IMPROVING ON THE MINIMUM RISK EQUIVARIANT ESTIMATOR OF A LOCATION PARAMETER WHICH IS CONSTRAINED TO AN INTERVAL OR A HALF-INTERVAL

ÉRIC MARCHAND^{1*} AND WILLIAM E. STRAWDERMAN²

¹Department of Mathematics and Statistics, University of New Brunswick, P.O. Box 4400, Fredericton, N.B., Canada, E3B 5A3, e-mail: marchand@math.unb.ca
²Department of Statistics, Rutgers University, 501 Hill Center, Busch Campus, Piscataway, NJ 08854-8019, U.S.A., e-mail: straw@stat.rutgers.edu

(Received July 24, 2003; revised January 9, 2004)

Abstract. For location families with densities $f_0(x - \theta)$, we study the problem of estimating θ for location invariant loss $L(\theta, d) = \rho(d - \theta)$, and under a lowerbound constraint of the form $\theta \ge a$. We show, that for quite general (f_0, ρ) , the Bayes estimator δ_U with respect to a uniform prior on (a, ∞) is a minimax estimator which dominates the benchmark minimum risk equivariant (MRE) estimator. In extending some previous dominance results due to Katz and Farrell, we make use of Kubokawa's *IERD* (Integral Expression of Risk Difference) method, and actually obtain classes of dominating estimators which include, and are characterized in terms of δ_U . Implications are also given and, finally, the above dominance phenomenon is studied and extended to an interval constraint of the form $\theta \in [a, b]$.

Key words and phrases: Lower-bounded parameter, location family, constrained parameter space, minimax estimation, minimum risk equivariant estimator, dominating estimators.

^{*}Research supported by NSERC of Canada.