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IMPROVING ON THE MLE OF A BOUNDED NORMAL MEAN1

By Éric Marchand and François Perron

University of New Brunswick and Université de Montréal

We consider the problem of estimating the mean of a p-variate nor-
mal distribution with identity covariance matrix when the mean lies in a
ball of radius m. It follows from general theory that dominating estima-
tors of the maximum likelihood estimator always exist when the loss is
squared error. We provide and describe explicit classes of improvements
for all problems �m�p�. We show that, for small enough m, a wide class
of estimators, including all Bayes estimators with respect to orthogonally
invariant priors, dominate the maximum likelihood estimator. When m
is not so small, we establish general sufficient conditions for dominance
over the maximum likelihood estimator. These include, when m ≤ √

p, the
Bayes estimator with respect to a uniform prior on the boundary of the
parameter space. We also study the resulting Bayes estimators for orthog-
onally invariant priors and obtain conditions of dominance involving the
choice of the prior. Finally, these Bayesian dominance results are further
discussed and illustrated with examples, which include (1) the Bayes esti-
mator for a uniform prior on the whole parameter space and (2) a new
Bayes estimator derived from an exponential family of priors.

1. Introduction. In many settings, there exists definite prior informa-
tion concerning the values that a mean vector can take. In such settings,
usual estimators for the unconstrained multivariate normal problem, such
as the unbiased estimator δ0�x� = x, James–Stein type estimators and their
derivatives are neither admissible nor minimax and a number of alternatives
that capitalize on the prior information are available. We consider such a
restricted parameter space problem, namely, the problem of estimating, based
on an observation x, the mean θ under squared error loss of X ∼ Np�θ� Ip�,
with θ ∈ 
�m�, 
�m� = �θ ∈ �p	 
θ
 ≤m� for some m fixed, m > 0.

An immediate alternative to the unbiased estimator δ0 is the maximum
likelihood estimator δmle which is the truncation of δ0 onto 
�m� given by
δmle�x� = �m/
x
 ∧ 1�x. Although δmle is eminently preferable to δ0, it has
long been known that maximum likelihood estimators are often inadmis-
sible under squared error loss for restricted parameter spaces [e.g., Sacks
(1963)]. The inadmissibility of δmle for our problem also follows from the work
of Charras and van Eeden (1991) who establish the inadmissibility of so called
“boundary” estimators within a quite general framework of compact parameter
spaces. Although their proof of the inadmissibility of δmle does not involve the
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determination of dominating estimators, they do provide implicitly for the
case p = 1, dominating estimators. Casella and Strawderman (1981) showed
for p = 1 and m ≤ 1 that the two-point boundary symmetric prior is least
favorable and that the associated Bayes estimator is, not only minimax, but
dominates δmle as well. Moors (1981, 1985) establishes in a general frame-
work, the inadmissibility of estimators which take values on, or too close to,
the boundary of the parameter space. For the univariate normal case, he sets
Ax = −m tanh�m�x���m tanh�m�x��� and his results apply to orthogonally
equivariant estimators δ such that Pθ�x	 δ�x� /∈ Ax�� > 0. Moors (1981, 1985)
shows that if, on the set �x	 δ�x� /∈ Ax�, δ∗�x� is the truncation of δ�x� on the
boundary of Ax and δ∗�x� = δ�x� otherwise then δ∗ dominates δ. In particular,
this result applies to δmle.

Other alternatives worth exploring are Bayes estimators and their fre-
quentist performance in the hope of determining interesting alternatives to
δmle. Kempthorne (1988) presents, as a particular application of his general
algorithm that yields an optimal estimator chosen according to the “max-
imin improvement” criterion, numerical examples of Bayes estimators that
dominate the maximum likelihood estimator �p = 1�. Two particular Bayes
estimators of interest are those associated with (1) a uniform prior on the
boundary of 
�m�, and (2) a fully uniform prior on 
�m�. Given equivariance
considerations and the work of DasGupta (1985), the former is necessarily
minimax for small enough m; and has been further studied with respect to
minimaxity by Casella and Strawderman (1981) for p = 1, and Berry (1990)
for p > 1. The latter is intuitively appealing and has, for the univariate case,
been studied by Gatsonis, MacGibbon and Strawderman (1987) who showed
that it performs satisfactorily, dominating δ0 and improving on δmle over a
large part of the parameter space. As well, the Bayes estimator with respect
to the fully uniform prior is, for small enough m, optimal according to a �-
minimax criterion with unimodal and symmetric priors [see Vidakovic and
DasGupta (1996)].

Notwithstanding these above contributions, there remains few dominance
results and the focus of this work is on providing dominating estimators to
δmle. Section 3 presents a set of sufficient conditions which guarantee domi-
nance for all problems �m�p� and clarifies the structure of possible improve-
ments. As a consequence, we find that the Bayes estimator with respect to
the boundary uniform prior dominates δmle whenever m ≤ √

p. In Section 4,
we work more generally on Bayes estimators δπ with orthogonally invari-
ant priors π. By using the results of Section 3, we establish that, for small
enough m, the Bayes estimator δπ , for any invariant of π, dominates δmle. For
larger m, sufficient conditions on π for δπ to dominate δmle are given. Finally,
these Bayesian dominance results are further discussed and illustrated with
examples. These include (1) the Bayes estimator with respect to a fully uni-
form prior on the whole parameter space, which is shown to dominate δmle for
small enough m and (2) a new Bayes estimator derived from an exponential
family of priors which is proposed for m >

√
p, and shown to dominate δmle
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for p > 1 and small enough values of m − √
p. We now proceed in Section 2

to collect some further notations, definitions and properties for later use.

2. Definitions and preliminaries. Throughout the paper we shall
denote 
X
 and 
x
 by R and r, respectively. We will denote 
θ
 by λ when θ
is viewed as a parameter, and by T, in a Bayesian context, when θ is viewed
as a random variable. All the estimators considered below are orthogonally
equivariant and it is convenient to express them as

δg�x� =
g�r�
r

x�

We measure the performance of an estimator δg by its risk function R�θ� δg� =
Eθ
δg�X� − θ
2�. Our dominance results are based on conditional risk
decompositions. In short, if Y is a function of X and δ is an estimator of θ then
Eθ
δ�X� − θ
2�Y� is the conditional risk of δ. Furthermore, the expectation
of the conditional risk provides the risk. Clearly, if we show that Eθ
δ1�X� −
θ
2−
δ2�X�−θ
2 � Y� ≤ 0 for all θ ∈ 
�m� and all possible values of Y, and if
we find θ0 ∈ 
�m� such that Pθ0

Eθ0

δ1�X�−θ0
2−
δ2�X�−θ0
2 � Y� < 0� > 0

then we obtain that δ1 dominates δ2.
We denote δBU as the Bayes estimator with respect to the boundary uniform

prior. We obtain that

δBU�x� =
ḡm�
x
�


x
 x�

where, for any r > 0, λ ≥ 0,

ḡλ�r� = Eθ

[
θ′X

X


∣∣∣
X
 = r

]
�

Lemma 1 [Berry (1990), Robert (1990)]. An explicit expression for ḡλ is
given by

ḡλ�r� = λρ�p/2�−1�λr��
where ρν�t� = Iν+1�t�/Iν�t�, ν > −1; Iν representing the modified Bessel func-
tion of order ν.

Thus, the ratio ρ�p/2�−1 plays a key role and the next lemma recalls some
useful properties, given by Watson (1983) for p > 1 and readily verified for
p = 1 by using the representation ρ−1/2 = tanh.

Lemma 2. For all p ≥ 1:

(a) ρ�p/2�−1 is increasing with ρ�p/2�−1�0� = 0 and ρ�p/2�−1�t� → 1 as t→ ∞.
(b) ρ�p/2�−1�t�/t is decreasing in t with ρ�p/2�−1�t�/t→ 1/p as t→ 0.

The function fp�·� d� will denote the density of the square root of a random
variable having a noncentral χ2

p�d2� distribution. In particular, the density
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of R is fp�·� λ�. The following properties, which will be useful, are essentially
known, and follow from the Bessel representation of the noncentral chi-square
distribution.

Lemma 3. Let r, λ > 0. For any measure σ we obtain:

(a) fp�r� λ� = r� r
λ
��p/2�−1I�p/2�−1�λr� exp−�λ2 + r2�/2.

(b)
∫∞
0 h�w�wρ�p/2�−1�w�fp�w�λ�σ�dw� = λ

∫∞
0 h�w�fp+2�w�λ�σ�dw�.

Some of the risk function decompositions below will bring into play the
conditional expectations

α�m�λ�=Eθρ�p/2�−1�λR��R>m� and β�m�λ�=Eθ

[
λ

R
ρ�p/2�−1�λR��R≤m

]
�

where 0 < λ ≤m, as well as the functions

ᾱ�m� = sup
0<λ≤m

α�m�λ� and β̄�m� = sup
0<λ≤m

β�m�λ��

The following properties, which are proved in the Appendix, will be required.

Lemma 4. (a) α�·� ·� is an increasing function in both arguments and, con-
sequently, ᾱ�m� = α�m�m�. Furthermore, ᾱ�m� → 0 as m→ 0 and ᾱ�m� → 1
as m→ ∞.

(b) β�m� ·� is an increasing function and, consequently, β̄�m� = β�m�m�.
Furthermore, 0 ≤ β̄�m� < m2/p and limm→∞ β̄�m� ≥ 1.

Finally, the solution in m of the equation ᾱ�m� = 1/2 will arise below and
will be denoted m1.

3. Dominance results. The dominance results of this section are orga-
nized as follows. Let Y be the indicator random variable of the event �
X
 >
m�. Theorem 1 gives sufficient conditions for δg to improve on δmle as mea-
sured by the difference in conditional risks, where the conditioning is on the
value Y = 1. Theorem 2 does the same, but for Y = 0. Theorem 3 involves
conditional risks based on the values of 
X
, and Example 1 shows how The-
orem 3 applies to the Bayes estimator with respect to the boundary uniform
prior. Finally, Corollaries 1 and 2, which will be useful in Section 4, are further
dominance results obtained by pooling some of the results of Theorems 1, 2
and 3.

Theorem 1. Let g be a nondecreasing function on �m�∞�. If �2ᾱ�m� −
1�m < g�r� < m for all r ∈ �m�∞� then EθL�θ� δmle�X�� −L�θ� δg�X�� � R >
m� > 0 for all θ ∈ 
�m�.

Proof. First, Lemma 4 shows that �2ᾱ�m� − 1� < 1, for all m > 0,
which implies that the given condition on g is not vacuous. Decomposing the
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difference in conditional risks, we obtain

EθL�θ� δmle�X�� −L�θ� δg�X�� � R > m�
= Eθ�m− g�R���g�R� − �2λρ�p/2�−1�λR� −m�� � R > m�
≥ Eθ�m− g�R���g�R� − �2λα�m�λ� −m�� � R > m�
≥ Eθ�m− g�R���g�R� − �2ᾱ�m� − 1�m� � R > m�
> 0�

where (1) the equality comes from a conditional expectation given R
and Lemma 1, (2) the first inequality holds by virtue of the inequality
Covθρ�p/2�−1�λR�� g�R� � R > m� ≥ 0, which in turn is valid since both
ρ�p/2�−1 and g are nondecreasing on �m�∞�, and (3) the second inequality
follows from Lemma 4.

Theorem 2. Let g�r� and r�r − g�r�� be nondecreasing in r on �0�m�.
If β̄�m� < 1 and �2β̄�m� − 1�r < g�r� < r for all r ∈ �0�m� then EθL�θ,
δmle�X�� −L�θ� δg�X�� � R ≤m� > 0 for all θ ∈ 
�m�.

Proof. First, note that �m	 β̄�m� < 1� �= � since the properties of β̄�m�
in Lemma 4 imply that �0�√p� ⊂ �m	 β̄�m� < 1�. Moreover, we obtain

EθL�θ� δmle�X�� −L�θ� δg�X�� � R ≤m�

= Eθ

[
�R− g�R��

(
g�R� −

(
2λ
ρ�p/2�−1�λR�

R
− 1

)
R

)∣∣∣R ≤m

]

≥ Eθ�R− g�R���g�R� − �2β�m�λ� − 1�R� � R ≤m�
≥ Eθ�R− g�R���g�R� − �2β̄�m� − 1�R� � R ≤m�
> 0�

where (1) the first inequality holds because r�r− g�r�� is nondecreasing in r

on �0�m� and
ρ�p/2�−1�λr�

r
is nonincreasing in r for r ∈ �0�m� which implies that

CovθR�R−g�R��� ρ�p/2�−1�λR�
R

� R ≤m� ≤ 0, and (2) the second inequality comes
from Lemma 4.

Corollary 1. Let 0 ≤ g�r� ≤ r ∧m for all r > 0. If g is nondecreasing,
g�r�/r is nonincreasing in r for r > 0 and g�m�/m ≥ 2�ᾱ�m� ∨ β̄�m�� − 1,
then R�θ� δg� ≤ R�θ� δmle� for all θ ∈ 
�m�.

Proof. We have �2ᾱ�m� − 1�m ≤ g�r� ≤m for all r > m so the conditions
of Theorem 1 are verified. Since g�r�/r is nonincreasing in r for r > 0 we
obtain that r�r−g�r�� is nondecreasing in r and �2β̄�m� − 1�r ≤ g�r� ≤ r for
0 < r ≤m so the conditions of Theorem 2 are verified.
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Theorem 3. Let r > r1 with r1 = inf�r	 ḡm�r�/r < 1� r > 0�. If 2ḡm�r� −
r∧m < g�r� < r∧m then EθL�θ� δmle�X�� −L�θ� δg�X�� � R = r� > 0 for all
θ ∈ 
�m�.

Proof. Since ḡm�r� < m, and r1 < m by virtue of Lemma 2, we have
2ḡm�r� − r ∧m < r ∧m if and only if r > r1. Moreover, we have

EθL�θ� δmle�X�� −L�θ� δg�X�� � R = r�
= �r ∧m− g�r���g�r� − �2λρ�p/2�−1�λr� − r ∧m��
≥ �r ∧m− g�r���g�r� − �2ḡm�r� − r ∧m��
> 0�

where the first inequality comes from the monotonicity of the function ρ�p/2�−1.

Example 1. When m ≤ √
p, it follows from Lemma 2 that r1 = 0 and,

consequently, δBU dominates the maximum likelihood estimator by virtue of
Theorem 3. When m >

√
p, r1 > 0 and Theorem 3 does not apply to δBU

directly. However, Theorem 3 does apply to the truncated version δg with
g�r� = ḡm�r� ∧ r which dominates the maximum likelihood estimator.

Corollary 2. Let 0 ≤ g�r� ≤ r ∧m for r > 0. If g is nondecreasing and

m ≤m1 ∧
√
p/2, then R�θ� δg� ≤ R�θ� δmle� for all θ ∈ 
�m�.

Proof. This proof is based on verifying the conditions of Theorem 1 on
r ∈ �m�∞� and the conditions of Theorem 3 on r ∈ �0�m�. With Theorem 1
we need to verify that �2ᾱ�m�−1�m < g�r� < m for all r > m. The conditions
of Corollary 2 imply that 2ᾱ�m� − 1 ≤ 0. Therefore, if g is nondecreasing
and 0 ≤ g�r� ≤ m for r > m, the conditions of Theorem 1 will be satisfied.
With Theorem 3, we need to verify that �2ḡm�r� − r� < g�r� < r for r ∈
�0�m�. Theorem 3 applies whenever r > r1. Part (b) of Lemma 2 tells us that
ḡm�r�/r → m2/p as r → 0 and ḡm�r�/r is decreasing in r. Since m ≤ √

p/2,
we have r1 = 0, and 2ḡm�r� − r ≤ 0 for all r > 0. Therefore, if 0 ≤ g�r� ≤ r
for r ∈ �0�m�, the conditions of Theorem 3 will be satisfied as well. ✷

We conclude this section by remarking upon the fact that, analogously to
Moors (1981, 1985), the methods above may be applied to determine
improvements over other estimators that take values on, or too close to, the
boundary of the parameter space 
�m�. For further details and related results,
the reader is referred to Marchand and Perron (1999).

4. Bayesian estimators. In this section, we consider Bayes estimators
δπ associated with orthogonally invariant prior distributions π on 
�m�. The
Bayesian dominance results below involve the specification of priors π that
lead to the applicability of Corollaries 1 and 2. In Section 4.1, Theorems 4
and 5 give useful characterizations and properties, while Corollaries 3 and 4
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are Bayesian versions of Corollaries 2 and 1, respectively. Subsection 4.2. is
devoted to examples, illustrations and further comments.

4.1. Bayesian dominance results.

Theorem 4. Let T = 
θ
. For a given orthogonally invariant prior π
on 
�m� with π��T = 0�� < 1, the Bayes estimator δπ is given by δπ�x� =
�gπ�r�/r�x where gπ�r� = EḡT�r� � R = r�. In other words, gπ�r� is the
expectation of ḡT�r� with respect to the posterior distribution of T. An alterna-
tive representation of gπ is given by

gπ�r� =
∫m
0 t−�p/2−2�Ip/2�rt� exp�−t2/2�σ�dt�∫m

0 t−�p/2−1�Ip/2−1�rt� exp�−t2/2�σ�dt� �

Moreover, gπ is increasing with gπ�r� → 0 as r → 0, 0 ≤ gπ ≤ ḡm and
gπ�r�/r ≤ 1 whenever m ≤ √

p.

Proof. Assume, without loss of generality, that 
x
 > 0. We use the rep-
resentation θ = TU in distribution, where T and U are independent, T is
distributed according to a probability measure σ on 0�m� and U is uniformly
distributed on the unit sphere on �p. This representation now implies that
the posterior distribution of T has a density, with respect to the measure σ ,
proportional to t1−pfp�t� r�, that is,

σ�dt � x� = t1−pfp�t� r�∫m
0 u1−pfp�u� r�σ�du�

σ�dt� for t ∈ 0�m��

and that, conditionally on the event T = t, the posterior distribution of U is
a Langevin distribution with parameters �κ�µ� and mean ρ�p/2�−1�κ�µ where
κ = rt and µ = �1/r�x [see Watson (1983) for details]. Since the Bayes esti-
mator is given by Eθ �X = x� we obtain

Eθ �X = x� = ETU �X = x�
= ETEU � T�X = x� �X = x�
= ET�ρ�p/2�−1�rT�/r�x �X = x�
= ETρ�p/2�−1�rT�/r � R = r�x
= �EḡT�r� � R = r�/r�x�

where the fourth equality holds because the posterior distribution of T
depends on x through r only. The alternative representation of δπ is derived
from part (b) of Lemma 3. Since 0 ≤ ḡ
θ
 ≤ ḡm for all θ ∈ 
�m� and ḡm�r� → 0
as r→ 0 we obtain 0 ≤ gπ ≤ ḡm and gπ�r� → 0 as r→ 0. Whenever m ≤ √

p,
part (b) of Lemma 2 tells us that ḡm�r� ≤ r, which coupled with the property
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gπ ≤ ḡm, implies gπ�r� ≤ r. Finally, for 0 < r1 < r2 we obtain

gπ�r2� = ETρ�p/2�−1�r2T� � R = r2�
> ETρ�p/2�−1�r1T� � R = r2�
≥ ETρ�p/2�−1�r1T� � R = r1�
= gπ�r1��

where the inequalities come from the monotonicity property of ρ�p/2�−1 and
the fact that the conditional distribution of T given that R = r has monotone
likelihood ratio in T, r being viewed as the parameter. ✷

Remark 1. The above characterization of δπ is quite general. For instance,
it applies to the cases where T is degenerate, in particular at m yielding the
boundary uniform prior Bayes estimator δBU. It also applies to the Bayes
estimator associated with a fully uniform prior on 
�m�, for which σ�dt� =
�p/mp�tp−1 dt and gπ�r� = rPχ2

p+2�r2� ≤m2�/Pχ2
p�r2� ≤m2�.

Corollary 3. If δπ is any Bayes estimator with respect to an orthogonally
invariant prior, then δπ dominates δmle whenever m ≤m1 ∧

√
p/2.

Proof. It will suffice to verify that, with such gπ ’s, the conditions of
Corollary 2 are met. First, Theorem 4 shows that gπ is nondecreasing and
0 ≤ gπ ≤ ḡm ≤m. Second, since by assumption m ≤ √

p/2, we have by virtue
of part (b) of Lemma 2, gπ�r� ≤ r/2 ≤ r for r > 0 which completes the proof. ✷

Note that, with this last result, once the conditions on �m�p� are fulfilled,
dominance applies to all orthogonally invariant π. However, when m > m1 ∧√
p/2 conditions on the choice of π will be required. As an intermediate step

towards an application of Corollary 1 in a Bayesian context, which follows
in Corollary 4, Theorem 5 introduces a subfamily of orthogonally invariant
priors and describes conditions under which (i) gπ�r�/r is nonincreasing, (ii)
gπ�r�/r is bounded from above by 1.

Theorem 5. Suppose that the prior π has a density of the formK exp�−h×
�
θ
2�� where K is the normalizing constant.

(a) If h is nondecreasing then gπ�r�/r is bounded from above by 1.
(b) If h is convex then gπ�r�/r in nonincreasing in r. Moreover, gπ�r�/r

is bounded from above by 1 if and only if
∫m
0 tp+1 exp�−�h�t2� + t2/2��dt ≤

p
∫m
0 tp−1 exp�−�h�t2� + t2/2��dt.
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Proof. From Theorem 4 we have
gπ�r�
r

=
∫m
0 fp+2�t� r� exp�−h�t2��dt∫m

0 fp�t� r� exp�−h�t2��dt

=
∫m
0

{ ∫ t
0 fp�

√
t2 − v2� r�f2�v�0��t/

√
t2 − v2�dv

}
exp�−h�t2��dt∫m

0 fp�t� r� exp�−h�t2��dt

=
∫m
0

{ ∫m
v fp�

√
t2 − v2� r� exp�−h�t2���t/

√
t2 − v2�dt

}
f2�v�0�dv∫m

0 fp�t� r� exp�−h�t2��dt

=
∫m
0

{ ∫√m2−v2

0 fp�w�r� exp�−�h�w2 + v2� − h�w2��� exp�−h�w2��dw
}
f2�v�0�dv∫m

0 fp�w�r� exp�−h�w2��dw

= Eexp�−�h�W2 +V2� − h�W2���I�W2 ≤m2 −V2���
where V and W are independent random variables, V2 has a χ2

2 distribu-
tion and the density of W is the posterior density of 
θ
. The last expres-
sion shows that if h is nondecreasing then gπ�r�/r is bounded from above
by 1. The density of W has monotone likelihood ratio in W with r being the
parameter. If h is convex then, h�w2 + v2� − h�w2� is nondecreasing in w
for fixed v, v, w > 0. This shows that, as a function of w with v > 0 fixed,
the function exp�−�h�w2 + v2� − h�w2���I�w2 ≤m2 − v2� is nonincreasing for
w > 0. Therefore, Eexp�−�h�W2 + V2� − h�W2���I�W2 ≤ m2 − V2��V = v�
is nonincreasing in r for all v > 0 which implies that gπ�r�/r in nonincreas-
ing in r. Finally, Theorem 4 shows that gπ�r�/r → ∫m

0 tp+1 exp�−�h�t2� +
t2/2��dt/p ∫m

0 tp−1 exp�−�h�t2� + t2/2��dt as r→ 0.

Corollary 4. Suppose that the prior π has a density of the form K
exp�−h�
θ
2�� where (i) h is convex, (ii) gπ�r�/r is bounded from above by
1 and (iii) gπ�m�/m ≥ 2�ᾱ�m� ∨ β̄�m�� − 1, then the Bayes estimator δπ domi-
nates δmle.

The proof is a direct consequence of Corollary 1 and Theorem 5.

4.2. Examples, illustrations and further comments.

Example 2. Consider δU, the Bayes estimator with respect to the fully
uniform prior on 
�m�, whose functional form was given in Remark 1. Part
(a) of Theorem 5 applies with h = 0. Consequently, conditions (i) and (ii) of
Corollary 4 are met, and Table 1 reports, for 1 ≤ p ≤ 10, on the sufficient
condition (iii) of Corollary 4 for δU to dominate δmle.

Ideally, we would like to find a prior π such that δπ dominates δmle. When
m ≤ √

p, δBU dominates δmle. However, since R�0� δBU� = E0�ḡm�R��2�
increases in m with R�0� δBU�/m2 → 1 as m → ∞ while R�0� δmle� ≤ p, δBU
will not dominate δmle for large values of m. Similarly, numerical results sug-
gest that R�θ� δU� > R�θ� δmle� at 
θ
 =m for large m. As shown by Gatsonis,
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Table 1
Sufficient conditions for dominance of δmle by different Bayesian estimators

Type of prior

Orthogonally Boundary
invariant uniform Uniform Exponential family

p �m ≤ m1 ∧√
p/2� �m ≤ √

p� �m ∈ �U �p�� �m ∈ �E�p��
1 m ≤ 0�4837 m ≤ 1�0000 m ≤ 0�5230 �
2 m ≤ 0�7487 m ≤ 1�4142 m ≤ 0�8949 1�4142 < m ≤ 1�4365
3 m ≤ 0�9540 m ≤ 1�7320 m ≤ 1�2731 1�7320 < m ≤ 1�8274
4 m ≤ 1�1251 m ≤ 2�0000 m ≤ 1�6968 2�0000 < m ≤ 2�1900
5 m ≤ 1�2734 m ≤ 2�2361 m ≤ 2�2003 2�2361 < m ≤ 2�5369
6 m ≤ 1�4053 m ≤ 2�4495 m ≤ 2�6679 2�4495 < m ≤ 2�8744
7 m ≤ 1�5248 m ≤ 2�6457 m ≤ 3�0289 2�6457 < m ≤ 3�2068
8 m ≤ 1�6346 m ≤ 2�8284 m ≤ 3�3908 2�8284 < m ≤ 3�5372
9 m ≤ 1�7367 m ≤ 3�0000 m ≤ 3�7534 3�0000 < m ≤ 3�8685

10 m ≤ 1�8325 m ≤ 3�1623 m ≤ 4�1167 3�1623 < m ≤ 4�2025

MacGibbon and Strawderman (1987) for the case p = 1, it seems plausible
that comparison of the risks at 
θ
 = m leads to a sufficient (and of course
necessary) condition to decide whether or not δU dominates δmle. If this is so
then, as implied by the following Lemma, δU may very well be viewed as a
benchmark since unimodal prior densities will lead to Bayes estimators with
more shrinkage and larger risk at 
θ
 =m, while bowl-shaped prior densities
will lead to Bayes estimators with less shrinkage and smaller risk at 
θ
 =m.

Lemma 5. Let π and π ′ be two orthogonally invariant priors on 
�m� and
consider σ and σ ′ as being their induced probability measures on 
θ
.

(a) If dσ
dσ ′ is nondecreasing then gπ ≥ gπ ′ .

(b) If gπ ≥ gπ ′ then R�θ� δπ� ≤ R�θ� δπ ′ � when 
θ
 = m and R�0� δπ� ≥
R�0� δπ ′ �.

Proof. (a) Let r > 0 be fixed and let T = 
θ
. We obtain

gπ�r� − gπ ′ �r� = Covπ ′

(
ḡT�r��K�r� dσ

dσ ′ �T� − 1 � R = r

)
≥ 0

with K�r� = ∫m
0 u1−pfp�u� r�σ ′�du�/ ∫m0 u1−pfp�u� r�σ�du�. In other words, if

we assume that π ′ is the prior then gπ�r� − gπ ′ �r� is equal to the covariance
between ḡT�r� and K�r� dσ

dσ ′ �T� − 1 based on the posterior distribution of T.
The inequality holds because it is the covariance between two nondecreasing
functions of T.
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(b) We have

R�θ� δg� = Eθ�g�R� − ḡλ�R��2� + Eθλ2 − ḡλ�R�2��
Since 0 ≤ gπ ′ ≤ gπ ≤ ḡm, the results follow by setting λ =m and λ = 0. ✷

To continue, assume that m >
√
p and consider an arbitrary prior π0 which

satisfies conditions (i) and (ii) of Corollary 4. Consider further an exponential
family where πa is defined as dπa

dπ0
�θ� = exp�a
θ
2/2 − κ�a�� and a is cho-

sen such that gπa�r�/r → 1 as r → 0. Let δE be the Bayes estimator with
respect to πa. The prior πa also satisfies conditions (i) and (ii) of Corollary 4.
Although there is no guarantee that δE will dominate δmle, Lemma 5 shows
that gπa�m� > gπ0

�m� if a > 0 which is desirable since we need g�m� to be
large in order to satisfy condition (iii) of Corollary 4.

Example 3. Assume that π0 is the fully uniform prior and that m >
√
p.

It follows from above that a is the solution to the equation
∫m
0 tp+1 exp��a −

1�t2/2�dt = p
∫m
0 tp−1 exp��a − 1�t2/2�dt. Moreover, the new estimator δE

has multiplier

gπa�r� =
∫m
0 tp/2+1Ip/2�rt� exp��a− 1�t2/2�dt∫m
0 tp/2Ip/2−1�rt� exp��a− 1�t2/2�dt�

Remark 2. It follows from Corollary 3 that, for an orthogonally invariant
prior π, δπ dominates δmle if m ≤m1 ∧

√
p/2. It follows from Theorem 3 that

δBU dominates δmle if m ≤ √
p. It follows from Corollary 4 that δU dominates

δmle if m ∈ /U�p� with /U�p� = �m	 gπ0
�m�/m ≥ 2�ᾱ�m� ∨ β̄�m�� − 1� and,

δE dominates δmle if m ∈ /E�p� with /E�p� = �m	 m >
√
p and gπa�m�/m ≥

2�ᾱ�m�∨ β̄�m��−1�. Table 1 gives the values of m satisfying these conditions
for p = 1�2� � � � �10.

Remark 3. Figures 1 to 3 permit a comparison of the risk function of δmle
versus the risk functions of δBU, δU and δE. When m is small relative to
p, the risk functions of δBU and δU are much smaller than the one of δmle
and it is preferable to use δU as we can see in Figure 1. However, there are
cases �m�p� = �1�1�� e�g�� where δBU dominates δmle but δU does not. Several
different scenarios can happen when we want to verify if the estimators δBU
or δU dominate δmle as m and p vary. Figure 3 illustrates that the sufficient
condition m ≤ √

p for δBU to dominate δmle is too restrictive. Similarly, the
same can be said about the sufficient condition m ∈ /U�5� = �0�2�2003� for δU
to dominate δmle (numerical evaluations of the risk functions, as in Marchand
and MacGibbon (2000) give for p = 5 that δU dominates δmle if and only
if m ≤ m0, with m0 ≈ 3�07497). Finally, the estimator δE provides a good
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Fig. 1. Risk of themle versus the risks of other Bayes estimators for �m�p� = (1,3).mle: maximum
likelihood estimators, BU: boundary uniform prior, U: fully uniform prior.

compromise between δBU and δU. We also observed that its risk function tends
to be flatter and that δE tends to have smaller maximum risk than δmle.

Remark 4. Corollary 4 has been applied to the Bayesian estimators δU and
δE only. However, the introduction of Lemma 5 coupled with the numerical
evaluations in Table 1 of the benchmarks m ≤ √

p, m ∈ /U�p� and m ∈ /E�p�
yield further implications for other Bayesian dominating estimators. We con-
clude by describing these implications which refer to Bayesian estimators
associated with priors of the form K exp�−h�
θ
2��. Please note that the con-
ditions on h for dominance in (1) and (2) below are very generous, yielding
many Bayesian dominating estimators.

1. Whenever m ≤ √
p and m ∈ /U�p�, then any prior with convex and non-

increasing h will yield a dominating Bayes estimator. To see why this is
so, we apply Corollary 4. Shrinkage [condition (ii)] occurs necessarily when
m ≤ √

p and Lemma 5 ensures us that the corresponding gπ�m� will exceed
the corresponding multiplier gπ0

�m� for the fully uniform Bayes estimator.
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Fig. 2. Risk of the mle versus the risks of other Bayes estimators for �m�p� = (1.5,1). mle: max-
imum likelihood estimators, BU: boundary uniform prior, U: fully uniform prior, E: exponential
family prior.

2. Whenever p ≥ 6, m >
√
p and m ∈ /U�p�, then any prior with convex

and nonincreasing h, such that h�t2� + at2/2 is nondecreasing in t2, will
yield a dominating Bayes estimator (this includes δE). Here the additional
assumption guarantees that the resulting Bayes estimator is a shrinkage
estimator [via Lemma 5 and by definition of �a�]. Please note that from
Table 1, the conditions m >

√
p and m ∈ /U�p� are incompatible for p ≤ 5,

but compatible for 6 ≤ p ≤ 10 (as well, extended computations reveal
compatibility for 11 ≤ p ≤ 30�.

3. Whenever p ≥ 2,m >
√
p andm ∈ /E�p�, δE dominates δmle. Furthermore,

if m /∈ /U�p�, Lemma 5 tells us that no unimodal orthogonally invariant
prior density will satisfy condition (iii) of Corollary 4, since its multiplier
gπ will be less than δU’s multiplier, which is itself not large enough to
meet this same condition (iii) of Corollary 4. Please note that from Table
1, the set /E�p� is empty for p = 1, but not for 2 ≤ p ≤ 10 [as well,
extended computations mentioned in (2) above imply that /E�p� �= � for
11 ≤ p ≤ 30].

4. Finally, whenever m >
√
p and m /∈ /E�p�, δE does not satisfy the condi-

tions of Corollary 4.
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Fig. 3. Risk of the mle versus the risks of other Bayes estimators for �m�p� = �3�5�. mle: max-
imum likelihood estimators, BU: boundary uniform prior, U: fully uniform prior, E: exponential
family prior.

APPENDIX

Proof of Lemma 4. (a) Let 0 < λ1 < λ2. From Lemma 1 we obtain

α�m�λ1� = Eθ1
ρ�p/2�−1�λ1R� � R > m�

< Eθ1
ρ�p/2�−1�λ2R�� � R > m�

≤ Eθ2
ρ�p/2�−1�λ2R�� � R > m�

= α�m�λ2��
where (i) the first inequality follows from the monotone increasing property
of ρ�p/2�−1, and (ii) the second inequality follows from the fact that the density
of R has monotone likelihood ratio in R. Also, if 0 < λ ≤m1 < m2 then

α�m1� λ� =
PθR > m2�
PθR > m1�

α�m2� λ� +
(

1 − PθR > m2�
PθR > m1�

)

×Eθρ�p/2�−1�λR� �m1 < R ≤m2� < α�m2� λ��
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since the increasing property of ρ�p/2�−1 leads to ρ�p/2�−1�λr� < α�m2� λ� on
�r	 m1 < r ≤m2�. Finally, from Lemma 2 with 
θ
 =m, we obtain

0 ≤ ᾱ�m� = EθmR
ρ�p/2�−1�mR�

mR
� R > m�

≤ m

p
EθR � R > m� → 0 as m→ 0

and

1 ≥ ᾱ�m� ≥ ρ�p/2�−1�m2� → 1 as m→ ∞�

(b) When p = 1 and m is fixed, straightforward computations give

∂β�m�λ�
∂λ

= Eθ

[
ρ−1/2�λR�

R

∣∣∣∣R ≤m

]

+λ2
{
Eθ

[
1
R

∣∣∣R ≤m

]
− Eθ

[
ρ−1/2�λR�

R

∣∣∣∣R ≤m

]

×Eθρ−1/2�λR� � R ≤m�
}

≥ 0�

with �θ� = λ. When p > 1 and m is fixed, calculations using Lemma 3 and the
Poisson mixture representation of the noncentral chi-square distribution lead
to β�m�λ� = 2Eλγ�K�� where K is a random variable with

PλK = l� ∝ �λ2

2 �l
l!2�p/2�+l���p/2� + l�

∫ m2

0
vp/2+l−1e−v/2 dv� l = 0�1� � � � �

and

γ�k� = k

∫m2

0 u�p/2�+k−2e−u/2 du∫m2

0 vp/2+k−1e−v/2 dv
�

Since K has monotone likelihood ratio in K, it is sufficient to show that γ
is nondecreasing to prove that β�m�λ� is nondecreasing in λ for fixed m.
Integration by parts gives

γ�k� = k
p
2 + k− 1

[
e−m

2/2∫m2

0 � v
m2 ��p/2�+k−1e−v/2 dv

+ 1
2

]

and, from this expression, we see that, when p > 1, γ is the product of two
nondecreasing functions. Finally, from Lemma 2 with 
θ
 =m, we obtain

0 ≤ β̄�m� < m2

p
for m > 0
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and

β̄�m� ≥ Eθρ�p/2�−1�mR� � R ≤m� → 1 as m→ ∞�
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