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aBStraCt

 Maintenance is inevitable for almost any software. Software 
maintenance is required to fix bugs, to add new features, to 
improve performance, and/or to adapt to a changed environment. 
In this article, we examine change in cognitive complexity and its 
impacts on maintenance in the context of open source software 
(OSS). Relationships of the change in cognitive complexity with 
the change in the number of reported bugs, time taken to fix the 
bugs, and contributions from new developers are examined and 
are all found to be statistically significant. In addition, several 
control variables, such as software size, age, development status, 
and programmer skills are included in the analyses. The results 
have strong implications for OSS project administrators; they 
must continually measure software complexity and be actively 
involved in managing it in order to have successful and sustainable 
OSS products. 
 Keywords: OSS, Complexity, Software Maintenance

IntroduCtIon

 The importance of software maintenance in today’s software 
industry cannot be underestimated. Maintenance is inevitable 
for almost any software. Software maintenance is required to 
fix bugs, to add new features, to improve performance, and/or to 
adapt to a changed environment. Pigoski [39] illustrated that the 
portion of industry’s expenditures used for maintenance purposes 
was 40% in the early 1970s, 55% in the early 1980s, 75% in the 
late 1980s, and 90% in the early 1990s. Over 75% of software 
professionals perform program maintenance of some sort [24]. 
Given the numbers, the understanding of software maintenance is 
prudent. 
 It is not unusual that a developer modifying the source code 
has not participated in the development of the original program 
[31]. As a consequence, a large amount of the developer’s efforts 
goes into understanding and comprehending the existing source 
code [46]. Comprehending existing source code, which involves 
identifying the logic in and between various segments of the 
source code and understanding their relationships, is essentially 
a mental pattern-recognition by the software developer and 
involves filtering and recognizing enormous amount of data 
[43]. As software is becoming increasingly complex, the task of 
comprehending existing software is becoming increasingly tough 

[43]. Fjelstad and Hamlen [17] reported that more than 50% of 
all software maintenance effort is devoted to comprehension. The 
comprehension of source code, thus, plays a prominent role in 
software development. 
 In this article, we examine software complexity and its impacts 
in the context of open source software (OSS). Past efforts have 
been piecemeal or based on limited information. For example, 
comprehension of the source code has been linked with source 
code complexity. The empirical evidence on the magnitude of the 
link is relatively weak [29]. However, many such attempts are 
based on experiments involving small pieces of code or analysis of 
software written by students [2]. In order to remedy this situation, 
we analyze real world software written by the OSS developer 
community. A number of studies has examined the impact of 
complexity on maintainability and made recommendations to 
reduce the complexity [30][31]. But, no study, to the best of our 
knowledge, has tested if the reduced complexity was actually 
beneficial to the developers performing software maintenance. 
This study specifically examines the impact of change in software 
complexity on maintenance efforts. 

open Source Software development

 A typical open source project starts when an individual (or 
group) feels a need for a new feature or entirely new software, and 
someone in that group, eventually writes one. In order to share it 
with others who have similar needs, the individual/ group releases 
the software under a license that allows the community to use, and 
to see and modify the source code to meet local needs and improve 
the product by fixing bugs. Making software available widely on 
an open network, e.g., the Internet, allows developers around the 
world to contribute code, add new features, improve the present 
code, report bugs, and submit fixes to the current version. The 
developers of the project incorporate the features and fixes into 
the main source code and a new version of the software is made 
available to the public. This process of code contribution and bug 
fixing is continued in an iterative manner as shown in Fig 1.
 OSS supporters often claim that OSS has faster software 
evolution. The idea is that multiple contributors can be writing, 
testing, or debugging the product in parallel. Raymond [42] 
mentioned that more people looking at the code will result in more 
bugs found, which is likely to accelerate software improvement. 
The OSS model claims that the rapid evolution produces better 

makammer
Typewritten Text

makammer
Typewritten Text

makammer
Typewritten Text
Midha, V., Palvia, P., Singh, R., and Kshetri, N.  “Improving Open Source Software Maintenance”.  Journal of Computer Information Systems.  Volume 50, Number 3, Spring 2010, pp. 81-90.

makammer
Typewritten Text

makammer
Typewritten Text
Made available courtesy of the International Association for Computer Information Systems: http://www.iacis.org/jcis/jcis.phpReprinted with permission. No further reproduction is authorized without written permission from the International Association for Computer Information Systems.

makammer
Typewritten Text

makammer
Typewritten Text

makammer
Typewritten Text

http://www.iacis.org/jcis/jcis.php
http://libres.uncg.edu/ir/uncg/clist.aspx?id=814
http://libres.uncg.edu/ir/uncg/clist.aspx?id=760
http://libres.uncg.edu/ir/uncg/clist.aspx?id=865


 82 Journal of Computer Information Systems Spring 2010

software than the traditional closed model because in the latter 
“only a very few programmers can see the source and everybody 
else must blindly use an opaque block of bits” [38].
 One interpretation of the OSS development process is that of 
a perpetual maintenance task. Developing an OSS system implies 
a series of frequent maintenance efforts for bugs reported by 
various users. As most of the OSS projects are results of voluntary 
work [14][48], it is crucial to ensure that such volunteers are able 
to work with minimal effort. The motivation for why developers 
contribute to a source code has received a great deal of attention 
from researchers [34]. However, the factors that can make the 
OSS community to not contribute to a source code have received 
limited attention. 
 In this light, von Hippel and von Krogh [51] noted that 
the major concern among developers was the complexity of 
the source code and the level of difficulty of the embedded 
algorithms. Fitzgerald [15] pointed that increasing complexity 
posits a barrier in the OSS development and may trigger the need 
for either substantial software reengineering or the entire system 
replacement. Therefore, it is vital to understand the complexity of 
the source code and its impact on software development, and even 
more importantly, on OSS development. 

oSS and Complexity 

 A complex project, in general, demands a large share of 
resources to modify and correct. When the source code is easy, 
it is easier to maintain it. On the contrary, when a source code 
is complex, developers have to expend a large portion of their 
limited time and resources to become familiar with the source 
code. In OSS, where the developers seek to gain personal 
satisfaction and value from peer review and are not bound to 
projects by employment relationships, they have the option to 
leave the project at any time and join other projects where their 
resources could be used more efficiently. Therefore controlling 
complexity in OSS projects may have several benefits, including 
facilitation of new developers’ learning. Feller and Fitzgerald 
[14] pointed that if new contributors are to have any chance at 
contributing to OSS projects, they should be able to do so with 
minimal effort. Controlled complexity helps achieve that; thus 
being indispensable for OSS [14]. 
 Much of what we know about software complexity comes 

from analyses of closed source development (e.g., [5]). As noted 
by Stewart et al [49], even though the results from those findings 
have been applied to OSS (e.g., study of Debian 2.2 development 
[21]), there remains a relative scarcity of academic research on 
the subject. More importantly, these studies were limited to a 
small number of projects. 
 The remainder of the paper is organized as follows: The next 
section draws on relevant literature to develop a theoretical model. 
It is followed by a description of the methods and measures used 
in the study. The following sections present the evaluation of the 
model and discussion of the results. The paper is concluded by 
acknowledging its limitations and highlighting its contributions 
to both research and practice.

model development

 Basili and Hutchens [4] define complexity as a measure of the 
resources expended by a system while interacting with a piece 
of software to perform a given task. It is important to clearly 
understand the term “system” in this definition. If the interacting 
system is a computer, then complexity is defined by the execution 
time and storage required to perform the computation. For 
example, as the number of distinct control paths through a 
program increases, the complexity may increase. This kind of 
complexity is called “Computational Complexity” [11]. If the 
interacting system is a programmer, then complexity is defined by 
the difficulty of performing tasks. This complexity comes from 
“the organization of program elements within a program” [22], for 
example, tasks such as coding, debugging, testing, or modifying 
the software. This kind of complexity is known as “Cognitive 
Complexity”. Cognitive complexity refers to the characteristics 
of the software which make it difficult to understand and work 
with [11]. It is our primary concern.
 The notion of cognitive complexity is linked with the 
limitations of short term memory. According to the cognitive 
load theory, all information processed for comprehension must at 
some time occupy short-term memory [43]. Short term memory 
is described as the capacity of information that brain can hold 
in an active, highly available state. Short term memory can be 
thought of as a container, where a small finite number of concepts 
can be stored. If data are presented in such a way that too many 
concepts must be associated in order to make a correct decision, 

fIgure 1 — oSS development
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then the risk of error increases. In OSS, a voluntary developer 
must retain the existing source code in short term memory in 
order to successfully modify the existing code. The capacity 
of holding information may vary depending on the individual 
and may limit the capability of developers to comprehend and 
modify the existing source code. Kearney et al [29] suggested 
that the difficulty of understanding depends, in part, on structural 
properties of the source code. As we are concerned with the 
impact of complexity on source code comprehension, we focus 
on properties related to the source code. This argument forms the 
basis for theorizing the impact of complexity on various aspects 
on OSS development, as described below. 

number of Bugs

 The main idea behind the relationship between complexity 
and number of bugs is that when comparing two different 
solutions to the same problem, all other things being equal, the 
more complex solution will generate more bugs. This relationship 
is one of the most analyzed by software metrics’ researchers and 
previous studies and experiments have found this relationship to 
be statistically significant [11][27]. 
 In order for a programmer to understand the existing source 
code, he needs to understand the flow of logic. And, when a 
programmer has to deal with a source code with high cognitive 
complexity, he has to frequently search among dispersed pieces 
of code to determine the flow of logic [40]. Understanding and 
recollecting such dispersed pieces increase the cognitive load on 
the programmer making complex code maintenance more liable to 
human errors. Complex software, hence, need more maintenance 
efforts. Gill and Kemerer [20] reported that the number of bugs 
in a program is positively associated with maintenance effort and 
recommended further empirical testing with a larger data set. 
Therefore OSS projects which experience increase in complexity 
over its previous version also would experience an increase in the 
number of bugs (over its previous version). Based on above, we 
propose:

H1:  An increase in the source code’s cognitive complexity 
is positively associated with an increase in the number 
of bugs in the OSS source code.

Contributions from new developers

 Because of the important role of volunteer developers in the 
OSS development, attracting new developers and keeping them 
motivated is crucial to OSS development. Keeping the developers 
motivated is especially important during the early development 
stage so that the number of developers can reach a critical mass. 
Some of the cited developers’ motivations include intellectual 
gratification, career future incentives, learning and enjoyment, 
ego-boosting, and peer recognition [6][8][35][37].
 Once a new developer is motivated to voluntarily contribute, 
he needs to first spend a large amount of time and resources to 
understand the existing source code. When the source code is easy 
to comprehend, it is easier to modify. However, when the source 
code is complex, a developer is required to invest additional
effort and resources to understand it. Devoting such effort and 
resources may pose a barrier to the developer’s motivation to 
contribute. Such a barrier may lead the potential developer to 
not contribute to the project at all, or, in worst case, to leave the 
project. Hence,

H2:  An increase in the source code’s cognitive complexity 
is negatively associated with an increase in the 
number of contributions to the OSS source code from 
new developers.

time to fix Bugs

 More complex source code adds to a programmer’s cognitive 
load [12]. High cognitive load requires more time-consuming and 
resource-demanding effort to familiarize oneself with the code. 
It is even possible that a source code is so complex that it cannot 
be comprehended at all. In such a scenario, the programmer may 
spend time and resources on other activities, thereby further 
lowering the productivity of the project.
 In other words, a source code with lesser cognitive complexity 
does not need as much effort or resources, thus reducing the 
turnaround time required to fix repairs. This leads to the next 
hypothesis that OSS projects which experience increase in 
cognitive complexity over its previous version require longer time 
to fix the bugs. Hence, we hypothesize,

H3:  An increase in the source code’s cognitive complexity 
is positively associated with an increase in the average 
time taken to fix the bugs in OSS source code.

 Combining all the preceding conceptual arguments gives 
the research model shown in Fig. 2. Note that several control 
variables have been included in the model in order to increase 
the robustness of our findings. The specific variables will be 
described in the next section.

methodS

 The following explanation is helpful in understanding the 
research design and methods. This study investigates the impact 
of change in complexity. To compute the change in complex-
ity, the complexity of two consecutive versions of software
must be looked at. It is important to note that the complexity 
of the source code of a software version can only be measured
after it has been released to the OSS community. Only after it
has been used, the discovered bugs are reported and the code
is modified to fix these bugs. Once significant amount of modi-
fications have been made, a new version is released to the pub-
lic. Due to the modifications in the source code, the complexity 
of the source code changes. In order to compute the change in 
complexity of the current version (say Nth) from its previous 
version (N-1th), one needs to measure the complexity of both the 
current (Nth) and the previous version (N-1th). As the modifications 
and contributions made to the current version (Nth) are available 
in the next version (N+1th), one needs to also look at the next 
version (N+1th) to find these modifications and contributions.
As a consequence, for each project, we need to study three 
releases, referred to as the first (N-1th), the second (Nth), and the
third (N+1th).
 OSS projects hosted at SourceForge were examined in this 
study. SourceForge is the primary hosting place for OSS projects 
which houses about 90% of all OSS projects. It has been argued 
SourceForge is the most representative of the OSS movement, in 
part because of its popularity and the large number of developers 
and projects registered [23][54]. Researchers interested in 
investigating issues related to the OSS phenomenon have 
predominantly used SourceForge data [23][51][54].
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 Studying all projects hosted on SourceForge was unfeasible
and impractical due to resource limitations. Data selection 
was limited to projects that were targeted to either end users 
or developers. In order to avoid ambiguity, projects that were
targeted to both end users and developers were excluded. 
Further selection was made by controlling for the programming 
language and the operating system. Past literature suggests that 
programming language has an explicit impact on complexity 
[52] and program size [28]. It is also difficult to compare lines 
of code between “high” and “low” level programming lan-
guages. Lower level programming languages have more lines
of code and take longer to develop than higher level program-
ming languages. As C family of languages is the most preferred 
by the OSS developers [45], only projects written in C/C++
or multiple languages including C/C++ were selected. Sec-
ondly, operating system of the project impacts the complexity
of the software and the development effort required. To en-
compass majority of the projects targeted for developers and end 
users, all projects in the data set were designed either for the 
Windows or the Linux/Unix operating system.
 As the data was collected from three different versions of 
software, the sample was further restricted to the projects that 
had at least 3 versions. A version released between first 3-months 
of the registration date is considered First release, another major 
version released between 3 to 6 months of its registration date is 
considered Second release, and yet another major version released 
within 6 to 12 months of its registration date is considered the 
Third release for this study. Therefore, to be able to get the data 
for three different versions, we considered all projects that were 
registered between SourceForge between January 2003 and 
August 2006 so that the third release for the projects that were 
registered in August 2006 was released by August 2007. The final 
data collection was completed in August 2007. Lastly, projects 
were chosen for which the required data were publicly available 

(not all projects allow public access to the bug tracking system). 
Following the above criteria, the final sample size was limited to 
450 projects.

 meaSureS

Cognitive Complexity

 McCabe’s cyclomatic complexity (CC) assesses the diffi-
culty faced by the maintainer in order to follow the flow con-
trol of the program. It is considered an indicator of the effort 
needed to understand and test the source code [47]. Kemerer 
and Slaughter [30] used McCabe’s cyclomatic metric to eval-
uate decision density, which represents the cognitive burden
on a programmer in understanding the source code. In order 
to compute cyclomatic complexity, each source code file was 
subjected to a commercial software code analysis tool. To ac-
count for the effects of size, the complexity metric was normalized 
by dividing it by the number of lines of code for each software 
project. This procedure also reduces collinearity problems when 
size is included in the regression models [20]. The Change in 
Cognitive Complexity (ChgCC) was calculated by subtracting 
cyclomatic complexity measure of the first version from the 
cyclomatic complexity measure of the second version, i.e.,
CC

2nd 
– CC

1st
.

Change in number of Bugs and time taken to fix Bugs

 Various elements of data were extracted from the bug tracking 
system and the Concurrent Versioning System (CVS) reports, 
including the bugs reported, the date on which the bugs were 
reported, the date on which the bugs were fixed, and the version 
number. One problem faced was that all the bugs in the current 
version were not closed at the time of the study. To overcome 

fIgure 2 — the research model
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the problem, earlier versions that had more than 90% of the bugs 
closed at the time of study were included. From these extracted 
elements, the number of bugs reported and the time taken to fix 
them for different software versions were computed. From the 
number of bugs and the time to fix these bugs for each version, 
the change in the number of bugs (ChgBugsReported) over 
previous version and the change in the average time to fix the 
bugs (ChgFixTime) were computed (i.e., BugsReported

3rd
 -

BugsReported
2nd

).

Contributions from new developers 

 Software developers use CVS to manage the software 
development process. CVS stores the current version(s) of the 
project and its history. A developer can check-out the complete 
copy of the code, work on this copy and then check back the 
changes. The modifications are peer reviewed ensuring quality. 
CVS updates the modified file automatically and registers it as a 
commit. CVS keeps track of what change was made, who made 
the change, and when the change was made. This information 
can be gathered from the log files of the CVS repository of a 
project. As CVS commits provide a measure of novel invention 
that is internally validated by peers [10][23], the number of
CVS commits is used as a measure of contributions of devel-
opers. A commit is considered as ‘contribution from a new 
developer’, when the developer has not contributed to the pre-
vious version. The number of contributions made by new 
developers is represented as ChgNewDevs (i.e., ChgNewDevs

3rd
 

- ChgNewDevs 
2nd

). 

Control variables

Age

 Brook’s Law [7] states that “adding more programmers to a 
late project makes it later”. Based on this, adding new developers 
at later stages will increase the average time taken to fix bugs. On 
the other hand, age may indicate the legitimacy and popularity 
of the software. Popular software attracts more developers and 
thus older software will have higher number of contributions 
from developers. To control for age, the Age variable is defined 
as the number of months till the second release since a project’s 
inception at SourceForge. 

Size

 Size is the oldest measure of software complexity and is 
believed to be a major driver of software maintenance effort [53]. 
Larger software is likely to receive more enhancements and more 
repairs than smaller software, ceteris paribus, as larger software 
embodies greater amount of functionality subject to change. The 
larger the software, the more difficult it is to test and validate its 
functionality. This implies that larger software tend to incorporate 
more errors. Keeping the above in mind, Size is used as a control 
variable and is captured by the number of lines of code of the 
second release.

Number of downloads

 OSS developers can leverage the law of large numbers to 
identify and fix the bugs [41]. Given enough eyeballs, all bugs 
are shallow. A huge user base for the software implies that the 

software will be tested in numerous different environments, more 
bugs will surface, these will be communicated efficiently to more 
bug fixers, the fix being obvious to someone, and the fix will 
be communicated effectively back and integrated into the core 
of the product. To isolate this effect, the number of cumulative 
downloads (Downloads) of till second release of the project is 
used as a control variable. 

New Developer Knowledge and Skills 

 The literature on performance has identified individual 
characteristics such as knowledge and skills as antecedents. 
Such characteristics are, however, difficult to measure, and are 
frequently measured through the use of surrogate measures like the 
level of education and experience. Curtis et al. [11] reported that 
in a series of experiments involving professional programmers, 
the number of years of experience was not a significant predictor 
of comprehension, debugging, or modification time, but that 
number of languages known was. They suggest that the breadth 
of experience may be a more reliable guide to ability than length 
of programming experience. In this work, we also use the breadth 
of the experience as a surrogate for developer’s knowledge and 
skills. So, to control for the effect of new developers’ skills, 
the variable SkillsChg (i.e. Skills

2nd
 –Skills

1st
) was used and was 

measured by the change in team skills with the addition of new 
developers to the team. 

Sponsorship

 An increasing number of open source projects have opted 
to receive monetary donations from organizations and users. 
Although some developers and projects choose to allocate part or 
all of the incoming donations to SourceForge, most recipients of 
the donations rely on monetary support to fund development time 
and other key resources that are necessary for the continuation of 
the projects. It is expected that developers receiving additional 
monetary benefits will devote extra effort and time into 
comprehending and fixing the source code. The control variable 
AcceptSponsors is used to capture whether a project is accepting 
external funds and using monetary compensation as part of its 
incentive mechanism. It takes the value of 1 if the project is 
accepting donations and 0 otherwise.

Development Status and Maturity 

 To capture the development stage of a project, which is 
typically determined by the developer in charge of the project on 
SourceForge, the control variable DevStatus takes values ranging 
from 1 to 6 representing development stages of Planning, Pre-
Alpha, Alpha, Beta, Production/Stable, and mature respectively. 
DevStatus was also measured at second release. The larger the 
value of DevStatus, the more mature the project is.

transformations

 Initial investigations indicated that the dependent variable and 
many of the independent variables were not normally distributed. 
In such case, linear regression analysis might yield biased and non 
interpretable parameter estimates [19]. Therefore, as suggested 
by Gelman and Hill [19], a logarithmic transformation on the 
dependent and the not-normally distributed independent variables 
was performed. 
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reSultS

 The Variance Inflation Factor (VIF) was computed for all 
variables in order to test for multicollinearity. VIF is one measure 
of the effect other independent variables might have on the 
variance of a regression coefficient. Large VIF values indicate 
high multicollinearity. Studenmund [50] recommends a cut 
of 10 for VIF. The VIF values for the different variables in the 
regression analyses are reported in Table 1, and in no case exceed 
1.2. The low VIF values indicate that multicollinearity is not a 
serious problem. 
 As we are interested in studying the impact of change of 
complexity on three dependent variables which are largely 
distinct, we formulate three separate regression equations 
analyzing each of the dependent variables. For the dependent 
measure, ChgBugsReported, the impact of change in complexity 
on the number of bugs (Hypothesis H1) was found by estimating 
the parameters in the following regression model:

ChgBugsReported = α + β
1
ChgCC + β

2
lnSize + β3lnDownloads 

+ β
4
AcceptSponsors + β

5
DevStatus + β

6
lnAge + β

7
lnSkillsChg

 A positive and significant estimate of parameter β
1
 would 

indicate that the probability of having bugs in a source code 
increases as the cognitive complexity of software increases. The 
results of the regression (Hypothesis 1) are presented in Table 1. 
The model shows a good fit with the data (F=33.552, p<0.00). 
The parameter estimate for ChgCC is positive and significant 
(β

1
=0.303, p<0.00). The results suggest that projects with unit 

increase in cognitive complexity experience 0.303 units increase 
in the number of bugs, and H1 is supported. The studied variables 
explained 37.5% of the total variance in the change in bugs 
reported (R2=0.375). 
 Tested next is the impact of complexity on the number of 
contributions from new developers (hypothesis H2) by estimating 
the parameters for the following regression model:

ChgNewDevCommits = α + β
1
ChgCC + β

2
lnSize +β

3
lnDownloads 

+ β
4
Sponsors + β

5
DevStatus + β

6
lnAge + β

7
lnSkillsChg

 The results of the regression (Hypothesis 2) are presented 
in Table 1. The model shows good fit with the data (F=34.702, 
p<0.000). The parameter estimate for ChgCC is significantly 

negative (β
1
=-0.359, p<0.000). The results suggest that a unit 

increase in cognitive complexity decreases the contributions from 
new developers by 0.359 units. Hypothesis H2 is supported. The 
studied variables explained 38.5% of the total variance in the 
change in new developers’’ commits (R2=0.385).
 Finally, examined is the impact of complexity on the time 
taken to fix bugs (hypothesis H3) by estimating the parameters 
for the following regression model:

Time to fix bugs = α + β
1
ChgCC + β

2
lnSize + β

3
lnDownloads ++ 

β
4
Sponsors + β

5
DevStatus + β

6
lnAge + β

7
lnSkillsChg

 Table 1 shows the results of the regression analysis (Hypothesis 
3). The model shows a good fit with the data (F=70.660, p<0.000). 
The parameter estimate for ChgCC is significant and positive 
(β

1
=0.720, p<0.000), indicating that projects that experience a 

unit increase in cognitive complexity takes 0.720 units additional 
time to fix bugs. Thus hypothesis H3 supported. The studied 
variables explained 56.1% of the total variance in the change in 
time taken to fix the reported bugs (R2=0.561).

dISCuSSIon and ImplICatIonS

main effects

 The increase in the cognitive complexity of open software as
it evolves over time is of significant concern, as it will make 
software maintenance increasingly difficult. In the extreme, 
developers may stop making fixes and refinements rendering
the software error-prone and obsolete. Ultimately the open 
software may perish its own death, be replaced by another 
software project, or may go a major and laborious overhaul; all 
options are expensive. In this section, we discuss our findings on 
how complexity and control variables influence different aspects 
of software maintenance. 
 The literature shows mixed support for the negative impact
of complexity on software quality. For example, Harter and 
Slaughter [25] found a negative association between complex-
ity and quality. However, Gaffney [18] did not find software 
complexity to be associated with error rates. Fitzsimmons 
and Love [16] reported that the correlation between cognitive 
complexity and the reported number of bugs ranges from 0.75 
to 0.81. In our data, the correlation between the number of 

taBle 1 — regression results 

  hypothesis 1 hypothesis 2 hypothesis 3 Collinearity
 model       Statistics
  β Sig. β Sig. β Sig. (VIF)

 ChgCC .303 .000 -.359 .000 .720 .000 1.150

 Size .228 .000 -.157 .000 .010 .775 1.160

 Downloads .173 .000 .099 .016 -.100 .004 1.205

 AcceptSponsors -.171 .000 .330 .000 -.082 .012 1.053

 DevStatus -.067 .083 .097 .011 -.010 .764 1.042

 Age .156 .000 .038 .350 -.040 .245 1.177

 SkillsChg -.016 .664 -.105 .006 .069 .030 1.014

 Adjusted R-Square 0.375 0.385 0.561 
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bugs reported and complexity was 0.43. It is interesting to 
note that the correlation found in this study was much smaller
than the correlations reported in earlier studies for non-open 
source software; however, it is consistent with the literature
on OSS. In the context of OSS, Schröter et al. [44] reported
the correlation value in the range of 0.40. Furthermore, Kem-
erer and Slaughter [30] found that complex software is more 
frequently repaired, which has the effect of increasing the 
number of bugs. Therefore, it can be said with confidence that
as the complexity of the software increases, the number of re-
ported bugs, and by implication the actual number of bugs
increases. 
 Another measure of software quality is the time taken to fix 
bugs. In fact, by mining software histories of two projects, Kim 
and Whitehead [32] recommended to use time taken to fix bugs 
as a measure of software quality. In our analysis, we found that 
the complexity of software has a strong positive influence on the 
time taken to fix bugs. It is common that when a bug is fixed in 
one segment of the source code, it usually causes ripple effects 
and adjustments in other segments [36]. The more complex the 
software is, the more are the adjustments in other segments. As 
a consequence, the developer has to simultaneously understand, 
and repair related pieces in dispersed segments. Handling all 
segments together has a detrimental effect on the time devoted by 
the developer because more time is needed to follow the flow of 
logic within the code [3]. This is supported by several empirical 
studies that have found that time required to fix bugs increases 
as complexity increases [5][20]. This result has another spurious 
effect on software maintenance. When a developer becomes 
conscious of long time needed to fix a bug, there is tendency for 
the developer find “quick and dirty” solutions, thereby making 
the code even less maintainable. Such half-baked efforts lead to 
a vicious cycle in which the complexity, the number of bugs, and 
the time taken to fix those bugs feed on each other until a dead end 
is reached with the only option of either reengineering the project 
or shutting it down completely.
 Another reason for the longer time to fix bugs in complex 
code can be found in Dymo’s [13] observations. Dymo noted that 
most people prefer to work on software enhancements by adding 
features rather than working on fixing bugs. This is especially 
true, when the source code is more complex. Debugging and 
understanding the existing code, written by someone else, takes 
more time and resources. As the majority of the work is done on 
voluntary basis in open software and developers are not bound by 
contracts, developers tend to work on new versions of the software 
rather than continue to work on improving the old ones. Although 
this has the potential of bringing them more visibility in the OSS 
community, the net effect is further delay in fixing bugs. 
 Another impact of source code complexity analyzed in the 
study is on attracting contributions from new developers. Analysis 
shows that cognitive complexity has a strong negative influence 
on the number of contributions from new developers. As OSS 
thrives upon voluntary contributions, the project managers must 
actively control the source code complexity in order to attract 
contributions from new developers. In a complex piece of code, 
it takes longer for a developer to determine the flow of logic 
resulting in slower progress of the project [40]. Cavalier [8] 
pointed that the willingness of people to continue to contribute 
to a project is related to the progress that is made in the project. 
If a large number of activities do not seem to be moving forward, 
participants lose interest, leading them to leave the project. This 
leads to a higher likelihood of activities not being completed, and 

ultimately, the death of the project. Such projects become inactive 
over time and fail to attract any contributions. 

effects of Control variables

 Interesting observations can be made based on the effects of 
the control variables. Our analysis found strong effects of size on 
the number of bugs and the number of contributions from new 
developers. It is often argued that complexity and size are strongly 
correlated and that could lead to the problem of multicollinearity, 
which tends to inflate regression coefficients. As mentioned 
earlier, multicollinearity was tested by computing variance 
inflation factors and was found to be within permissible limits. 
Accordingly the effects of size are independent of the effects of 
complexity.
 The number of downloads has strong effects on the number of 
bugs, time to fix bugs, and the number of contributions from new 
developers. The number of downloads indicates the popularity 
of a project; popular projects attract more user and developers 
[33]. As the number of users and developer community grow, 
the number of eyes watching the source code increases. As Eric 
Raymond [41] repeatedly mentions “to many eyes, all bugs are 
shallow”. When source code is open and freely visible, users can 
readily identify flaws. The probability of finding a bug increases 
with the increase in the number of eyes. As a result, the number 
of hands working on code also increases leading to increased 
contributions from new developers. 
 The continued development of a project, represented by 
its age, gives software legitimacy, reputation and attention of 
the community. However, in our study, age did not show any 
significant effect. The reason could be because a large number of 
OSS projects on SourceForge are in early stages of development 
and there was not much variance in the data. This could be 
attributed to the ease with which new projects can be started. 
Such projects become inactive over time and have almost zero 
contributions from the developer community. It could be argued 
that age can bring legitimacy, reputation, and attention only if the 
project is active. Therefore, a more reliable indicator of continued 
development is the development status of a project, which was also 
studied and was found to have a significant positive impact on the 
number of commits from new developers. In the OSS literature, 
development status has been shown to have a positive impact on 
project’s popularity. Al Marzouq et al. [1] argue that a project 
attracts more developers as the software becomes more stable. 
In turn, these new developers bring effort and contribution that 
improves the software. A growth cycle begins a network effect 
that feeds both the community and development of the software. 
 Lakhani and Wolf [34] showed that developers receiving 
money in any form spend more time working on OSS than their 
peers. Similar results are shown by this study. We found that the 
projects that have any form of sponsorship have higher number 
of contributions from new developers. Such projects also had less 
number of bugs and took lesser time to fix the bugs. This clearly 
indicates that developers are receptive to external stimuli such 
as a monetary reward. Henkel [26] illustrated a similar impact 
of external sponsorship on the development of applications for 
Linux, one of the most successful OSS project. Henkel noticed 
that most contributors in the field of embedded Linux are salaried 
or contract developers working for commercial firms. 
 The change in team skills with the addition of new developers 
was found to have significant influence on the number of 
contributions from new developers and the time taken to fix 
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bugs. However, both relationships were in a direction opposite to 
what was expected. The expectation was that as new developers 
increase, the number of contributions will increase and the time 
taken to fix bugs will reduce. The opposite directions of the 
relationships indicate that with the increase in number of skills, 
the overall time to fix bugs increases and the new contributions 
decrease. A logical explanation is that either the developers are 
just joining the development team without actually contributing 
towards project development or the amount of contributions is 
not proportionate to the number of skills they possess. Possibly 
the same core group of developers are largely responsible for 
the majority of contributions, and new developers do not add 
anything substantive. This logic is consistent with the commonly 
held belief in OSS that development follows Pareto’s law, where 
a small number of developers (~20%) are responsible for the 
majority of the work accomplished (~80%). 

lImItatIonS and ContrIButIonS

 Some limitations of the study need to be pointed out. The first 
limitation is the sample frame. While SourceForge has data about 
a vast collection of OSS projects, it does not capture all OSS 
projects, which is the ultimate population of interest. While the 
sample size is by far large enough to ensure statistical validity, 
the choice of the sample frame may have some bearing on the 
outcomes of the study. Additionally, it can be argued that the 
change log only records the committer; whether the developer of 
the code is ever acknowledged is uncertain. And, do all bugs get 
reported? There could be bugs that are probably fixed but never 
reported. 
 In spite of the limitations, this study makes important 
contributions to both the literature and practice. The results are 
robust as the hypotheses regarding cognitive complexity were 
supported after having controlled for various factors. In other 
words, our conclusions cannot be seen as artificial due to possible 
correlation with other factors. The most important contribution 
is the strong support for the relationships between cognitive 
complexity and software quality, and cognitive complexity and 
contributions from new developers. Our models indicate that, 
on the average, OSS development projects with high cognitive 
complexity are significantly associated with increased bugs and 
repair time and decreased contributions from new developers. 
These findings have at least two immediate implications for 
software managers and project administrators. First, they must 
measure software complexity on a continual basis, at least once for 
each release or at regular intervals. Second, they need to implement 
guidelines for upper bounds of complexity and recommend that 
software versions at no stage exceed these guidelines. However, 
no standard guidelines are probably universally applicable for all 
software development projects. Developers and administrators 
may want to set their own standards for their specific projects, like 
the NSA (National Security Agency) standard, which is derived 
from an analysis of 25 million lines of software code written for 
NSA. 
 Furthermore, project administrators for OSS projects need to 
learn the importance of controlling complexity. As recommended 
by Lehman [35], strategies need to be developed not only to 
control complexity, but also to actively reduce it. As a software 
project progresses, it becomes increasingly complex making it 
difficult to understand and manage [14]. Project administrators 
need to be careful about subsequent changes between different 
versions. Such changes can have strong debilitating impacts on 

projects. If changes are not well monitored, they can lead to a 
ripple effect. Ripple effect refers to the phenomenon of changes 
made to one part of the software affecting and propagating to 
other parts of the software. Lehman’s operating system example 
clearly shows the ripple effect since the percentage of modules 
changed in Release 15 is 33% while the percentage of modules 
changed in Release 19 is 56%. The OSS development, thriving on 
voluntary contributions, must keep a close watch on the cognitive 
complexity of the software in order to attract contributions from 
new developers. 
 Another important contribution of this research is for 
organizations involved in or interested in getting involved in 
OSS development. Our results indicate that, contrary to OSS 
ideological beliefs, offering a monetary reward for participation 
may successfully attract increased contributions from the OSS 
community. 
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