
Improving Offline Handwritten Text Recognition
with Hybrid HMM/ANN Models

Salvador España-Boquera, Maria Jose Castro-Bleda,

Jorge Gorbe-Moya, and Francisco Zamora-Martinez

Abstract—This paper proposes the use of hybrid Hidden Markov Model (HMM)/Artificial Neural Network (ANN) models for recognizing

unconstrained offline handwritten texts. The structural part of the optical models has been modeled with Markov chains, and a

Multilayer Perceptron is used to estimate the emission probabilities. This paper also presents new techniques to remove slope and

slant from handwritten text and to normalize the size of text images with supervised learning methods. Slope correction and size

normalization are achieved by classifying local extrema of text contours with Multilayer Perceptrons. Slant is also removed in a

nonuniform way by using Artificial Neural Networks. Experiments have been conducted on offline handwritten text lines from the IAM

database, and the recognition rates achieved, in comparison to the ones reported in the literature, are among the best for the same

task.

Index Terms—Handwriting recognition, offline handwriting, hybrid HMM/ANN, HMM, neural networks, multilayer perceptron, image

normalization.
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1 INTRODUCTION AND MOTIVATION

OFFLINE handwritten text recognition is one of the most
active areas of research in computer science and it is

inherently difficult because of the high variability of writing
styles. High recognition rates are achieved in character
recognition and isolated word recognition, but we are still
far from achieving high-performance recognition systems
for unconstrained offline handwritten texts [1], [2], [3], [4],
[5], [6], [7].

Automatic handwriting recognition systems normally
include several preprocessing steps to reduce variation in
the handwritten texts as much as possible and, at the same
time, to preserve information that is relevant for recogni-
tion. There is no general solution to preprocessing of offline
handwritten text lines, but it typically relies on slope and
slant correction and normalization of the size of the
characters. With the slope correction, the handwritten word
is horizontally rotated such that the lower baseline is
aligned to the horizontal axis of the image. Slant is the
clockwise angle between the vertical direction and the
direction of the vertical text strokes. Slant correction
transforms the word into an upright position. Ideally, the
removal of slope and slant results in a word image that is

independent of these factors. Finally, size normalization

tries to make the system invariant to the character size and

to reduce the empty background areas caused by the

ascenders and descenders of some letters.
This paper presents new techniques to remove the slope

and the slant from handwritten text lines and to normalize

the size of the text images by using Artificial Neural

Networks (ANNs). Local extrema from a text image

classified as belonging to the lower baseline by a Multilayer

Perceptron (MLP) are used to accurately estimate the slope

and the horizontal alignment. Slant is removed in a

nonuniform way by also using ANNs. Finally, another

MLP computes the reference lines of the slope and slant-

corrected text in order to normalize its size.
Hidden Markov Models (HMMs) have been widely

applied to offline handwriting recognition [8], [2], [4], [5],

[6], [9], [10], [11] after their success in automatic speech

recognition. The basic idea is that handwriting can be

interpreted as a left-to-right sequence of ink signals which is

analogous to the temporal sequence of acoustic signals in

speech. The motivation for the work on the hybrid HMM/

ANN models presented here originates from

. a critical analysis of the state-of-the-art in offline
handwritten text recognition [5], [10], [11],

. our earlier work on offline handwriting recognition
using conventional HMMs [12],

. our own and others’ experience in using hybrid
HMM/ANN models for automatic speech recogni-
tion [13], [14], [15], [16], [17] and for online hand-
writing recognition [18], [19], [20], [21], [22], [23],

. and previous works which used hybrid HMM/
ANN word models with remarkable success,
although they were limited to digit recognition or
small vocabulary tasks [24], [25], [26].
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Hybrid HMM/ANN models compute the emission
probabilities for the HMMs with a neural network instead
of the commonly used Gaussian mixtures. This work is the
first successful attempt, to the best of our knowledge, to use
hybrid HMM/ANN models in unconstrained offline hand-
written text recognition.

In many other works, artificial neural networks have
been extensively applied to classify characters as part of
isolated or continuous handwritten word recognizers [27],
[28], [29], [30], [31].

In our experiments with hybridHMM/ANNmodels, left-
to-right Markov chains have been used to model graphemes,
and a single neural network has been used to estimate the
emission probabilities. The estimates of the posterior
probabilities computed by the neural network are divided
by the prior state probabilities, resulting in scaled likelihoods
which are used as emission probabilities in the HMMs.

We have conducted experiments with the “large writer-
independent text line recognition task” of the IAM database
[32], [33] using our preprocessing and conventional HMMs
as optical models. This baseline experiment achieves
comparative performance with state-of-the-art systems
(38.8 percent of word error rate). Next, experiments with
our hybrid HMM/ANN system were performed and
excellent results were achieved improving our baseline by
a relative word error rate reduction of more than 42 percent
(from a word error rate of 38.8 percent to 22.4 percent).

Section 2 introduces our approach to handwritten text
preprocessing, showing illustrative examples. Section 3
describes the proposed hybrid HMM/ANN recognition
system. The experimental setup is detailed in Section 4 and
recognition results for the HMM and HMM/ANN systems
with the IAM line task are shown in Section 5. Analysis of
the experiments and comparison with other approaches are
presented in Section 6. Finally, conclusions are drawn in
Section 7.

2 PREPROCESSING AND FEATURE EXTRACTION

Handwritten image normalization from a scanned image
includes several steps, which usually begin with image
cleaning, page skew correction, and line detection [9]. A
database of skew-corrected lines has been used in all the
experiments [32]; thus page skew correction and line
detection are skipped in this work. With the handwritten
text line images, several preprocessing steps to reduce
variations in writing style are usually performed: slope and
slant removal and character size normalization. This paper

presents new techniques to remove the slope and the slant
from handwritten text lines, and to normalize the size of the
text images with ANNs. Table 1 outlines the key ideas of the
MLPs which are used for preprocessing. These MLPs are
described in more detail in Section 4.

2.1 Image Cleaning

Before any other preprocessing step, the text line scanned
image is first cleaned and enhanced. Neural networks have
been used in previous works for image restoration by
learning the appropriate filters from examples [31]. Simi-
larly, we have used a neural network filter to clean and
enhance the handwritten text images by estimating the gray
level of one pixel at a time [34]: AnMLP (from now on called
Enhancer-MLP) is fed with a square of pixels centered at the
pixel to be cleaned, and the output is the restored value of the
pixel. The entire image is cleaned by scanning all the pixels in
this way. A scheme of this process is illustrated in Fig. 1. A
real example of a cleaned image is shown in Fig. 2b.

2.2 Slope Removal

With the skew-corrected lines, most handwriting recogni-
tion systems require the detection of the different areas of
the cursive script: the main body area (area between the
upper baseline and the lower baseline), the ascenders, and
the descenders (see Fig. 3 for an example). These areas can
be detected by means of horizontal histogram projection
[35], [36], [37] or also by obtaining the upper and lower
contours of the image [38], [39]. Instead of relying on these
geometric heuristics, our approach consists of automati-
cally detecting a set of points from the image and
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TABLE 1
MLPs for Preprocessing

MLPs are used for regression (Enhancer-MLP) and for classification (Slope-MLP, Normalize-MLP, and Slant-MLP).

Fig. 1. Enhancer-MLP: An MLP to enhance and clean images. The

entire input image is cleaned by scanning it with the neural network.



classifying them by supervised machine learning techni-
ques [40], [12]. The points to be classified are local vertical
extrema of text contours which are used to determine the
reference lines: line of ascenders, upper baseline, lower
baseline, and line of descenders (see Fig. 3). These
reference lines provide an efficient way to perform slope
removal and size normalization.

In a first step, and once the text line image has been
cleaned, the local extrema are obtained. First, a vertical

contour of the image is extracted (see Fig. 2c). After that, the
contour points are grouped into lines following a proximity
criterion: Two pixels on adjacent columns are considered to
belong to the same line when the difference between their
vertical coordinates is less than 3. Finally, the maxima of the
upper contours and the minima of the lower contours are
computed.

Since the lower baseline suffices to correct the slope, an
MLP that is trained to classify local extrema as belonging or
not belonging to the lower baseline is used (this MLP will
be called Slope-MLP). The input to this Slope-MLP is a
window that is centered at the pixel to be classified.

Once the lower baseline points have been detected, the
image is horizontally divided into segments in order to
apply the slope correction to every segment. A vertical
histogram projection is used to estimate the mean space
width between ink regions, and this value is used as a
threshold to split the image into segments. For each of these
segments, the lower baseline is estimated by means of least-
squares fitting of the lower baseline points. An example of
the splitting process of the estimated lower baseline is
shown in Fig. 2d. These lower baselines are used to correct
the slope and the vertical relative positions of the segments.
Fig. 2e illustrates an example of a slope-corrected image.

2.3 Slant Removal

After the slope correction, slant is removed by means of a
two-step method. In the first step, a global slant angle is
estimated and removed by performing a shear operation to
the image for every integer angle between an interval (in
this case, ½�50�; 50��) and choosing the sheared image
whose vertical projection has the maximum variance [41].
In the second step, a novel nonuniform local slant correction
method is applied: An MLP (from now on called Slant-
MLP) is trained to estimate if a given column of the text line
image is slanted. Using a sliding input window, the Slant-
MLP is applied to every column of the image with some
additional columns of context, for each integer angle in
½�50�; 50��. This procedure generates a matrix which
contains the estimated score of correcting each column
with each slant angle. Finally, a dynamic programming
algorithm is applied over this matrix [42] to obtain the path
with maximum score which also satisfies a smoothness
criterion (the slant angle must not change more than �1�

per column). This sequence of angles conforms the input to
a nonuniform shear that generates the final slant-corrected
image. The total computational cost is linear with the size of
the image and the number of shear angles considered. The
whole slant removal process is illustrated in Fig. 4 and an
example of a slant-corrected image is shown in Fig. 2f.
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Fig. 2. Preprocessing example. (a) Original image from the IAM
database. (b) Cleaned image. (c) Text contour extracted to obtain local
extrema. (d) Local extrema classified by an MLP as the lower baseline to
be used for slope correction. (e) Slope-corrected image. (f) Slant-
corrected image. (g) Local extrema labeled by an MLP as belonging to
the four reference lines to be used for size normalization. (h) Normalized
final image.

Fig. 3. Example of text line image with the different areas (ascenders,
descenders, and main body areas) and the reference baselines (upper

and the lower baselines, and the lines of ascenders and descenders) of

the script.



2.4 Size Normalization

When the image is slope and slant-corrected, the size of the
text line is normalized in order to minimize the variations in
size and position of its three zones (main body area,
ascenders, and descenders). Furthermore, the normalized
size of ascenders and descenders is reduced with respect to
the body since they are not as informative (the presence or
absence of ascenders and descenders is preserved, as well
as the width, but not the actual height).

One approach to size normalization consists of detecting
the reference baselines and normalizing the size according to
them [18], [40], [12], [43]. Following this idea, our size
normalization method detects and classifies the local
extrema using the same method based on ANNs described
in Section 2.2. This time, local extrema are classified into five
classes (the four reference lines and points not belonging to
any of these lines) by using another MLP (Normalize-MLP).
Points belonging to the same class are used to obtain each
reference line by linear interpolation (see Fig. 2g). These lines
comprise the three zones to be normalized. The normal-
ization process is performed for each column of the image by
linearly scaling the three zones to a fixed height. Ascenders
are reduced to 20 percent of the final image height and
descenders are reduced to 10 percent. See Fig. 2h for an
example of a normalized image.

2.5 Feature Extraction

After preprocessing, a feature extraction method is applied
to capture the most relevant characteristics of the character
to recognize. In our system, a handwritten text line image is
converted into a sequence of fixed-dimension feature
vectors. Following [10], features are extracted by applying
a grid to the image and computing three values for each cell
of the grid: the normalized gray level and the horizontal
and vertical gray level derivatives. A grid of square cells

with 20 rows has been used, so every feature vector is
composed of 60 values. An example of a graphical
representation of the features obtained in this way is shown
at the top of Fig. 5.

3 HYBRID HMM/ANN MODELING

For small vocabulary handwriting recognition tasks (for
example, check amounts or postal addresses), it is possible to
model words individually. But, for large vocabulary or even
unconstrained tasks, the only feasible approach is to
recognize individual graphemes and map them onto
complete words belonging to a fixed vocabulary �. The
same problem has to be addressed for automatic speech
recognition, and HMMs have been accepted as the standard
solution [44]. For offline handwritten text recognition, the
image is converted into a sequenceX ¼ ðx1 . . .xmÞ of feature
vectors and, under the statistical approach to pattern
recognition [44], [45], the goal of general handwritten text
recognition is to find the likeliest word sequence W ? ¼

ðw1 . . .wnÞ maximizing the a posteriori probability:

W ? ¼ argmax
W2�þ

P ðW jXÞ: ð1Þ

The application of the Bayes rule leads to a decomposi-
tion of P ðW jXÞ into the optical model P ðXjWÞ and the
statistical language model P ðW Þ. The problem can then be
reformulated as:

W ? ¼ argmax
W2�þ

P ðXjWÞP ðW Þ: ð2Þ

In state-of-the-art handwritten text recognition systems,
P ðXjWÞ is usually estimated by an HMM-based recognizer
and a word n-gram language model is usually used to
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Fig. 4. An example of slant removal: the original text line image and the slant-corrected text line image. The Slant-MLP estimates a measure of the

slant angle of each pixel column, shown as a gray level matrix. A dynamic programming (DP) algorithm obtains the optimal sequence of slant angles.

Beneath the matrix is a detail of it for a segment of the text line image.



approximate P ðW Þ. Typically, each grapheme is modeled

by a left-to-right HMM and the number of states is chosen

globally or individually for each grapheme. Gaussian

mixtures are used to model the output distributions in

each state q given the feature vector x, P ðxjqÞ. The Baum-

Welch algorithm is used for training the HMMs, whereas

the Viterbi algorithm is used for recognition.

3.1 The Hybrid HMM/ANN Approach

In the hidden Markov modeling approach, the emission

probability density P ðxjqÞmust be estimated for each state q

of the Markov chains, that is, the probability of the observed

feature vector x given the hypothesized state q of the model.

In the proposed hybrid HMM/ANN approach, the emis-

sion probabilities are provided with a neural network since

ANNs can be trained to estimate probabilities that are

related to these emission probabilities. In particular, an

MLP can be trained to approximate the a posteriori

probabilities of states, P ðqjxÞ, if each MLP output unit is

associated with a specific state of the model and if it is

trained as a classifier [14], [46]. In order to obtain such

distribution for every state q from the set Q of Markov chain

states, the softmax activation function has been chosen at

the output layer:

fðyqÞ ¼
exp ðyqÞP
i2Q exp ðyiÞ

; ð3Þ

where yq is the qth output value before applying the

softmax function. This activation function enables the

estimation of valid probability values, i.e., to lie between

zero and one and to sum to one.
The a posteriori probability estimates from the MLP

outputs, P ðqjxÞ, can be converted to emission probabilities

P ðxjqÞ by applying Bayes rule:

P ðxjqÞ ¼
P ðqjxÞP ðxÞ

P ðqÞ
: ð4Þ

The class priors P ðqÞ can be estimated from the relative

frequencies of each state from the information produced by

a forced Viterbi alignment of the training data. Thus, the

scaled likelihoods P ðxjqÞ=P ðqÞ can be used as emission

probabilities in the proposed system since, during recogni-

tion, the scaling factor P ðxÞ is a constant for all classes [14].

This allows MLPs to be integrated into hybrid structural-

connectionist models via a statistical framework.
The advantages of this approach are the discriminate

training criterion (all MLP parameters are updated in
response to every input feature vector) and the fact that it
is no longer necessary to assume an a priori distribution of
the data. Furthermore, if left and right contexts are used at
the input of the MLP, important contextual information can
be incorporated into the probability estimation process.

Another strength of this approach is that computing
emission probabilities with hybrid HMM/ANN models is
usually faster than conventional HMMs with Gaussian
emissions since it only requires a forward pass of the MLP
for all states of the Markov chains.

On the other hand, one of the weaknesses of this hybrid
HMM/ANN approach is that every feature vector must be
labeled to train the MLP. However, this is not a serious
drawback since these labels can be generated by running a
previously trained handwriting recognition system in a
forced alignment mode in order to initialize these labels.

In our experiments, we modeled graphemes with left-to-

right Markov chains and a single neural network with one

output unit for each state of the Markov chains was used to

estimate the distribution probabilities. An MLP with

sigmoid hidden units and softmax output units is used.

The estimates of the posterior probabilities computed by the

MLP are divided by the prior state probabilities resulting in

scaled likelihoods which are used as emission probabilities

in the HMMs. A scheme of the proposed hybrid HMM/

ANN recognition system is shown in Fig. 5.

3.2 Training the HMM/ANN Models

The training of the MLP is discriminant at the state level of

Markov chains since each output is optimized during

training by samples of its own class as well as by samples

of the other classes. Training of the whole hybrid HMM/

ANN system is done by an iterative Expectation-Maximiza-

tion algorithm, where the training of the supervised ANN

and either Baum-Welch or Viterbi alignment of the training

corpus are alternated. We have opted for Viterbi alignment

and the training procedure proceeds as follows:

1. Assign an initial labeling of desired MLP outputs to
every feature vector of the training and validation
data sets. This labeling can be computed by dividing
the image into equal parts or by using a previously
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Fig. 5. A scheme of the proposed hybrid HMM/ANN recognition system.
First, the image is preprocessed (see Fig. 2) and the resulting feature
vector, plus a left and right context, is processed by an MLP. The
jQj outputs of the MLP (after dividing by the prior state probabilities) are
used as emission probabilities in the HMMs.



trained handwritten recognition system in a forced
alignment mode.

2. Assign an initial nonzero value to transition prob-
abilities of the Markov chains.

3. Train the supervised ANN with the training pairs,
using the mean-square error (MSE) on the validation
data set as the stopping criterion.

4. Use the partially trained hybrid ANN/HMM mod-
els to perform a forced Viterbi alignment of the
training data. This Viterbi procedure uses the class
priors estimated from the relative frequencies of
each class in the training data. This Viterbi align-
ment is used both for obtaining a new segmentation
or labeling of the training and validation sets and
also for counting the number of times each HMM
transition has been used. These counts are used to
reestimate the transition probabilities.

5. Go to step 3 until convergence, that is, until the
difference between two consecutive iterations is
below a threshold.

4 EXPERIMENTAL SETUP

4.1 The IAM Database

All experiments reported in this paper are conducted on
handwritten text lines from the IAM database [32]. The
version 3.0 of this database includes over 1,500 scanned forms
of handwritten text frommore than 650differentwriters, for a
total of more than 13,000 fully transcribed handwritten lines,
without restrictions on the writing style or the writing
instrument used. The sentences have been extracted from the
Lancaster-Oslo/Bergen (LOB) text corpus [47].

A writer-independent text line recognition task has been
considered. The subset of the IAMdatabase used in thiswork
consists of 6,161 training lines (from 283 writers), 920 vali-
dation lines (56 writers), and 2,781 test lines (161 writers). All
of these data sets are disjoint, andnowriter has contributed to
more than one set. These partitions are the same as those used
in several works by Bunke et al. [33], [48], [49].

A total of 87,967 instances of 11,320 distinct words occur
in the union of the training, validation, and test sets.
Lexicon is modeled with 78 characters: 26 lowercase letters,
26 uppercase letters, 10 digits, 14 punctuation marks, the
space, and a character for garbage symbols.

4.2 MLP for Image Cleaning

As described in Section 2.1, an MLP has been used for image
cleaning by learning the appropriate filter from examples.

4.2.1 Training Data

Original noisy images from the IAM database and the same
images that were cleaned by hand formed the training pairs.
Additionally, artificially noised images (created by following
the ideas presented in [34]) were also used as training data.

4.2.2 Enhancer-MLP

In this case, the MLP is used for regression: The input is a
fixed-sized moving window of 11� 11 pixels centered at
the pixel to be cleaned, and the output is the restored value
of the current pixel (see Fig. 1). The Enhancer-MLP has two
hidden layers of 32 and 16 sigmoid units and one output
linear unit. Training was performed using the stochastic

version of the backpropagation algorithm with momentum
term [46], using the mean-square error (MSE) function. The
last column of Table 1 shows the topology of the MLPs
which are used for preprocessing.

4.3 MLPs for Slope Removal and Size Normalization

As pointed out in Sections 2.2 and 2.4, two MLPs to classify
local extrema as belonging to one of the reference lines
(lower line, upper line, line of descenders, or line of
ascenders) are needed as part of the slope removal and
image size normalization processes.

4.3.1 Training Data

We needed supervised training patterns to train MLPs to
classify interest points as belonging to the reference lines. A
subset of 1,000 images from the IAM training set has been
used. Local extrema of the 1,000 images were semi-
automatically labeled using an active learning approach:
First, a horizontal projection algorithm was used to classify
the points belonging to each reference line of a subset of the
1,000 images; second, the subset of images was manually
corrected using a graphical tool designed for this purpose
[12]; third, these images were used to train an MLP to
classify interest points. With this “pretrained” MLP, interest
points of the 1,000 images were automatically classified,
and, afterward, all of the images were manually supervised.
At the end of this process, we had a training set composed
of the interest points of the 1,000 images: 800 lines were
used as training data and the remaining 200 lines were used
as validation data.

4.3.2 Slope-MLP

The Slope-MLP was trained to classify local extrema as
belonging to or not belonging to the lower baseline. The
Slope-MLP input is a moving window around the current
pixel, being the choice of an appropriate window size, a
trade-off between context and input size. To partially
overcome this problem, we have opted to use a fisheye
distortion centered at the pixel to classify (see Fig. 6 for an
example) [12]. The fisheye distortion maintains a very
accurate resolution near the center and, at the same time,
has a much smaller size than using the original image. In this
way, a detailed image near the interest point and a coarse
representation of the relative position of the surrounding
text is obtained: The input to this Slope-MLP is a window of
500� 250 pixels centered at the point to be classified,
downsampled to 50� 30 values using the fisheye distortion.
Two output units with a softmax activation function were
used to determine whether or not the current pixel belonged
to the lower baseline. After doing a scanning of topologies,
two hidden layers of 64 and 16 sigmoid units were used.

4.3.3 Normalize-MLP

Size normalization was achieved by using a second MLP,
which classifies the local extrema into five classes (the four
reference lines and points not belonging to any of these
lines). The input to this Normalize-MLP is the same as the
Slope-MLP input and the output corresponded to five
output units with softmax activation function. We used two
hidden layers of 64 and 128 sigmoid units.
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Both MLPs, Slope-MLP and Normalize-MLP, were
trained using the stochastic version of the backpropagation
algorithm with momentum term and the cross-entropy
error function.

4.4 MLP for Slant Removal

As described in Section 2.3, part of the process of slant
removal needs an MLP to determine whether or not an
image has slant.

4.4.1 Training Data

The same set of 1,000 images was manually slant-corrected
in a nonuniform way by using a graphical tool. The user
specifies a series of slant angles which are interpolated for
every image column. This information is used to train the
Slant-MLP. As before, 200 images were used for validation.

4.4.2 Slant-MLP

Each image is sheared for different integer angles from �50�

to þ50� and resized to 40 pixels height, preserving the
aspect ratio. The input to this Slant-MLP is a square of 40�
40 pixels centered at the column to be evaluated, and the
output is a measure of the local slant presence (shown as
gray levels in Fig. 4). After doing a parameter and topology
scanning, two hidden layers of 64 and 8 units were used.
Training was performed using the stochastic version of the
backpropagation algorithm with momentum term, using
the mean-square error function.

5 EXPERIMENTS

5.1 Dictionary and Language Model

A word bigram language model was trained with three
different text corpora: the LOB corpus [47] (excluding those
sentences that contain lines from the test set of the IAM
database), the Brown corpus [50], and theWellington corpus

[51]. In order to cope with the fact that lines are fragments of
sentences, we have randomly broken each sentence from the
corpus into fragments to resemble lines. All of this text is
supplemented with the training lines from the IAM
database. Then, the final training material is comprised of:

. Sentences: 51,560 LOB sentences (2,134 sentences
which contained IAM test lines were eliminated),
51,763 Brown sentences, and 20,592 Wellington
sentences.

. Fragments of sentences to resemble lines: More than
400,000 lines randomly obtained from the above set
of sentences.

. Lines: Finally, the 6,161 IAM training lines were also
added.

The bigram language model used in the recognition
systems was generated, using the SRI Language Modeling
Toolkit [52] with the modified Kneser-Ney back-off
discounting.

To achieve unconstrained handwriting recognition, an
open dictionary, composed of the 20,000 most frequently
occurring (case insensitive) words in the training material,
was used to test our recognition systems.

5.2 Measuring Recognition Performance

The recognition performance was measured in terms of the

Word Error Rate (WER), which is computed by comparing

the output of the recognizer with the reference transcrip-

tion. WER is defined as the number of word errors

(insertions, substitutions, and deletions) summed over the

whole test set and divided by the total number of words in

the transcriptions of the reference set:

WER ¼ 100�
insertionsþ substitutionsþ deletions

total number of words
: ð5Þ

A null WER is only reached if the recognizer output

matches the reference transcription exactly.

The Character Error Rate (CER) was also measured for

the final test experiments. CER is defined as expression (5),

but with characters instead of words.
In order to properly compare different systems, it is highly

desirable to provide not only the value of the WER (or CER)
but also a confidence interval for it. In [53], the author
proposes a method for computing these intervals without
simulations. Following his work, we have computed the
confidence interval for every experiment with the IAM
validation and test sets, which are composed of 920 and
2,781 lines, respectively. In every experiment, the computed
intervals correspond to a 95 percent confidence level.

5.3 Baseline Experiments: HMMs

Baseline recognition HMM experiments were conducted,
using continuous density HMMs with diagonal covariance
matrices of 64 Gaussians in each state, andwith a left-to-right
topology without skips. The 78 optical models were trained
and tested with the HTK toolkit [54].

The validation set of the IAM database was used to
optimize the number of states of the optical HMMs and the
integration of the statistical language model. A bigram
language model and an open dictionary were used as
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Fig. 6. Fisheye lens example (from up-to-down): original image of 500�
250 pixels centered at the pixel to be classified; the same image with a

fisheye lens distortion; the image downsampled to 50� 30 values used
by the neural network classifier.



explained in Section 5.1.1 Table 2 summarizes the experi-
ments varying the number of states of the HMMs, and Fig. 7
plots the word error rate with a 95 percent confidence level
interval. From these figures, it can be observed that several
configurations achieved equivalent statistical performance,
the 8-state HMMs being the best topology.

To compensate for scale differences between the like-
lihood values P ðXjWÞ from the HMMs and the probabil-
ities P ðWÞ provided by the language model in (2), a
grammar scale factor is used to weight the influence of the
bigram language model against the optical model. The
grammar scale factor used for these experiments was fixed
to 40. Afterward, the grammar scale factor was optimized
by systematically testing values from 20 to 60 on the 8-state
HMMs. Table 3 shows the performance of this experiment
on the validation set, using bigrams. It can be observed that
performance is almost identical between a grammar scale
factor of 40 and 50, with the lowest word error rate of
32.8 percent being achieved with a grammar scale factor of
50. All of these results are also plotted in Fig. 7 with a
95 percent confidence level interval.

5.4 Experiments with Hybrid HMM/ANN Models

Hybrid HMM/ANN models, with a different number of
states and different topologies and parameters of MLP,
were tested. In all cases, the MLP input consisted of nine
consecutive feature vectors (the central feature vector and a
context of four vectors at each side). The softmax outputs
(after being divided by the prior state probabilities) were
used as emission probabilities of the states of the 78 optical
models. Thus, we trained fully connected MLPs of 540 input
units (the 60-dimensional nine feature vectors). The number
of output units is determined by the total number of states
of the 78 optical models (from 78� 6 output units for 6-state
HMMs to 78� 9 output units for 9-state HMMs) since each
output unit of the MLP is related to one state of the HMMs.
The number of hidden units was determined empirically by
measuring the MSE on the validation set. Other parameters,
such as the learning rate and the momentum term, were
also empirically tuned with the validation data.

Trainingwasperformedusing stochastic backpropagation

with momentum and the mean-square error function. In

order to monitor the generalization performance during

learning and to stop training when there was no longer an

improvement, the validation set was used. More than five

million training patterns (corresponding to the 6,161 training

lines) and close to 800,000 validation patterns (from 920 lines)

composed the training and validation data sets, respectively.

Due to the large time requirements to train theMLPs,weused

a resampling algorithm: Only 300,000 training patterns and

200,000 validation patternswere used in each training epoch.

These subsets were randomly selected in each run.
The emission probabilities are obtained by dividing the

a posteriori probability estimates from the MLP outputs by

the class priors. The a priori probabilities of the states are

estimated from the relative frequencies of each state, which

are computed from the segmentation given by a forced

Viterbi alignment of the training data.
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1. Those LOB sentences which contained IAM validation lines were
also excluded to estimate the bigram language model for the tuning
experiments.

Fig. 7. Tuning HMMs: Word Error Rate of the HMMs on the validation set (a) varying the number of states and (b) for different Grammar Scale

Factors. WER is given with a 95 percent confidence interval.

TABLE 3
Tuning the GSF

Word Error Rate of the best HMMs on the validation set for different
grammar scale factors.

TABLE 2
Tuning the Number of States of the HMMs

Word Error Rate of the HMMs on the validation set.



The initial segmentation at state level that is required to
train an MLP at the first step of the EM algorithm (see
Section 3.2) was generated by running a “pretrained”
hybrid HMM/ANN handwriting recognition system in a
forced alignment mode. The word error rate on the
validation set, using a closed dictionary from the IAM task
composed of 10,353 words and a bigram language model
estimated with the LOB corpus, was used as the stopping
criterion. Around 10 iterations of the EM training algorithm
were enough for all the configurations. Fig. 8 illustrates a
typical evolution of the EM training, showing the evolution
of the mean-square error on the training and validation set.
The evolution of the WER on validation is also shown in the
graphic. The hybrid HMM/ANN models were trained and
tested with the APRIL toolkit [55], which was developed for
neural networks and pattern recognition tasks in our
research group.

Table 4 shows the performance achieved for the different
configurations of the hybrid HMM/ANN systems on the
validation data set, using the bigram language model and
the open dictionary, as explained in Section 5.1. The lowest
WER was obtained by using 7-state Markov chains and an
MLP topology of two hidden layers of 192 and 128 units,
respectively. Further experiments were conducted with the
optimized configuration. Table 5 shows the performance of
this hybrid HMM/ANN system on the validation data set,
using the bigram language model with different grammar
scale factors. The grammar scale factor has been optimized
by systematically testing values from 6 to 16 on the
validation text lines. Small changes in word error rate are
observed, and the best performance, 19.0 percent, was

achieved with a grammar scale factor of 10 or 12. All of
these word error rate results are plotted in Fig. 9 with a
95 percent confidence level interval.

6 DISCUSSION AND COMPARISON

This section describes the performance of the optimized
systems on the test set, and a comparison is made with the
best published results. Experiments to study the influence
of the dictionary on the recognizer were also carried out.

6.1 HMM versus Hybrid HMM/ANN Models

Table 6 shows the error rate of the recognized test lines of
the IAM task using the best HMM and the best hybrid
HMM/ANN systems. We tested each system with the open
dictionary of 20,000 words and a bigram language model, as
explained in Section 5.1. For each recognition experiment,
two performance figures were obtained: the word error rate
and the character error rate. No parameters were optimized
on the test set.

Our baseline experiment achieved comparative perfor-
mances with state-of-the-art HMM systems: a WER of
38.8 percent �1:0 with a 95 percent confidence interval and
a CER of 18.6 percent in the interval (18.0, 19.2). Our final
hybrid HMM/ANN system achieved excellent results: a
WER of 22.4 percent in the interval (21.6, 23.2) and a CER of
9.8 percent in the interval (9.4, 10.2). The hybrid system
outperforms our baseline in 16 points in WER, which
represents a relative error rate reduction of 42 percent.
Similarly, the character error rate improved nearly 9 points,
which represents a relative percentage of improvement that
is greater than 47 percent.

Besides the word and character error rates, another
measure to consider when evaluating a recognition engine
is the decoding time, since a high value might diminish the
usability of the recognition system in practical applications.
Unfortunately, this time is not reported bymost authors. Our
hybrid HMM/ANN prototype required an average time of
0.76 second per word for preprocessing and 0.65 second per
word on decoding [56]. This CPU time was measured in a
single core of an Intel Core 2 Quad CPU Q6600 @ 2.40 GHz
using DDR2-800 MHz memory. These times could be
reduced in the production stage of the recognition engine,
and the latency could also be reduced by using several cores
since many steps are highly parallelizable.

6.2 Influence of the Dictionary

A series of experiments to study the influence of the
dictionary size were carried out. Open dictionaries with
between 10,000 and 30,000 words were generated by taking
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Fig. 8. Evolution of the EM training algorithm for the 7-state HMMs and

an MLP of two hidden layers of 192 and 128 units each. The mean-

square error (MSE) is shown for the training and validation data, along

with the WER on validation of each iteration of the EM algorithm.

TABLE 4
Tuning the Topology of the Hybrid HMM/ANN Models

Word Error Rate of the hybrid HMM/ANN models on the validation set.

TABLE 5
Tuning the GSF

Word Error Rate of the best hybrid HMM/ANN models on the validation
set for different grammar scale factors.



the N most frequently occurring words in the training

material for the language model.
Table 7 shows the word error rate and the character error

rate of the test set when the size of the open dictionary was
increased. The second column of this table shows the test set
coverage, and the last two columns show the word and the
character error rate of the test set, using a bigram language
model estimated for each lexicon. To give an idea of the
meaning of coverage in the IAM line task, consider, for
example, that with the open dictionary of 20,000 words, a
coverage of 78.86 percent was achieved, that is, 21.14 percent
of the words in the test set were out-of-vocabulary words.
However, if we measure the out-of-vocabulary running
words, this figure falls to 4.99 percent. (The out-of-
vocabulary running words were 1,268, that is, 1,268 running
words from the 25,424 running words in the test set were
not in the lexicon.) As expected, performance increased
with lexicon size and test coverage. Fig. 10 plots this
experiment against test set coverage.

Another experiment was also carried out to study the
influence of using closed dictionaries. Two closed diction-
aries were generated: one containing only the 4,953 words in

the IAM test line set and another one padding the first one up
to 20,000 words (the most frequently occurring words in the
training material for the language model). The influence of
using the closed dictionaries is shown in Table 8, using a
95 percent confidence interval forWER. In this case, a bigram
language model estimated for each lexicon was also used.
Not surprisingly, the closed dictionary containing only the
test set words achieved the best performance. The score with
the 20,000 word closed dictionary was still better than those
reached with open dictionaries.

6.3 Comparison with Other Systems

Comparisons to other recognition systems in the literature
are difficult due to the lack of availability of common
databases. With regard to the publications using the IAM
database, a more detailed comparison is possible. In a very
recent work, Graves et al. [33] presented a novel hand-
writing recognition system based on recurrent neural
networks which achieved the best published recognition
rates to date, a WER of 25.9 percent with bigrams. In order
to compare both systems, we contacted the authors to
exactly reproduce the same experimental conditions. They
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Fig. 9. Tuning HMM/ANN models: Word Error Rate of the HMM/ANN models on the validation set (a) varying the topology and (b) for different

Grammar Scale Factors. WER is given with a 95 percent confidence interval.

TABLE 7
Influence of the Dictionary Size (with Open Dictionaries)

Word Error Rate of hybrid HMM/ANN models on the test set.

TABLE 6
Testing the Systems

Error Rate of the HMMs and the hybrid HMM/ANN models on the test
set.

Fig. 10. HMM/ANN performance with open dictionaries plotted against

test set coverage. WER on test is given with a 95 percent confidence

interval.



provided us with their dictionary and language model, and
we retrained our optical models, using the same grapheme
set as them and normalizing each input feature to zero
mean and unit variance. Also, case differences in words
were taken into account during recognition and in the WER
computation. Surprisingly, we obtained the very same
25.9 percent of WER for the test set, despite the fact that
recurrent neural networks and HMM/ANN are very
different approaches.

7 CONCLUSIONS

In this paper, we have presented a hybrid HMM/ANN
system for recognizing unconstrained offline handwritten
text lines. The key features of the recognition system are the
novel approach to preprocessing and recognition, which
are both based on ANNs. The preprocessing is based on
using MLPs:

. to clean and enhance the images,

. to automatically classify local extrema in order to
correct the slope and to normalize the size of the text
lines images, and

. to perform a nonuniform slant correction.

The recognition is based on hybrid optical HMM/ANN
models, where an MLP is used to estimate the emission
probabilities.

The main property of ANNs which is useful for pre-
processing tasks is their ability to learn complex nonlinear
input-output relationships from examples. Used for regres-
sion, an MLP can learn the appropriate filter from examples.
We have exploited this property to clean and enhance the text
images. Used for classification, MLPs can be used to
determine the membership of interest points from the image
to the reference lines, which is useful for slope correction and
size normalization, and to locally detect slant in a text image.
This preprocessing behaved favorably when compared to
other preprocessing techniques. We tested our HMM and
HMM/ANNsystems, performing the same experiments that
those presented here, but by using more classical techniques
to correct slope, slant, and size normalization [10]. We
obtained a 54.3 percent and 29.8 percent test WER,
respectively, which represent a percentual decrease of 29
percent and 25 percent when compared to the test results
from Table 6.

The proposed hybrid HMM/ANN recognition system
outperformed our baseline experiment, which is a state-of-
the-art HMM-based system that includes our preproces-
sing. The novel hybrid HMM/ANN approach obtained an
impressive 42 percent relative improvement in WER over
our baseline. We compared our system with the recurrent
neural network approach presented in [33] under the same
experimental conditions, and we obtained the same results.

Our next goal is to upgrade our recognition engine by
using ensembles of MLPs [46], [16], by combining several

recognizers [49], [57], and by using deep connectionist
architectures [58], [59]. The first very basic idea is to use
several MLPs rather than just a single one to solve a given
pattern classification or regression task [46], [16]. This idea
can be directly applied to the optical hybrid HMM/ANN
models, using an ensemble of MLPs to estimate the
emission probabilities of the Markov chains as well as
using ensembles of MLPs in every preprocessing step.
Another idea is to combine several individual recognition
systems (based on HMMs, HMM/ANN models, or recur-
rent ANNs) and specialized classifiers [49], [57]. Finally, as
pointed out in [58], [59], using deep learning methods
would lead us to better trained ANNs, which could
improve every step of our recognition engine.
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