
 Spring 2010 Journal of Computer Information Systems 81

ImprovIng open SourCe
Software maIntenanCe

 vIShal mIdha praShant palvIa
 The University of Texas – Pan American The University of North Carolina at Greensboro
 Edinburg, TX 78539 Greensboro, NC 27402

 rahul SIngh nIr KShetrI
 The University of North Carolina at Greensboro The University of North Carolina at Greensboro
 Greensboro, NC 27402 Greensboro, NC 27402

Received: June 22, 2009 Revised: August 17, 2009 Accepted: September 9, 2009

aBStraCt

 Maintenance is inevitable for almost any software. Software
maintenance is required to fix bugs, to add new features, to
improve performance, and/or to adapt to a changed environment.
In this article, we examine change in cognitive complexity and its
impacts on maintenance in the context of open source software
(OSS). Relationships of the change in cognitive complexity with
the change in the number of reported bugs, time taken to fix the
bugs, and contributions from new developers are examined and
are all found to be statistically significant. In addition, several
control variables, such as software size, age, development status,
and programmer skills are included in the analyses. The results
have strong implications for OSS project administrators; they
must continually measure software complexity and be actively
involved in managing it in order to have successful and sustainable
OSS products.
 Keywords: OSS, Complexity, Software Maintenance

IntroduCtIon

 The importance of software maintenance in today’s software
industry cannot be underestimated. Maintenance is inevitable
for almost any software. Software maintenance is required to
fix bugs, to add new features, to improve performance, and/or to
adapt to a changed environment. Pigoski [39] illustrated that the
portion of industry’s expenditures used for maintenance purposes
was 40% in the early 1970s, 55% in the early 1980s, 75% in the
late 1980s, and 90% in the early 1990s. Over 75% of software
professionals perform program maintenance of some sort [24].
Given the numbers, the understanding of software maintenance is
prudent.
 It is not unusual that a developer modifying the source code
has not participated in the development of the original program
[31]. As a consequence, a large amount of the developer’s efforts
goes into understanding and comprehending the existing source
code [46]. Comprehending existing source code, which involves
identifying the logic in and between various segments of the
source code and understanding their relationships, is essentially
a mental pattern-recognition by the software developer and
involves filtering and recognizing enormous amount of data
[43]. As software is becoming increasingly complex, the task of
comprehending existing software is becoming increasingly tough

[43]. Fjelstad and Hamlen [17] reported that more than 50% of
all software maintenance effort is devoted to comprehension. The
comprehension of source code, thus, plays a prominent role in
software development.
 In this article, we examine software complexity and its impacts
in the context of open source software (OSS). Past efforts have
been piecemeal or based on limited information. For example,
comprehension of the source code has been linked with source
code complexity. The empirical evidence on the magnitude of the
link is relatively weak [29]. However, many such attempts are
based on experiments involving small pieces of code or analysis of
software written by students [2]. In order to remedy this situation,
we analyze real world software written by the OSS developer
community. A number of studies has examined the impact of
complexity on maintainability and made recommendations to
reduce the complexity [30][31]. But, no study, to the best of our
knowledge, has tested if the reduced complexity was actually
beneficial to the developers performing software maintenance.
This study specifically examines the impact of change in software
complexity on maintenance efforts.

open Source Software development

 A typical open source project starts when an individual (or
group) feels a need for a new feature or entirely new software, and
someone in that group, eventually writes one. In order to share it
with others who have similar needs, the individual/ group releases
the software under a license that allows the community to use, and
to see and modify the source code to meet local needs and improve
the product by fixing bugs. Making software available widely on
an open network, e.g., the Internet, allows developers around the
world to contribute code, add new features, improve the present
code, report bugs, and submit fixes to the current version. The
developers of the project incorporate the features and fixes into
the main source code and a new version of the software is made
available to the public. This process of code contribution and bug
fixing is continued in an iterative manner as shown in Fig 1.
 OSS supporters often claim that OSS has faster software
evolution. The idea is that multiple contributors can be writing,
testing, or debugging the product in parallel. Raymond [42]
mentioned that more people looking at the code will result in more
bugs found, which is likely to accelerate software improvement.
The OSS model claims that the rapid evolution produces better

makammer
Typewritten Text

makammer
Typewritten Text

makammer
Typewritten Text
Midha, V., Palvia, P., Singh, R., and Kshetri, N. “Improving Open Source Software Maintenance”. Journal of Computer Information Systems. Volume 50, Number 3, Spring 2010, pp. 81-90.

makammer
Typewritten Text

makammer
Typewritten Text
Made available courtesy of the International Association for Computer Information Systems: http://www.iacis.org/jcis/jcis.phpReprinted with permission. No further reproduction is authorized without written permission from the International Association for Computer Information Systems.

makammer
Typewritten Text

makammer
Typewritten Text

makammer
Typewritten Text

http://www.iacis.org/jcis/jcis.php
http://libres.uncg.edu/ir/uncg/clist.aspx?id=814
http://libres.uncg.edu/ir/uncg/clist.aspx?id=760
http://libres.uncg.edu/ir/uncg/clist.aspx?id=865

 82 Journal of Computer Information Systems Spring 2010

software than the traditional closed model because in the latter
“only a very few programmers can see the source and everybody
else must blindly use an opaque block of bits” [38].
 One interpretation of the OSS development process is that of
a perpetual maintenance task. Developing an OSS system implies
a series of frequent maintenance efforts for bugs reported by
various users. As most of the OSS projects are results of voluntary
work [14][48], it is crucial to ensure that such volunteers are able
to work with minimal effort. The motivation for why developers
contribute to a source code has received a great deal of attention
from researchers [34]. However, the factors that can make the
OSS community to not contribute to a source code have received
limited attention.
 In this light, von Hippel and von Krogh [51] noted that
the major concern among developers was the complexity of
the source code and the level of difficulty of the embedded
algorithms. Fitzgerald [15] pointed that increasing complexity
posits a barrier in the OSS development and may trigger the need
for either substantial software reengineering or the entire system
replacement. Therefore, it is vital to understand the complexity of
the source code and its impact on software development, and even
more importantly, on OSS development.

oSS and Complexity

 A complex project, in general, demands a large share of
resources to modify and correct. When the source code is easy,
it is easier to maintain it. On the contrary, when a source code
is complex, developers have to expend a large portion of their
limited time and resources to become familiar with the source
code. In OSS, where the developers seek to gain personal
satisfaction and value from peer review and are not bound to
projects by employment relationships, they have the option to
leave the project at any time and join other projects where their
resources could be used more efficiently. Therefore controlling
complexity in OSS projects may have several benefits, including
facilitation of new developers’ learning. Feller and Fitzgerald
[14] pointed that if new contributors are to have any chance at
contributing to OSS projects, they should be able to do so with
minimal effort. Controlled complexity helps achieve that; thus
being indispensable for OSS [14].
 Much of what we know about software complexity comes

from analyses of closed source development (e.g., [5]). As noted
by Stewart et al [49], even though the results from those findings
have been applied to OSS (e.g., study of Debian 2.2 development
[21]), there remains a relative scarcity of academic research on
the subject. More importantly, these studies were limited to a
small number of projects.
 The remainder of the paper is organized as follows: The next
section draws on relevant literature to develop a theoretical model.
It is followed by a description of the methods and measures used
in the study. The following sections present the evaluation of the
model and discussion of the results. The paper is concluded by
acknowledging its limitations and highlighting its contributions
to both research and practice.

model development

 Basili and Hutchens [4] define complexity as a measure of the
resources expended by a system while interacting with a piece
of software to perform a given task. It is important to clearly
understand the term “system” in this definition. If the interacting
system is a computer, then complexity is defined by the execution
time and storage required to perform the computation. For
example, as the number of distinct control paths through a
program increases, the complexity may increase. This kind of
complexity is called “Computational Complexity” [11]. If the
interacting system is a programmer, then complexity is defined by
the difficulty of performing tasks. This complexity comes from
“the organization of program elements within a program” [22], for
example, tasks such as coding, debugging, testing, or modifying
the software. This kind of complexity is known as “Cognitive
Complexity”. Cognitive complexity refers to the characteristics
of the software which make it difficult to understand and work
with [11]. It is our primary concern.
 The notion of cognitive complexity is linked with the
limitations of short term memory. According to the cognitive
load theory, all information processed for comprehension must at
some time occupy short-term memory [43]. Short term memory
is described as the capacity of information that brain can hold
in an active, highly available state. Short term memory can be
thought of as a container, where a small finite number of concepts
can be stored. If data are presented in such a way that too many
concepts must be associated in order to make a correct decision,

fIgure 1 — oSS development

 Spring 2010 Journal of Computer Information Systems 83

then the risk of error increases. In OSS, a voluntary developer
must retain the existing source code in short term memory in
order to successfully modify the existing code. The capacity
of holding information may vary depending on the individual
and may limit the capability of developers to comprehend and
modify the existing source code. Kearney et al [29] suggested
that the difficulty of understanding depends, in part, on structural
properties of the source code. As we are concerned with the
impact of complexity on source code comprehension, we focus
on properties related to the source code. This argument forms the
basis for theorizing the impact of complexity on various aspects
on OSS development, as described below.

number of Bugs

 The main idea behind the relationship between complexity
and number of bugs is that when comparing two different
solutions to the same problem, all other things being equal, the
more complex solution will generate more bugs. This relationship
is one of the most analyzed by software metrics’ researchers and
previous studies and experiments have found this relationship to
be statistically significant [11][27].
 In order for a programmer to understand the existing source
code, he needs to understand the flow of logic. And, when a
programmer has to deal with a source code with high cognitive
complexity, he has to frequently search among dispersed pieces
of code to determine the flow of logic [40]. Understanding and
recollecting such dispersed pieces increase the cognitive load on
the programmer making complex code maintenance more liable to
human errors. Complex software, hence, need more maintenance
efforts. Gill and Kemerer [20] reported that the number of bugs
in a program is positively associated with maintenance effort and
recommended further empirical testing with a larger data set.
Therefore OSS projects which experience increase in complexity
over its previous version also would experience an increase in the
number of bugs (over its previous version). Based on above, we
propose:

H1: An increase in the source code’s cognitive complexity
is positively associated with an increase in the number
of bugs in the OSS source code.

Contributions from new developers

 Because of the important role of volunteer developers in the
OSS development, attracting new developers and keeping them
motivated is crucial to OSS development. Keeping the developers
motivated is especially important during the early development
stage so that the number of developers can reach a critical mass.
Some of the cited developers’ motivations include intellectual
gratification, career future incentives, learning and enjoyment,
ego-boosting, and peer recognition [6][8][35][37].
 Once a new developer is motivated to voluntarily contribute,
he needs to first spend a large amount of time and resources to
understand the existing source code. When the source code is easy
to comprehend, it is easier to modify. However, when the source
code is complex, a developer is required to invest additional
effort and resources to understand it. Devoting such effort and
resources may pose a barrier to the developer’s motivation to
contribute. Such a barrier may lead the potential developer to
not contribute to the project at all, or, in worst case, to leave the
project. Hence,

H2: An increase in the source code’s cognitive complexity
is negatively associated with an increase in the
number of contributions to the OSS source code from
new developers.

time to fix Bugs

 More complex source code adds to a programmer’s cognitive
load [12]. High cognitive load requires more time-consuming and
resource-demanding effort to familiarize oneself with the code.
It is even possible that a source code is so complex that it cannot
be comprehended at all. In such a scenario, the programmer may
spend time and resources on other activities, thereby further
lowering the productivity of the project.
 In other words, a source code with lesser cognitive complexity
does not need as much effort or resources, thus reducing the
turnaround time required to fix repairs. This leads to the next
hypothesis that OSS projects which experience increase in
cognitive complexity over its previous version require longer time
to fix the bugs. Hence, we hypothesize,

H3: An increase in the source code’s cognitive complexity
is positively associated with an increase in the average
time taken to fix the bugs in OSS source code.

 Combining all the preceding conceptual arguments gives
the research model shown in Fig. 2. Note that several control
variables have been included in the model in order to increase
the robustness of our findings. The specific variables will be
described in the next section.

methodS

 The following explanation is helpful in understanding the
research design and methods. This study investigates the impact
of change in complexity. To compute the change in complex-
ity, the complexity of two consecutive versions of software
must be looked at. It is important to note that the complexity
of the source code of a software version can only be measured
after it has been released to the OSS community. Only after it
has been used, the discovered bugs are reported and the code
is modified to fix these bugs. Once significant amount of modi-
fications have been made, a new version is released to the pub-
lic. Due to the modifications in the source code, the complexity
of the source code changes. In order to compute the change in
complexity of the current version (say Nth) from its previous
version (N-1th), one needs to measure the complexity of both the
current (Nth) and the previous version (N-1th). As the modifications
and contributions made to the current version (Nth) are available
in the next version (N+1th), one needs to also look at the next
version (N+1th) to find these modifications and contributions.
As a consequence, for each project, we need to study three
releases, referred to as the first (N-1th), the second (Nth), and the
third (N+1th).
 OSS projects hosted at SourceForge were examined in this
study. SourceForge is the primary hosting place for OSS projects
which houses about 90% of all OSS projects. It has been argued
SourceForge is the most representative of the OSS movement, in
part because of its popularity and the large number of developers
and projects registered [23][54]. Researchers interested in
investigating issues related to the OSS phenomenon have
predominantly used SourceForge data [23][51][54].

 84 Journal of Computer Information Systems Spring 2010

 Studying all projects hosted on SourceForge was unfeasible
and impractical due to resource limitations. Data selection
was limited to projects that were targeted to either end users
or developers. In order to avoid ambiguity, projects that were
targeted to both end users and developers were excluded.
Further selection was made by controlling for the programming
language and the operating system. Past literature suggests that
programming language has an explicit impact on complexity
[52] and program size [28]. It is also difficult to compare lines
of code between “high” and “low” level programming lan-
guages. Lower level programming languages have more lines
of code and take longer to develop than higher level program-
ming languages. As C family of languages is the most preferred
by the OSS developers [45], only projects written in C/C++
or multiple languages including C/C++ were selected. Sec-
ondly, operating system of the project impacts the complexity
of the software and the development effort required. To en-
compass majority of the projects targeted for developers and end
users, all projects in the data set were designed either for the
Windows or the Linux/Unix operating system.
 As the data was collected from three different versions of
software, the sample was further restricted to the projects that
had at least 3 versions. A version released between first 3-months
of the registration date is considered First release, another major
version released between 3 to 6 months of its registration date is
considered Second release, and yet another major version released
within 6 to 12 months of its registration date is considered the
Third release for this study. Therefore, to be able to get the data
for three different versions, we considered all projects that were
registered between SourceForge between January 2003 and
August 2006 so that the third release for the projects that were
registered in August 2006 was released by August 2007. The final
data collection was completed in August 2007. Lastly, projects
were chosen for which the required data were publicly available

(not all projects allow public access to the bug tracking system).
Following the above criteria, the final sample size was limited to
450 projects.

 meaSureS

Cognitive Complexity

 McCabe’s cyclomatic complexity (CC) assesses the diffi-
culty faced by the maintainer in order to follow the flow con-
trol of the program. It is considered an indicator of the effort
needed to understand and test the source code [47]. Kemerer
and Slaughter [30] used McCabe’s cyclomatic metric to eval-
uate decision density, which represents the cognitive burden
on a programmer in understanding the source code. In order
to compute cyclomatic complexity, each source code file was
subjected to a commercial software code analysis tool. To ac-
count for the effects of size, the complexity metric was normalized
by dividing it by the number of lines of code for each software
project. This procedure also reduces collinearity problems when
size is included in the regression models [20]. The Change in
Cognitive Complexity (ChgCC) was calculated by subtracting
cyclomatic complexity measure of the first version from the
cyclomatic complexity measure of the second version, i.e.,
CC

2nd
– CC

1st
.

Change in number of Bugs and time taken to fix Bugs

 Various elements of data were extracted from the bug tracking
system and the Concurrent Versioning System (CVS) reports,
including the bugs reported, the date on which the bugs were
reported, the date on which the bugs were fixed, and the version
number. One problem faced was that all the bugs in the current
version were not closed at the time of the study. To overcome

fIgure 2 — the research model

 Spring 2010 Journal of Computer Information Systems 85

the problem, earlier versions that had more than 90% of the bugs
closed at the time of study were included. From these extracted
elements, the number of bugs reported and the time taken to fix
them for different software versions were computed. From the
number of bugs and the time to fix these bugs for each version,
the change in the number of bugs (ChgBugsReported) over
previous version and the change in the average time to fix the
bugs (ChgFixTime) were computed (i.e., BugsReported

3rd
 -

BugsReported
2nd

).

Contributions from new developers

 Software developers use CVS to manage the software
development process. CVS stores the current version(s) of the
project and its history. A developer can check-out the complete
copy of the code, work on this copy and then check back the
changes. The modifications are peer reviewed ensuring quality.
CVS updates the modified file automatically and registers it as a
commit. CVS keeps track of what change was made, who made
the change, and when the change was made. This information
can be gathered from the log files of the CVS repository of a
project. As CVS commits provide a measure of novel invention
that is internally validated by peers [10][23], the number of
CVS commits is used as a measure of contributions of devel-
opers. A commit is considered as ‘contribution from a new
developer’, when the developer has not contributed to the pre-
vious version. The number of contributions made by new
developers is represented as ChgNewDevs (i.e., ChgNewDevs

3rd

- ChgNewDevs
2nd

).

Control variables

Age

 Brook’s Law [7] states that “adding more programmers to a
late project makes it later”. Based on this, adding new developers
at later stages will increase the average time taken to fix bugs. On
the other hand, age may indicate the legitimacy and popularity
of the software. Popular software attracts more developers and
thus older software will have higher number of contributions
from developers. To control for age, the Age variable is defined
as the number of months till the second release since a project’s
inception at SourceForge.

Size

 Size is the oldest measure of software complexity and is
believed to be a major driver of software maintenance effort [53].
Larger software is likely to receive more enhancements and more
repairs than smaller software, ceteris paribus, as larger software
embodies greater amount of functionality subject to change. The
larger the software, the more difficult it is to test and validate its
functionality. This implies that larger software tend to incorporate
more errors. Keeping the above in mind, Size is used as a control
variable and is captured by the number of lines of code of the
second release.

Number of downloads

 OSS developers can leverage the law of large numbers to
identify and fix the bugs [41]. Given enough eyeballs, all bugs
are shallow. A huge user base for the software implies that the

software will be tested in numerous different environments, more
bugs will surface, these will be communicated efficiently to more
bug fixers, the fix being obvious to someone, and the fix will
be communicated effectively back and integrated into the core
of the product. To isolate this effect, the number of cumulative
downloads (Downloads) of till second release of the project is
used as a control variable.

New Developer Knowledge and Skills

 The literature on performance has identified individual
characteristics such as knowledge and skills as antecedents.
Such characteristics are, however, difficult to measure, and are
frequently measured through the use of surrogate measures like the
level of education and experience. Curtis et al. [11] reported that
in a series of experiments involving professional programmers,
the number of years of experience was not a significant predictor
of comprehension, debugging, or modification time, but that
number of languages known was. They suggest that the breadth
of experience may be a more reliable guide to ability than length
of programming experience. In this work, we also use the breadth
of the experience as a surrogate for developer’s knowledge and
skills. So, to control for the effect of new developers’ skills,
the variable SkillsChg (i.e. Skills

2nd
 –Skills

1st
) was used and was

measured by the change in team skills with the addition of new
developers to the team.

Sponsorship

 An increasing number of open source projects have opted
to receive monetary donations from organizations and users.
Although some developers and projects choose to allocate part or
all of the incoming donations to SourceForge, most recipients of
the donations rely on monetary support to fund development time
and other key resources that are necessary for the continuation of
the projects. It is expected that developers receiving additional
monetary benefits will devote extra effort and time into
comprehending and fixing the source code. The control variable
AcceptSponsors is used to capture whether a project is accepting
external funds and using monetary compensation as part of its
incentive mechanism. It takes the value of 1 if the project is
accepting donations and 0 otherwise.

Development Status and Maturity

 To capture the development stage of a project, which is
typically determined by the developer in charge of the project on
SourceForge, the control variable DevStatus takes values ranging
from 1 to 6 representing development stages of Planning, Pre-
Alpha, Alpha, Beta, Production/Stable, and mature respectively.
DevStatus was also measured at second release. The larger the
value of DevStatus, the more mature the project is.

transformations

 Initial investigations indicated that the dependent variable and
many of the independent variables were not normally distributed.
In such case, linear regression analysis might yield biased and non
interpretable parameter estimates [19]. Therefore, as suggested
by Gelman and Hill [19], a logarithmic transformation on the
dependent and the not-normally distributed independent variables
was performed.

 86 Journal of Computer Information Systems Spring 2010

reSultS

 The Variance Inflation Factor (VIF) was computed for all
variables in order to test for multicollinearity. VIF is one measure
of the effect other independent variables might have on the
variance of a regression coefficient. Large VIF values indicate
high multicollinearity. Studenmund [50] recommends a cut
of 10 for VIF. The VIF values for the different variables in the
regression analyses are reported in Table 1, and in no case exceed
1.2. The low VIF values indicate that multicollinearity is not a
serious problem.
 As we are interested in studying the impact of change of
complexity on three dependent variables which are largely
distinct, we formulate three separate regression equations
analyzing each of the dependent variables. For the dependent
measure, ChgBugsReported, the impact of change in complexity
on the number of bugs (Hypothesis H1) was found by estimating
the parameters in the following regression model:

ChgBugsReported = α + β
1
ChgCC + β

2
lnSize + β3lnDownloads

+ β
4
AcceptSponsors + β

5
DevStatus + β

6
lnAge + β

7
lnSkillsChg

 A positive and significant estimate of parameter β
1
 would

indicate that the probability of having bugs in a source code
increases as the cognitive complexity of software increases. The
results of the regression (Hypothesis 1) are presented in Table 1.
The model shows a good fit with the data (F=33.552, p<0.00).
The parameter estimate for ChgCC is positive and significant
(β

1
=0.303, p<0.00). The results suggest that projects with unit

increase in cognitive complexity experience 0.303 units increase
in the number of bugs, and H1 is supported. The studied variables
explained 37.5% of the total variance in the change in bugs
reported (R2=0.375).
 Tested next is the impact of complexity on the number of
contributions from new developers (hypothesis H2) by estimating
the parameters for the following regression model:

ChgNewDevCommits = α + β
1
ChgCC + β

2
lnSize +β

3
lnDownloads

+ β
4
Sponsors + β

5
DevStatus + β

6
lnAge + β

7
lnSkillsChg

 The results of the regression (Hypothesis 2) are presented
in Table 1. The model shows good fit with the data (F=34.702,
p<0.000). The parameter estimate for ChgCC is significantly

negative (β
1
=-0.359, p<0.000). The results suggest that a unit

increase in cognitive complexity decreases the contributions from
new developers by 0.359 units. Hypothesis H2 is supported. The
studied variables explained 38.5% of the total variance in the
change in new developers’’ commits (R2=0.385).
 Finally, examined is the impact of complexity on the time
taken to fix bugs (hypothesis H3) by estimating the parameters
for the following regression model:

Time to fix bugs = α + β
1
ChgCC + β

2
lnSize + β

3
lnDownloads ++

β
4
Sponsors + β

5
DevStatus + β

6
lnAge + β

7
lnSkillsChg

 Table 1 shows the results of the regression analysis (Hypothesis
3). The model shows a good fit with the data (F=70.660, p<0.000).
The parameter estimate for ChgCC is significant and positive
(β

1
=0.720, p<0.000), indicating that projects that experience a

unit increase in cognitive complexity takes 0.720 units additional
time to fix bugs. Thus hypothesis H3 supported. The studied
variables explained 56.1% of the total variance in the change in
time taken to fix the reported bugs (R2=0.561).

dISCuSSIon and ImplICatIonS

main effects

 The increase in the cognitive complexity of open software as
it evolves over time is of significant concern, as it will make
software maintenance increasingly difficult. In the extreme,
developers may stop making fixes and refinements rendering
the software error-prone and obsolete. Ultimately the open
software may perish its own death, be replaced by another
software project, or may go a major and laborious overhaul; all
options are expensive. In this section, we discuss our findings on
how complexity and control variables influence different aspects
of software maintenance.
 The literature shows mixed support for the negative impact
of complexity on software quality. For example, Harter and
Slaughter [25] found a negative association between complex-
ity and quality. However, Gaffney [18] did not find software
complexity to be associated with error rates. Fitzsimmons
and Love [16] reported that the correlation between cognitive
complexity and the reported number of bugs ranges from 0.75
to 0.81. In our data, the correlation between the number of

taBle 1 — regression results

 hypothesis 1 hypothesis 2 hypothesis 3 Collinearity
 model Statistics
 β Sig. β Sig. β Sig. (VIF)

 ChgCC .303 .000 -.359 .000 .720 .000 1.150

 Size .228 .000 -.157 .000 .010 .775 1.160

 Downloads .173 .000 .099 .016 -.100 .004 1.205

 AcceptSponsors -.171 .000 .330 .000 -.082 .012 1.053

 DevStatus -.067 .083 .097 .011 -.010 .764 1.042

 Age .156 .000 .038 .350 -.040 .245 1.177

 SkillsChg -.016 .664 -.105 .006 .069 .030 1.014

 Adjusted R-Square 0.375 0.385 0.561

 Spring 2010 Journal of Computer Information Systems 87

bugs reported and complexity was 0.43. It is interesting to
note that the correlation found in this study was much smaller
than the correlations reported in earlier studies for non-open
source software; however, it is consistent with the literature
on OSS. In the context of OSS, Schröter et al. [44] reported
the correlation value in the range of 0.40. Furthermore, Kem-
erer and Slaughter [30] found that complex software is more
frequently repaired, which has the effect of increasing the
number of bugs. Therefore, it can be said with confidence that
as the complexity of the software increases, the number of re-
ported bugs, and by implication the actual number of bugs
increases.
 Another measure of software quality is the time taken to fix
bugs. In fact, by mining software histories of two projects, Kim
and Whitehead [32] recommended to use time taken to fix bugs
as a measure of software quality. In our analysis, we found that
the complexity of software has a strong positive influence on the
time taken to fix bugs. It is common that when a bug is fixed in
one segment of the source code, it usually causes ripple effects
and adjustments in other segments [36]. The more complex the
software is, the more are the adjustments in other segments. As
a consequence, the developer has to simultaneously understand,
and repair related pieces in dispersed segments. Handling all
segments together has a detrimental effect on the time devoted by
the developer because more time is needed to follow the flow of
logic within the code [3]. This is supported by several empirical
studies that have found that time required to fix bugs increases
as complexity increases [5][20]. This result has another spurious
effect on software maintenance. When a developer becomes
conscious of long time needed to fix a bug, there is tendency for
the developer find “quick and dirty” solutions, thereby making
the code even less maintainable. Such half-baked efforts lead to
a vicious cycle in which the complexity, the number of bugs, and
the time taken to fix those bugs feed on each other until a dead end
is reached with the only option of either reengineering the project
or shutting it down completely.
 Another reason for the longer time to fix bugs in complex
code can be found in Dymo’s [13] observations. Dymo noted that
most people prefer to work on software enhancements by adding
features rather than working on fixing bugs. This is especially
true, when the source code is more complex. Debugging and
understanding the existing code, written by someone else, takes
more time and resources. As the majority of the work is done on
voluntary basis in open software and developers are not bound by
contracts, developers tend to work on new versions of the software
rather than continue to work on improving the old ones. Although
this has the potential of bringing them more visibility in the OSS
community, the net effect is further delay in fixing bugs.
 Another impact of source code complexity analyzed in the
study is on attracting contributions from new developers. Analysis
shows that cognitive complexity has a strong negative influence
on the number of contributions from new developers. As OSS
thrives upon voluntary contributions, the project managers must
actively control the source code complexity in order to attract
contributions from new developers. In a complex piece of code,
it takes longer for a developer to determine the flow of logic
resulting in slower progress of the project [40]. Cavalier [8]
pointed that the willingness of people to continue to contribute
to a project is related to the progress that is made in the project.
If a large number of activities do not seem to be moving forward,
participants lose interest, leading them to leave the project. This
leads to a higher likelihood of activities not being completed, and

ultimately, the death of the project. Such projects become inactive
over time and fail to attract any contributions.

effects of Control variables

 Interesting observations can be made based on the effects of
the control variables. Our analysis found strong effects of size on
the number of bugs and the number of contributions from new
developers. It is often argued that complexity and size are strongly
correlated and that could lead to the problem of multicollinearity,
which tends to inflate regression coefficients. As mentioned
earlier, multicollinearity was tested by computing variance
inflation factors and was found to be within permissible limits.
Accordingly the effects of size are independent of the effects of
complexity.
 The number of downloads has strong effects on the number of
bugs, time to fix bugs, and the number of contributions from new
developers. The number of downloads indicates the popularity
of a project; popular projects attract more user and developers
[33]. As the number of users and developer community grow,
the number of eyes watching the source code increases. As Eric
Raymond [41] repeatedly mentions “to many eyes, all bugs are
shallow”. When source code is open and freely visible, users can
readily identify flaws. The probability of finding a bug increases
with the increase in the number of eyes. As a result, the number
of hands working on code also increases leading to increased
contributions from new developers.
 The continued development of a project, represented by
its age, gives software legitimacy, reputation and attention of
the community. However, in our study, age did not show any
significant effect. The reason could be because a large number of
OSS projects on SourceForge are in early stages of development
and there was not much variance in the data. This could be
attributed to the ease with which new projects can be started.
Such projects become inactive over time and have almost zero
contributions from the developer community. It could be argued
that age can bring legitimacy, reputation, and attention only if the
project is active. Therefore, a more reliable indicator of continued
development is the development status of a project, which was also
studied and was found to have a significant positive impact on the
number of commits from new developers. In the OSS literature,
development status has been shown to have a positive impact on
project’s popularity. Al Marzouq et al. [1] argue that a project
attracts more developers as the software becomes more stable.
In turn, these new developers bring effort and contribution that
improves the software. A growth cycle begins a network effect
that feeds both the community and development of the software.
 Lakhani and Wolf [34] showed that developers receiving
money in any form spend more time working on OSS than their
peers. Similar results are shown by this study. We found that the
projects that have any form of sponsorship have higher number
of contributions from new developers. Such projects also had less
number of bugs and took lesser time to fix the bugs. This clearly
indicates that developers are receptive to external stimuli such
as a monetary reward. Henkel [26] illustrated a similar impact
of external sponsorship on the development of applications for
Linux, one of the most successful OSS project. Henkel noticed
that most contributors in the field of embedded Linux are salaried
or contract developers working for commercial firms.
 The change in team skills with the addition of new developers
was found to have significant influence on the number of
contributions from new developers and the time taken to fix

 88 Journal of Computer Information Systems Spring 2010

bugs. However, both relationships were in a direction opposite to
what was expected. The expectation was that as new developers
increase, the number of contributions will increase and the time
taken to fix bugs will reduce. The opposite directions of the
relationships indicate that with the increase in number of skills,
the overall time to fix bugs increases and the new contributions
decrease. A logical explanation is that either the developers are
just joining the development team without actually contributing
towards project development or the amount of contributions is
not proportionate to the number of skills they possess. Possibly
the same core group of developers are largely responsible for
the majority of contributions, and new developers do not add
anything substantive. This logic is consistent with the commonly
held belief in OSS that development follows Pareto’s law, where
a small number of developers (~20%) are responsible for the
majority of the work accomplished (~80%).

lImItatIonS and ContrIButIonS

 Some limitations of the study need to be pointed out. The first
limitation is the sample frame. While SourceForge has data about
a vast collection of OSS projects, it does not capture all OSS
projects, which is the ultimate population of interest. While the
sample size is by far large enough to ensure statistical validity,
the choice of the sample frame may have some bearing on the
outcomes of the study. Additionally, it can be argued that the
change log only records the committer; whether the developer of
the code is ever acknowledged is uncertain. And, do all bugs get
reported? There could be bugs that are probably fixed but never
reported.
 In spite of the limitations, this study makes important
contributions to both the literature and practice. The results are
robust as the hypotheses regarding cognitive complexity were
supported after having controlled for various factors. In other
words, our conclusions cannot be seen as artificial due to possible
correlation with other factors. The most important contribution
is the strong support for the relationships between cognitive
complexity and software quality, and cognitive complexity and
contributions from new developers. Our models indicate that,
on the average, OSS development projects with high cognitive
complexity are significantly associated with increased bugs and
repair time and decreased contributions from new developers.
These findings have at least two immediate implications for
software managers and project administrators. First, they must
measure software complexity on a continual basis, at least once for
each release or at regular intervals. Second, they need to implement
guidelines for upper bounds of complexity and recommend that
software versions at no stage exceed these guidelines. However,
no standard guidelines are probably universally applicable for all
software development projects. Developers and administrators
may want to set their own standards for their specific projects, like
the NSA (National Security Agency) standard, which is derived
from an analysis of 25 million lines of software code written for
NSA.
 Furthermore, project administrators for OSS projects need to
learn the importance of controlling complexity. As recommended
by Lehman [35], strategies need to be developed not only to
control complexity, but also to actively reduce it. As a software
project progresses, it becomes increasingly complex making it
difficult to understand and manage [14]. Project administrators
need to be careful about subsequent changes between different
versions. Such changes can have strong debilitating impacts on

projects. If changes are not well monitored, they can lead to a
ripple effect. Ripple effect refers to the phenomenon of changes
made to one part of the software affecting and propagating to
other parts of the software. Lehman’s operating system example
clearly shows the ripple effect since the percentage of modules
changed in Release 15 is 33% while the percentage of modules
changed in Release 19 is 56%. The OSS development, thriving on
voluntary contributions, must keep a close watch on the cognitive
complexity of the software in order to attract contributions from
new developers.
 Another important contribution of this research is for
organizations involved in or interested in getting involved in
OSS development. Our results indicate that, contrary to OSS
ideological beliefs, offering a monetary reward for participation
may successfully attract increased contributions from the OSS
community.

referenCeS

[1]. AlMarzouq, M., Zheng, L., Rong, G., and Grover, V.
“Open Source: Concepts, Benefits, and Challenges,” Com-
munications of the AIS, 16, Article-37, 2005, pp.756:784.

[2]. Banker, R. D., Datar, S., Kemerer, C., and Zweig, D.
“Software Complexity and Maintenance Costs,” Com-
munications of the ACM, 36(11), 1993, pp.81-94.

[3]. Banker, R., Davis, G., and Slaughter, S. “Software
development practices, software complexity, and software
maintenance effort: a field study,” Management Science,
44(4), 1998, pp.433-450.

[4]. Basili, V. and Hutchens, D. “An Empirical Study of a
Syntactic Complexity Family,” IEEE Trans. Software
Engineering, 9, 1983, pp.664-672.

[5]. Boehm, B. Software Engineering Economics, Prentice-
Hall, New York, 1981.

[6]. Bonaccorsi, A., and Rossi, C. “Why open source software
can succeed,” Research Policy, 32(7), 2003, pp.1243-1258

[7]. Brooks, F. The Mythical Man-Month, Addison-Wesley,
Reading, Mass., 1975.

[8]. Carillo, K. and Okuli, C. “The Open Source Movement:
A Revolution in Software Development,” Journal of
Computer Information Systems, 49(2), Winter2008/2009,
pp.1-9.

[9]. Cavalier, F. “Some Implications of Bazaar Size,” 1998,
available at http://www.mibsoftware.com/bazdev/ accessed
8 May 2006.

[10]. Crowston, K., Annabi, H, Howison, J. “Defining Open
Source Software Project Success,” Proceedings of ICIS,
Seattle, WA, 2003.

[11]. Curtis, B., Sheppard, S., Milliman, P., Borst, M., and Love,
T. “Measuring the Psychological Complexity of Software
Maintenance Tasks with the Halstead and McCabe
Metrics,” IEEE Transactions on Software Engineering,
5(2), 1979, pp.96-104.

[12]. Darcy, D., Kemerer, C., Slaughter, S., and Tomayko, J.
“The Structural Complexity of Software: An Experimental
Test,” IEEE Transactions on Software Engineering, 31(11),
2005, pp.982-995.

[13]. Dymo, A. “Open Source Software Engineering,” II Open
Source World Conference, Málaga, 2006.

[14]. Feller, J. and Fitzgerald, B. Understanding open source
software development, London: Addison-Wesley, 2002.

[15]. Fitzgerald, B. “Has Open Source Software a Future?,”

 Spring 2010 Journal of Computer Information Systems 89

Perspectives on Free and Open Source Software, MIT
Press, 2005, pp.93-106.

[16]. Fitzsimmons, A. and Love, T. “A review and evaluation
of software science,” Computer Survey, 10(1), 1978, pp.3-
18.

[17]. Fjeldstad, R. and Hamlen, W. “Application program
maintenance-report to our respondents,” Tutorial on
Software Maintenance, 1983, pp. 13-27.

[18]. Gaffney, J. “Estimating the Number of Faults in Code,”
IEEE Transactions on Software Engineering, 10(4), 1984,
pp. 13-27.

[19]. Gelman, A., and Hill, J. Data Analysis Using Regression
and Multilevel/Hierarchical Models, Cambridge University
Press, 2007.

[20]. Gill, G. and Kemerer, C. “Cyclomatic complexity density
and software maintenance productivity,” Transactions on
Software Engineering, 17(12), 1991, pp. 1284-1288.

[21]. González-Barahona, J., Miguel A, Pérez, O, Quirós, P.,
González, J., and Olivera, V. “Counting potatoes. The size
of Debian 2.2,” Upgrade, 2(6), 2001, pp. 60-66.

[22]. Gorla, N., and Ramakrishnan, R. “Effect of Software
Structure Attributes Software Development Productivity,”
Journal of Systems and Software, 36(2), 1997, pp. 191-
199.

[23]. Grewal, R., Lilien, G., Mallapragada, G. “Location,
Location, Location: How Network Embeddedness Affects
Project Success in Open Source Systems,” Management
Science 52(7), 2006, pp. 1043-1056.

[24]. Harrison, W. and Cook, C. “Insights on improving the
maintenance process through software measurement,”
Proceedings of Conference on Software Maintenance, San
Diego,CA, 1990, pp. 37-44.

[25]. Harter, D. and Slaughter, S. “Process maturity and
software quality: a field study,” International Conference
on Information Systems, Brisbane, Australia, 2000, pp.
407-411.

[26]. Henkel, J. “Selective Revealing in Open Innovation
Processes: The Case of Embedded Linux,” Research
Policy, 35(7), 2006, pp. 953-969.

[27]. Henry, S., Kafura, D., and Harris, K. “On the Relationship
among Three Software Metrics,” ACM SIGMETRICS:
Performance Evaluation Review, 10(1), 1981, pp. 81-88.

[28]. Jones, T. Programming Productivity, McGraw-Hill, Inc.,
New York, 1986.

[29]. Kearney, J., Sedlmeyer, R., Thompson, W., Gray, M., and
Adler, M. “Software Complexity Measurement,” Com-
munications of the ACM, 29(11), 1986, pp. 1044-1050.

[30]. Kemerer, C. and. Slaughter, S. “Determinants Of Software
Maintenance Profiles: An Empirical Investigation,” Soft-
ware Maintenance: Research And Practice, 9(4), 1997, pp.
235-251.

[31]. Kemerer, C. F. “Software complexity and software main-
tenance: A survey of empirical research,” Annals of
Software Engineering, 1(1), 1995, pp. 1-22.

[32]. Kim, S., Whitehead, E, and Bevan, J. “Analysis of signature
change patterns,” Proceedings of the 2005 international
workshop on Mining software repositories, St.Louis,MO,
2005, pp. 1-5.

[33]. Krishnamurthy, S. “Cave or Community? An Empirical
Examination of 100 Mature Open Source Projects,” First
Monday, 7(6), 2002.

[34]. Lakhani, K., and Wolf, B. “Why Hackers Do What They

Do: Understanding Motivation and Effort in Free/Open
Source Software Projects,” Perspectives on Free and Open
Source Software, MIT Press, Cambridge, 2005.

[35]. Lerner, J., and Tirole, J. “Some Simple Economics of Open
Source,” The Journal of Industrial Economics, 1(2), 2002,
pp. 197-234.

[36]. Loch, C., Mihm, J., and Huchzermeier, A. “Concurrent
Engineering and Design Oscillations in Complex
Engineering Projects,” Concurrent Engineering, 11(3),
2003, pp. 187-199.

[37]. Markus, M., Manville, B., and Agres, C. “What makes a
virtual organization work?,” Sloan Management Review,
42(1), 2000, pp. 13-26.

[38]. Opensource.org, “The Open Source Definition (Version
1.9)”, 2002, at http://www.opensource.org/ docs/definition.
html, accessed 5 May 2006.

[39]. Pigoski, T. Practical Software Maintenance. Wiley com-
puter publishing, 1997.

[40]. Ramanujan, S. and Cooper, R. “A human information
processing approach to software maintenance,” Omega,
22(2), 1994, pp. 85-203.

[41]. Raymond, E. “The Cathedral and the Bazaar,” 1999, at
http://tuxedo.org/~esr/writings/cathedral-bazaar/

[42]. Raymond, E. The cathedral and the bazaar: musings on
Linux and open source by an accidental revolutionary,
Sebastopol, CA, O’Reilly, 2001.

[43]. Rilling, J. and Klemola, T. “Identifying Comprehension
Bottlenecks Using Program Slicing and Cognitive
Complexity Metrics,” Proceedings of the 11th IEEE
International Workshop on Program Comprehension,
2003, pp. 115.

[44]. Schröter, A., Zimmermann, T., Premraj, R., and Zeller, A.
“If Your Bug Database Could Talk . . . ,” Proceedings of
ACM-IEEE 5th International Symposium on Empirical
Software Engineering, Volume II: Short Papers and
Posters, Brazil, 2006.

[45]. Sen, R, Subramaniam, C, and Nelson, M. “Determinants of
the Choice of Open Source Software License,” Journal of
Management Information Systems, 25(3), 2008-9, pp. 207-
240.

[46]. Smith, N., Capiluppi, A., and Ramil, J. “Agent-based
Simulation of Open Source Evolution,” Software Process
Improvement and Practice, 11(4), 2006, pp. 423-434.

[47]. Stamelos, I.; Angelis, L.; Oikonomou, A.; and Bleris,
G. “Code Quality Analysis in Open Source Software
Development,” Information Systems Journal, 12(1), 2002,
pp. 43-60.

[48]. Stewart, K., Ammeter, A., Maruping, L. “A Preliminary
Analysis of the Influences of Licensing and Organizational
Sponsorship on Success in Open Source Projects,”
Proceedings of the 38th Hawaii International Conference
on System Sciences, 2005, pp. 197-203.

[49]. Stewart, K., Darcy, D., Daniel, S. “Observations on Patterns
of Development in Open Source Software Projects, Open
Source Application Spaces,” Fifth Workshop on Open
Source Software Engineering, 2005, St Louis, MO, pp. 1-
5.

[50]. Studenmund, A. Using Econometrics: A Practical Guide,
Harper Collins, New York, NY, 1992.

[51]. vonHippel, E., G. vonKrogh. “Open Source Software and
the “Private-Collective” Innovation Model: Issues for
Organization Science,” Organization Science, 14(2), 2003,

 90 Journal of Computer Information Systems Spring 2010

pp. 209-225.
[52]. Weyuker, E. “Evaluating software complexity measures,”

IEEE Transactions on Software Engineering, 14(9), 1988,
pp. 1357-1365.

[53]. Withrow, C. “Error Density and Size in Ada Software,”

IEEE Software, 7(1), 1990, pp. 26-30.
[54]. Xu, J., Gao, Y, S. Christley, G. Madey. “A Topological

Analysis of the Open Source Software Development
Community,” Proceedings of the 38th HICSS, 2005, pp.
198.

Copyright of Journal of Computer Information Systems is the property of International Association for

Computer Information Systems and its content may not be copied or emailed to multiple sites or posted to a

listserv without the copyright holder's express written permission. However, users may print, download, or

email articles for individual use.

