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Abstract

Machine learning techniques have been actively pursued in the last years, mainly due to the great number of applications that 

make use of some sort of intelligent mechanism for decision-making processes. In this work, we presented an ensemble of 

optimum-path forest (OPF) classifiers, which consists into combining different instances that compute a score-based confi-

dence level for each training sample in order to turn the classification process “smarter”, i.e., more reliable. Such confidence 

level encodes the level of effectiveness of each training sample, and it can be used to avoid ties during the OPF competition 

process. Experimental results over fifteen benchmarking datasets have shown the effectiveness and efficiency of the proposed 

approach for classification problems, with more accurate results in more than 67% of the datasets considered in this work. 

Additionally, we also considered a bagging strategy for comparison purposes, and we showed the proposed approach can 

lead to considerably better results.

Keywords Optimum-path forest · Supervised learning · Classifier ensemble

1 Introduction

The study of systems that make use of multiple classifiers 

has become an area of great interest in pattern recognition. 

A large number of methods to combine classifiers have 

been proposed recently, thus allowing the fusion of differ-

ent strategies aiming at improving the effectiveness of the 

whole system [8, 12, 13]. Researchers have suggested that a 

combination of decisions provided by several classifiers can 

result in a better recognition rate than using a sole classifier, 

or even using the best classifier from a collection [16]. In 

fact, it is expected that each classifier of this collection may 

learn different aspects of the data. Thus, the deficiencies of 

each technique can be offset by the improvements of others. 

Among the different methods proposed in the literature [19], 

bagging [6], Boosting [18] and Random Subspaces [14] as 

the most widely used methods. The Random Subspaces 

technique creates multiple classifiers using different spaces 

of features, while bagging generates different learners by 

randomly selecting subsets of samples to train base classi-

fiers. Although Boosting also uses part of the data to train 

the classifiers, the most difficult samples to be classified have 

a higher probability of being selected to compose the final 

training set.

The output of the classification algorithms can be 

roughly categorized into three levels [1]: abstract, rankings 

and confidence. In the first level, the classifiers associate a 

single label to each dataset sample, while in ranking-based 

approaches the possible labels for a sample are stored in a 

priority queue according to some criterion. In confidence-

oriented techniques, the classifier computes some metric that 

will reflect the probability of each label being assigned to a 

particular sample.

Papa et al. [23, 24] introduced the optimum-path for-

est (OPF) classifier which is a graph-based supervised 

pattern recognition technique with interesting results in 

terms of efficiency and effectiveness, comparable to the 

ones obtained by Support Vector Machines (SVMs) [7, 

32] but faster for training. The idea of OPF is to model 
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the pattern recognition task as a graph partition problem 

where a set of key samples (prototypes) acts as rulers of 

this competition process. Such samples try to conquer 

the remaining ones offering to them optimum-path costs, 

and when a sample is conquered, it receives the label of 

its conqueror. A new variant of the OPF classifier that 

makes use of a k-nearest neighborhood (k-nn) graph named 

OPF
knn

 was proposed by Papa and Falcão [21, 22, 25], and 

its semi-supervised version has been presented by Amorim 

et al. [4]. An interesting property stated by Souza et al. 

[29] concerns that OPF is equivalent to 1-NN when all 

training samples are used as prototypes. In addition, the 

same authors presented the k-OPF as a natural extension 

of the OPF classifier and showed that k-OPF and the well-

known k-nearest neighbors technique are similar to each 

other under some situations. This is interesting in light of 

a recent work by Amancio et al. [3], which showed that 

k-nearest neighbors may perform so as well as Support 

Vector Machines. Ponti and Papa [27] showed the training 

step of OPF classifier can be more efficient and effective 

when subsets of the original training set are used rather 

than the whole set. In the same year, Ponti et al. [28] pro-

posed the combination of OPF classifiers using Markov 

Random Fields model as a decision graph and Game The-

ory to compute the final decision, i.e., each classifier is 

seen as player and each classifier decision (class label) 

is modeled as a strategy. Fernandes et al. [10] showed an 

improved version of the naïve OPF classifier that computes 

a score-based confidence level for each training sample 

in order to turn the classification process “smarter”, i.e., 

more reliable. Ponti and Rossi [26] investigated differ-

ent data undersampling approaches and their influence 

in ensembles of OPF-based classifiers. Fernandes et al. 

[11] introduced meta-heuristic optimization techniques 

for pruning OPF-based classifiers in the context of land 

cover classification. However, there are very few studies 

on combining OPF classifiers to improve effectiveness in 

the classification process.

In this paper, an ensemble of OPF score-based confi-

dence classifiers is proposed, which consider not only the 

optimum-path value from a given sample in the classifi-

cation process, but also its confidence value measured by 

means of a score index computed over a validating set. In 

a nutshell, the idea is to exploit the combination of OPF 

using bag-of-classifiers by using optimum-path costs that 

consider confidence values coming from different classi-

fiers. It is shown this approach can overcome traditional 

OPF in several datasets, i.e., providing a refinement of 

OPF classification process, even when learn on smaller 

training sets, as well as it can perform training faster than 

its standard version when using the same amount of data. 

The proposed approach also improves the recent results 

presented by Fernandes et al. [10] and also extends such 

approach in the context of OPF
knn

 classifier.

The remainder of the paper is organized as follows. Sec-

tions 2 and 3 present the OPF background theory and the 

proposed approach for ensemble-oriented classification with 

score-based confidence computation, respectively. Section 4 

describes the methodology and the experimental results. 

Finally, conclusions and future works are stated in Sect. 5.

2  Optimum‑path forest

In this section, the theoretical foundation of the naïve OPF 

is discussed. Given some key nodes (prototypes), they 

will compete among themselves aiming at conquering the 

remaining nodes. Thus, the algorithm outputs an optimum-

path forest, which is a collection of optimum-path trees 

(OPTs) rooted at each prototype. This work employs the 

OPF classifier proposed by Papa et al. [23, 24], which is 

explained in more details as follows.

Let � = �
1
∪�

2
 be a labeled dataset, such that �

1
 and 

�
2
 stand for the training and test sets, respectively. Let 

� ⊂ �
1
 be a set of prototypes of all classes (i.e., key samples 

that best represent the classes). Let ( �1,� ) be a complete 

graph whose nodes are the samples in �
1
 , and any pair of 

samples defines an edges in � = �
1
×�

1
 . Additionally, let �

s
 

be a path in (�1,�) with terminus at sample � ∈ �
1
.

The OPF algorithm proposed by Papa et al. [23, 24] 

employs the path-cost function f
max

 due to its theoretical 

properties for estimating prototypes (Sect. 2.1 gives further 

details about this procedure):

where d(s, t) stands for a distance between nodes s and t, 

such that s, t ∈ �1 . Therefore, f
max

(�s) computes the maxi-

mum distance between adjacent samples in �
s
 , when �

s
 is not 

a trivial path. In short, the OPF algorithm tries to minimize 

fmax(�t),∀t ∈ �1.

2.1  Training phase

Say that �∗ is an optimum set of prototypes when OPF 

algorithm minimizes the classification errors for every 

� ∈ �
1
 . Given that �∗ can be found by exploiting the 

theoretical relation between the minimum-spanning tree 

and the optimum-path tree for f
max

 [2], the training essen-

tially consists in finding �∗ and an OPF classifier rooted 

at �∗ . By computing a minimum-spanning tree (MST) in 

the complete graph ( �1,� ) obtains a connected acyclic 

(1)
fmax(⟨s⟩) =

�
0 if s ∈ 𝒮

+∞ otherwise,

fmax(�s ⋅ ⟨s, t⟩) =max{fmax(�s), d(s, t)},



705Pattern Analysis and Applications (2019) 22:703–716 

1 3

graph whose nodes are all samples of �
1
 and the edges 

are undirected and weighted by the distances d between 

adjacent samples. In the MST, every pair of samples is 

connected by a single path, which is optimum according 

to f
max

 . Hence, the minimum-spanning tree contains one 

optimum-path tree for any selected root node.

The optimum prototypes are the closest elements of the 

MST with different labels in �
1
 (i.e., elements that fall in 

the frontier of the classes). By removing the edges between 

different classes, their adjacent samples become prototypes 

in �∗ , and OPF algorithm can define an optimum-path for-

est with minimum classification errors in �
1
.

2.2  Classification phase

For any sample � ∈ �
2
 , we consider all edges connecting 

� with samples � ∈ �
1
 , as though � were part of the train-

ing graph. Considering all possible paths from �∗ to � , 

we find the optimum-path �∗(�) from �∗ and label � with 

the class �(ℛ(�)) of its most strongly connected prototype 

ℛ(�) ∈ 𝒮∗ . This path can be identified incrementally, by 

evaluating the optimum cost �(�) as follows:

Let the node s∗ ∈ �
1
 be the one that satisfies Eq. 2 (i.e., 

the predecessor �(�) in the optimum-path �∗(�) ). Given 

that L(s∗) = �(ℛ(�)) , the classification simply assigns L(s∗) 

as the class of � . An error occurs when L(�∗) ≠ �(�) . An 

interesting point to be considered concerns with the rela-

tion between OPF and the nearest neighbor classifier (NN). 

Although OPF uses the distance between samples to com-

pose the cost to be offered to them, the path-cost function 

encodes the power of connectivity of the samples that fall 

in the same path, being much more powerful than the sole 

distance. Therefore, this means OPF is not a distance-based 

classifier. Additionally, Papa et al. [24] showed that OPF is 

quite different than NN, being those techniques exactly the 

same only when all training samples become prototypes.

3  Ensemble of classifiers with score‑based 
confidence levels

In this section, the confidence level proposed by Fernandes 

et al. [10] is first introduced in Sect. 3.1, followed by the 

proposed approach based on ensemble of classifiers to 

improve the OPF learning process using that confidence 

levels in Sect. 3.2.

(2)
�(�) = min

∀� ∈ �1

{max{�(�), d(�, �)}}.

3.1  Score‑based confidence levels

In order to extract the confidence level, the dataset � is 

partitioned into three subsets, say that � = �
1
∪�

v
∪�

2
 

where �
1
 , �

v
 and �

2
 stand for the training, validating and 

testing sets, respectively. It is worth nothing to say all sub-

sets have their respective graph representation as being 

( �1,� ), ( �
v
,� ) and ( �2,� ), as defined in Sect. 2. There-

fore, the same definition applied for �
1
 and �

2
 can also be 

adopted for �
v
.

The approach proposed by Fernandes et al. [10] to cal-

culate scores aims at training OPF classifier over �
1
 for 

further classification of �
v
 using the same methodology 

described in Sect. 2. The main difference is that each train-

ing sample receives a reliability level �(⋅) , which is com-

puted by means of its individual performance (recognition 

rate) over the validating set. The training samples � ∈ �
1
 

start with �(�) = 0 , and if � classifies some validating sam-

ple, then �(�) = �(�) + 1 ; if misclassification occurs, then 

�(�) = �(�) − 1 . Later on, the final �(�) is computed based 

on the average of hits and errors for each sample � ∈ �
v
 con-

quered by � . Also, considering the aforementioned approach, 

a sample � ∈ �
1
 that did not participate from any classifi-

cation process would be scored as �(�) = 0 , and thus may 

be penalized, since the higher the score the most reliable 

that sample is. Therefore, for such samples are assigned 

�(�) → +1 to give them a chance to perform a classification 

process over the unseen (test) data without any disadvantage. 

Thus, at the end of the classification process over the vali-

dating set �
v
 have a score measure �(�) ∈ [0, 1],∀� ∈ �1 , 

which can be used as a confidence level of that sample. In 

short, there are three possible confidence levels:

– �(�) = 0 : it means sample � did not perform a good work 

on classifying samples, since it has misclassified all sam-

ples. Therefore, samples with score equal to 0 may not be 

reliable;

– 0 < 𝜙(�) < 1 : it means sample � has misclassified some 

samples, as well as it has also assigned correct labels to 

some of them. Notice the larger the errors, the lower is 

the sample’s reliability. Samples with scores that fall in 

this range may be reliable; and

– �(�) = 1 : it means either sample � did not participate in 

any classification process or � assigned the correct label 

to all its conquered samples, which means � is a reliable 

sample according to our definition.

Algorithm 1 implements the procedure described above. 

Lines 1–4 initialize the score of each training sample, and 

Line 5 performs the OPF training step over (�1,�) . The 

core of the algorithm is performed in Lines 6–15: the clas-

sification process of a validation sample � is performed in 

Line 7 using traditional OPF classification procedure. Let 
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�
∗
∈ �

1
 be the sample that has conquered � : in this case, the 

counter n(⋅) of samples classified by �∗ is then increased in 

Line 8. Additionally, if � is misclassified, the counter e(⋅) is 

decreased for that training sample �∗ in Line 10. The loop in 

Lines 11–15 is responsible for computing the final score for 

each training sample. Lines 12–13 set the score of a sample 

that did not participate in any classification process to 1, as 

mentioned above.

After calculating the confidence levels for each training 

sample, one needs to modify the naïve OPF classification 

procedure in order to consider such information during the 

label assignment. In order to fulfill this purpose, Fernandes 

et al. [10] proposed a modification in the OPF classification 

procedure (Eq. 2) as follows:

where � = 10
−4 is employed to avoid numerical instabilities. 

Therefore, the idea of the first term in the Eq. 3 is to penalize 

samples with low confidence values by increasing their costs. 

In short, the amount of penalty is inversely proportional to 

the sample’s confidence level. For the sake of explanation, 

we provided a graphic illustration of the working mechanism 

considering the confidence level-based optimum-path forest 

classifier proposed by Fernandes et al. [10]. Let OPF∗ be 

the classifier trained on �
1
∪�

v
 , and OPF

c
 the confidence-

based approach proposed by Fernandes et al. [10]. The idea 

is to show the situations in which the approach that uses 

(3)

�
�(�) = min

∀� ∈ �1

{(

1

�(�) + �

)

∗ max{�(�), d(�, �)}

}

,

confidence levels may overcome standard OPF by making 

use of the reliability of a given training sample when clas-

sifying others. Figure 1 depicts the training (hexagon) and 

validating (remaining samples) sets with respect to “Syn-

thetic1” dataset (Table 1), which comprises two classes 

(squares and circles) with a high amount of data overlapping. 

Now, let us consider the highlighted zone displayed in Fig. 1, 

which is zoomed and represented in Figs. 2a–c, correspond-

ing to the same set of samples for OPF, OPF∗ and OPF
c
 , 

respectively. Samples ‘A’, ‘B’ and ‘C’ are part of the train-

ing set, while sample ’D’ belongs to the validating set; and 

the “circle” is a test sample that can be classified by either 

‘A’, ‘B’ or ‘C’ (we showed the competition process between 

‘A’ and ‘B’ only). Considering standard OPF (Fig. 2a), we 

can observe sample ‘B’ (solid edge) has provided a better 

path-cost than sample ’A’ (dashed edge), thus conquering the 

test sample and also misclassifying it, since its true label is 

“circle”, i.e., the same label as ‘A’. The same situation can 

be observed for OPF∗ in Fig. 2b, meaning that larger train-

ing sets may not be helpful for learning patterns in highly 

overlapped regions (as aforementioned, OPF∗ is trained over 

�
1
∪�

v
 ). However, if we consider the confidence values 

in OPF
c
 (Fig. 2c), we can notice that sample ‘B’ has been 

penalized with a lower confidence level than sample ‘A’, 

thus reflecting in the cost provided to the test sample, which 

is more suitable considering now sample ‘A’ (solid edge), 

since it has a better confidence level. Therefore, the classifi-

cation based on the training samples’ reliability allows OPF
c
 

to be more accurate in some situations, mainly in highly 

overlapped datasets. Finally, Fig. 2d depicts the regions of 

the training space according to the domain of confidence 

value through the natural neighbor interpolation [15]. We 

can observe the “darkest regions” (confidence value close 

to zero) stand for the ones with high levels of overlapping 

Fig. 1  Graphic representation of each training sample of “Synthetic1” 

(Table 1) dataset according to its confidence level
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in Fig. 1, supporting the idea that training samples that fall 

in such regions may not be reliable enough for classifying 

others, as well as training samples that are located nearby to 

outliers, which have a high probability to be misclassified 

in traditional pattern recognition techniques. Therefore, if a 

training sample misclassifies an outlier from the validating 

set in the OPF
c
 , its confidence level will drop, thus raising 

its classification cost over the test samples.

3.2  Ensemble‑based confidence levels

In this section, a new approach is presented based on bag-

of-classifiers and confidence measures to improve OPF 

effectiveness. Since OPF classifier uses the abstract output 

method only, i.e., the output of the classifier is a single label, 

the OPF based on confidence levels also returns the very 

same output. Xu et al. [31] defined an interesting approach to 

combine the outputs of L classifiers in an ensemble depend-

ing on the information obtained from the individual mem-

bers. Such approach considers that each classifier assigns 

a class label to every sample in the dataset. Therefore, the 

(a) (b)

(c) (d)

Fig. 2  Example of a classification process in the test set for a OPF, b OPF∗ and c OPFc , and the d graphic representation for the dispersion 

zones of each training sample of “Synthetic1” (Table 1) dataset

Table 1  Description of the datasets

Dataset # samples # features # classes

aflw 8193 4096 2

Pima-Indians-Diabetes 768 8 2

Statlog-Australian 690 14 2

Statlog-dna 5186 180 3

Statlog-Heart 270 13 2

Synthetic1 500 2 2

Synthetic2 1000 2 2

Synthetic3 200 2 2

Synthetic4 100,000 4 4

UCI-a1a 32,561 123 2

UCI-Ionosphere 351 34 2

UCI-Liver-disorders 345 6 2

usps 9298 256 10

w1a 49,749 300 4

yahoo-web-directory-topics 1106 10,629 4
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ensemble of classifiers generates a collection of L possible 

outputs to each sample.

Let ℳ = {ℳ1,ℳ2,… ,ℳ
L
} be a set of L classifiers, and 

� = {�1,�2,… ,�
K
} be a set of K class labels. Roughly 

speaking, each classifier takes an n-dimensional input vec-

tor and associates it to a class label, i.e., M
i
∶ ℜn

→ � , 

i = 1, 2,… , L . Therefore, for any sample � to be classi-

fied, the ensemble of classifiers generates a collection 

�
�
= [�

�
(ℳ1),… ,�

�
(ℳ

L
)] of possible outputs, where 

�
�
(ℳ

i
) stands for the output of classifier ℳ

i
 considering 

sample �.

The idea is to partition the training set �
1
 into L subsets 

�
j

1
 , i.e., 𝒟

1
= 𝒟

1

1
∪𝒟

2

1
∪⋯ ∪𝒟

L

1
 , such that each classi-

fier ℳ
i
 will be trained over �i

1
 , i = 1, 2,…L . The proposed 

approach employs the confidence-based procedure presented 

in Sect. 3.1 for each trained classifier ℳ
i
 using the validat-

ing set �
v
 , i.e., this means we shall associate a score level 

for each sample from the different training folds. After cal-

culating the score levels in the validating phase, the clas-

sification takes place using Eq. 3, and the possible outputs 

are assigned to each sample � ∈ �
2
 . The classification of 

that sample is performed through the majority vote. We also 

evaluated the proposed approach using ensembles composed 

of two distinct OPF versions: OPF with complete graph [24] 

and with a k-NN graph, i.e., OPF
knn

 [21]. Additionally, we 

apply the same idea of confidence levels in OPF
knn

 classifi-

cation step as well, since the work by Fernandes et al. [10] 

used OPF with complete graph only.

4  Methodology and experimental results

The proposed ensemble confidence-based OPF classifier is 

compared with standard OPF using fifteen real and synthetic 

different benchmark classification problems.1 ,2 The datasets 

were normalized as follows:

where � denotes the mean, and � stands for its standard 

deviation. Also, � and �′ correspond to the original and nor-

malized features, respectively. Table 1 presents the main 

characteristics of each dataset.

In regard to the methodology, each dataset was parti-

tioned into three subsets: training (40%), validating (20%) 

and testing sets (40%), hereinafter denoted as 40:20:40. 

(4)�
�
=

� − �

�

For each range, training, validating and testing sets were 

selected randomly and the process was repeated twenty 

times (Stratified k-fold cross-validation).3 It is worth not-

ing the standard OPF was trained over �
1
∪�

v
 considering 

the aforementioned subsets. In order to provide a consistent 

experimental evaluation, the following classifiers were com-

pared: (a) standard OPF; (b) the baseline classifier which 

uses the confidence-based OPF proposed by Fernandes et al. 

[10], ( OPF
c
 ); and (c) the proposed work using three base 

OPF
c
 classifiers and a combination of decisions provided by 

majority voting, defined as ensemble OPFc. Furthermore, to 

evaluate the impact with other OPF variants, we conducted 

two more experiments: (d) one that combines OPF
knn

 and 

OPF
c
 , i.e., an ensemble with two base OPF

c
 classifiers and 

one OPF
knn

 (hereinafter called OPF
c
 + OPF

knn
 ); and (e) one 

last approach composed of OPF
knn

 using the very same con-

fidence-based idea of OPF
c
 , but now adapted to this variant 

that uses a k-neighborhood graph (defined as OPF
knnC

 ). In 

this case, the ensemble also contains three base classifiers, 

one OPF
knnC

 and two OPF
c
 . The pipeline of experimental 

evaluation using the bag-of-classifiers ensemble is illustrated 

in Fig. 3.

We used three base classifiers only, since we observed no 

significant gains using more classifiers. The rationale behind 

that is related to the numbers of samples available for the 

learning process of each base classifier, since the more clas-

sifiers we use, the smaller the training sets. The idea is to 

look for effectiveness by using the analysis of confidence 

levels in conjunction with efficiency by using disjoint sets to 

accelerate and improve the final decision-making process by 

combining decisions. In addition, we compared the proposed 

pipeline with the bagging strategy using an ensemble of 

three classifiers aggregated by using different bootstrapped 

samples of the original training data.

Table 2 presents the mean accuracies and standard devia-

tion over all datasets, being the recognition rates computed 

according to Papa et al. [24], and Table 3 presents the bag-

ging strategy concerning the very same group of datasets. In 

addition, the F-measure metric was calculated for the very 

same group of datasets concerning the proposed approach 

and bagging in Tables 4, 5, respectively. The most accurate 

techniques considering the Wilcoxon test [30] (with signifi-

cance of 0.05) are highlighted in bold.

We can observe the proposed ensemble-based OPF has 

obtained the best results in 10 out 15 datasets according to 

Table 2. It is worth noting that the bagging strategy allowed 

the best results in only 2 out the 15 datasets concerning the 

accuracy results (Table 3) of ensemble-based approaches 

and provided better results for only “UCI-Ionosphere”, 

“UCI-Liver-disorders”, “usps” and “yahoo-web-directory-

topics” datasets. In regard to Tables 4 and 5, the F-measure 

values showed a similar behavior to that observed in the 

accuracy. The main idea in computing confidence levels for 

1 http://archive.ics.uci.edu/ml.
2 http://lrs.icg.tugraz.at/research/aflw.
3 Notice the percentages have been empirically chosen, being more 

intuitive to provide a larger validating set for calculating the confi-

dence levels.

http://archive.ics.uci.edu/ml
http://lrs.icg.tugraz.at/research/aflw
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Fig. 3  Pipeline of the experi-

mental evaluation: a standard 

and b baseline approaches, c 

the proposed approach using 

three base OPFc classifiers, d 

using two base OPF
c
 and one 

OPF
knn

 classifier, and e one that 

combines OPF
knnC

 ( OPF
knn

 with 

confidence levels) and two OPF
c

(a)

(b)

(c)

(d)

(e)
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each training sample and further applying Eq. 3 as the path-

cost function is to avoid ties during the competition process. 

Roughly speaking, a tie means we have two (at least) dif-

ferent samples that offer the same optimum cost to another 

sample. The problem occurs when such samples belong to 

different classes, which may lead OPF to a misclassification. 

Therefore, by considering the confidence level in the path-

cost function, we can rely on samples that are more “trust-

able” than others. However, by using bagging strategies, 

since the validating set is the same and we have ensembles 

composed of training samples that are sampled with reposi-

tion, we can also have training samples with the very same 

Table 2  Mean accuracy results (%) and standard deviation over all datasets for standard OPF, OPFc , and ensemble under different configuration

The most accurate techniques for the Wilcoxon test are highlighted in bold

Dataset OPF OPFc ensemble ensemble ensemble

OPFc OPFc + OPFc +

OPF
knn

OPF
knnC

aflw 89.9047 ± 0.5281 89.5206 ± 0.3943 ��.���� ± 0.4024 ��.���� ± 0.4628 ��.���� ± 0.4106

Pima-Indians-Diabetes 65.9111 ± 3.0189 66.2384 ± 2.0851 ��.���� ± 2.6485 ��.���� ± 2.7670 ��.���� ± 2.7670

Statlog-Australian 77.8525 ± 2.0016 79.4537 ± 2.4155 ��.���� ± 1.2958 82.8686 ± 1.5526 82.8686 ± 1.5526

Statlog-dna ��.���� ± 0.5335 87.3751 ± 0.6745 86.0323 ± 0.7358 85.9107 ± 0.6781 85.9793 ± 0.9693

Statlog-Heart 76.5104 ± 1.9464 76.2604 ± 6.4816 ��.���� ± 3.8658 ��.���� ± 4.3359 ��.���� ± 4.3359

Synthetic1 51.8000 ± 1.3910 52.8750 ± 1.3863 ��.���� ± 2.2106 ��.���� ± 2.3932 ��.���� ± 2.3932

Synthetic2 70.4500 ± 1.4374 74.2250 ± 1.7605 ��.���� ± 2.3907 ��.���� ± 1.7686 ��.���� ± 1.8104

Synthetic3 92.7790 ± 3.8120 93.4329 ± 1.5429 ��.���� ± 2.4503 ��.���� ± 1.5597 ��.���� ± 1.5597

Synthetic4 85.5993 ± 0.1442 86.7918 ± 0.1146 ��.���� ± 0.0970 88.5103 ± 0.0747 88.5173 ± 0.0789

UCI-a1a 67.5772 ± 0.8289 69.6517 ± 1.0403 72.2513 ± 0.4794 ��.���� ± 0.4591 ��.���� ± 0.6518

UCI-Ionosphere ��.���� ± 2.6531 ��.���� ± 3.0253 77.6144 ± 2.5317 75.3513 ± 4.3467 75.3513 ± 4.3467

UCI-Liver-disorders ��.���� ± 2.0933 ��.���� ± 2.1215 57.2144 ± 2.1227 57.1379 ± 3.8046 57.1379 ± 3.8046

usps ��.���� ± 0.1750 97.0480 ± 0.1811 96.4015 ± 0.1930 96.4647 ± 0.1698 96.4936 ± 0.1723

w1a 76.7155 ± 1.3150 78.3214 ± 1.2836 81.4666 ± 0.6995 ��.���� ± 0.7084 ��.���� ± 0.7421

yahoo-web-directory-topics 63.3961 ± 3.7948 ��.���� ± 3.4701 60.7265 ± 5.5222 60.1739 ± 6.4093 61.3214 ± 5.5594

Table 3  Mean accuracy results (%) and standard deviation over all datasets using bagging strategy for ensemble-based OPF under different con-

figurations

The most accurate techniques for the Wilcoxon test are highlighted in bold

Dataset OPF OPFc ensemble ensemble ensemble

OPFc OPFc + OPFc +

OPF
knn

OPF
knnC

aflw ��.���� ± 0.5281 89.5206 ± 0.3943 89.9325 ± 0.3935 ��.���� ± 0.3722 ��.���� ± 0.3722

Pima-Indians-Diabetes ��.���� ± 3.0189 ��.���� ± 2.0851 ��.���� ± 2.1528 ��.���� ± 2.3142 ��.���� ± 2.3142

Statlog-Australian 77.8525 ± 2.0016 ��.���� ± 2.4155 ��.���� ± 1.8472 ��.���� ± 1.6151 ��.���� ± 1.6151

Statlog-dna ��.���� ± 0.5335 87.3751 ± 0.6745 89.1084 ± 0.5769 88.9461 ± 0.5885 88.9461 ± 0.5885

Statlog-Heart ��.���� ± 1.9464 ��.���� ± 6.4816 ��.���� ± 3.8860 ��.���� ± 4.0239 ��.���� ± 4.0239

Synthetic1 51.8000 ± 1.3910 ��.���� ± 1.3863 ��.���� ± 2.4160 ��.���� ± 2.3292 ��.���� ± 2.3292

Synthetic2 70.4500 ± 1.4374 ��.���� ± 1.7605 ��.���� ± 1.6155 ��.���� ± 1.6573 ��.���� ± 1.6573

Synthetic3 ��.���� ± 3.8120 ��.���� ± 1.5429 ��.���� ± 2.0879 ��.���� ± 2.1973 ��.���� ± 2.1973

Synthetic4 85.5993 ± 0.1442 ��.���� ± 0.1146 ��.���� ± 0.1460 86.8229 ± 0.1435 86.8229 ± 0.1435

UCI-a1a 67.5772 ± 0.8289 69.6517 ± 1.0403 70.8360 ± 0.7138 ��.���� ± 0.4872 ��.���� ± 0.4872

UCI-Ionosphere 80.0997 ± 2.6531 80.0180 ± 3.0253 ��.���� ± 3.3906 ��.���� ± 3.0783 ��.���� ± 3.0783

UCI-Liver-disorders ��.���� ± 2.0933 ��.���� ± 2.1215 ��.���� ± 4.0186 ��.���� ± 4.3026 ��.���� ± 4.3026

usps ��.���� ± 0.1750 97.0480 ± 0.1811 97.2822 ± 0.1625 ��.���� ± 0.1700 ��.���� ± 0.1700

w1a 76.7155 ± 1.3150 78.3214 ± 1.2836 81.4666 ± 0.8151 ��.���� ± 1.1398 ��.���� ± 1.1398

yahoo-web-directory-topics 63.3961 ± 3.7948 ��.���� ± 3.4701 ��.���� ± 6.4529 ��.���� ± 6.1363 ��.���� ± 6.1363
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confidence level (such value is computed over the very same 

validating set for all training subsets). In this context, avoid-

ing ties will no longer be possible, degenerating to the origi-

nal OPF and thus affecting the results as we can observe in 

Tables 2 and 3. It was not possible to establish some specific 

situation considering the dataset configuration (e.g., number 

of classes and the number features) in which ensemble OPF
c
 

could be better than OPF and OPF
c
 , although it seems the 

proposed approach has obtained the top results in situations 

with highly overlapped regions. Taking a look at Fig. 4a, b 

(“Synthetic1” and “Synthetic2” dataset, respectively), we 

can observe a considerable amount of overlapping among 

samples of different classes, thus being more useful to learn 

patterns with OPF
c
 and, consequently, we can obtain more 

Table 4  Mean F-measure values over all datasets for standard OPF, OPFc , and ensemble under different configuration

The most accurate techniques for the Wilcoxon test are highlighted in bold

Dataset OPF OPFc ensemble ensemble ensemble

OPFc OPFc + OPFc +

OPF
knn

OPF
knnC

aflw 0.8937 ± 0.0057 0.8909 ± 0.0041 �.���� ± 0.0042 �.���� ± 0.0049 �.���� ± 0.0043

Pima-Indians-Diabetes 0.6925 ± 0.0244 0.6979 ± 0.0152 �.���� ± 0.0231 �.���� ± 0.0217 �.���� ± 0.0217

Statlog-Australian 0.7825 ± 0.0199 0.7973 ± 0.0234 �.���� ± 0.0124 0.8329 ± 0.0147 0.8329 ± 0.0147

Statlog-dna �.���� ± 0.0074 0.8150 ± 0.0097 0.8095 ± 0.0098 0.7993 ± 0.0094 0.8011 ± 0.0127

Statlog-Heart 0.7690 ± 0.0184 0.7662 ± 0.0647 �.���� ± 0.0383 �.���� ± 0.0423 �.���� ± 0.0423

Synthetic1 0.5180 ± 0.0139 0.5288 ± 0.0139 �.���� ± 0.0221 �.���� ± 0.0239 �.���� ± 0.0239

Synthetic2 0.7045 ± 0.0144 0.7423 ± 0.0176 �.���� ± 0.0239 �.���� ± 0.0177 �.���� ± 0.0181

Synthetic3 �.���� ± 0.0381 0.9340 ± 0.0157 �.���� ± 0.0248 �.���� ± 0.0158 �.���� ± 0.0158

Synthetic4 0.7840 ± 0.0022 0.8019 ± 0.0017 �.���� ± 0.0015 0.8277 ± 0.0011 0.8278 ± 0.0012

UCI-a1a 0.7312 ± 0.0134 0.7622 ± 0.0148 �.���� ± 0.0032 �.���� ± 0.0029 �.���� ± 0.0044

UCI-Ionosphere �.���� ± 0.0200 �.���� ± 0.0214 0.8319 ± 0.0172 0.8163 ± 0.0300 0.8163 ± 0.0300

UCI-Liver-disorders �.���� ± 0.0198 �.���� ± 0.0232 �.���� ± 0.0188 0.6014 ± 0.0369 0.6014 ± 0.0369

usps �.���� ± 0.0028 0.9526 ± 0.0031 0.9429 ± 0.0030 0.9439 ± 0.0026 0.9444 ± 0.0028

w1a 0.6650 ± 0.0659 0.7519 ± 0.0699 0.8865 ± 0.0318 �.���� ± 0.0357 �.���� ± 0.0446

yahoo-web-directory-topics �.���� ± 0.0166 �.���� ± 0.0243 �.���� ± 0.0644 �.���� ± 0.0617 �.���� ± 0.0667

Table 5  Mean F-measure values over all datasets using bagging strategy for ensemble-based OPF under different configurations

The most accurate techniques for the Wilcoxon test are highlighted in bold

Dataset OPF OPFc ensemble ensemble ensemble

OPFc OPFc + OPFc +

OPF
knn

OPF
knnC

aflw �.���� ± 0.0057 0.8909 ± 0.0041 0.8950 ± 0.0039 �.���� ± 0.0038 �.���� ± 0.0038

Pima-Indians-Diabetes �.���� ± 0.0244 �.���� ± 0.0152 �.���� ± 0.0168 �.���� ± 0.0187 �.���� ± 0.0187

Statlog-Australian 0.7825 ± 0.0199 �.���� ± 0.0234 �.���� ± 0.0180 �.���� ± 0.0153 �.���� ± 0.0153

Statlog-dna �.���� ± 0.0074 0.8150 ± 0.0097 0.8378 ± 0.0076 0.8362 ± 0.0087 0.8362 ± 0.0087

Statlog-Heart �.���� ± 0.0184 �.���� ± 0.0647 �.���� ± 0.0377 �.���� ± 0.0389 �.���� ± 0.0389

Synthetic1 0.5180 ± 0.0139 �.���� ± 0.0139 �.���� ± 0.0242 �.���� ± 0.0233 �.���� ± 0.0233

Synthetic2 0.7045 ± 0.0144 �.���� ± 0.0176 �.���� ± 0.0162 �.���� ± 0.0166 �.���� ± 0.0166

Synthetic3 �.���� ± 0.0381 �.���� ± 0.0157 �.���� ± 0.0209 �.���� ± 0.0220 �.���� ± 0.0220

Synthetic4 0.7840 ± 0.0022 �.���� ± 0.0017 �.���� ± 0.0022 0.8024 ± 0.0022 0.8024 ± 0.0022

UCI-a1a 0.7312 ± 0.0134 0.7622 ± 0.0148 0.7789 ± 0.0081 �.���� ± 0.0050 �.���� ± 0.0050

UCI-Ionosphere 0.8504 ± 0.0200 0.8482 ± 0.0214 �.���� ± 0.0258 �.���� ± 0.0231 �.���� ± 0.0231

UCI-Liver-disorders �.���� ± 0.0198 �.���� ± 0.0232 �.���� ± 0.0413 �.���� ± 0.0426 �.���� ± 0.0426

usps �.���� ± 0.0028 0.9526 ± 0.0031 0.9565 ± 0.0026 �.���� ± 0.0028 �.���� ± 0.0028

w1a 0.6650 ± 0.0659 0.7519 ± 0.0699 0.8700 ± 0.0485 �.���� ± 0.0577 �.���� ± 0.0577

yahoo-web-directory-topics �.���� ± 0.0166 �.���� ± 0.0243 �.���� ± 0.0299 �.���� ± 0.0308 �.���� ± 0.0308
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effective results with ensemble OPF
c
 , since the feature space 

ends up being partitioned into different subregions.

However, the above situation usually does not occur in 

datasets that do not behave as “Synthetic1” or “Synthetic2” 

dataset, i.e., they do not have a considerable amount of over-

lapped regions. Well-behaved datasets seem to be better 

generalized by standard OPF approach. Therefore, for some 

situations it is more important to count with a larger dataset 

instead of an ensemble of classifiers.

Another aspect to be considered concerns the situations 

where the ensembles do not outperform OPF. If one takes 

a look at Table 2, the “UCI-Liver-disorders” and “Statlog-

Australian” datasets can be included in the aforementioned 

situation. In order to have some insight about the amount 

of overlapping on that datasets, we employed the Andrews 

curve method [5], which represents high-dimensional feature 

spaces by means of finite Fourier series. The transformation 

has to maintain some inherent properties of the data, thus 

making possible to identify some behaviors of the data [17]. 

Each line in this plot stands for a sample, and the color cor-

responds to a given class. Figure 5a, b depicts the Andrews 

plot considering “UCI-Liver-disorders” and “Statlog-Aus-

tralian” datasets, respectively.

Clearly, the datasets contain a considerable amount of 

overlapped regions, which is a strong indicator that ensem-

ble OPF
c
 is more robust to such situations than OPF. Errors 

during the classification process are highly associated to the 

so-called tie-regions, which stand for regions in the feature 

space where a testing sample can be conquered by more than 

one training sample.

As mentioned above, OPF elects the prototype nodes 

as being the nearest samples from different classes, which 

can be found out through a MST computation over the 

training graph. Actually, if one has a unique MST, which 

means all edge-weights are different to each other, the OPF 

classification error on that graph would be zero, since the 

(a)

(b)

Fig. 4  Graphic representation containing all samples of a “Syn-

thetic1”, b “Synthetic2” dataset

(a)

(b)

Fig. 5  Andrews plot considering a “UCI-Liver-disorders” and b 

“Statlog-Australian” dataset in the range of −𝜋 < t < 𝜋
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optimum-paths from a prototype node to the remaining 

samples follow the shape of the MST. Therefore, as we are 

positioning the prototypes on the boundary of the classes, 

it is no longer possible for a sample from a given class to 

conquer a sample from another class. However, the above 

situation does not occur in practice, since there is a high 

probability of multiple MSTs in large datasets. In the stand-

ard OPF implementation, although the values of the possible 

optimum-paths that are going to be offered to a given graph 

node may be the same from samples from different classes, 

the one which reaches that node first will conquer it. In the 

ensemble OPF
c
 , when subsets of the original training set 

are used rather than the whole set, multiple MSTs provide 

distinct conquering processes, that together with the con-

fidence level procedure improves the effectiveness of the 

classification phase.

In order to provide a robust statistical analysis, we per-

formed the nonparametric Friedman test, which is used to 

rank the algorithms for each dataset separately. In case of 

Friedman test provides meaningful results to reject the null-

hypothesis (i.e., all techniques are equivalent), we can per-

form a post hoc test further. For this purpose, we conducted 

the Nemenyi test [9, 20], which allows us to verify whether 

there is a critical difference (CD) among techniques or not. 

The results of the Nemenyi test can be represented in a sim-

ple diagram, in which the average ranks of the methods are 

plotted on the horizontal axis, where the lower the average 

rank is, the better the technique is. Moreover, the groups 

with no significant difference are connected with a horizon-

tal line. Figure 6 depicts the statistical analysis considering 

the average accuracy over the test set. As one can observe, 

the proposed ensemble OPF
c
 and ensemble OPF

c
 + OPF

knnC
 

can be considered the most accurate techniques. Lastly, 

in the second group, we have the standard OPF and OPF
c
 

approaches. Such test reflects the fact ensemble OPF
c
 and 

ensemble OPF
c
 + OPF

knnC
 achieved the best accuracy rates 

Fig. 6  Comparison of all 

approaches against to each other 

according to the average accura-

cies for a proposed approach 

and b bagging, and F-measure 

values for c proposed approach 

and d bagging concerning the 

Nemenyi test. Groups that are 

not significantly different (at 

p = 0.05 ) are connected to each 

other

(a) (b)

(c) (d)

Table 6  Computational load (in seconds) and standard deviation over all datasets concerning standard OPF, OPFc , and ensemble under different 

configuration with respect to the training time (training + calculating scores when using confidence levels)

Dataset OPF OPFc ensemble ensemble ensemble

OPFc OPFc + OPFc +

OPF
knn

OPF
knnC

aflw 104.21 ± 0.9067 61.05 ± 0.6330 30.46 ± 0.4904 35.54 ± 0.5175 43.22 ± 0.5387

Pima-Indians-Diabetes 0.0111 ± 0.0001 0.0069 ± 0.0005 0.0035 ± 0.0000 0.0040 ± 0.0000 0.0048 ± 0.0000

Statlog-Australian 0.0105 ± 0.0011 0.0061 ± 0.0004 0.0030 ± 0.0002 0.0037 ± 0.0004 0.0042 ± 0.0000

Statlog-dna 2.1375 ± 0.1125 1.2724 ± 0.0960 0.6276 ± 0.0371 0.7118 ± 0.0065 0.8628 ± 0.0082

Statlog-Heart 0.0016 ± 0.0001 0.0010 ± 0.0001 0.0005 ± 0.0001 0.0006 ± 0.0001 0.0008 ± 0.0001

Synthetic1 0.0041 ± 0.0003 0.0026 ± 0.0003 0.0014 ± 0.0001 0.0017 ± 0.0002 0.0021 ± 0.0003

Synthetic2 0.0187 ± 0.0016 0.0105 ± 0.0001 0.0052 ± 0.0001 0.0060 ± 0.0001 0.0072 ± 0.0001

Synthetic3 0.0009 ± 0.0001 0.0005 ± 0.0000 0.0003 ± 0.0000 0.0003 ± 0.0001 0.0004 ± 0.0000

Synthetic4 225.15 ± 2.7878 186.18 ± 9.6521 73.11 ± 4.3084 72.50 ± 3.8332 85.44 ± 4.8247

UCI-a1a 80.54 ± 2.3472 60.24 ± 2.8357 25.92 ± 6.0696 27.19 ± 4.4609 32.02 ± 4.6964

UCI-Ionosphere 0.0036 ± 0.0002 0.0021 ± 0.0002 0.0011 ± 0.0001 0.0013 ± 0.0001 0.0016 ± 0.0001

UCI-Liver-disorders 0.0022 ± 0.0003 0.0015 ± 0.0002 0.0009 ± 0.0001 0.0009 ± 0.0001 0.0011 ± 0.0002

usps 11.46 ± 0.1212 7.6728 ± 0.1381 2.6886 ± 0.0414 3.0855 ± 0.0371 3.7447 ± 0.0413

w1a 382.12 ± 3.1877 260.08 ± 5.1479 141.95 ± 1.9616 141.64 ± 0.9371 164.72 ± 1.9294

yahoo-web-directory-topics 3.8479 ± 0.4005 2.4794 ± 0.2286 1.5434 ± 0.0626 1.7210 ± 0.0224 2.0890 ± 0.0244
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in the majority of datasets. In fact, the statistical test did not 

point out a CD between each pair of ensemble-based OPF 

variants, which means they performed similarly in some 

problems.

In regard to the computational load, Tables 6 and 7 

show the mean computational load considering the train-

ing (training + calculating scores when using confidence 

levels) phase concerning to the proposed approach and 

bagging approach, respectively. As expected, ensemble-

based OPF is faster than standard OPF and OPF
c
 , since 

training into smaller subregions (disjoint training sets) 

is faster than training in all training data [27]. On aver-

age, i.e., considering all 15 datasets, ensemble OPF
c
 has 

been about 2.929 times faster than standard OPF, and 

2.095 times faster than OPF
c
 . Concerning the bagging 

strategy (Table 7), the ensemble approach was the slow-

est than standard OPF and OPF
c
 , since it is generated L 

training sets �L

1
 by sampling from �

1
 uniformly and with 

replacement.

The statistical analysis for training (training + calculat-

ing scores) and testing phases is shown in Figs. 7 and 8, 

respectively. Figure 7a emphasizes the ensemble OPF
c
 as 

the fastest approach in the training phase. Then, ensemble 

OPF
c
 + OPF

knnC
 showed intermediate performance, and 

lastly the standard OPF as the slowest one for training phase. 

In regard to the bagging training phase, as expected, the 

ensemble method was the slowest one, being OPF
c
 the fast-

est approach, since it trains into smaller training sets (notice 

that the standard OPF was trained over �
1
∪�

v
 , and OPF

c
 

was trained over �
1
).

Table 7  Computational load (in 

seconds) and standard deviation 

over all datasets using bagging 

strategy concerning ensemble-

based OPF under different 

configurations with respect to 

the training time (training + 

validating)

Dataset ensemble ensemble ensemble

OPFc OPFc + OPFc +

OPF
knn

OPF
knnC

aflw 110.45 ± 0.7817 161.96 ± 1.2288 172.91 ± 0.9507

Pima-Indians-Diabetes 0.0122 ± 0.0001 0.0174 ± 0.0001 0.0185 ± 0.0001

Statlog-Australian 0.0112 ± 0.0007 0.0157 ± 0.0001 0.0167 ± 0.0001

Statlog-dna 2.1733 ± 0.0503 3.2010 ± 0.0440 3.4121 ± 0.0434

Statlog-Heart 0.0018 ± 0.0001 0.0025 ± 0.0000 0.0027 ± 0.0000

Synthetic1 0.0046 ± 0.0003 0.0068 ± 0.0005 0.0072 ± 0.0004

Synthetic2 0.0192 ± 0.0001 0.0271 ± 0.0001 0.0288 ± 0.0001

Synthetic3 0.0010 ± 0.0001 0.0014 ± 0.0002 0.0015 ± 0.0002

Synthetic4 213.13 ± 21.84 276.71 ± 9.7410 294.53 ± 10.05

UCI-a1a 101.67 ± 2.2934 123.66 ± 1.4978 131.40 ± 2.1094

UCI-Ionosphere 0.0038 ± 0.0000 0.0056 ± 0.0001 0.0060 ± 0.0000

UCI-Liver-disorders 0.0025 ± 0.0002 0.0036 ± 0.0003 0.0038 ± 0.0003

usps 9.4173 ± 0.0705 13.57 ± 0.0835 14.56 ± 0.3095

w1a 412.36 ± 1.5981 532.65 ± 2.2717 563.87 ± 3.3816

yahoo-web-directory-topics 3.9878 ± 0.2614 6.6294 ± 0.1824 7.1195 ± 0.1768

(b)

(a)

Fig. 7  Nemenyi statistical test regarding the computational load con-

cerning to the training (training + calculating scores) phase for a pro-

posed approach and b bagging strategy. Groups that are not signifi-

cantly different (at p = 0.05 ) are connected to each other

(a)

(b)

Fig. 8  Nemenyi statistical test regarding the computational load con-

cerning to the testing phase for a proposed approach and b bagging 

strategy. Groups that are not significantly different (at p = 0.05 ) are 

connected to each other
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In regard to the testing phase, we can stand out three 

groups in Fig. 8a: the first one composed of two ensemble-

based: one with OPF
c
 + OPF

knnC
 and another with OPF

knn
 

(the fastest ones), wherewith there is no CD between 

them; then, the standard OPF showed intermediate per-

formance; and the other group with ensemble OPF
c
 and 

OPF
c
 (the slowest ones). On average, the standard OPF 

has been about 1.190 times faster than ensemble OPF
c
 in 

the testing phase, since there is more than one classifier in 

ensemble-based OPF. However, the ensemble-based with 

OPF
knn

 and OPF
knnC

 appeared as the fastest approaches for 

the testing phase, being OPF
knn

 less expensive concerning 

the computational load for the testing phase. Regarding the 

testing phase using bagging strategy (Fig. 8b), its expected 

that the ensemble using bagging with replacement can 

result in a slower test phase. In short, we can drawn some 

conclusions:

– the proposed approach can improve standard OPF and 

OPF
c
 classification results by ensemble-based OPF using 

a confidence levels for each training sample;

– the proposed approach provides a faster training phase; 

and

– bagging-based design of ensembles does not seem to help 

the proposed approaches, since it can lead to a number of 

samples with the very same confidence level.

5  Conclusions and future works

In this work, we introduced the idea of using OPF such as 

a bag-of-classifiers with a confidence measures to improve 

OPF recognition rate. The idea is to build an ensemble of 

classifiers using OPF with confidence-based approach pro-

posed by Fernandes et al. [10], i.e., we want to exploit the 

combination of classifiers by majority votes while using 

confidence values and a modified formulation for OPF clas-

sification. We also validated the proposed approach in two 

different variants of the OPF classifier and with a bagging 

strategy for designing ensembles of classifiers.

Experiments over 15 datasets showed the robustness of 

the proposed approaches, which obtained the best results in 

10 datasets and a less costly training phase when using dis-

joint sets compared to the bagging approach. The proposed 

approach also obtain better results in highly overlapped 

datasets, which may occur in practice. Additionally, the 

techniques introduced in this work are usually faster in the 

training phase when compared to traditional OPF (trained 

over �
1
∪�

v
 ) and OPF

c
 (approximately 2.929 times faster 

than standard OPF). Future works will be guided to explore 

ensemble pruning strategies for the OPF classifier consider-

ing meta-and hyper-heuristics.
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