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Abstract. Assimilation of remotely sensed soil moisture data

(SM-DA) to correct soil water stores of rainfall-runoff mod-

els has shown skill in improving streamflow prediction. In the

case of large and sparsely monitored catchments, SM-DA is

a particularly attractive tool. Within this context, we assimi-

late satellite soil moisture (SM) retrievals from the Advanced

Microwave Scanning Radiometer (AMSR-E), the Advanced

Scatterometer (ASCAT) and the Soil Moisture and Ocean

Salinity (SMOS) instrument, using an Ensemble Kalman fil-

ter to improve operational flood prediction within a large

( > 40 000 km2) semi-arid catchment in Australia. We assess

the importance of accounting for channel routing and the

spatial distribution of forcing data by applying SM-DA to a

lumped and a semi-distributed scheme of the probability dis-

tributed model (PDM). Our scheme also accounts for model

error representation by explicitly correcting bias in soil mois-

ture and streamflow in the ensemble generation process, and

for seasonal biases and errors in the satellite data.

Before assimilation, the semi-distributed model provided

a more accurate streamflow prediction (Nash–Sutcliffe effi-

ciency, NSE = 0.77) than the lumped model (NSE = 0.67) at

the catchment outlet. However, this did not ensure good per-

formance at the “ungauged” inner catchments (two of them

with NSE below 0.3). After SM-DA, the streamflow ensem-

ble prediction at the outlet was improved in both the lumped

and the semi-distributed schemes: the root mean square er-

ror of the ensemble was reduced by 22 and 24 %, respec-

tively; the false alarm ratio was reduced by 9 % in both cases;

the peak volume error was reduced by 58 and 1 %, respec-

tively; the ensemble skill was improved (evidenced by 12 and

13 % reductions in the continuous ranked probability scores,

respectively); and the ensemble reliability was increased in

both cases (expressed by flatter rank histograms). SM-DA

did not improve NSE.

Our findings imply that even when rainfall is the main

driver of flooding in semi-arid catchments, adequately pro-

cessed satellite SM can be used to reduce errors in the model

soil moisture, which in turn provides better streamflow en-

semble prediction. We demonstrate that SM-DA efficacy is

enhanced when the spatial distribution in forcing data and

routing processes are accounted for. At ungauged locations,

SM-DA is effective at improving some characteristics of the

streamflow ensemble prediction; however, the updated pre-

diction is still poor since SM-DA does not address the sys-

tematic errors found in the model prior to assimilation.

1 Introduction

Floods have large costs to society, causing destruction of in-

frastructure and crops, erosion, and in the worst cases, injury

and loss of life (Thielen et al., 2009). To reduce flood impacts

on public safety and the economy, early and accurate alert

systems are needed. These systems rely on hydrologic mod-
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els, whose accuracy in turn is highly dependent on the quality

of the data used to force and calibrate them. Therefore, in the

case of sparsely monitored and ungauged catchments, flood

prediction suffers from large uncertainties.

A plausible approach to reduce model uncertainties in the

sparsely monitored catchments is to exploit remotely sensed

hydro-meteorological observations to correct the states or

parameters of the model in a data assimilation framework.

Within this context, satellite soil moisture (SM) products are

appealing given the vital role of SM in runoff generation.

SM influences the partitioning of energy and water (rainfall,

infiltration and evapotranspiration) between the land surface

and the atmosphere (Western et al., 2002). Satellite SM ob-

servations provide global scale information and can be ob-

tained in near real time at regular and reasonably frequent

time intervals. This makes them valuable for improving the

representation of catchment wetness. The accuracy of these

observations has been assessed by a number of studies (Al-

bergel et al., 2009, 2010, 2012; Draper et al., 2009; Gruhier

et al., 2010; Brocca et al., 2011; Su et al., 2013). In gen-

eral, they have shown promising performance with moderate

correlation between satellite SM and ground data, but with

significant bias at some locations.

In the last decade a large number of studies have explored

satellite SM data assimilation (SM-DA) to correct the soil

water states of models. These studies can be categorised into

two main groups; the first, and larger group, has focused on

the improvement of the SM predicted by the model (gener-

ally working with land surface models, e.g. Crow and van

Loon, 2006; Crow and Reichle, 2008; Crow and Van den

Berg, 2010; Reichle et al., 2008; Ryu et al., 2009). The sec-

ond, and smaller group (where our study fits), has focused on

the improvement of streamflow prediction in rainfall-runoff

models (Francois et al., 2003; Brocca et al., 2010b, 2012;

Alvarez-Garreton et al., 2013, 2014; Chen et al., 2014; Wan-

ders et al., 2014).

Studies from the first group evaluate the prediction im-

provement of the same variable that is updated in the as-

similation scheme (SM). Improvements in streamflow pre-

dictions investigated by studies in the second group are not

exclusively influenced by better representation of SM. The

potential improvement of streamflow predictions in the latter

case is constrained by the particular runoff mechanisms op-

erating within a catchment. Accordingly, even when a model

structure and parametrisation are capable of representing the

runoff mechanisms, improving streamflow prediction by re-

ducing error in soil moisture depends on the error covariance

between these two components. This error covariance (which

in the model space will be defined by the representation of

the different sources of uncertainty) may become marginal

when the errors in streamflow come mainly from errors in

rainfall input data (Crow and Ryu, 2009). This physical con-

straint is case specific and determines the potential skill of

SM-DA for improving streamflow prediction. To understand

and assess this skill, further studies focusing on the im-

provement of streamflow prediction are needed with different

model characteristics, such as structure, parametrisation and

performance before assimilation; and with different catch-

ment characteristics, such as climate, scale, soils, geology,

land cover and density of monitoring network. Among the

latter, semi-arid catchments present distinct rainfall-runoff

processes which have been rarely studied in SM-DA.

Here we address this gap by studying the Warrego River

catchment in Australia, a large and sparsely monitored semi-

arid basin. We set up the probability distributed model

(PDM) within the catchment, and assimilate passive and ac-

tive satellite SM products using an ensemble Kalman filter

(EnKF) (Evensen, 2003) for the purpose of improving op-

erational flood prediction. We devise an operational SM-DA

scheme to answer three main questions. (1) While rainfall

is presumably the main driver of flood generation in semi-

arid catchments, can we effectively improve streamflow pre-

diction by correcting the antecedent soil water state of the

model? (2) What is the impact of accounting for channel

routing and the spatial distribution of forcing data on SM-

DA performance? (3) What are the prospects for improving

streamflow prediction within ungauged sub-catchments us-

ing satellite SM?

A series of SM-DA experiments using a lumped version of

PDM have already been undertaken in this study catchment

by Alvarez-Garreton et al. (2014). They found that assimilat-

ing passive microwave satellite SM improved flood predic-

tion, while highlighting specific limitations in their scheme.

This paper expands on this previous result in a number of key

ways. We improve the representation of model error by ex-

plicitly treating forcing, parameter and structural errors. We

devise a more robust ensemble generation process by cor-

recting biases in soil moisture and streamflow predictions.

We incorporate additional satellite products and apply instru-

mental variable regression techniques for seasonal rescaling

and observations error estimation. Furthermore, we employ

a semi-distributed scheme to evaluate the advantages of ac-

counting for channel routing and the spatial distribution of

forcing data.

In this paper, Sect. 2 presents a description of the study

catchment and the data used. Section 3 presents the method-

ology, including a description of the rainfall-runoff model,

the EnKF formulation and the specific steps for setting up the

SM-DA scheme. These include the error model estimation,

estimation of profile SM based on the satellite surface data,

the rescaling of satellite observations and observation error

estimation. Section 4 presents the results and discussion. Sec-

tion 5 summarises the main conclusions of the study.

2 Study area and data

The study area is the semi-arid Warrego catchment

(42 870 km2) located in Queensland, Australia (Fig. 1). The

catchment has an important flooding history, with at least
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three major floods within the last 15 years. The study area

also features geographical and climatological conditions that

enable satellite SM retrievals to have higher accuracy than in

other areas. These conditions include the size of the catch-

ment, the semi-arid climate and the low vegetation cover.

Moreover, the ground-monitoring network within the catch-

ment is sparse thus satellite data is likely to be more valu-

able than in well-instrumented catchments. The catchment

has summer-dominated rainfall with mean monthly rainfall

accumulation of 80 mm in January, and 20 mm in August.

Mean maximum daily temperature in January is above 30 ◦C

and below 20 ◦C in July. The runoff seasonality is charac-

terised by peaks in summer months and minimum values in

winter and spring. The mean annual precipitation over the

catchment is 520 mm. Regarding the governing runoff mech-

anisms within the study catchment, Alvarez-Garreton et al.

(2014) showed that streamflow has a negligible baseflow

component and the surface runoff is generated only when

a wetness threshold is exceeded. They concluded that soil

moisture exerts an important control on the runoff generation

mechanisms. In this work, the runoff mechanisms analysis is

deepened by looking at model predictions (Sect. 3.1).

Daily rainfall data was computed from the Australian Wa-

ter Availability Project (AWAP), which has a grid resolu-

tion of 0.05◦ (Jones et al., 2009). Hourly streamflow records

were collected from the State of Queensland, Department of

Natural Resources and Mines (http://watermonitoring.dnrm.

qld.gov.au) (Fig. 1). Daily discharge was calculated based

on the daily AWAP time convention (9.00 a.m.–9.00 a.m. lo-

cal time, UTC +10 h). The flood classification for the study

catchment (at the catchment outlet, N7) was provided by the

Australian Bureau of Meteorology as river height threshold

values, corresponding to minor, moderate and major floods.

These threshold values expressed as streamflow (mm day−1)

are 0.06, 0.55 and 2.05, respectively and relate to flood im-

pact rather than recurrence interval. The associated annual

exceedance probability for the minor, moderate and major

floods at N7 are 15.7, 3.1 and 0.95 %, respectively (calcu-

lated using the complete daily streamflow record period). Po-

tential evapotranspiration was obtained from the Australian

Data Archive for Meteorology database. Daily values were

estimated by assuming a uniform daily distribution within a

month.

Three satellite products were used here. The first was the

Advanced Microwave Scanning Radiometer – Earth Observ-

ing System (AMS hereafter) version 5 VUA-NASA Land

Parameter Retrieval Model Level 3 gridded product (Owe

et al., 2008). AMS uses C- (6.9 GHz) and X-band (10.65 and

18.7 GHz) radiance observations to derive near-surface soil

moisture (2–3 cm depth) using a land-surface radiative trans-

fer model. The product used is in units of volumetric water

content (m3 m−3) and has a regular grid of 0.25◦.

The second product was the TU-WIEN (Vienna Univer-

sity of Technology) ASCAT (ASC hereafter) data produced

using the change-detection algorithm (Water Retrieval Pack-

age, version 5.4) (Naeimi et al., 2009). ASC transmits elec-

tromagnetic waves in C-band (5.3 Gz) and measures the

backscattered microwave signal. The change-detection algo-

rithm assumes that land surface characteristics are relatively

static over long time periods. Based on this, the differences

between instantaneous backscatter coefficients and the his-

torical highest and lowest values for a given incident angle,

are related to changes in soil moisture (Wagner et al., 1999).

The final SM estimate is provided in relative terms as the de-

gree of saturation and has a nominal spatial resolution vary-

ing from 25 to 50 km.

The third satellite product was the Soil Moisture and

Ocean Salinity satellite (SMO hereafter), version RE01 (Re-

processed 1-day global soil moisture product) SM provided

by the Centre Aval de Traitement des Donnees. SMO uses

L-band (1.4 GHz) detectors to measure microwave radia-

tion emitted from depth of up to approximately 5 cm. Near-

surface soil moisture is obtained in units of volumetric wa-

ter content (m3 m−3) at a spatial resolution of approximately

43 km by using the forward physical model inversion de-

scribed by Kerr et al. (2012). The overpass times of the

AMS, ASC and SMO satellites over the study catchment are

1.30, 10.00 and 6.00 a.m./p.m. local time (UTC +10 h), re-

spectively. Figure 2 summarises the period of record of the

different data sets.

For each satellite data set, a daily averaged SM was cal-

culated for the complete catchment (or sub-catchment in the

case of the semi-distributed scheme). The areal estimate of

satellite SM over the catchment was given by averaging the

values of ascending and descending satellite passes on days

when more than 50 % of the pixels had valid data. For the

case of the passive sensors (AMS and SMO), we subtracted

the long-term temporal mean of the ascending and descend-

ing data sets to remove the systematic bias between them

(Brocca et al., 2011; Draper et al., 2009). Then, daily satel-

lite SM was calculated as the average between the mean-

removed ascending and descending passes (if both were

available) or directly as the mean-removed available pass.

For ASC retrievals, given the unbiased ascending and de-

scending measurements, daily satellite SM was calculated

from the actual ascending and descending values averaged

over the catchment.

3 Methods

3.1 Lumped and semi-distributed model schemes

The probability distributed model (PDM) is a conceptual

rainfall-runoff model that has been widely used in hydro-

logic research and applications (Moore, 2007), mainly over

temperate and humid environments. The model was selected

from amongst the set of models available within the flood

forecasting system managed by the Australian Bureau of Me-

teorology. This selection was based on both the suitability of

www.hydrol-earth-syst-sci.net/19/1659/2015/ Hydrol. Earth Syst. Sci., 19, 1659–1676, 2015
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Figure 1. The Warrego River basin located in Queensland, Australia (left panel). A close-up of the area is presented in the right panel.

The lumped PDM scheme is set up over the entire catchment, while the semi-distributed scheme divides the total catchment in seven sub-

catchments (SC1–SC7).
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Figure 2. Periods of record of the different data sets. The initial date

of the plot was set as the beginning of the streamflow data record.

PDM to simulate ephemeral rivers (Moore and Bell, 2002)

and preliminary analysis comparing PDM against other mod-

els such as the Sacramento soil moisture accounting model,

which did not perform as well as PDM.

PDM is a parsimonious model where the runoff produc-

tion is controlled by the absorption capacity of the soil (in-

cluding canopy and surface detention). This process is con-

ceptualised by a store with a distribution of capacities across

the catchment and the spatial distribution of these capacities

is described by a probability distribution (Moore, 2007). The

spatial variability of store capacities can be related to differ-

ent soil depths, which was identified as the most dominant

factor governing runoff variability in a semi-arid catchment

(Jothityangkoon et al., 2001).

In the current formulation, the model treats soil mois-

ture store (S1 in Fig. 3) over the entire catchment as a dis-

tributed variable with capacities (c) following a Pareto distri-

bution function, F(c). At a given time, the different stores

receive water from rainfall and lose water by evaporation

and groundwater recharge (drainage). The shallower stores

with less capacity than a critical capacity, C∗, start to gen-

erate direct runoff while the rest accumulates the water as

soil moisture. The proportion of the catchment that gener-

ates runoff can therefore be expressed in terms of the Pareto

density function, f (c), as

prob
(
c ≤ C∗

)
= F

(
C∗

)
=

C∗∫

0

f (c)dc. (1)

In this way, for a time t , the soil moisture over the entire

catchment, θ (water content of S1), can be expressed as the

summation of all the store capacities greater than C∗(t):

θ(t) =

C∗(t)∫

0

(1 − F(c))dc. (2)

Note that the critical capacity C∗ varies in a time interval 1t

based on the net rainfall rate during that time, P ,

C∗(t + 1t) = C∗(t) + P1t. (3)

Direct runoff is calculated based on Eq. (1) and routed

through two cascade of reservoirs (S21 and S22 in Fig. 3, with

time constants k1 and k2, respectively). Subsurface runoff is

estimated based on the drainage from S1 and transformed

into baseflow by using a storage reservoir (S3 in Fig. 3 with

time constant kb). These are then combined as total runoff,

or streamflow. A detailed description of the model conceptu-

alisation and the formulation of the different rainfall-runoff

processes is presented in Moore (2007).

PDM was set up using both a lumped scheme and a semi-

distributed scheme (see Fig. 1). The semi-distributed scheme

was configured with seven sub-catchments (SC1–SC7), each

using the lumped version of PDM. The area and mean annual

rainfall of each sub-catchment are summarised in Table 1.

Hydrol. Earth Syst. Sci., 19, 1659–1676, 2015 www.hydrol-earth-syst-sci.net/19/1659/2015/
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Figure 3. The PDM scheme.

Table 1. Area and mean annual rainfall of the catchments used in

the lumped and semi-distributed schemes.

Catchment
Area Mean annual

(km2) rainfall (mm)

SC1 14 670 492

SC2 4453 532

SC3 8070 596

SC4 5431 524

SC5 4067 503

SC6 2130 467

SC7 4049 418

Total 42 870 512

The river routing between upstream and downstream sub-

catchments in the semi-distributed scheme was represented

by a linear Muskingum method (Gill, 1978):

S = km (Ix + (1 − x)O), (4)

where S is the storage within the routing reach, km is the stor-

age time constant, I and O are the streamflow at the begin-

ning and end of the reach, respectively, and x is a weight-

ing factor parameter. The time constant parameters of the

storages S21, S22 and S3 (k1, k2 and kb, respectively) were

scaled by the area of each sub-catchment, and km from the

Muskingum routing was scaled by the length of the river

channel between corresponding nodes. The remaining model

and routing parameters of the semi-distributed scheme were

treated as homogeneous.

The lumped and the semi-distributed models were cali-

brated by using a genetic algorithm (Chipperfield and Flem-

ing, 1995) with an objective function based on the Nash–

Sutcliffe model efficiency (NSE) (Nash and Sutcliffe, 1970).

The models were calibrated for the period 1 January 1967–

31 May 2003 and evaluation performed for the period

1 June 2003–2 March 2014. To make fair comparisons be-

tween the two model setups in a scenario where the inner

catchments are ungauged, the semi-distributed scheme was

calibrated using only the outlet gauge (N7 in Fig. 1). The

performance of the calibrated models was evaluated based

on the NSE at the catchment outlet (N7, Fig. 1) and at inner

nodes N1 and N3, in the case of the semi-distributed scheme.

To analyse the runoff mechanisms simulated by the

lumped and the semi-distributed schemes, we calculated the

lag-correlation between rainfall and streamflow, and between

antecedent SM and streamflow. This enables further under-

standing of the improvement in streamflow that can be ex-

pected by improving the simulated SM content through SM-

DA.

3.2 EnKF formulation

The EnKF proposed by Evensen (2003) has been widely

used in hydrologic applications given the nonlinear nature

of runoff processes. In the EnKF, the error covariance be-

tween the model and observations is calculated from Monte

Carlo-based ensemble realisations. In this way, the model

and observation uncertainties are propagated and the stream-

flow prediction is treated as an ensemble of equally likely re-

alisations. The uncertainty of the streamflow prediction can

be derived from the ensemble, which provides valuable in-

formation for operational flood alert systems.

In a state-updating assimilation approach, the state ensem-

ble is created by perturbing forcing data, parameters and/or

states of the model with unbiased errors. As we will see in

Sect. 3.3, an N -member ensemble of model soil moisture,

θ = {θ1,θ2, . . .θN }, was generated by perturbing rainfall forc-

ing data, the model parameter k1, and θ . Then, the soil water

error of member i at time t was estimated as

θ−
i (t)′ = θ−

i (t) −
1

N

N∑

i=1

θ−
i (t), (5)

where the superscript “−” denotes the state prediction prior

to the assimilation step. The error vector for time step t was

defined as θ
−(t)′ = {θ−

1 (t)′,θ−
2 (t)′, . . .,θ−

N (t)′} and the error

covariance of the model state (P −) was estimated at each

time step as:

P −(t) =
1

N − 1
θ

−(t)′ ·
(
θ

−(t)′
)T

. (6)

When a daily SM observation from AMS, ASC or SMO

was available, each member of the background prediction

(θ−) was updated. Before being assimilated, each of the three

observation data sets was transformed to represent a pro-

file SM and then rescaled to remove systematic differences

between the model and the transformed observations (de-

tails in Sects. 3.5 and 3.6). We sequentially assimilated an

N -member ensemble of the transformed and rescaled AMS,

ASC and SMO (named θ
ams,θasc and θ

smo, respectively) and

updated each member of θ
− with the following three steps:

1. If θ
ams was available at time t ,

θ+
i (t) = θ−

i (t) + K1(t) · (θams
i (t) − Hθ−

i (t)), (7)

www.hydrol-earth-syst-sci.net/19/1659/2015/ Hydrol. Earth Syst. Sci., 19, 1659–1676, 2015
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where H is an operator that transforms the model state

to the measurement space. Since the additive and mul-

tiplicative biases between the model predictions and the

microwave retrievals were removed via rescaling in a

separate step (see Sect. 3.6), H reduced to a unit ma-

trix. The Kalman gain K1(t) was calculated as

K1(t) =
P −(t)H T

HP −(t)H T + R1(t)
, (8)

where R1(t) is the error variance of θ
ams estimated

in the rescaling procedure (Sect. 3.6). If θ
ams was not

available, θ
+(t) = θ

−(t).

2. If θ
asc was available at time t , we updated the model soil

moisture with

θ++
i (t) = θ+

i (t) + K2(t) · (θasc
i (t) − Hθ+

i (t)), (9)

where K2(t) was calculated as

K2(t) =
P −(t)H T

HP −(t)H T + R2(t)
. (10)

R2(t) is the error variance of θ
asc and P − is the model

error covariance re-calculated by applying Eq. (6) to the

updated soil moisture θ
+(t). If θ

asc was not available,

θ
++(t) = θ

+(t).

3. If θ
smo was available at time t , we updated the model

soil moisture with

θ+++
i (t) = θ++

i (t)+K3(t)·(θ
smo
i (t)−Hθ++

i (t)), (11)

where K3(t) was calculated as

K3(t) =
P −(t)H T

HP −(t)H T + R3(t)
. (12)

R3(t) is the error variance of θ
smo and P− is the model error

covariance re-calculated by applying Eq. (6) to the updated

soil moisture θ
++(t). If θ

smo was not available, θ
+++(t) =

θ
++(t).

In the case of the semi-distributed scheme, during the

updating steps described above, each sub-catchment was

treated independently and no spatial cross-correlation in the

satellite measurements was considered. The order of the

products assimilated in steps 1–3 was arbitrary; however, we

checked that different orders did not significantly affect the

SM-DA results.

3.3 Error model representation

The main sources of uncertainty in hydrologic models are

the errors in the forcing data, the model structure and the

incorrect specification of model parameters (Liu and Gupta,

2007). Generally, these errors are represented by adding un-

biased synthetic noise to forcing variables, model state vari-

ables and/or model parameters.

The estimation of model errors is among the most crucial

challenges in data assimilation, as it determines the value of

the Kalman gain. In the case of a state updating SM-DA, the

ability of the scheme to improve streamflow prediction will

mainly depend on the covariance between the errors in SM

states and modelled streamflow, which directly depends on

the specific representation and estimation of the model er-

rors.

To represent the forcing uncertainty, we adopted a multi-

plicative error model for the rainfall data (McMillan et al.,

2011; Tian et al., 2013). In particular, we followed the

scheme used in various SM-DA studies (e.g. Chen et al.,

2011; Brocca et al., 2012; Alvarez-Garreton et al., 2014) and

represented a spatially homogeneous rainfall error (ǫp) as

ǫp ∼ lnN(1,σ 2
p), (13)

where σp is the standard deviation of the log-normal distri-

bution. The above representation assumes a spatially homo-

geneous fraction of the error to the rainfall intensity, which

could be an over-simplification in a large area like the study

catchment. However, it avoids the estimation of additional

error parameters (e.g. spatial correlation parameter) in an al-

ready highly undetermined problem (see Sect. 3.4).

The parameter uncertainty was represented by perturbing

the time constant parameter (k1) for store S21, a highly sen-

sitive parameter of the model that directly affects the stream-

flow generation by influencing the water stored in both sur-

face storages S21 and S22 (note that in the PDM formula-

tion used, the time constant k2 is calculated as a function of

k1). Given the lack of prior information about the structure of

the parameter error (ǫk), we adopted a normally distributed

multiplicative error with unit mean and standard deviation of

σk , following previous SM-DA studies working with rainfall-

runoff models (Brocca et al., 2010b, 2012).

Following the scheme used in most SM-DA experiments

(e.g. Reichle et al., 2008; Crow and Van den Berg, 2010;

Chen et al., 2011; Hain et al., 2012), the model structural

error was represented by perturbing the SM prediction (θ )

with a spatially homogeneous additive random error,

ǫs ∼ N(0,σ 2
s ), (14)

where σs is the standard deviation of the normal distribution.

The physical limits of SM (porosity as an upper bound

and residual water content as a lower bound) are represented

by the model through the storage capacity of S1. When θ ap-

proaches the limits of S1, applying unbiased perturbation to θ

can lead to truncation bias in the background prediction. This

can then result in mass balance errors and degrade the perfor-

mance of the EnKF (Ryu et al., 2009). Moreover, the Kalman

filter assumes unbiased state variables. This issue is of partic-

ular importance in arid regions like the study area, where the

soil water content can be rapidly depleted by evapotranspi-

ration and transmission losses, thus approaching the residual

Hydrol. Earth Syst. Sci., 19, 1659–1676, 2015 www.hydrol-earth-syst-sci.net/19/1659/2015/



C. Alvarez-Garreton et al.: Assimilation of satellite soil moisture to improve flood prediction 1665

water content of the soil. To ensure that the state ensemble re-

mained unbiased after perturbation we implemented the bias

correction scheme proposed by Ryu et al. (2009).

The truncation bias correction consisted of running a sin-

gle unperturbed model prediction (θ−0) in parallel with the

perturbed model prediction (θ−
i, ). At each time step, the mean

bias, δ(t), of the N -member ensemble prediction was calcu-

lated by subtracting θ−0(t) from the ensemble mean, as fol-

lows (Ryu et al., 2009):

δ(t) =
1

N

N∑

i=1

θ−
i (t) − θ−0(t). (15)

Then, a bias corrected ensemble of state variables, θ̃−
i (t), was

obtained by subtracting δ(t) from each member of the per-

turbed ensemble, θ−
i (t).

Although the latter resulted in unbiased state ensembles,

some important but subtle effects remain that arise from the

highly non-linear nature of hydrologic model. These need

to be guarded against in SM-DA. Representing model er-

rors by adding unbiased perturbation to forcing, model pa-

rameters and/or model states can lead to a biased stream-

flow ensemble prediction (e.g. Ryu et al., 2009; Plaza et al.,

2012), compared with the unperturbed model run. This bi-

ased streamflow ensemble prediction (open-loop hereafter)

is degraded compared with the streamflow predicted by the

unperturbed calibrated model. As a consequence, improve-

ment of the open-loop after SM-DA will in part be due to the

correction of bias introduced during the assimilation process

itself.

To avoid overstating the SM-DA efficacy due to the above

issue, we applied the bias correction scheme directly to the

streamflow prediction (in both the open-loop and the assimi-

lation runs). We used the unperturbed model run to estimate

a mean bias in the streamflow (following Eq. 15, but using

streamflow instead of soil moisture) and then corrected each

ensemble member by subtracting this mean bias. This practi-

cal tool ensures that the streamflow ensemble mean main-

tains the performance skill of the unperturbed (calibrated)

model run, thus avoiding artificial degradation of the unper-

turbed model run by bias. To our knowledge, this approach

has not been applied in previous SM-DA studies.

3.4 Error model parameters calibration

To calibrate the error model parameters (σp, σk and σs), we

evaluated the open-loop ensemble prediction (Qol) against

the observed streamflow at the catchment outlet. In this study

we used a maximum a posteriori (MAP) scheme, a Bayesian

inference procedure detailed by Wang et al. (2009) that max-

imises the probability of observing historical events given the

model and error parameters. In other words, it maximises the

probability of having the streamflow observation within the

open-loop streamflow.

Member i from the N -member open-loop can be ex-

pressed as

Qol
i (t) = QT (t) + ǫm(t), (16)

where QT is the (unknown) truth streamflow and ǫm is the

error of the streamflow prediction and consists of forcing,

parameter and states errors:

ǫm(t) = f (ǫp(t),ǫk(t),ǫs(t)). (17)

The observed streamflow at N7 (Qobs) can be expressed as

a function of the same (unknown) truth and the streamflow

observation error (ǫobs),

Qobs(t) = QT (t) + ǫobs(t). (18)

Combining Eqs. (16) and (18), the model ensemble predic-

tion of the observed streamflow (Q̂obs) is expressed as:

Q̂obs(t) = Qol(t) + ǫm(t) + ǫobs(t). (19)

Following Li et al. (2014), ǫobs was assumed to be a seri-

ally independent multiplicative error following a normal dis-

tribution (mean 1 and standard deviation of 0.2). Then, the

likelihood function (L) defining the probability of observing

the historical streamflow data given the calibrated model pa-

rameters (x), and the error model parameters (σp, σk and σs),

was expressed as

L(Qobs|x,σp,σk,σs) = 5n
t=1p(Qobs(t)|Q̂obs(t)). (20)

To maximise L, we applied a logarithm transformation to

it and maximised the sum over time of the transformed func-

tion. The probability density function (p) at each time step

was estimated by assuming that the ensemble prediction of

the observed streamflow, Q̂obs(t), follows a Gaussian distri-

bution, with its mean and standard deviation computed using

the ensemble members. The period used to calibrate the error

model parameters was 1 January 1998–31 May 2003.

An important aspect to highlight about this error parame-

ter calibration is that it is a highly underdetermined problem.

Only one data set (streamflow at N7) is used to calibrate the

error parameters, while there might be many combinations

of error parameters that can generate similar streamflow en-

semble (equifinality on the error parameters).

3.5 Profile soil moisture estimation

The aim of the stochastic assimilation detailed in Sect. 3.2 is

to correct θ , which is a profile average SM representing a soil

layer depth determined by calibration. By assuming a poros-

ity of 0.46, (A-horizon information reported in McKenzie

et al., 2000), and the model S1 storage capacity of 396 mm

(420 mm) for the lumped (semi-distributed) scheme, this pro-

file SM roughly represents the upper 1 m of the soil. On the

other hand, the satellite SM observations represent only the
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few top centimetres of the soil column (see Sect. 2). To pro-

vide the model with information about more realistic dynam-

ics of θ , we applied the exponential filter proposed by Wag-

ner et al. (1999) to the satellite SM to estimate the soil wet-

ness index (SWI) of the root-zone. SWI has been widely used

to represent deeper layer SM based on satellite observations

(e.g. Albergel et al., 2008; Brocca et al., 2009, 2010b, 2012;

Ford et al., 2014; Qiu et al., 2014). SWI was recursively cal-

culated as:

SWI(t) = SWI(t − 1) + G(t) [SSM(t) − SWI(t − 1)] , (21)

where SSM(t) is the satellite SM observation and G(t) is a

gain term varying between 0 and 1 as:

G(t) =
G(t − 1)

G(t − 1) + e
−

(
t−(t−1)

T

) . (22)

T is a calibrated parameter that implicitly accounts for sev-

eral physical parameters (Albergel et al., 2008). T was cal-

ibrated by maximising the correlation between SWI and the

unperturbed model soil moisture (θ ) during the first year of

satellite data. This calibration period was selected to max-

imise the independent evaluation period (see Sect. 3.7); how-

ever, more representative values are likely to be obtained if

a longer period is used for calibration. SWI was calculated

independently for each of the AMS, ASC and SMO data

sets (named SWIAMS, SWIASC and SWISMO, respectively)

and then rescaled to remove systematic differences with the

model prediction (Sect. 3.6).

3.6 Rescaling and observation error estimation

The systematic differences (e.g. biases) between θ and the

SWI derived from each satellite product must be removed

prior to applying a bias-blind data assimilation scheme (Dee

and Da Silva, 1998). We applied instrumental variable (IV)

regression to resolve the biases and estimate the measure-

ment errors simultaneously (Su et al., 2014a). In three-

data IV regression analysis, also known as triple collocation

(TC) analysis (Stoffelen, 1998; Yilmaz and Crow, 2013), the

model θ , the passive SWI and active SWI are used as the

data triplet. As the sample size requirement for TC is strin-

gent (Zwieback et al., 2012), a pragmatic threshold of 100

triplet sample was imposed (Scipal et al., 2008). During peri-

ods when only one satellite product was available (i.e. before

ASC) or when the sample threshold for TC was not met, a

two-data set IV regression using lagged variables (LV) was

applied as a practical substitute (Su et al., 2014a). The LV

analysis was performed on the model θ and a single satellite

SWI, with the lagged variable coming from the model.

In most SM-DA experiments, the error in satellite SM has

been treated as time-invariant (e.g. Reichle et al., 2008; Ryu

et al., 2009; Crow and Van den Berg, 2010; Brocca et al.,

2010b, 2012; Alvarez-Garreton et al., 2014); however, stud-

ies evaluating satellite SM products have shown an impor-

tant temporal variability in the measurement errors (Loew

and Schlenz, 2011; Su et al., 2014a). Since a data assimi-

lation scheme explicitly updates the model prediction based

on the relative weights of the model and the observation er-

rors, assuming a constant observation error may lead to over-

correction of the model state if the actual error is higher, and

vice versa.

Temporal characterisation of the observation error can be

achieved by applying TC (or LV) to specific time windows

of the observations and model predictions (for example,

by grouping the triplets or doublets by month-of-the-year).

There is however, a trade-off between the sampling window

(which defines the temporal characterisation of the error) and

the sample size (number of triplets in each subset). In an op-

erational context this trade-off becomes more critical since

only past observations are available. After analysing the tem-

poral variability of the observation errors using the complete

period of record (not shown here), we found that a 4-month

sampling window can reproduce seasonality in errors while

ensuring sufficient data samples for the TC and LV schemes.

With this analysis we also assessed the suitability of using

LV, which yielded similar results to TC although some pos-

itive bias in LV error variance estimates relative to TC was

noted (not shown here).

Summarising, the procedure for rescaling and error esti-

mation consists of:

1. From the start of the AMS data set, we grouped

LV triplets (SWIAMS(t), θ(t) and θ(t − 1)) into three

subsets: December–March, April–July and August–

November.

2. We applied LV and thus, estimated the observation error

variance and rescaling factors for a given 4-month sub-

set only when a minimum of 100 samples was reached

(after one year of AMS data set). After the first year

of AMS, new seasonal triplets were added into the

corresponding 4-month data pool (retaining all earlier

triplets) and LV was applied to the updated subset.

3. When ASC was available, LV triplets (SWIASC(t), θ(t)

and θ(t − 1)) subsets were formed following step 1 cri-

teria and LV was applied after the 4-month data pools

had more than 100 samples, following step 2.

4. In parallel with step 3, TC triplets were formed using the

two available satellite data sets (SWIAMS(t), SWIASC(t)

and θ(t)) and grouped into the 4-month subsets defined

in step 1. TC was applied only when the 4-month data

pools contained more than 100 samples (after approxi-

mately 3 years of ASC data).

5. Steps 3 and 4 were repeated when SMO was avail-

able. The triplets for TC in this case were given by

SWIASC(t), SWISMO(t) and θ(t).

6. Once steps 1–5 were complete, a single time series of

observations error variance and rescaling factors was
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constructed for each satellite-derived SWI by selecting

TC results when available, and LV results if not. This

criterion was adopted because LV is susceptible to bias

due to auto-correlated errors in the model SM (Su et al.,

2014a). The rescaled observations from AMS, ASC and

SMO were named θams, θasc and θ smo, respectively.

3.7 Evaluation metrics

To evaluate the SM-DA results, we used six different met-

rics. Firstly, the normalised root mean squared difference

(NRMSE) was calculated as the ratio of the root mean square

error (RMSE) between the updated streamflow ensemble

(Qup) and the observed streamflow to the RMSE between

the open-loop (ensemble streamflow prediction without as-

similation, Qol) and the observed discharge:

NRMSE =

1
N

∑N
i=1

√∑T
t=1

(
Q

up
i (t) − Qobs(t)

)2

1
N

∑N
i=1

√∑T
t=1

(
Qol

i (t) − Qobs(t)
)2

, (23)

where N = 1000 is the number of ensemble members. The

NRMSE provides information about both the spread of the

ensemble and the performance the ensemble mean, which is

considered as the best estimate of the ensemble prediction.

Moreover, as it is calculated in linear streamflow space, it

gives more weight to high flows.

To further evaluate the performance of the ensemble mean,

we calculated the Nash–Sutcliffe efficiency (NSE) for the en-

tire evaluation period as follows (example for the open-loop

case):

NSEol = 1 −

∑
t

(
Qobs(t) − Qol(t)

)2

∑
t

(
Qobs(t) − Qobs

)2
, (24)

where Qol is the open-loop ensemble mean. Similarly,

NSEup was calculated by applying Eq. (24) to the updated

ensemble mean (Qup).

We also estimated the probability of detection (POD) of

daily flow rates (not flood events) exceeding minor, moderate

and major floods, for the open-loop and the updated ensem-

ble mean, as follows (example for the open-loop case):

PODol =
#(Qol>=Q15.7 %

obs &Qobs>=Q15.7 %
obs )

#(Qobs>=Q15.7 %
obs )

, (25)

where the symbol # represents the number of times. Q15.7 %
obs

is the observed streamflow corresponding to a minor flood

classification. This corresponds to a flow (not flood) fre-

quency of 15.7 % (see Sect. 2). Similarly, PODup was cal-

culated by applying Eq. (25) to the updated ensemble mean

(Qup). We estimated the false alarm ratio (FAR) for daily

flows as (example for the open-loop case):

FARol =
#(Qol>=Q15.7 %

obs &Qobs < Q15.7 %
obs )

#(Qobs < Q15.7 %
obs )

. (26)

Similarly, FARup was calculated by applying Eq. (26) to the

updated ensemble mean.

Finally, we calculated the aggregated peak volume error

(PVE, in mm) of the ensemble mean, for days when the ob-

served streamflow was above a minor flood classification (t∗

days in Eq. 27). An example for the open-loop, PVE was cal-

culated as

PVEol =
∑

t∗

(
Qol(t∗) − Qobs(t

∗)
)
. (27)

To evaluate the skill of the streamflow ensemble predic-

tion before and after SM-DA, we calculated the continu-

ous ranked probability score (CRPS; Robertson et al., 2013).

CRPS is used as a measure of the ensemble errors. In the case

of the deterministic unperturbed run, CRPS reduces to the

mean absolute error. The reliability of the ensembles was also

evaluated by inspecting the rank histograms of the ensemble

following Anderson (1996). A reliable ensemble should have

a uniform histogram while a u-shape (n-shape) histogram in-

dicates that the ensemble spread is too small (large) (De Lan-

noy et al., 2006).

The evaluation period for the SM-DA was 1 June 2003–

2 March 2014. This period is independent of all scheme com-

ponent calibration periods (see Sects. 3.1, 3.4 and 3.5).

4 Results and discussion

4.1 Model calibration

The streamflow at the outlet of the study catchment (N7 in

Fig. 1) features long periods of zero-flow, a negligible base-

flow component and sharp flow peaks after rainfall events,

when the catchment has reached a threshold level of wetness

(see observed streamflow in Fig. 4).

The simulated streamflows from the lumped and the semi-

distributed schemes are presented in Fig. 4. To help visu-

alisation of these time series, the calibration and evalua-

tion periods were plotted separately. The evaluation period

was further separated into two sub-periods, evaluation sub-

period 1 (1 June 2003–30 April 2007), characterised by hav-

ing only moderate and minor floods, and evaluation sub-

period 2 (30 April 2007–2 March 2014), which had three

major flooding events. The plots show that both the lumped

and the semi-distributed models are generally able to capture

the hydrologic behaviour of the catchment. As expected, the

spatial distribution of forcing data and the channel routing

accounted for by the semi-distributed scheme enhanced the

overall performance of the model, with lower residual values

through time (panels a.2, b.2 and c.2 in Fig. 4) and consis-

tently improved the simulation of peak flows.

Table 2 presents the evaluation statistics for the stream-

flow prediction in the calibration and evaluation periods, for

both the catchment outlet and the inner catchments (notice

that N1 does not have data in the calibration period). The
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Table 2. Model evaluation at the catchment outlet (N7) and at the

inner catchments (N1 and N3), for calibration and evaluation peri-

ods. RMSE and PVE statistics are in units of mm.

Statistic
Lumped scheme Semi-distributed scheme

(N7) (N7) (N1) (N3)

RMSEcalib 0.19 0.18 – 0.3

RMSEeval 0.21 0.18 0.53 0.46

NSEcalib 0.52 0.59 – 0.39

NSEeval 0.67 0.77 0.28 -1.89

PODcalib 0.79 0.76 – 0.76

PODeval 0.93 0.91 0.54 0.73

FARcalib 0.09 0.10 – 0.15

FAReval 0.11 0.11 0.07 0.14

PVEcalib −70.86 −39.99 – 168.23

PVEeval 1.30 34.75 −100.53 115.52

CRPScalib 0.29 0.28 – 0.58

CRPSeval 0.56 0.33 0.92 0.49

different statistics in this Table consistently show that, at the

catchment outlet, the semi-distributed has consistently bet-

ter performance than the lumped scheme in terms of RMSE,

NSE, PVE and CRPS. Both schemes show better statistics in

the evaluation period due to the higher flows over that period.

The good performance of the semi-distributed scheme at

the catchment outlet was not reflected at the inner catch-

ments. To explore the reasons for such bad performance,

we separately calibrated the model parameters in those sub-

catchments by using all the available N7, N1 and N3 obser-

vations. The results (not shown here) revealed that in this

case, the model was able to adequately simulate streamflow

in those sub-catchments (NSE in evaluation period of 0.78,

0.69 and 0.84 at N1, N3 and N7 nodes, respectively). Based

on this, we argue that the problem of the poor model per-

formance in the “ungauged” inner catchments is most likely

due to sub-optimal parameter estimation (due to the limited

information about catchment heterogeneity provided by the

integrated catchment streamflow response) and unlikely to be

due to errors in the input data or model structure.

To focus the analysis of the catchment runoff mechanisms

on periods with flood events, the lag-correlation between the

daily streamflow simulated at N7 and θ (Fig. 5), and between

daily streamflow and the daily rainfall (Fig. 6), was calcu-

lated for daily streamflow values greater than Q15.7 %
obs , or mi-

nor flood level. The lumped scheme indicates a stronger link

between θ and streamflow than the semi-distributed scheme.

This is represented by higher r values in panel (a) compared

with panels (b)–(h) in Fig. 5. Conversely the link between

rainfall and streamflow is weaker in the lumped scheme

(lower r values in panel (a) compared with panels (b)–(h)

in Fig. 6). These different representations of the catchment

runoff response will have a direct impact on the skill of SM-

DA to improve streamflow prediction. A strong relationship

between θ and streamflow prediction suggests strong corre-

lation between their errors, and therefore, greater potential

improvement of streamflow resulting from an improved rep-

resentation of θ .

If we assume that the semi-distributed scheme provides

a better representation of runoff response within the entire

catchment (based on its better model performance at the out-

let), Figs. 5 and 6 also suggest that daily rainfall is the main

control on runoff generation and thus has a stronger impact

on the streamflow prediction than soil moisture. Figure 5

shows that flood prediction strongly depends on antecedent

soil moisture for up to the preceding 3 days. The strong cor-

relation found at lag-0 suggests that the real time SM correc-

tion given by the proposed SM-DA would be a good strategy

to improve flood prediction.

4.2 Error model parameters and ensemble prediction

The calibrated error parameters for the lumped and the semi-

distributed schemes are σp = 1.286 mm and 0.977 mm; σs =

0.099 and 0.03 and σk = 0.084 and 0.018, respectively. σs

is expressed as a percentage of the total storage capacity

(396 mm in the lumped scheme and 420 mm in the semi-

distributed scheme) and σk is expressed as a percentage of

the calibrated parameter k1.

The rank histograms of the generated ensemble predic-

tion (open-loop) are presented in Fig. 7. The histograms at

the catchment outlet (N7) are either n-shaped or displaced

to one side, for both the lumped and semi-distributed model

schemes (Fig. 7a and b, respectively). This suggests that the

open-loop ensembles are slightly biased (with respect to the

observed streamflow) and feature wider spread than an ideal

ensemble. The width of the spread will be critical for the

evaluation of SM-DA (Sect. 4.4) since any decrease of the

spread would be considered as an improvement of the en-

semble prediction.

The wider spread of the open-loop ensembles at the catch-

ment outlet could be due to factors such as an over-prediction

of error parameters by the MAP calibration algorithm, or the

representation of the model error with time-constant error pa-

rameters. The latter becomes critical given the distinct be-

haviour of the intermittent streamflow response within the

catchment, which could indicate distinct behaviour in the

model errors as well.

The ensemble predictions at the inner nodes N1 and N3

(Fig. 7c and d, respectively) feature high bias with respect

to the observed streamflow (note that observations at N1 and

N3 were not used to calibrate the error parameters). The large

bias at these inner nodes result from the large errors in the

calibrated model in SC1 and SC3 (see Sect. 4.1).
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Figure 4. Simulated and observed daily streamflow (Q) and model streamflow prediction residuals (simulated minus observed) at the catch-

ment outlet (N7). (a.1) and (a.2) present the calibration period. (b.1) and (b.2) present evaluation sub-period 1, which has only moderate and

minor flood events. (c.1) and (c.2) present evaluation sub-period 2, which has 3 major flood events. The daily rainfall plotted on the right

axis correspond to the averaged rainfall over the entire catchment.

4.3 SWI estimation and rescaling

The satellite SM derived from AMS, ASC and SMO are

presented in Fig. 8a, for the lumped model. The satellite

data sets feature significantly higher noise than the mod-

elled θ . This can be explained by factors such as random

errors in the satellite retrievals (Su et al., 2014b), and the

rapid variation of water content in the surface layer of soil

due to infiltration and evapotranspiration losses. Figure 8b

presents the SWI derived from the satellite products, after

seasonal rescaling (θams, θasc and θ smo). This plot shows bet-

ter agreement between model and observations due to SWI

filtering/transformation, even when the higher noise in the

rescaled SWI time series is still present.

Figure 8c shows the seasonal observation error variance,

and reveals a clear variation in the error with time. The vari-

ation of the seasonal error values is due to the alternative

use of TC or LV and to the increasing sample size of each

seasonal pool (see Sect. 3.6), which should reduce the uncer-

tainties coming from finite sample size. One limitation of this

procedure is its assumption that the errors vary seasonally

without inter-annual variability. Since there are inter-annual

cycles (wet and dry years), one may also expect the errors to

vary with year. Ideally, moving-window estimation with win-
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Figure 5. Lag-correlation coefficient (r) between the simulated

streamflow at N7 (mm d−1), and θ (mm d−1) from the lumped

(a) and the semi-distributed (b)–(h) model schemes.
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Figure 6. Lag-correlation coefficient (r) between the simulated

streamflow at N7 (mm d−1), and the daily rainfall (mm d−1) of the

entire catchment (a) and the seven sub-catchments (b)–(h).

dows smaller than 3 months should be considered, but that

would cause greater sampling uncertainties for the TC and

LV estimates. The inverse relationships between θams and

θasc error variances at some times could be due to the pas-

sive retrieval by AMS compared with the active ASC, among

other factors.

A common error standard deviation value used in previ-

ous SM-DA studies is 3 % m3 m−3 (e.g. Chen et al., 2011).

This constant error, when transformed according to the soil

moisture storage capacity of the model and the soil porosity

(see Sect. 3.5) gives an error variance of 667 (750) mm2 for

the lumped (semi-distributed) scheme. As a simple compar-

ison, these values are within the range of the error variance

estimated through seasonal LV/TC; however, a comprehen-

sive analysis of the impacts of accounting for seasonality in

SM-DA is beyond the scope of this work.

Table 3 summarises the results of the SWI calibration and

seasonal rescaling for the lumped model, showing the T pa-

rameter for each SWI and the correlation coefficient (r) be-

tween θ and the satellite SM before and after SWI transfor-

mation and rescaling (θobs). These results confirm the visual

assessment of plots in Fig. 8 by showing an important in-

crease in the linear correlation coefficient with θ when satel-

lite SM is transformed into SWI. The correlation is further

Table 3. Parameter T and correlation coefficient between model

SM (θ ) and satellite SM, before and after SWI transformation and

rescaling. Results are presented for the entire catchment.

Data set
T r between θ and

(days) Satellite SM SWI θobs

AMS 3 0.65 0.74 0.94

ASC 11 0.77 0.92 0.97

SMO 40 0.46 0.79 0.93

increased after rescaling, which illustrates that there is clear

benefit from performing seasonal bias correction. Note that

applying a constant rescaling factor would have no impact on

the correlation between θ and θobs.

The optimal T values (Table 3) are difficult to validate

since there is no ground data to compare with and, given that

it has been shown that they strongly depend on the physi-

cal processes of the study site (Ceballos et al., 2005), direct

comparison with other studies cannot be made reliably. In-

deed, previous studies have shown a wide range of optimal

T values for soil depths ranging between 10 and 100 cm. As

an example, in Fig. 9 we have summarised the optimal T

found in five different studies (Albergel et al., 2008; Brocca

et al., 2009, 2010a; Ford et al., 2014; Wagner et al., 1999).

Previous studies have shown that optimal T value in-

creases with layer depth (e.g. Brocca et al., 2010a). Results

presented here show an increased T value for SMO, which

would be inconsistent with L-band having a deeper penetra-

tion than AMS C-band (to limit the comparison within pas-

sive retrievals). We speculate that these differences might be

due various factors, including the different retrieval methods

(which have quite different assumptions pertaining to spatial

heterogeneity) and the influence that radio-frequency inter-

ference noise. Moreover, to the best of our knowledge, the

existing studies examining the dependence of T on the soil

depths are usually based on a single satellite product against

in situ measurements at variable depths. Hence it is diffi-

cult to compare our results against these studies due to the

increased complexity due to different sensing and retrieval

methods.

There are some key theoretical issues that should be con-

sidered when using SWI as a profile SM estimator. Firstly,

the parameter T in Eq. (22) was estimated by maximising

the correlation between SWI and θ , which could introduce

cross-correlated errors between them. This would violate the

IV regression assumption of no correlation between the er-

rors among the triplets (Sect. 3.6). A way to overcome this

issue, if data requirements are met, would be to estimate a

profile SM independently of the rainfall-runoff model pre-

diction, for example by using a physically based model to

transfer surface SM into deeper layers (e.g. Richards, 1931;

Beven and Germann, 1982; Manfreda et al., 2014).
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Figure 8. (a) shows the model soil moisture on the left axis (θ ) and the satellite soil moisture observations on the right axis. (b) shows the

soil moisture on the model space, after the three satellite data sets were transformed into a soil wetness index (SWI) and then rescaled by

using TC or LV (θams, θasc and θ smo). (c) shows the rescaled satellite SM observations error variance.

Secondly, the SWI formulation explicitly incorporates au-

tocorrelation terms, which would result in autocorrelated er-

rors in the observation, which violates an EnKF assump-

tion: independence between observation and prediction er-

rors. The autocorrelation in the observation error can be

transferred to the updated θ
+ during the SM-DA updating

step. In that case, the θ
− background prediction error co-

variance at time t + 1 would be correlated to the error of the

rescaled SWI at time t + 1. In contrast with the first issue

listed above, the violation of the EnKF assumption can not

be avoided by replacing SWI with a physically based model,

since the latter would result in profile SM strongly correlated

with previous states as well. Indeed, given the physical mech-

anisms of water flux in the unsaturated soil, this problem will

be present whenever a profile SM estimated from satellite

SM is used as an observation in an EnKF-based data assimi-

lation framework. A way to overcome this could be to work

with models that explicitly account for the water in the top

few centimetres of soil and therefore can directly assimilate

a (rescaled) satellite retrieval. However, the errors in satellite

SM retrievals are probably already autocorrelated (Crow and

Van den Berg, 2010).

Breaching some of the EnKF-based scheme and/or the

IV-based rescaling assumptions could theoretically degrade
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studies.

the performance of the SM-DA scheme, when the variable

analysed is soil moisture (Crow and Van den Berg, 2010;

Reichle et al., 2008; Ryu et al., 2009). In this context, the

performance of SM-DA with respect to the improvement

in streamflow has been under-investigated. Alvarez-Garreton

et al. (2013, 2014) show that in terms of streamflow predic-

tion, SM-DA seems to be less sensitive to violation of these

assumptions. Both the lower sensitivity and the apparent con-

tradiction with previous studies analysing soil moisture pre-

diction performance highlight the need for further studies fo-

cusing on SM-DA for the purposes of improving streamflow

prediction from rainfall-runoff models.

4.4 Satellite soil moisture data assimilation

The ensemble predictions of streamflow and θ , before and

after SM-DA, for both the lumped and the semi-distributed

schemes at N7, are presented in Fig. 10. The truncation bias

correction (Sect. 3.3) was successful in creating an unbiased

θ ensemble when the unperturbed model approached the soil

water storage bounds (Fig. 10a.2 and b.2).

The rank histograms at N7, N1 and N3 are presented in

Fig. 7. For all the evaluated nodes, the ensemble predictions

are more reliable after SM-DA (flatter histograms compared

with the open-loop). The consistent overestimation of the ob-

served streamflow in the open-loop ensembles (diagonal his-

tograms displaced towards the higher ensemble percentiles)

is partially addressed by the SM-DA.

The evaluation statistics for the SM-DA are summarised

in Table 4. The streamflow data of the inner catchments (N1

and N3) are used only for evaluation purposes in the semi-

distributed scheme, therefore they are representative of “un-

gauged” inner catchments.

The NRMSE in Table 4 (all values below 1) demonstrates

that the SM-DA was effective in reducing the streamflow pre-

diction uncertainty (RMSE) across all gauged and ungauged

catchments. The reductions in the RMSE ranged from 17

to 24 % for the different evaluation nodes. The NRMSE

combines precision improvement (i.e. reduction of ensem-

ble spread) with prediction accuracy improvement (i.e. en-

hancement of ensemble mean performance) resulting from

the SM-DA. Given that the ensemble open-loop spread was

larger than an ideal ensemble (based on the n-shaped rank

histograms in Fig. 7), the reduction of the ensemble spread

may be in part artificial.

Table 4. SM-DA evaluation statistics calculated at the catchment

outlet (N7) and at the inner catchments (N1 and N3).

Statistic
Lumped scheme Semi-distributed scheme

(N7) (N7) (N1) (N3)

NRMSE 0.78 0.76 0.81 0.83

NSEol 0.67 0.77 0.28 −1.75

NSEup 0.64 0.78 0.26 −1.39

PODol 0.96 0.92 0.56 0.69

PODup 0.94 0.93 0.55 0.69

FPol 0.11 0.11 0.07 0.12

FPup 0.10 0.10 0.06 0.11

PVEol 5.63 35.30 −96.87 56.42

PVEup −2.37 34.93 −109.66 40.71

CRPSol 0.32 0.26 0.74 0.20

CRPSup 0.28 0.23 0.73 0.24

The performance of the ensemble mean was assessed by

computing the NSEol and NSEup (Table 4). At the catchment

outlet, the NSE of the ensemble mean after SM-DA only

improved for the semi-distributed scheme. At the ungauged

catchments, SM-DA was effective at improving the perfor-

mance of the ensemble mean only at N3, compared with the

open-loop. However, the performance of the model in that

catchment was still poor. This can be explained by the sys-

tematic errors present in the model for those catchments be-

fore assimilation, which were not addressed by the SM-DA.

The POD values at the catchment outlet (N7) show that

before and after SM-DA, the model is consistently capable

of detecting minor floods. Although this does not demon-

strate an advantage of the SM-DA scheme proposed here, it

does reflect the adequacy of the model ensemble prediction

for simulating minor (and larger) floods. Consistently with

previous results, the prediction of the semi-distributed model

at the inner catchments is poorer in terms of detecting mi-

nor floods. The lower FAR values after SM-DA demonstrates

the efficacy of the scheme in reducing the number of times

the model predicted an unobserved minor flood, at both the

gauged and the ungauged catchments.

The open-loop PVE was improved (lower PVE values)

after SM-DA at N7 (for both the lumped and the semi-

distributed schemes) and at N3. This was not the case how-

ever, for inner node N1, at which the PVE was higher af-

ter SM-DA, compared with the open-loop. When compared

to the unperturbed model run (Table 2), the assimilation

of satellite soil moisture improved the performance of the

model in terms of PVE at all the nodes and for both the

lumped and semi-distributed schemes.

The skill of the ensembles after SM-DA was improved at

the catchment outlet by 12 and 13 % (expressed by a reduc-

tion in CRPS) for the lumped and semi-distributed scheme
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Figure 10. Streamflow (Q in mm d−1) and soil moisture (θ in mm d−1) ensemble prediction at the catchment outlet, before and after SM-DA

for evaluation sub-period 2 (1 May 2007–2 March 2014), which had three major flooding events. (a.1) and (a.2) present the results for the

lumped model. (b.1) and (b.2) present the results for the semi-distributed model.

respectively, and by a 17 % at N1. The skill of the updated

ensemble was also consistently higher than the unperturbed

model run (Table 2).

To summarise the efficacy of the SM-DA, we take into ac-

count the characteristics of the ensemble predictions (open-

loop and updated) in terms of the their mean, skill and reli-

ability. Overall, SM-DA was effective at improving stream-

flow ensemble predictions in the gauged and the ungauged

catchments. By accounting for rainfall spatial distribution

and routing process within the large study catchment, we im-

proved the model performance at the outlet compared with a

lumped homogeneous scheme. This led to greater improve-

ments from the SM-DA for the semi-distributed model. The

latter was achieved even though the relationship between

θ and the streamflow prediction was weaker in the semi-

distributed scheme (Fig. 5). The proposed SM-DA scheme

therefore has the merits of improving streamflow ensemble

predictions by correcting the SM state of the model, even

when rainfall appears to be the main driver of the runoff

mechanism (see Sect. 4.1).

5 Conclusions

This paper presents an evaluation of the assimilation of pas-

sive and active satellite soil moisture observations (SM-DA)

into a conceptual rainfall-runoff model (PDM) for the pur-

pose of reducing flood prediction uncertainty in a sparsely

monitored catchment. We set up the experiments in the large

semi-arid Warrego River basin (> 40 000 km2) in south cen-

tral Queensland, Australia. Within this context, we explore
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the advantages of accounting for the forcing data spatial dis-

tribution and the routing processes within the catchment.

The framework proposed here rigorously addressed the

two main stages of a SM-DA scheme: model error repre-

sentation and satellite data processing. We applied the dif-

ferent methods in the context of a sparsely monitored large

catchment (i.e. limited data), under operational streamflow

and flood forecasting scenarios (i.e. no future information is

used in any of the presented methods).

The model error representation was the most critical step

in the SM-DA scheme, since it determined the error covari-

ance between observations and model state, and thus the

potential efficacy of SM-DA. Moreover, the SM-DA evalu-

ation was done against the open-loop ensemble prediction.

We addressed key issues of the ensemble generation process

by correcting truncation biases in soil moisture and stream-

flow predictions. This prevented an unintended degradation

of the open-loop ensembles coming from perturbing a highly

non-linear model. The open-loop ensembles at the catchment

outlet provide key information about prediction uncertainty,

which is required for assessing risks associated with water

management decisions (Robertson et al., 2013). These en-

sembles showed a slight bias with respect to the observed

streamflow and featured a wide spread. Further exploration

of model error representation (sources of error and the struc-

ture of those errors) and error parameter estimation is re-

quired to improve the characteristics of the open-loop ensem-

ble prediction.

In the satellite data processing, we highlighted that the use

of an exponential filter to transfer surface information into

deeper layers may potentially lead to violation of some of

TC and EnKF assumptions (Sect. 4.3). Possible solutions to

overcome this would be to use more physically based meth-

ods to transfer satellite SM into deeper layers or to use a

rainfall-runoff model that explicitly accounts for the surface

soil layer that can directly assimilate a (rescaled) satellite

SM product. However, both solutions are constrained by the

ancillary data available for satisfactory implementation of a

physically based model. In the rescaling and error estima-

tion procedure, we applied seasonal TC and LV to avoid

error-in-variable biases. Applying these to correct biases in

the SWI showed improved agreement between observed and

modelled SM. This seasonal approach is novel in the context

of SM-DA and tends to lead to closer agreement between

model and observations. Further investigation is required to

assess the impacts and importance of accounting for season-

ality in rescaling and error estimation.

The evaluation of the SM-DA results led to several in-

sights. (1) The SM-DA was successful at improving the

open-loop ensemble prediction at the catchment outlet, for

both the lumped and the semi-distributed case. (2) Account-

ing for spatial distribution in the model forcing data and

for the routing processes within the large study catchment

improved the skill of the SM-DA at the catchment outlet.

(3) The SM-DA was effective at improving streamflow pre-

diction at the ungauged locations, compared with the open-

loop. However, the updated prediction in those catchments

was still poor, because the systematic errors before assimila-

tion are not addressed by a SM-DA scheme.

This work provides new evidence of the efficacy of SM-

DA in improving streamflow ensemble predictions within

sparsely instrumented catchments. We demonstrate that SM-

DA skill can be enhanced if the spatial distribution of forc-

ing data and routing processes within the catchment are ac-

counted for in large catchments. We show that SM-DA per-

formance is directly related to the model quality before as-

similation. Therefore we recommend that efforts should be

focused on ensuring adequate models, while evaluating the

trade-offs between more complex models and data availabil-

ity.
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