This can

be due to the high semantic, spatial and scale relationships.

They are likely to appear in real-world in such position and

scale. In the second row, 5 objects were detected, 3 are

correctly detected (i.e., a person and 2 elephants) and the

other 2 are incorrect (i.e., a person and a cow). Even though,

Faster RCNN detector detects all objects with high confidence

including the incorrect objects (i.e., minimum confidence is

0.74 for the cow), the IRM discards all incorrect objects and

label them as background, whereas, increases the correctly

detected objects confidence. This is due to the spatial and scale

relationships between person and elephant.

VII. CONCLUSION

In this paper, we present a machine learning approach

that can be integrated into most of object detection methods

as a post-processing step, to improve detection performance

and help to correct false detection based on the contextual

information encoded from the scene. It can also help in

lowering out-of-context objects. As illustrated, experimental

results show that our models obtain higher AUC scores (≈

1.8%) compared to the state-of-the-art baseline detectors, as

well as higher mAP and F1 scores. This paper shows that

semantic, spatial and scale relationships enhance the detection

performance, where correcting and relabeling false detection

can be also attempted. A deeper investigation of spatial and

scale contexts, and the interaction between objects appearances

and contextual features are to be explored and modelled as an
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Original image Baseline Detector Re-scoring Approach Re-labeling Approach

Fig. 14: Threshold 0.5: Relabeling and Re-scoring models outputs: Green, red and white boxes represent correct detection,

incorrect detection, and objects removed and re-labelled as background, respectively

Original Image Baseline Detector Iterated Relabelling Model

Fig. 15: Results: IRM Results vs Detector Outputs: Green, red and white boxes represent correct detection, incorrect detection,

and objects removed and re-labelled as background, respectively
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end-to-end pipeline including bounding boxes refinement is

preliminary and left as future work.
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