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Abstract

We clarify differences among moderation, partial mediation, and full mediation and identify meth-

odological problems related to moderation and mediation from a review of articles in Strategic

Management Journal and Organization Science published from 2005 to 2014. Regarding moderation,

we discuss measurement error, range restriction, and unequal sample sizes across moderator-based

subgroups; insufficient statistical power; the artificial categorization of continuous variables; assumed

negative consequences of correlations between product terms and its components (i.e., multi-

collinearity); and interpretation of first-order effects based on models excluding product terms.

Regarding mediation, we discuss problems with the causal-steps procedure, inferences about

mediation based on cross-sectional designs, whether a relation between the antecedent and the

outcome is necessary for testing mediation, the routine inclusion of a direct path from the ante-

cedent to the outcome, and consequences of measurement error. We also explain how integrating

moderation and mediation can lead to important and useful insights for strategic management theory

and practice. Finally, we offer specific and actionable recommendations for improving the appro-

priateness and accuracy of tests of moderation and mediation in strategic management research.

Our recommendations can also be used as a checklist for editors and reviewers who evaluate

manuscripts reporting tests of moderation and mediation.
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For decades, hypotheses that involve moderation and mediation have been central to strategic

management research. Moderation represents the idea that the magnitude of the effect of an

antecedent (e.g., organizational structure or strategy) on firm outcomes depends on contingency

1Department of Management and Entrepreneurship, Kelley School of Business, Indiana University, Bloomington, IN, USA
2Kenan-Flagler Business School, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

Corresponding Author:

Herman Aguinis, Department of Management and Entrepreneurship, Kelley School of Business, Indiana University, 1309 E.

10th Street, Bloomington, IN 47405-1701, USA.

Email: haguinis@indiana.edu

Organizational Research Methods

1-21

ª The Author(s) 2016

Reprints and permission:

sagepub.com/journalsPermissions.nav

DOI: 10.1177/1094428115627498

orm.sagepub.com

 at INDIANA UNIV on January 28, 2016orm.sagepub.comDownloaded from 

http://www.sagepub.com/journalsPermissions.nav
http://orm.sagepub.com
http://orm.sagepub.com/


factors, such as the uncertainty and instability of the environment and the products and services

produced by the firm (e.g., Chandler, 1962; Lawrence & Lorsch, 1967; Schoonhoven, 1981;

Thompson, 1967). On the other hand, mediation points to the presence of an intervening variable

or mechanism that transmits the effect of an antecedent variable on an outcome (MacCorquodale

& Meehl, 1948; Mathieu, DeShon, & Bergh, 2008; Ndofor, Sirmon, & He, 2011). For instance,

mediation is captured by the notion that the effect of the competitive environment on firm

performance is transmitted by firm strategy, such that the environment influences strategic choices

that in turn affect performance (Child, 1972). In a nutshell, moderation refers to the conditions

under which an effect varies in size, whereas mediation refers to underlying mechanisms and

processes that connect antecedents and outcomes. Clearly, both of these pursuits are critical for

advancing strategic management theory and practice.

In spite of their centrality, the assessment and interpretation of moderation and mediation are

undermined by several problems. We reached this conclusion after systematically reviewing

articles published in Strategic Management Journal (SMJ) and Organization Science (OS)

between January 2005 and December 2014 that assessed moderation, mediation, or both. Our

review of the 205 articles that assessed moderation revealed seven key problems. Overall, these

demonstrated an average of 2.57 of the seven problems we identified, with only one article

avoiding the problems entirely. In similar fashion, our review of the 62 articles that addressed

mediation revealed six key problems, and on average, the articles exhibited 3.52 of the problems

each, with none of the articles being problem-free. Accordingly, there is a need to identify and

describe these problems and explain how they can be ameliorated or avoided in the future. Such

treatment would contribute to ‘‘the ongoing stream of methodological inquiry in strategy

research’’ (Wiersema & Bowen, 2009, p. 688) and benefit strategic management researchers as

they pursue answers to questions that are important to field.

The goal of this article is to advance our understanding of the meaning, analysis, and inter-

pretation of moderation and mediation in strategic management research. We do so utilizing a

five-pronged approach. First, we clarify the conceptual nature and distinctions among moderation,

partial mediation, and full mediation. Second, we identify key problems regarding moderation and

mediation and report results of our literature review regarding their relative frequency of occur-

rence in articles in SMJ and OS. Third, we illustrate the detrimental impact of these issues by

referring to specific substantive domains and studies. Because the problems we identified are so

pervasive, we believe it would be inappropriate to identify specific articles by name. Rather, we

use various research domains for illustration to engage the reader in the substantive importance of

the issues involved. Fourth, we offer proposed solutions to address these problems in future

research. Finally, we go beyond the more traditional treatment of moderation and mediation to

explain how integrating moderation and mediation can lead to important and useful insights for

strategic management theory and practice.

Moderation and Mediation: Conceptual Distinctions

A moderator variable influences the nature (e.g., magnitude and/or direction) of the effect of an

antecedent on an outcome.1 Moderation is illustrated graphically in Figure 1a, which shows that the

moderator variable Z influences the path relating X to Y. When the moderator variable is categorical

(e.g., industry type), the traditional data-analytic approach is subgrouping analysis, which consists of

comparing correlation or regression coefficients across the various subgroups or categories (Aguinis

& Pierce, 1998; Boyd, Haynes, Hitt, Bergh, & Ketchen, 2012). When the moderating effect is

continuous (e.g., firm resources), studies typically rely on moderated multiple regression (Aiken

& West, 1991; Cohen, 1978), which consists of creating a regression model that predicts the

outcome based on a predictor X, a second predictor Z hypothesized to be a moderator, and the
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product term between X and Z, which carries information on the moderating effect of Z on the X-Y

relation. The regression coefficient for the XZ product term from which X and Z have been partialed

out offers information on the presence as well as magnitude of the moderating effect.

A mediator variable transmits the effect of the antecedent on the outcome, either in part or whole

(Baron & Kenny, 1986; MacKinnon, 2008). Figure 1b shows a no-mediation model in which there is

only a direct effect of X on Y. Mediation is illustrated graphically in Figure 1c, which shows that X

affects Y both directly (i.e., path c0) and indirectly (i.e., the combination of paths a and b) through the

mediatorM. The indirect effect represents that part of the effect of X on Y that is mediated byM, with

the magnitude of this effect represented by the product of the paths a and b. A full mediation model is

one in which ab 6¼ 0 and c0 ¼ 0, whereas partial mediation exists when ab 6¼ 0 and c0 6¼ 0.

Literature Review

As mentioned earlier, we conducted a literature review of empirical articles published in SMJ and

OS between January 2005 and December 2014. During this decade, SMJ published 794 articles, and

OS published 717 articles, for a total of 1,511 articles. Our review included all ‘‘Research Articles’’

and ‘‘Research Notes and Commentaries’’ sections of both journals and excluded articles published

in the ‘‘From the Editor’’ section. We used Google Scholar to search for articles that reported

moderation or mediation tests. For moderation, we used the terms interaction, interacting, modera-

tion, and moderating. This search resulted in 775 articles from SMJ and 696 articles from OS. We

then manually examined these articles to determine which ones included tests of moderation using

multiple regression because the majority of moderation and mediation articles use this data-analytic
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Figure 1. Graphic representation of moderation and mediation models.
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approach.2 The final count of articles addressing moderation was 205, which included 126 in SMJ

and 79 in OS.

We conducted a similar search for mediation articles. Specifically, we used Google Scholar with

the terms indirect, mediate, mediation, and mediator. This initial search resulted in a total of 315

articles published in SMJ and 385 articles published inOS. We then manually searched these articles

to find those that actually conducted a mediation analysis, which yielded a final count of 62 articles,

including 24 in SMJ and 38 in OS.

In the next two sections, we describe problems regarding moderation and mediation, including

illustrations of the impact of these issues on substantive conclusions as well as suggested solutions

for each of the problems we identified. We first address moderation, and then we turn to mediation.

Moderation: Problems and Solutions

Problem 1: Lack of Attention to Measurement Error

The most prevalent problem in strategic management studies that examine moderation concerns the

effects of measurement error. Specifically, 62.44% of articles in our review did not identify mea-

surement error as a potential problem, as evidenced by the fact that they did not mention measure-

ment error at all. Our results specific to moderation are consistent with the finding that most articles

published in SMJ do not report reliability estimates (Boyd, Gove, & Hitt, 2005). The reasons for this

omission are unclear. It could reflect an implicit assumption that the effects of measurement error are

negligible, lack of knowledge regarding the biasing effects of measurement error on parameter

estimates and hypothesis tests, or prevailing norms in the domains represented by the articles.

On the surface, the lack of attention to measurement error might seem understandable for

certain constructs. For example, measures of performance for public firms must go through an

audit process, which leaves little room for subjectivity that might introduce measurement error

(Boyd, Bergh, Ireland, & Ketchen, 2013; Dalton & Aguinis, 2013; Godfrey & Hill, 1995). How-

ever, many other constructs involve ratings of beliefs and opinions collected using self-report

surveys, which are measured with error (Boyd et al., 2005). Measurement error is problematic

because when independent and moderator variables are measured with error, unstandardized

coefficient estimates will be biased, and this bias is particularly pronounced for moderating

effects. In contrast, measurement error in outcome variables does not bias coefficient estimates,

but it will attenuate estimates of explained variance, making it seem that predictors have less

explanatory power than is actually the case.

Busemeyer and Jones (1983) provided the following expression, which estimates the reliability

for the product term XZ based on the reliabilities of the predictor X and moderator Z variables when

both are standardized:

rXZ;XZ ¼
r
2
XZ þ rXXrZZ

r
2
XZ þ 1

: ð1Þ

Equation 1 indicates that when the predictor X and the moderator Z are uncorrelated (i.e., rXZ ¼ 0),

the reliability of the product term is reduced to the product of the reliabilities of the predictors. For

example, if the reliability of X is .70 and the reliability of Z is also .70, the resulting reliability of the

product term is only .49! It seems safe to assume that few, if any, strategic management researchers

would find it acceptable that 50% of the variance in a measure is random error.

There is good reason to believe that the deleterious effects of measurement error are pervasive in

articles reporting tests of moderation. In fact, the vast majority of these articles report very small

moderating effects across various domains, such as the moderating effect of headquarters embedd-

edness on the relation between subsidiary embeddedness and headquarters value-added, or the
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moderating effect of a firm’s resources and capabilities to deal with natural gas deregulation on the

relation between managerial domain-specific experience and opportunity interpretation (i.e., rang-

ing from threat to opportunity). In these examples, reliabilities for the product terms were not

reported. Moreover, given that, when reported, reliabilities for the components are often in the

.70s, it is likely that about 50% of variance in product terms is random error.

In short, tests of many moderator variable hypotheses have been undermined due to the deleter-

ious impact of measurement error. Future research should, at a minimum, report reliability estimates

for all predictors, including product components.3 Reporting reliability is particularly important for

situations when a hypothesized moderating effect is not found because if reliability is low, an

existing moderating effect is likely underestimated and, in some cases, might go undetected.

Problem 2: Variable Distributions Are Assumed to Include the Full Range of Possible Values

A second important problem is that samples of firms used in strategic management research usually

do not represent the full range of possible scores on the variables under consideration that might

exist in the population. For example, studies regarding the resource-based theory of the firm rarely

include the full range of resources (Crook, Ketchen, Combs, & Todd, 2008). Similarly, firms with

poor performance in the population might not be represented in the sample, which could instead

consist mostly of firms with high scores on performance and related variables (Bergh et al., in press).

These mechanisms lead to range restriction, meaning that the variance of variables is smaller in the

sample compared to the variance in the population.

Although rarely acknowledged, range restriction has an adverse impact on tests of moderation

(i.e., 34.15% of articles in our review seemed to include scores that did not span the full possible

range). Specifically, Aguinis and Stone-Romero’s (1997) Monte Carlo study revealed that when

sample variance is less than population variance, even by what may be considered a small amount,

the statistical power for detecting moderating effects is substantially diminished. For example, in a

situation with a total sample size of 300 and no truncation on X scores, the statistical power to detect

a medium-size moderating effect was an acceptable .81. However, when the scores were sampled

from the top 80% of the distribution of the population scores, power decreased to .51. In other words,

assuming that moderation exists, the accuracy of the moderating effect test is tantamount to flipping

a coin. Thus, given the realistic conditions simulated by Aguinis and Stone-Romero, even a rela-

tively mild degree of range restriction (i.e., just the bottom 20% of the distribution is truncated) can

markedly decrease statistical power and threaten the validity of conclusions regarding moderating

effect hypotheses. And, as with measurement error, even if a moderating effect is statistically

significant, range restriction can bias the observed effect size downward. Drawing from the exam-

ples mentioned earlier, it is unlikely that variables such as a firm’s resources and capabilities to deal

with natural gas deregulation and managerial domain-specific experience included the full range of

scores that might exist in the population of firms. Hence, most of this research has likely under-

estimated the true size of moderating effects.

In short, range restriction makes population-level moderating effects seem smaller than they

actually are or might even render them statistically nonsignificant. Future research should attempt

to capture the full range of scores of all variables involved in the analysis. When this is not feasible,

and if moderating effects are small or nonsignificant, the estimated population variance should be

provided to rule out range restriction as a plausible alternative explanation for the results obtained.

Problem 3: Unequal Sample Size Across Moderator-Based Categories

A third problem is that when the moderator variable is inherently categorical (e.g., industry type,

firm type), the number of firms across categories is usually not equal. This issue was apparent in
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20% of the articles in our review. In fact, many samples included 25% or fewer firms in one category

and 75% or more firms in the other. For example, consider a study that examined type of firm

ownership as a moderator of the relationship between media coverage and subsequent entry of

foreign firms. The moderator ‘‘type of firm ownership’’ included a minority (i.e., 20%) of firms

owned by individuals, while the majority (i.e., 80%) were owned by at least one firm. Under these

circumstances, moderating effects are underestimated and, in many cases, can even go undetected.

This problem arises because different sample size proportions across categorical moderator

variables is akin to range restriction for continuous moderator variables. Specifically, the sample

variance of the dichotomous categorical moderator Z is (Aguinis, Boik, & Pierce, 2001):

S2Z ¼

X
ðZi � �ZÞ

N � 1
¼

Npð1� pÞ

N � 1
; ð2Þ

where N ¼ n1 (i.e., sample size in subgroup 1) þ n2 (i.e., sample size in subgroup 2), and p ¼ n1/N.

Equation 2 shows that holding N constant, the variance of a categorical moderator is maximized

when p equals .50. To illustrate, consider the following example where N is held constant at 100.

If n1 ¼ 20 and n2 ¼ 80 (i.e., total N ¼ 100), then the sample variance is 16/99 ¼ .1616. However,

if n1 ¼ 35 and n2 ¼ 65 (i.e., same total N ¼ 100), the sample variance increases to 22.75/99 ¼
.2298. If there is an even split between the two subgroups so that n1 ¼ 50 and n2 ¼ 50, the sample

variance is maximized at 25/99 ¼ .2525.

An obvious solution to this problem is to sample a similar number of firms in each category.

However, when the categorical moderator is unevenly distributed across the categories in the

population, then oversampling from the smaller group improves statistical power at the cost of using

a sample that might not be representative of the population. These countervailing concerns should be

kept firmly in mind when investigating categorical moderator variables in strategic management.

Problem 4: Insufficient Statistical Power

Another important issue is statistical power, or the probability of finding moderating effects in a

sample when they exist in the population (Aguinis, 2004; Aguinis et al., 2001). Given our previous

discussion regarding measurement error, range restriction, and unequal sample sizes across catego-

rical moderator variables, it should be apparent that the majority of research assessing moderating

effects is underpowered (43.41% of articles in our review did not mention statistical power and seem

underpowered given the presence of the several factors known to affect power adversely). Thus, it is

not surprising that so many moderation hypotheses are not supported empirically.

To further understand the issue of statistical power, we collected additional data focusing on

sample size, which, in addition to the factors mentioned earlier, is an important determinant of

statistical power. Specifically, we extracted sample size information from each of the 205 articles

that reported a moderating effect test. As expected based on other reviews of sample size (e.g., Shen

et al., 2011), sample sizes were heavily right skewed (i.e., there are few studies including a much

larger sample size than the rest). Thus, we focus on median rather than mean sample sizes. For all

205 articles combined, the median N was 227.5. The median N for SMJ articles was 247.5, and the

median N for OS articles was 173. The median N of 227.5 across SMJ and OS is larger than the

median N of 173 reported in Journal of Applied Psychology articles from 1995 to 2008 (Shen et al.,

2011). However, it is still too small to yield statistical power of .80 or higher to detect the typical

moderating effect size (Aguinis, Beaty, Boik, & Pierce, 2005). Thus, most tests of moderation in the

studies reviewed had insufficient statistical power, which means that many moderating effects were

likely to have gone undetected. Statistical power can be increased by using larger samples and

conducting research in settings that control for extraneous variables (i.e., experimental or

simulation-based research). In all cases, statistical power should be computed and reported to
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establish whether the absence of any moderating effects can be attributed to low statistical power as

opposed to the absence of a true moderating effect.

Problem 5: Artificial Dichotomization of Continuous Moderators

A fifth problem relates to the nature of the moderator variable. Many strategic management theories

include hypotheses about continuous moderator variables such as environmental dynamism, firm

resources, and top management team characteristics (e.g., age, tenure, compensation). When testing

hypotheses about continuous moderators, a common practice is to categorize these variables into

subgroups such as ‘‘high’’ and ‘‘low’’ based on whether cases fall above or below the median of the

moderator variable (this problem was reported in 10.24% of articles in our review). An important

shortcoming of this practice is loss of information (Cohen, 1983; MacCallum, Zhang, Preacher, &

Rucker, 2002). For example, a recently published study included a measure of new ventures’ variety

in the repertoire of strategic actions using ratings of 34 different actions on a 5-point scale ranging

from 1 (not a part of our strategy at all) to 5 (a key part of our strategy). Although each strategic

action was rated on a 5-point scale, each firm’s score was a count of the number of items rated 3 or

higher. In this study, loss of information is evident because a firm that rated an action with a score of

5 and another one that rated the same action with a score of 3 were both classified as having that

action as part of their strategic repertoire to the same extent. This loss of information not only

undermines the interpretation of the moderator, but it also reduces the variance of the moderator

variable, and the estimated moderating effects are biased downward (Aguinis, 1995). In this illus-

tration, the moderating effect of strategic variety on the relation between a firm’s origin (i.e.,

whether they were created by independent entrepreneurs or established corporations) and sales

growth was not statistically significant—possibly due to the artificial dichotomization of strategic

variety. Furthermore, artificial dichotomization can generate nonlinear nonrandom measurement

error (Maxwell & Delaney, 1993). For example, consider a moderator variable Z that ranges from 1

to 10 and dichotomized, with scores of 1 through 5 placed in one group and 6 through 10 placed in

the other group. In the first group, scores of 1 and 2 will have negative measurement errors, whereas

scores of 4 and 5 will have positive measurement errors. Likewise, in the second group, scores of 6

and 7 will have negative measurement errors, and scores of 9 and 10 will have positive measurement

errors. This pattern of measurement errors compounds any error in the measurement of Z as a

continuous variable.

In short, the practice of artificially categorizing continuous moderator variables discards infor-

mation, reduces statistical power to detect moderating effects, and attenuates the size of moderating

effects. Hence, this practice should be discontinued (Aguinis, 1995; Aguinis & Gottfredson, 2010).

Problem 6: Presumed Effects of Correlations Between Product Term and Its Components

A sixth issue concerns the correlation between the product term XZ and its component variables X

and Z. This correlation often generates concerns about multicollinearity, as expressed in 43.90% of

the articles in our review. To address this concern, researchers often center the predictor and

moderator variables at their means. For example, this approach was used in a study that examined

the hypothesized moderating effect of socializing on the relation between contractual complexity

and procedural fairness.

Contrary to common belief, any apparent multicollinearity created by the correlation of XZwith X

and Z does not cause problems for tests of moderation, provided such tests include X and Z along

with XZ as predictors in the regression model. With this approach, the test for moderation does not

involve XZ in its raw form, but rather the partialed XZ product, which is necessarily uncorrelated

with X and Z (Cronbach, 1987; Dalal & Zickar, 2012), and the test of the partialed XZ product is
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unchanged regardless of how X and Z are rescaled (Cohen, 1978). Thus, there is no need to center X

and Z at their means to address this supposed ‘‘multicollinearity problem.’’ Nonetheless, mean-

centering can facilitate the interpretation of the X and Z coefficients because these coefficients

represent the slope of each variable when the other variable equals zero (Aiken & West, 1991).

When X and Z are mean-centered, the coefficient for X represents its slope when Z is at its mean, and

likewise, the coefficient on Z is its slope when X is at its mean.

Also related to the interpretation of first-order effects, in the presence of an XZ interaction,

first-order effects can be interpreted as an average across the full range of values of the other

predictor (Aiken & West, 1991). Note that the presence of a significant interaction indicates that

the effect of a predictor on the outcome depends on the value of the other predictor, and

consequently, an average may not be meaningful in many contexts. For example, if there is a

strong and positive X-Y relation for manufacturing firms (i.e., Z ¼ 1) and a strong and negative

X-Y relation for service firms (i.e., Z ¼ 0), the coefficient associated with X in the full model

including X, Z, and XZ would lead to the misleading conclusion that, overall, there is a zero X-Y

relation. These types of crossover (i.e., disordinal) interactions that involve effects in the oppo-

site direction are not observed frequently (Rogers, 2002). Rather, noncrossover or ordinal

interactions (i.e., the effect of one predictor on the outcome is in the same direction but stronger

for some values of the other predictor compared to others) are more typical, and in these

situations, interpreting first-order effects as an average across values of the other predictor may

be informative.

In short, we recommend mean-centering for the sole purpose of facilitating the interpretation of

coefficients on lower-order terms in the presence of interactions. But, it is important to recognize

that results regarding interaction effects remain unchanged if predictors are centered or not.

Problem 7: Interpreting First-Order Effects Based on Models Excluding Product Terms

A seventh problem is that the coefficients on lower-order terms are often tested and interpreted prior

to entering an interaction term, as evidenced in 42.93% of the studies in our review. This practice is

problematic because when an interaction exists, the predictor involved in the interaction does not

have a single unique effect but instead has a range of effects that vary according to the level of the

moderator variable. These effects are referred to as simple slopes (Aiken & West, 1991) and can be

used to interpret the form of an interaction. Because simple slopes represent a range of effects in

most cases (Aguinis, 2004), it is not meaningful to hypothesize or test a single effect for a predictor

when that predictor interacts with a moderator variable.

Interpreting lower-order effects from models that exclude non-zero higher-ordering effects is

a pervasive problem (i.e., 42.93% of articles in our review). For example, one study hypothe-

sized that informal control systems would enhance the performance of work units and further

predicted that this relationship would be moderated by contextual factors, such as task inter-

dependence. The initial hypothesis was tested using a regression equation that excluded the

moderator variables and their products with informal control systems. These terms were subse-

quently added to the equation to test the moderation hypotheses, which were supported. With

this approach, the results for the initial hypothesis were inconclusive because the moderator

effects indicated that informal control systems did not have a simple uniform relationship with

performance but instead had an array of relationships that ranged from negative to positive,

depending on the levels of the three moderator variables. Situations such as this can be avoided

by drawing conclusions from equations that include first-order terms along with interaction

terms and drawing conclusions based on simple slopes computed and tested at meaningful levels

of the moderator variables.
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Summary

As a summary, Table 1 includes a brief description of each of the problems identified in our review.

Although we have addressed each issue separately, Monte Carlo simulation results demonstrate that

the simultaneous presence of two or more of these problems usually precludes researchers from

reaching accurate conclusions about the presence of moderating effects (e.g., Aguinis, Culpepper, &

Pierce, 2010; Aguinis & Stone-Romero, 1997). Thus, information in this table can be used as a

resource for researchers conducting studies that involve moderation and a checklist for reviewers

who evaluate manuscripts reporting tests of moderation.

Mediation: Problems and Solutions

Consistent with the broader domain of management research (Wood, Goodman, Beckmann, &

Cook, 2008), the vast majority of studies in strategic management that examine mediation rely on

the causal-steps procedure (Miller, Triana, Reutzel, & Certo, 2007) as set forth by Baron and Kenny

(1986). This procedure can be expressed in terms of the three regression equations shown in the

following:

Y ¼ cX þ eY ; ð3Þ

M ¼ aX þ eZ ; ð4Þ

Y ¼ bM þ c0X þ e0Y : ð5Þ

In these equations, X,M, and Y are independent, mediator, and outcome variables, respectively; c,

a, b, and c0, are unstandardized regression coefficients; and eY, eZ, and e0Y are residual terms (to

simplify notation, we omit intercepts from the equations, as would be appropriate whenM and Y are

mean-centered). According to the causal-steps approach, mediation is indicated when: (a) c in

Equation 3 is significant, (b) a in Equation 4 is significant, (c) b in Equation 5 is significant, and

(d) c0 in Equation 5 is not significant. The first condition is taken as evidence that there is a relation

between X and Y to be mediated. The second and third conditions establish that the paths to and from

the mediator variableM are significant. Finally, the fourth condition shows thatM fully mediates the

effect of X on Y. If the first three conditions are met but the fourth condition is not, then mediation is

considered partial rather than complete.

Problem 1: Requiring a Significant Relation Between the Antecedent and the Outcome

Although the causal-steps approach is pervasive in studies of mediation in strategy research, it has

several important drawbacks. First, requiring that c is significant in Equation 3 (as was the case in

51.61% of the articles in our review) can obscure cases in which a significant indirect effect is

accompanied by a significant direct effect with the opposite sign (MacKinnon, Lockwood, Hoff-

man, West, & Sheets, 2002). Referring to Figure 1c, the indirect effect of X on Y through M is the

product ab, and the direct effect of X on Y is c0. The sum of these two effects is the total effect of X

on Y, which is equivalent to c as shown in Figure 1b. Thus, c can fail to reach significance when a

significant indirect effect is offset by a countervailing direct effect, leading researchers to mis-

takenly conclude that mediation is not present. This issue is exemplified by a recent study of the

resource-based view of the firm, which invoked the first condition of the causal-steps procedure to

conclude that competitive advantage did not mediate the effects of resource value on firm per-

formance, even though resource value was related to competitive advantage, which in turn was

related to firm performance.

Aguinis et al. 9

 at INDIANA UNIV on January 28, 2016orm.sagepub.comDownloaded from 

http://orm.sagepub.com/


Table 1. Summary of Problems Regarding Moderation Assessment, Detrimental Consequences for Substan-
tive Conclusions, and Proposed Solutions.

Problems
Detrimental Consequences for
Substantive Conclusions Proposed Solution

1. Lack of attention to
measurement error in tests of
moderation
(62.44%)

� Less than perfect reliability can
lead to incorrectly dismissing
moderating effects and to
underestimating existing ones.

� Report reliability estimates for all
predictors (including those
hypothesized to play the role of
moderator variables); this
practice is particularly necessary
when a hypothesized moderating
effect is not found.

2. Tests of moderation assume that
variable distributions include the
full range of possible values
(34.15%)

� Range restriction has an adverse
impact on the accuracy of
substantive conclusions:
Moderating effects can go
undetected, and when detected,
they are underestimated.

� Attempt to capture the full range
of population scores of all
variables involved in the analysis
and, if not feasible and
moderating effects are not found
or found to be small, information
on sample and population
variances should be provided to
rule out range restriction as a
plausible explanation for the
results obtained.

3. When testing hypotheses about
categorical moderators, a large
total sample size is assumed to be
a sufficient condition for
adequate statistical power even
in the presence of unequal
sample size across moderator-
based categories
(20.00%)

� Even if total sample size is very
large, unequal sample sizes
across the moderator-based
subgroups decrease statistical
power and lead to an
underestimation of moderating
effects.

� Collect data such that the number
of firms within each moderator-
based subgroup is similar (but
keep in mind that this
oversampling strategy may lead
to an unrepresentative sample).

4. Statistical power is assumed to be
adequate
(43.41%)

� Statistical power is often
insufficient due to small sample
size, measurement error, range
restriction, unequal sample size
across moderator-based
subgroups, and other artifacts
and leads to false negative
decisions regarding moderating
effects.

� A priori statistical power is
necessary before collecting data
to plan study design, and post
hoc statistical power should be
calculated in all cases when a
moderating effect is not found to
rule out the possibility that
insufficient power has led to the
no-moderator conclusion.

5. Moderator-based subgroups are
created by categorizing
continuous variables into
subgroups such as ‘‘high’’ and
‘‘low’’ or categories above and
below a distribution’s median
value (i.e., median split
procedure)
(10.24%)

� This practice results in
information loss, reduced
statistical power to detect
moderating effects, and a
downward bias in the size of
estimated moderating effects.

� The practice of artificially
dichotomizing or
polychotomizing continuous
variables should be discontinued.

(continued)
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In short, the aforementioned study exemplifies a broader pattern exhibited by strategic manage-

ment studies that apply the causal-steps procedure, which routinely excludes mediation from con-

sideration when c in Equation 3 is not significant. This problem can be avoided by focusing on the

paths that constitute the mediated effect, which together are necessary and sufficient to establish

mediation (Kenny, Kashy, & Bolger, 1998).

Problem 2: Disregarding the Magnitude of the Indirect Effect

Although Baron and Kenny (1986) discussed procedures for testing the indirect effect represented

by the ab product, this test is not among the conditions specified by the causal-steps approach itself.

Nonetheless, this test is critical for evaluating the size of the mediating effect and comparing effects

that describe alternative mediating mechanisms. As noted byMiller et al. (2007), the vast majority of

strategic management studies that examine mediation do not test the mediated effect itself, and this

tendency persists in recent research (i.e., 77.42% of articles in our review). For instance, a study

examining decision speed as a mediator of the effects of six organizational and environmental

factors on firm performance tested the individual paths of the model, but the mediating effects were

not tested or compared. Consequently, this study missed an important opportunity to weigh the

mediating effects of the organizational and environmental factors under consideration, which rep-

resent conceptually distinct determinants of strategic decision speed and firm performance. In the

few studies that tested the mediated effect, most relied on the Sobel (1982) test and its variants, in

which the product of the coefficients representing the mediated effect is divided by an estimate of its

standard error and referred to a z-distribution. Unfortunately, this test is inappropriate because it

rests on the assumption that the product of the coefficients is normally distributed, which is not the

Table 1. (continued)

Problems
Detrimental Consequences for
Substantive Conclusions Proposed Solution

6. Correlations between product
terms and their components are
believed to be a source of bias in
terms of estimating and
interpreting moderating effects
(43.90%)

� Centering predictors to ‘‘reduce
multicollinearity’’ creates
additional procedures and steps
that are unnecessary and create
possible confusion when there is
an interest in the moderating
effect only and not in first-order
effects.

� First-order predictors should be
centered only if there is an
interest in interpreting them in
the presence of moderating
effects. Also, first-order effects
can be interpreted as the average
effect of a predictor across the
full range of values of the other
predictor and their
interpretation may be
informative in the presence of
ordinal (i.e., noncrossover) but
not disordinal (i.e., crossover)
interactions.

7. First-order effects are
interpreted based on partial
models (i.e., models not including
product terms)
(42.93%)

� Because first-order coefficients
are scale dependent, their
interpretation in partial models
leads to misleading conclusions.

� First-order effects should be
based on centered predictors
and interpreted based on full
models (i.e., models including the
predictor, moderator, and
product terms).

Note: Values in parenthesis in the first column indicate the percentage of articles addressing moderation and published in
Strategic Management Journal and Organization Science between January 2005 and December 2014 that included each problem
(out of a total of 205 articles).
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case even when the coefficients themselves are normally distributed (Anderson, 1984). This assump-

tion can be relaxed by using nonparametric testing procedures, such as percentile-based confidence

intervals derived using the bootstrap (Efron & Tibshirani, 1993; Mooney & Duval, 1993; Stine,

1989). These procedures have been advocated in the methodological literature on mediation (MacK-

innon, Lockwood, & Williams, 2004) and should be the method of choice for future studies of

mediation in strategic management research.

Problem 3: Testing the Direct Effect as a Condition for Mediation

A third problem concerns whether c0 should be tested when assessing mediation (as reported in

38.71% of articles in our review). Although this test was included in the original presentation of the

causal-steps procedure (Baron & Kenny, 1986), subsequent revisions indicated that it is not required

(Kenny et al., 1998). The rationale for this revision can be seen by returning to Figure 1c, which

shows that mediation centers on the paths from X toM and fromM to Y (i.e., a and b). The path from

X to Y that bypasses M (i.e., c0) need not be considered when determining whether M mediates the

effect of X on Y because this path is not part of the mediated effect. Moreover, requiring that c0 is not

significant can cause researchers to overlook meaningful mediating processes.

To illustrate, a study of differentiation as a mediator of the effects of imitation time lag on

competitiveness inferred support for mediation based on whether the effects of time lag on competi-

tiveness was no longer significant after controlling for differentiation. By imposing this condition,

several mediating effects were dismissed even though the paths involved in the effects were signif-

icant. Thus, future research should conclude that mediation exists when the indirect effect is sup-

ported, regardless of the presence or absence of a direct effect.

Problem 4: Including a Direct Effect Without Conceptual Justification

Tests of mediation that follow the causal-steps procedure routinely include a direct path from X to Y

that bypasses M regardless of whether mediation is hypothesized to be complete versus partial

(37.10% of articles in our review). This practice is likely due to the inclusion of X in Equation 5

and the test of c0 as the fourth condition of the causal-steps procedure.

Although this practice is widespread, if the theory under investigation predicts complete media-

tion, then researchers should test a model that specifies complete rather than partial mediation

(James, Mulaik, & Brett, 2006; LeBreton, Wu, & Bing, 2008). Referring to Figure 1, the causal-

steps procedure prescribes the analysis of the model in Figure 1c regardless of whether mediation is

considered partial or complete, whereas James et al. (2006) advised that researchers analyze the

model in Figure 1c for partial mediation and a submodel that omits path c0 for complete mediation.

By following this approach, the model tested is aligned with the theory and hypotheses under

consideration. Moreover, omitting path c0 when complete mediation is hypothesized upholds the

principle of parsimony and yields an estimate of path b that is consistent with the specified model

(LeBreton et al., 2008). The consequences of omitting path c0 can be assessed by testing the fit of the

complete mediation model using a chi-square statistic with one degree of freedom. This test effec-

tively compares the complete mediation model to the partial mediation model because the chi-square

test captures the improvement in fit that would occur if path c0 were added to the model.

In short, routinely including direct effects violates the principle of parsimony and prompts

researchers to test models that are not aligned with theory. If the theory under consideration predicts

mediation, future research should use the full mediation model as a baseline (i.e., ab 6¼ 0 and c0 ¼ 0

in Figure 1c) and test the consequences of omitting the direct effect on the fit of the model.
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Problem 5: Testing Mediation With Cross-Sectional Data

Fifth, our review indicates that most strategic management studies that investigate mediation rely on

cross-sectional designs (58.06% of articles in our review). However, mediated models contain causal

paths that inherently involve the passage of time (Cook & Campbell, 1979; LeBreton et al., 2008;

Mitchell & James, 2001), and testing these paths with cross-sectional data can produce biased

estimates (Maxwell & Cole, 2007). This bias can be ameliorated by using longitudinal data in which

X, M, and Y are measured sequentially on three occasions. Ideally, all three variables would be

measured on each occasion, resulting in a panel model in which the hypothesized causal sequence of

X ! M ! Y can be compared to alternative causal flows (Finkel, 1995; Hom & Haynes, 2007).

Longitudinal designs also provide a stronger basis than cross-sectional designs for drawing causal

inferences, which are inherent in the interpretation of models that involve mediation (Kenny, 2008;

Stone-Romero & Rosopa, 2008, 2011).

Despite their strengths, longitudinal designs do not rule out the possibility of omitted variables

that can account for the relations involved in mediated models (Holland, 1988), which is a relevant

source of endogeneity in strategic management research (Hamilton & Nickerson, 2003). It is

encouraging that the importance of endogeneity is increasingly recognized in strategic management

studies. Specifically, the author guidelines for SMJ note that

SMJ strongly supports research that seeks to address interesting and important questions in

strategic management that involve complicated causal processes. SMJ recognizes that statis-

tical analyses relevant to these questions may raise the issue of endogeneity. If relevant,

authors should acknowledge this issue in submitted manuscripts, and make a good faith effort

to address it. In some cases, causal inference may be impossible, but statistical correlations,

especially if used to rule out some alternative hypotheses or mechanisms, may still be of

interest. (‘‘Guidelines Regarding Empirical esearch in SMJ,’’ 2015)

The growing attention to endogeneity is a very positive development given that, in a review of

articles published in SMJ from 2005 and 2012, Semadeni, Withers, and Certo (2014) found that only

24 (about 4%) articles of a total of about 580 published during this period reported using two-stage

least squares for testing endogeneity.

In short, mediated models contain causal paths that imply the passage of time, and testing these

paths with cross-sectional data can produce biased estimates. When possible, and absent the possi-

bility of implementing an experimental design (Eden, Stone-Romero, & Rothstein, 2015), future

research should assess mediation using longitudinal data, preferably with panel models that allow

the comparison of alternative causal flows.

Problem 6: Lack of Attention to Measurement Error

Finally, as with moderation, studies that examine mediation rarely address the consequences of

measurement error (88.71% of articles in our review). Measurement error in X and M can bias path

estimates upward or downward (Baron & Kenny, 1986).4 As a result, statistical tests of these paths

can be either too liberal or too conservative, either of which would lead to incorrect conclusions.

When mediation is examined using multiple regression, which our review indicated is usually the

case (see footnote 2 and also Miller et al., 2007), measurement error is effectively disregarded,

thereby introducing the aforementioned bias and its deleterious consequences.

Clearly, the best solution for addressing measurement error is to create and use more reliable

measures (Aguinis & Edwards, 2014; Aguinis & Vandenberg, 2014). However, as a second best

option, some of the effects of measurement error can be offset by using structural equation modeling
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(SEM) with latent variables (Bollen, 1989), which has become increasingly prevalent in strategic

management research (Shook, Ketchen, Hult, & Kacmar, 2004). We are certainly not suggesting that

SEM is some magic cure for the many problems that can beset poor quality measures or that using

SEM gives researchers an excuse to disregard fundamental measurement issues such as reliability

and construct validity. Moreover, conventional applications of SEM only correct for certain sources

of measurement error (DeShon, 1998), and other sources require more elaborate model specifica-

tions. Nevertheless, SEM offers important advantages over procedures that ignore measurement

error completely.

Summary

The aforementioned issues concerning tests of mediation are summarized in Table 2, which gives a

brief description of each problem, its consequences, and proposed solutions. As with Table 1,

information in Table 2 can be used as a resource for researchers as well as a checklist for reviewers

who evaluate manuscripts including mediation tests.

Integrating Moderation and Mediation

Thus far, we have discussed moderation and mediation separately. However, many theories in

strategic management implicitly or explicitly combine moderation and mediation. For instance,

research on contingency theory not only investigates factors that moderate the effects of firm

strategy on performance but also considers the processes and mechanisms responsible for these

effects (Boyd et al., 2012). Accordingly, we provide examples of research that would benefit from

the integration of moderation and mediation and briefly discuss methods that can be used to

accomplish this task.

Conceptually, moderation and mediation are integrated when the paths that constitute a

mediated model are theorized to vary according to the level of a moderator variable. There are

several domains in strategy research that warrant testing models that combine moderation and

mediation. For instance, from a conceptual standpoint, the effects of competitive environment on

firm performance are mediated by factors within the firm such as strategic choice. These mediated

effects could depend on the resources available to the firm such that firms with greater resources at

their disposal can choose from a wider array of strategic options and more readily translate these

choices into gains in performance. Analogously, in the organizational learning domain, organiza-

tional failures lead to learning, but this effect could be mediated by top management team’s coping

mechanisms. As such, coping is an intervening mechanism for the relation between failures and

learning. In turn, the strength of this mediated relation could be moderated by organizational

climate such that the relation is stronger in organizations with more positive compared to more

negative climates. A third illustration is the effects of strategic consensus on firm performance

(Gonzalez-Benito, Aguinis, Boyd, & Suarez-Gonzalez, 2012). Consensus can refer to long-term

strategic goals (i.e., consensus on objectives) or the methods that need to be implemented to

achieve those goals (i.e., consensus on means). The relation between consensus on objectives and

performance is likely to be moderated by environmental dynamism. At the same time, the relation

between consensus and performance could be mediated by consensus on means. As these exam-

ples illustrate, we see great potential of future research assessing moderation and mediation within

a given conceptual model.

A general framework for specifying and testing models that combines moderation and mediation

was developed by Edwards and Lambert (2007). This framework overcomes problems with con-

ventional methods and can be applied to a wide range of models. An illustrative model from this

framework is depicted in Figure 1d, which shows that the effect of X on Y is mediated byM, and the
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three paths of the model are moderated by Z. Following the notation of Edwards and Lambert

(2007), the equations for this model are as follows:

M ¼ a0 þ a1X þ a2Z þ a3XZ þ eM ; ð6Þ

Y ¼ b0 þ b1X þ b2 M þ b3Z þ b4XZ þ b5MZ þ eY : ð7Þ

Table 2. Summary of Problems Regarding Mediation Assessment, Detrimental Consequences for Substantive
Conclusions, and Proposed Solutions.

Problems
Detrimental Consequences for
Substantive Conclusions Proposed Solution

1. A significant relation between the
antecedent and the outcome is a
prerequisite for testing
mediation
(51.61%)

� This assumed prerequisite can
lead researchers to overlook
mediation when the direct and
indirect effects in a model have
opposite signs.

� Conduct the mediation test
without the precondition that
the relation between the
antecedent and the outcome
should be significant.

2. The causal-steps procedure
yields information about the
magnitude of the indirect effect
transmitted through the
mediator
(77.42%)

� The causal-steps procedure does
not involve the computation or
test of the indirect effect and
therefore does not indicate the
magnitude of the mediating effect
or allow its comparison with
other effects (e.g., the indirect vs.
the direct effect).

� Compute the size of the indirect
effect by multiplying the paths to
and from the mediator (i.e., paths
a and b in Figure 1c) and test this
product using nonparametric
procedures such as the
bootstrap (rather than the Sobel
test that assumes normality in
the distribution of product
coefficients).

3. The evaluation of mediation
should include a test of the direct
effect that bypasses the mediator
(38.71%)

� Because the direct effect has no
bearing on the presence of the
indirect effect, this test can lead
researchers to inappropriately
dismiss mediating effects.

� Conclude that mediation exists
when the indirect effect is
supported, regardless of the
presence or absence of a direct
effect.

4. The causal-steps procedure
routinely includes a direct path
from the antecedent to the
outcome regardless of whether
this path is conceptually justified
(37.10%)

� Routinely including direct effects
violates the principle of
parsimony and prompts
researchers to test models that
are not aligned with theory.

� If the theory under consideration
predicts complete mediation, then
use the full mediation model as a
baseline (i.e., ab 6¼ 0 and c0 ¼ 0 in
Figure 1c) and formally test the
consequences of omitting the
direct effect on the fit of themodel.

5. Mediation can be tested
satisfactorily with cross-sectional
data
(58.06%)

� Mediated models contain causal
paths that imply the passage of
time, and testing these paths with
cross-sectional data can produce
biased estimates.

� When possible, assess mediation
using longitudinal data, preferably
with panel models that allow the
comparison of alternative causal
flows.

6. Lack of attention to
measurement error in tests of
mediation
(88.71%)

� Measurement error can bias path
estimates upward or downward,
leading to conclusions that are
unwarranted.

� Create and use reliable measures.
As a second best option, use
multiple-item measures for all
constructs and analyze the data
using structural equation
modeling with latent variables.

Note: Values in parenthesis in the first column indicate the percentage of articles addressing mediation and published in
Strategic Management Journal and Organization Science between January 2005 and December 2014 that included each problem
(out of a total of 62 articles).
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These equations add the moderator variable Z and its products with X andM to the equations that

constitute the basic three-variable mediated model (as shown in Figure 1c). The extent to which the

paths of the model are moderated by Z is given by the coefficients a3, b4, and b5. In addition,

Equation 6 can be substituted into Equation 7 to recover simple effects that indicate the extent to

which the paths of the model vary across levels of Z.

Despite the conceptual relevance of integrating moderation and mediation, methods for doing so

have been underutilized in strategic management studies. Out of the 1,511 articles published in SMJ

and OS over the past decade, only 14 combined moderation and mediation within the same study.

Moreover, 11 of these articles used methods identified as problematic by Edwards and Lambert

(2007), including the application of the causal steps procedure to product terms such as XZ (Baron &

Kenny, 1986). On a more positive note, the following three published articles used appropriate

methods of analysis to combine moderation and mediation: Bunderson, Van der Vegt, and Sparrowe

(2013); Chen, Takeuchi, and Shum (2013); and De Jong, Bijlsma-Frankema, and Cardinal (2014).

Thus, these articles can be used as examples to guide future research.

Summary and Conclusions

The study of moderation and mediation is fundamental to the field of strategic management (Boyd

et al., 2012; Ketchen, Boyd, & Bergh, 2008). To facilitate research in this important area of

investigation, we summarized key methodological problems, documented their prevalence based

on a review of articles published in SMJ and OS, explained their deleterious consequences regarding

substantive conclusions, and proposed solutions for each problem. Although we focused on the

strategic management literature, many of the problems we identified are also common in micro

domains in management such as organizational behavior and human resource management (Aguinis

et al., 2005) and other fields including information systems (Carte & Russell, 2003), accounting

(Hartmann & Moers, 1999), marketing (Irwin & McClelland, 2001), education (Kromrey, & Foster-

Johnson, 1998), public administration (Cascio & Aguinis, 2001), and many others (Aguinis, 2004).

We also discussed how moderation and mediation can be integrated, which can stimulate new ways

of theorizing.

We readily acknowledge that some of our proposed solutions might not be easy to implement

because some of them require taking action before data are collected, particularly those that involve

theory, design, and measurement issues rather than data-analytic issues (Aguinis & Edwards, 2014;

Aguinis & Vandenberg, 2014; Eden et al., 2015; Vancouver & Carlson, 2015). Moreover, improve-

ments in methodological practices are slow, particularly among substantive compared to researchers

interested in methodological issues (Aguinis, Pierce, Bosco, & Muslin, 2009) because there is a

‘‘scientific community’s persistence in the use of particular methods’’ (Podsakoff & Dalton, 1987,

p. 433). Nevertheless, we add our voice to those of others (e.g., Bettis, Ethiraj, Gambardella,

Helfat, & Mitchel, in press; Bettis, Gambardella, Helfat, & Mitchell, 2014; Wiersema & Bowen,

2009) who have shown that the potential for misusing methods is not uncommon and impedes

theoretical progress. We hope our article will serve as a useful resource for current and future

scholars as well as journal editors and reviewers. Moreover, our hope is that this accumulating body

of methodological work will be used for training future generations of strategic management

researchers because, as noted by philosopher and poet Jorge Santayana, those who cannot remember

the past are condemned to repeat it.
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Notes

1. Although we used the term effect throughout the manuscript and its usage implies causality, moderation and

mediation are usually assessed in strategic management studies using non-experimental (i.e., observational)

research designs, which preclude strong inference about causal relations (Aguinis & Edwards, 2014; Eden,

Stone-Romero, & Rothstein, 2015; Spencer, Zanna, & Fong, 2005; Vancouver & Carlson, 2015). However,

we use the term effect as a matter of convenience.

2. Although other data-analytic approaches were also used to assess moderation or mediation, multiple regres-

sion is by far the most popular. For example, only 3 articles used structural equation modeling to assess

moderation (15 for mediation), only 33 articles used generalized least squares regression to assess modera-

tion (6 for mediation), and only 46 articles used logistic regression to assess moderation (0 for mediation).

Thus, we focus on moderation and mediation tests involving multiple regression.

3. Note that the reliability of the product term is scale dependent (Bohrnstedt & Marwell, 1978). Thus, it is not

possible to obtain an accurate reliability estimate unless the components are measured with ratio scales (i.e.,

true zero point), which is the case for some (i.e., measures of financial-based constructs such as return on

investment and Tobin’s Q) but not the majority of variables in strategic management studies. As noted by

Edwards (2008), rXZ depends on the scales of X and Z, and this is why Bohrnstedt and Marwell (1978)

cautioned against estimating rXZ when X and Z are measured on interval scales because the estimated value

of rXZ is as arbitrary as the origins of X and Z.

4. As noted by Baron and Kenny (1986), ‘‘The presence of measurement error in the mediator tends to produce

an underestimate of the effect of the mediator and an overestimate of the effect of the independent variable

on the dependent variable when all coefficients are positive’’ (p. 1177). As their source, Baron and Kenny

cited Judd and Kenny (1981), who explained that measurement error in the mediator M will bias its

coefficient downward but can bias the coefficient on the predictor X upward or downward. The direction

of this bias depends on the correlations among X, M, and the outcome Y. Specifically, when rXY is less than

rXM/rMY, the coefficient on X will be biased upward, whereas when rXY is greater than rXM/rMY, the coeffi-

cient on X will be biased downward. In either case, the coefficient on M will be biased downward. The

effects of measurement error in X follow an analogous pattern, such that the coefficient on X is biased

downward and the coefficient onM is biased upward or downward, depending on whether rMY is less than or

greater than rXM/rXY, respectively. This phenomenon is also discussed in texts on regression analysis (e.g.,

Cohen, Cohen, West, & Aiken, 2003, pp. 121-124) and structural equation modeling (e.g., Bollen, 1989,

chapter 5).
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