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ABSTRACT

Pairwise algorithms are popular for learning recommender
systems from implicit feedback. For each user, or more
generally context, they try to discriminate between a small
set of selected items and the large set of remaining (irrele-
vant) items. Learning is typically based on stochastic gra-
dient descent (SGD) with uniformly drawn pairs. In this
work, we show that convergence of such SGD learning al-
gorithms slows down considerably if the item popularity
has a tailed distribution. We propose a non-uniform item
sampler to overcome this problem. The proposed sampler
is context-dependent and oversamples informative pairs to
speed up convergence. An efficient implementation with
constant amortized runtime costs is developed. Further-
more, it is shown how the proposed learning algorithm can
be applied to a large class of recommender models. The
properties of the new learning algorithm are studied em-
pirically on two real-world recommender system problems.
The experiments indicate that the proposed adaptive sam-
pler improves the state-of-the art learning algorithm largely
in convergence without negative effects on prediction quality
or iteration runtime.

Categories and Subject Descriptors

I.2.6 [Artificial Intelligence]: Learning—Parameter learn-
ing

General Terms

Algorithms, Experimentation, Measurement, Performance
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Item Recommendation; Recommender Systems; Matrix Fac-
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1. INTRODUCTION
Recommender systems have become an important feature

in modern websites, e.g. in Amazon, Netflix, or Flickr. Click
rates, revenues and other measures of success may be in-
creased by the application of effective recommender systems.
The difficult task is to identify relevant items even if they are
generally unpopular. Recommender systems leverage avail-
able context such as user information, time, location, etc.
to filter relevant items. Thereby, also items from the tails of
the popularity distribution are successfully recommended.

In practice, often only implicit feedback is available to
learn a recommender system. Examples for implicit feed-
back are clicks, watched movies, played songs, purchases
or assigned tags. A characteristic of implicit feedback is
that it is one-class, i.e. only positive observations are avail-
able. For example, a website logs that a user has bought
an item on a specific day or chosen a tag for a specific re-
source. A common approach in recommender systems to
deal with this data is to assume that everything that has
not been selected is of less interest for the user in this situ-
ation. This idea results in a pairwise ranking loss that tries
to discriminate between a small set of selected items and a
very large set of all remaining items. Due to the very large
number of pairs, learning algorithms are usually based on
sampling pairs (uniformly) and applying stochastic gradient
descent (SGD). This optimization framework is also known
as Bayesian Personalized Ranking (BPR) [14]. Many re-
cent published recommender systems use BPR for learning,
including tensor factorization models for tag recommenda-
tion [15], relation extraction [17], sequential shopping rec-
ommender with taxonomies [8], focused matrix factorization
for advertisement [7], hierarchical latent factor models [1] or
co-factorization machines [5].

In this paper, it is shown that uniform sampling pairs re-
sults in slow convergence, especially if the pool of items is
large and the overall item-popularity is tailed. Both prop-
erties are common to most real-world data sets. We argue
that most SGD updates have no effect because the gradient
vanishes. The reason is that a uniformly sampled negative
item is very likely to be ranked correctly below a (random)
observed item and thus the gradient of the pair is near 0.
Empirically, we show that simple oversampling by global
popularity is not sufficient to solve this problem. We pro-
pose a non-uniform sampling distribution that adapts both
to the context and the current state of learning. An efficient
sampling algorithm with constant amortized runtime com-
plexity is developed to sample from the proposed distribu-
tion. Experiments on two real-world recommender applica-
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tions indicate that the proposed adaptive sampler improves
the state-of-the art learning algorithm largely in convergence
without negative effects on prediction quality or iteration
runtime. Finally, we show how to generalize the algorithm
to a large class of factorization models.

2. PROBLEM STATEMENT
First the problem of recommending items from implicit

feedback data is described. Then pairwise learning with
BPR [14] is shortly recapitulated. The novel contribution of
this section is to show that convergence of BPR algorithms
slows down due to uniform sampling of negative items.

2.1 Ranking from Implicit Feedback
Let S ⊂ C×I be a set of observed actions, where C is a set

of context and I a set of items. For instance, C could be a set
of users, I a set of movies and S states which movies a user
has watched, i.e. user-movie pairs. More complex examples
can also be handled, e.g. C might hold additional variables
like location, mood, time, sequences or attributes; also I
might be described by additional variables, e.g. attributes
or taxonomies (see section 4.2).

The task of item recommendation is to find a ranking r̂
of items for each context. We formulate this by a bijective1

function r̂ : I × C → {1, . . . , |I |}, where r̂(i|c) is the rank
of item i for a given context c. The ranking function is
usually modeled by a scoring function ŷ(i|c) which is itself
parametrized by a set of model parameters Θ. E.g. matrix
factorization (MF) is a common choice for the scoring model
ŷ if i and c are categorical variables2. Ranking with any
scoring model can be done by computing scores for all items
(given a context c) and sorting the items by scores (for each
context). The formal link between the rank r̂ and the scoring
function ŷ can be defined as

r̂(i|c) := |{j : ŷ(j|c) ≥ ŷ(i|c)}|. (1)

E.g. for the top item (i.e. rank 1) there is only one item
(the item itself) that is as large or larger. For the item at
rank 2 there are only 2 items where the score is as large or
larger, etc.

The ranking itself is uniquely (up to ties) specified by
the values of the model parameters Θ – through the scoring
function ŷ.

2.2 Pairwise Learning from Implicit Feedback
The values of the model parameters Θ are learned from

the implicit feedback data S. A popular approach to learn
the model parameters Θ is based on pairwise learning. The
idea is to discriminate for each context c ∈ C between the
selected items I+(c) := {i : (i, c) ∈ S} and the remaining
items I \ I+(c). An item i is preferred over an item j under
a context c (notation i ≻c j), if and only if i but not j was
selected under context c:

i ≻c j ⇔ i ∈ I+(c) ∧ j ∈ I \ I+(c). (2)

The set of all pairwise preferences DS ⊆ C × I × I can be
defined as

(c, i, j) ∈ DS :⇔ i ∈ I+(c) ∧ j ∈ I \ I+(c). (3)

1Bijective in I .
2Note that MF is just an example and the following presen-
tation is not restricted to MF.

The link from pairwise preference to the model/ scoring
function ŷ is established by

p(i ≻c j) := σ(ŷ(i|c)− ŷ(j|c)) (4)

where σ(x) = 1/(1+ exp(−x)). The goal is to maximize the
likelihood of correctly ordering the preferences

argmax
Θ

∏

(c,i,j)∈DS

p(i ≻c j), (5)

which is equivalent to minimizing the negative log likelihood
(NLL)

NLL := −
∑

(c,i,j)∈DS

lnσ(ŷ(c, i)− ŷ(c, j)). (6)

SGD Learning.
The gradient of an arbitrary model parameter θ ∈ Θ is

∂NLL

∂θ
=

∑

(c,i,j)∈DS

(1− σ(ŷ(c, i) − ŷ(c, j)))
∂(ŷ(c, i)− ŷ(c, j))

∂θ
.

(7)

As the number of pairs |DS | is very large3, learning algo-
rithms typically are based on stochastic gradient descent
(SGD). A pair (c, i, j) ∈ DS is sampled uniformly and a
stochastic gradient descent step is performed:

θ ← θ − η (1− σ(ŷ(c, i)− ŷ(c, j)))
︸ ︷︷ ︸

=:∆c,i,j

∂

∂θ
(ŷ(c, i) − ŷ(c, j)).

(8)

where η is the learning rate and has to be chosen small
enough to ensure that the step is done in the right direction
– i.e. the gradient is only (approximately) correct within a
small region around θ. Note the difference between implicit
feedback S ⊆ C × I and training pairs DS ⊆ C × I × I .

Sampling a preference (c, i, j) ∈ DS uniformly can be done
without explicitly storing DS , by first sampling (c, i) ∈ S
and then sampling a negative item j ∈ I \ I+(c). See figure
2 for the full algorithm. The whole framework of a pairwise
loss between selected and all remaining items, as well as
the SGD algorithm using uniform sampling was proposed
for item recommendation in [14] under the name Bayesian
Personalized Ranking (BPR).

2.3 Issues in Tailed Item Distributions
Even though BPR has been successfully applied in numer-

ous recommender applications and for a variety of models,
in the following it is shown that convergence slows down
considerably if the pool of items I is large and the item
popularity is non-uniform distributed.

Gradient Magnitude.
Learning model parameters with BPR is done by looping

over eq. (8). As it can be seen, each gradient step has a
multiplicative scalar

∆c,i,j := (1− σ(ŷ(c, i)− ŷ(c, j))) = (1− p(i ≻c j)). (9)

3Approximately O(|S| |I |) because the number of selected
items I+(c) in a context c is much smaller than the number
of all items I .
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Figure 1: Item popularity in two example datasets (see section 5.1) plotted in raw and log-log scales. Popu-
larity in both datasets is tailed.

1: procedure LearnBPR(η, S)
2: Randomly initialize Θ
3: repeat
4: Draw (c, i) ∈ S uniformly
5: Draw j ∈ I \ I+(c) uniformly
6: for θ ∈ Θ do
7: Update θ with eq. (8).
8: end for
9: until convergence
10: return Θ
11: end procedure

Figure 2: BPR – a stochastic gradient descent algo-
rithm that learns to discriminate observed selections
(c, i) ∈ S from all remaining items j ∈ I \ I+(c).

This quantity depends on how the scoring model (using the
current model parameters Θ) would discriminate between
the positive item i and the negative item j under context
c. The quantity ∆c,i,j is obviously a probability and is close
to 0 if i is correctly assigned a larger score than j. It is
close to 1 if j is falsely assigned a larger score than i. This
means, ∆c,i,j can be read as how much influence a pairwise
preference (c, i, j) has for improving Θ. If ∆c,i,j is close
to 0, nothing can be learned from the case (c, i, j) because
its gradient vanishes, i.e. θ is not changed by the update
step (eq. 8). Thus, in the remainder ∆c,i,j is called the
gradient magnitude of a sampled case (c, i, j). Note that
∆c,i,j depends on the model parameters Θ and thus ∆c,i,j

changes while learning.

Tailed Item Distributions.
In recommender systems, item popularity is typically non-

uniform distributed and some items are in general more pop-
ular than others. Figure 1 shows two item popularity distri-
butions for a movie and a social tagging dataset – see section
5.1 for details about the datasets. Both figures show that
most items are rarely selected overall4.

As discussed before, SGD algorithms cannot learn from
samples (c, i, j) where the magnitude ∆c,i,j is close to zero.
∆c,i,j is supposed to be small when i is correctly ranked over
j – i.e. ∆c,i,j is smaller the larger the difference ŷ(c, i) −

4However, keep in mind that recommender systems target
at personalizing, i.e. overall unpopular items might be pre-
ferred by some users and should be ranked high.

ŷ(c, j) is. Because (c, i) is a positive observation (and over-
all positive observations are tailed distributed as in fig. 1)
and j is uniformly drawn, it is very likely that the model
score ŷ(c, i) is also larger than ŷ(c, j) and thus the gradient
magnitude is small. Figure 3 shows the probability that a
sample (c, i, j) has a gradient magnitude smaller than 0.01,
0.1 and 0.5 respectively. It can be seen that already after a
few training epochs (one epoch includes 10 · |S| many single
BPR updates), almost all samples have very small magni-
tudes and therefore most of the samples are useless in the
SGD algorithm – i.e. an update (eq. 8) does not change
the value. It should be noted that this does not mean that
the loss is inappropriate, but that the good samples have
just not been seen by the algorithm yet. E.g. under a given
context, a positive item might be estimated on rank 10 in-
stead of 1, which means there are 9 very informative samples
while the vast majority of the remaining |I| - 10 items are
mainly non-informative. If |I | is large, uniform sampling is
very likely to need many iterations before finding some of
these 9 samples and in the meantime the algorithm spends
a lot of time applying updates on useless samples.

In the remainder of this work, non-uniform samplers are
proposed that exchange the negative item sampler in the
BPR algorithm (see fig. 2, line 5) to overcome this issue.

3. IMPROVED ITEM SAMPLING
In this section, non-uniform samplers for negative items

are proposed to speed up convergence. The sampling distri-
bution for negative items will be denoted as p(j|c). First,
sampling according to the global item popularity is pre-
sented as a baseline. Then an adaptive, context-aware sam-
pling distribution that follows the belief of the ranking model
ŷ is proposed.

3.1 Static & Global Sampling
In section 2.3, the uniform sampling assumption (p(j|c) ∝

1) of pairwise learning was identified as the main reason of
slow convergence of SGD learning. This resulted in mostly
uninformative pairs which are trivial to rank in the right
order.

A simple approach to increase the fraction of difficult pairs
is to oversample popular items. The empirical popularity/
selection frequency (see fig. 1) can be used directly to define
the sampling distribution

p(j|c) ∝ |{(c′, j′) ∈ S : j = j′}|. (10)
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Figure 3: Gradient magnitude (eq. 9) measures how much influence ([0,1] interval) a training case has on the
current learning process. The three curves depict how many magnitudes are smaller than 0.01, 0.1 and 0.5
when uniform sampling (BPR) is used. After only a few training epochs almost all magnitudes are smaller
than 0.1 and most are smaller than 0.01. Training cases with near zero magnitudes slow down learning
because the corresponding SGD update step won’t change the model parameters but requires computational
time. See fig. 6 for the development of the average gradient and section 5.1 for details on the experimental
setup.

A sampler from this distribution is trivial to implement: an
observation (c′, j) is drawn uniformly from the observations
S, then c′ is discarded and j is used as the negative item.

Alternatively a parametric sampling can be used. Typ-
ically, the empirical distribution follows approximately an
analytical law, e.g. a Geometric or Zipf distribution (see fig.
1). E.g. for the Geometric distribution5

p(j|c) = γ (1− γ)r(j), γ ∈ (0, 1) (11)

or equivalently in another notation/ parametrization

p(j|c) ∝ exp(−r(j)/λ), λ ∈ R
+, (12)

where r(j) is the rank of item j according to global popu-
larity ranking. The expected rank in the distribution of eq.
(12) is identified by the parameter λ.

Whether to choose the empirical distribution (eq. 10) or
its parametric counterpart results in approximately the same
results. In practice, the empirical distribution might be eas-
ier to implement and we use it in the evaluation. However,
the more complex models proposed later use a parametric
approach and thus, it facilitates readability to discuss the
parametric counterpart already here.

Properties.
The presented sampling distribution has two important

properties:

1. Global: The item distribution is independent of the
context, i.e. for different context, the distribution is
the same.

2. Static: The distribution does not change while model
parameters are learned.

5For readability, throughout the paper all ideas are illus-
trated with the Geometric distribution. It is straightforward
to exchange the Geometric distribution (eqs. 12, 14, 21) by
another analytic distribution.

Algorithm.
Because the distribution is global and static, sampling

from the parametric item distribution (eq. 12) is simple:
First, a rank r is sampled from the Geometric distribution6

in O(1). Second, the item ranked on position r of the global
popularity list7 is returned in O(1).

In total, sampling from eq. (12) can be done without
increasing the computational complexity of the original BPR
algorithm.

Discussion.
The motivation for developing a sampler is to select for

a given context c an item j such that the pair (i, j) is in-
formative at the current state of learning (i.e. for the cur-
rent values of Θ). The proposed popularity based sampler
does not reflect this in two aspects: (1) It is static and thus
does not take into account that the estimated rank r̂(j|c)
of an item j changes during learning. E.g. an item might
be ranked high in the beginning but after several steps of
learning it is ranked low. (2) The sampler is global and does
not reflect, that it depends on the context how informative
an item is. E.g. one item might be interesting for one group
of persons but not for another one. Both aspects can also
be seen in the gradient magnitude ∆c,i,j , which depends on
c and changes during learning.

3.2 Adaptive & Context-dependent Sampling
In the following a fine-grained sampler is developed that

adapts both to the context and the current belief (i.e. to ŷ
through Θ) of the model. Analogously to the global item
popularity (eq. 10) one could define a static context-specific
popularity distribution

p(j|c) ∝ |{(c′, j′) ∈ S : c = c′, j = j′}| = δ((c, j) ∈ S) (13)

6With the parametrization of eq. (12), an exponential sam-
pler can be used: r ∼ ⌊Exp(1/λ)⌋.
7This (static) list can be precomputed once.
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However, this distribution has two drawbacks: (1) it is de-
fined on very few samples, i.e. for a given context c, there
exists only a small subset I+(c) of selected items, where typ-
ically none is selected multiple times. This would make the
item distribution a step function where the negative items
are indistinguishable. (2) it does not take the current belief
(i.e. Θ) into account.

Instead we propose to use the scoring function ŷ to de-
fine the sampling distribution. Intuitively, when a negative
item j for a given observation (c, i) ∈ S should be sampled,
the closer j is to the top (the smaller the rank r̂(j|c)), the
more informative is j. This can also be seen in the gradient
magnitude ∆c,i,j : if (c, i) is given, we should choose j s.th.
ŷ(j|c) is large because it will increase ∆c,i,j . Instead of using
the notion of a large score, it is better to formalize a small
predicted rank r̂(j|c) because largeness of scores is relative
w.r.t. other items but ranks are an absolute value. This al-
lows to formulate an adaptive and context-aware sampling
distribution

p(j|c) ∝ exp(−r̂(j|c)/λ), λ ∈ R
+. (14)

Properties.
The item distribution (eq. 14) depends on r̂(j|c). Remind

that r̂(j|c) is the rank of item j among all items I using the
score model ŷ(j|c) for ordering items. Thus the proposed
sampler is:

1. Context-dependent: The sampling probability de-
pends on the context because r̂(j|c) is the estimated
rank of item j for a given context c. The more the
model ŷ can distinguish different context, the more
context-aware is the ranking and thus the sampler.

2. Adaptive: The sampler changes while model parame-
ters Θ are learned because changes in Θ result consec-
utively in changes in the scoring model ŷ, the ranking
r̂ and sampler.

Trivial Algorithm.
The sampler for the negative item j given a positive ob-

servation (c, i) ∈ S can be implemented by: First, sample
a rank r from the Geometric distribution in O(1). Second,
return the item j which is currently ranked on the r-th po-
sition, i.e. find j s.th. r̂(j|c) = r or j = r̂−1(r|c). A triv-
ial implementation of the second step would be to compute
ŷ(j|c) for all j ∈ I , then sort the items j by their score and
finally return the item at place r. This algorithm has a com-
plexity of O(|I | · Tpred + |I | log(|I |)) where Tpred is the time
for predicting a score. Note that this sampler should replace
line 5 in algorithm 2 and would increase the runtime of BPR
by a factor of O(|I | · Tpred + |I | log(|I |)). This is clearly not
feasible in practice.

4. EFFICIENT SAMPLING ALGORITHM
In the following it is shown how approximative sampling

from eq. (14) can be implemented efficiently in amortized
constant time for a broad class of factorization models. First
the basic idea is shown for matrix factorization and then a
generalization to factorization machines [13] is shown.

4.1 Matrix Factorization (MF)
Assume that the context C and items I are represented

by categorical variables, i.e. C = {c1, c2, . . .} and I =
{i1, i2, . . .} respectively. For example, each context c could
correspond to a user in a personalization setting. Let the
scoring model ŷ be a matrix factorization (MF)

ŷ(l|c) :=
k∑

f=1

vc,f vl,f , V ∈ R
(C∪I)×k. (15)

where k ∈ N is the latent dimension and the factors V are
the model parameters Θ. Scoring one item with MF (eq.
15) is clearly in O(k) =: Tpred.

In the following, a fast adaptive and context-dependent
sampling algorithm is derived which approximates the sam-
pler from eq. (14) in amortized constant time. The idea is to
formalize eq. (14) as a mixture of ranking distributions over
normalized factors. The mixing probability is derived from
a normalized version of the MF scoring function eq. (15).
Note that the final sampler works with any MF model and
no transformation has to be performed explicitly however
the transformation is necessary to derive the algorithm.

Rank-Invariant Normalization.
First, a transformation ŷ∗ of ŷ is defined

ŷ∗(l|c) :=
k∑

f=1

p(f |c) sgn(vc,f ) v
∗

l,f (16)

where p(f |c) is the probability function

p(f |c) :∝ |vc,f |σf (17)

and v∗l,f are standardized item factors

v∗l,f =
vl,f − µf

σf

(18)

with the empirical mean and variance over all item factors

µf = E(v·,f ), σ2
f = Var(v·,f ). (19)

Lemma 4.1 (Rank Invariance). Ranking r̂∗ generated
from scoring ŷ∗ results in the same ranking as r̂ from ŷ.

Proof. First, the scoring function can be rewritten as:

ŷ(l|c) =
k∑

f=1

vc,f vl,f =
k∑

f=1

|vc,f | sgn(vc,f ) (σf v∗l,f + µf )

=
k∑

f=1

|vc,f | sgn(vc,f ) σf v
∗

l,f +
k∑

f=1

|vc,f | sgn(vc,f )µf

= ŷ∗(l|c) +
k∑

f=1

|vc,f | sgn(vc,f )µf

︸ ︷︷ ︸

=:b(c)

The additional term b(c) is independent of the item l. Thus
ŷ(l|c) is a linear transformation8 of ŷ∗(l|c). In general, linear
transformations are rank-invariant because

ŷ(i|c) ≥ ŷ(j|c) ⇔ a(c) ŷ(i|c) ≥ a(c) ŷ(j|c)

⇔ a(c) ŷ(i|c) + b(c) ≥ a(c) ŷ(j|c) + b(c)

⇔ ŷ∗(i|c) ≥ ŷ∗(j|c)

8I.e. there exist a positive constant a(c) and an arbitrary
constant b(c), s.th. ŷ(l|c) = a(c) ŷ∗(l|c) + b(c).
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From this follows the lemma.

This means, if we are interested in the ranks generated by
ŷ, we can also work with ŷ∗. Even though ŷ 6= ŷ∗, the
generated rankings are equal, r̂ = r̂∗.

Rank Mixture.
The representation ŷ∗ has the advantage that p(f |c) can

be read as a mixing probability over standardized item fac-
tors. I.e. the larger p(f |c), the more important the dimen-
sion f for the specific context c. This allows to define the
sampling distribution as the mixture:

p(j|c) :=
k∑

f=1

p(f |c) p(j|c, f) (20)

Due to the standardization of v∗·,f , it is reasonable to define
p(j|c, f) analogously to eq. (14)

p(j|c, f) ∝ exp(−r̂∗(j|c, f)/λ), (21)

where the ranking r̂∗(j|c, f) is generated from the context-
and factor-dependent scoring function ŷ∗(j|c, f). Following
eq. (16), this scoring function can be defined as

ŷ∗(l|c, f) := sgn(vc,f ) v
∗

l,f . (22)

We can get rid of the standardization of v∗l,f and use a rank-

invariant9 but simpler function

ŷ(l|c, f) := sgn(vc,f ) vl,f . (23)

Note that ŷ(l|c, f) depends on the original parameters V and
not on their normalization. The scoring function ŷ(l|c, f)
has a very simple relation to its ranking r̂(l|c, f): the item
on rank r has the r-th largest factor vl,f – if sgn(vc,f ) is
positive otherwise it has the r-th largest negative factor.

Sampling from Rank Mixture.
The formalization of the sampling distribution as a mix-

ture model (eq. 20), results in a simple sampling algorithm
for negative items:

1. Sample a rank r from a Geometric distribution.

2. Sample a factor dimension f from p(f |c) (eq. 17).

3. Sort items according to v·,f , which is equivalent to an
inverse ranking function r̂−1 : N× {1, . . . , k} → I .

4. Return the item j on position r in the sorted list,
i.e. r̂−1(r|f) if sgn(vc,f ) = 1, or r̂−1(|I | − r + 1|f)
if sgn(vc,f ) = −1.

Steps 1 and 4 can be performed in O(1), step 2 including
the computation of p(f |c) in O(k) = Tpred. The only com-
putational intensive step is 3, where the factors are sorted
in O(|I | log |I |).

In order to further reduce the complexity, we propose to
precompute the ordering r̂−1(·|f) for each of the k factor
dimensions and recompute it every couple of stochastic up-
dates. After a single gradient step, the ranking r̂−1(·|f)
changes only little and many update steps are necessary

9The proof of invariance of ŷ(l|c, f) and ŷ∗(l|c, f) follows
from the fact that ŷ(l|c, f) is a linear transformation of
ŷ∗(l|c, f).

1: procedure LearnAdaptiveOversampling(η, S)
2: Randomly initialize Θ, q = 0
3: repeat
4: q ← q + 1
5: if q % |I | log |I | = 0 then ⊲ every |I | log |I |draws
6: for f ∈ {1, . . . , k} do
7: Compute r̂−1(·|f) ⊲ O(|I | log |I |)
8: Compute σ2

f and µf ⊲ O(|I |)
9: end for
10: end if
11: Draw (c, i) ∈ S uniformly
12: Draw r from p(r) ∝ exp(−r/λ) ⊲ O(1)
13: Draw f from p(f |c) ∝ |vc,f |σf ⊲ O(k)

14: j ←

{

r−1(r|f), if sgn(vc,f ) = 1

r−1(|I | − r + 1|f), else
⊲ O(1)

15: for θ ∈ Θ do
16: Update θ with eq. (8).
17: end for
18: until convergence
19: return Θ
20: end procedure

Figure 4: BPR with adaptive and context-
dependent oversampling of negative items for ma-
trix factorization.

to change the precomputed ranking considerably. We pro-
pose to recompute the k rankings every |I | log |I | iterations
which gave also good results in the evaluation. The de-
scribed precomputation strategy has an amortized runtime
of O(k) because every |I | log |I | iterations there is an effort
of O(k |I | log |I |). Moreover, the precomputation takes k|I |
additional memory for storing all r̂−1(·|f).

In total, the sampling algorithm has an amortized run-
time of O(k) for drawing an item which is the same as the
costs for a single gradient step of a MF model (= Tpred). As
there is one sample for each gradient step, the computational
complexity of the original SGD algorithm does not increase.
Figure 4 sketches pseudocode of the improved learning algo-
rithm.

4.2 Complex Factorization Models
In this section, it is shown how to modify the efficient

algorithm in fig. 4 to learn the generic factorization machine
(FM) model10.

Let xi ∈ R
pI be an arbitrary feature vector that describes

item i with pI real-valued variables and xc ∈ R
pC be a

feature vector that describes context c with pC variables.
This flexible representation allows to describe many different
data including attributes, temporal or sequential context as
well as their combinations [13]. A second order factorization
machine (FM) over a feature vector x ∈ R

p – here x =
(xc,xi) and p = pC + pI – is defined as

ŷ(x) = w0 +

p∑

l=1

wl xl +

p∑

l=1

p∑

l′>l

xl xl′ 〈vl,vl′〉 (24)

where w0, w1, . . . , wp, v1,1, . . . , vp,k are the model parameters
Θ. The complexity of computing the scoring function (eq.
24) is Tpred = O(k (NZ(x)), where NZ(x) is the number of

10See [13] for details about how FM can mimic other factor-
ization models.
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non-zero values in x. Also a SGD step has this complexity
[13]. In the following, it is shown how to sample a negative
item in amortized Tpred time.

Rank-Invariant Translation.
To derive an efficient sampling algorithm, first define for

each context and item a k + 1 dimensional factor vector v′

v′c,f :=

pC∑

l=1

vl,f xc,l,

v′c,0 := 1,

v′i,f :=

pI∑

l=1

vl+pC ,f xi,l,

v′i,0 :=

pI∑

l=1

wl+pC xi,l

+

pI∑

l=1

pI∑

l′>l

xi,l+pC xi,l′+pC
〈vl+pC ,vl′+pC

〉. (25)

The transformed factors v′ can be used to define a matrix
factorization model

ŷ(i|c) :=
k∑

f=0

v′c,f v
′

i,f . (26)

This model is rank-invariant to the FM of eq. (24) and
thus all the derivations from the MF section can be applied
here (now on v′ instead of v). The proof of rank invariance
follows directly from inserting the definition of v′ into eq.
(26) which is equal to eq. (24) except for a constant (rank-
independent) term.

Efficient Algorithm.
For sampling negative items from a FM scoring model,

the algorithm for matrix factorization (see fig. 4) has to
be adapted slightly: The factor dimension f ∈ {0, . . . , k} is
sampled from p(f |c) ∝ |v′c,f |σf , where V

′ are the translated
vectors according to eqs. (25). Second, the ordering of items
r−1 is generated not on raw factors V but on translated ones
V ′ as well.

Note that the transformed representation V ′ is only used
for sampling negative items. The SGD parameter learning
should still be done on the original parameters w, V .

5. EVALUATION
The properties of the proposed oversampling algorithm

are studied on two real world recommender tasks. The con-
vergence behavior of prediction quality and gradient magni-
tudes are investigated.

5.1 Experimental Setup

Dataset & Model.
A video dataset from the BBC11 with play events (user-

movie pairs) and the social tagging dataset from the ECML
PKDD 2009 Discovery challenge12 with tagging events (user-
article-tag triples) are used. For BBC, the context is the
user; for ECML’09, the context is a user-article pair. For the

11http://www.bbc.co.uk/
12http://www.kde.cs.uni-kassel.de/ws/dc09/, task 2

BBC dataset, all activities from randomly selected 100,000
users are picked. From the resulting set, one activity is ran-
domly selected per user (only for users with at least 10 activ-
ities) into a test set Stest and the remaining activities form
the training set S. The hyperparameters (learning rate, reg-
ularization and sampling rate) are tuned on a second random
subset of 100,000 users that has been generated by the same
protocol as described above. For the ECML’09 dataset, we
use the official split from the challenge.

For the dyadic BBC dataset, a matrix factorization model
is used. For the ternary ECML’09 dataset, the winning pair-
wise interaction tensor factorization (PITF) model [15] is
applied. In total, both the simple MF model as well as a
complex model (PITF) are investigated. Pairwise learning
(see sec. 2.2) is used to learn the model parameters.

Compared Sampling Methods.
The negative item sampler is varied:

1. Uniform sampling : equivalent to the common BPR
algorithm [14], (fig. 2).

2. Static oversampling : the algorithm described in sec-
tion 3.1, which samples negative items from the global
popularity distribution.

3. Adaptive oversampling : the proposed sampling distri-
bution of section 3.2 with the algorithm of figure 4,
which samples negative items with respect to the esti-
mated ranking for this context.

Measures & Protocol.
The recommendation quality is evaluated on the test set

Stest. For each context in the test dataset, a ranking is gen-
erated and it is measured on which ranks the items in the
test set appear. The average measure over all test context is
reported where the selected measures are: average precision
(MAP) with a cutoff of 1000 and the half-life utility (HLU)
[2]. The influence of the sampled pairs is measured by the
average gradient magnitude. The gradient magnitude (eq.
9) is measured for each sampled pair and the average mag-
nitude over a training epoch is reported. A training epoch
is defined as 10 · |S| single SGD update steps.

Experimental Reproducibility.
All reported results use a factorization dimension of k =

64. Results for k = 16, 32, 128 show similar behavior but are
omitted for space reasons. The hyperparameters for BBC
are: learning rate η = 0.05, random Gaussian initializa-
tion N (0, 0.01), regularization of 0.01 for oversampling and
0.001 for uniform sampling, λ = 500 for the Geometric dis-
tribution and 256 training epochs. The hyperparameters for
ECML’09 differ in the regularization, which is 0.005 for over-
sampling and 0.00005 for uniform sampling, and the number
of epochs is 2000. The source code of the learning algorithms
can be obtained from our website13.

5.2 Prediction Quality
Figure 5 shows the prediction quality as a function of

training epochs. For comparison a non-personalized, most-
popular baseline model is shown which ranks items by global
popularity in the observed data S. All three personalized

13http://www.libfm.org/
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Figure 5: Quality as a function of training epochs for standard BPR with uniform sampling of negative items,
static oversampling and the proposed adaptive oversampling algorithm (see fig. 4). Adaptive oversampling
converges much faster than the common BPR algorithm.

models (independently of the sampling algorithm) outper-
form this baseline.

Adaptive Oversampling vs. Uniform Sampling (BPR).
On both datasets and both measures, the proposed adap-

tive oversampling has a much faster convergence and bet-
ter prediction quality than the BPR algorithm. The much
steeper learning curve confirms that oversampling improves
learning. On both datasets, adaptive oversampling achieves
after very few iterations the same accuracy as BPR achieves
after hundreds of iterations. E.g. for ECML’09 the MAP
of adaptive oversampling after about 50 iterations is com-
parable to the quality of BPR after 1000 iterations. Also
for BBC, the quality of adaptive oversampling after 10 iter-
ations is already better than BPR with 100 iterations. On
the long run (esp. on the 2000 iterations for ECML’09),
BPR slowly catches up with adaptive oversampling which
emphasizes that uniform sampling (BPR) generates many
useless training pairs.

Static Oversampling.
A second observation is that simple static oversampling

using the global item distribution does not result in compet-
itive quality. In the very first iterations, static oversampling
seems to work well and outperforms standard BPR. How-

ever, convergence stops too early and on all datasets and
measures, a much worse final quality than BPR or adaptive
oversampling is achieved. This indicates that the oversam-
pling distribution should adapt to the model parameters/
scoring function during learning. Adaptive oversampling
shows that it is possible to sample meaningful negative items
throughout training.

Runtime.
The empirical runtime on the BBC dataset for one train-

ing epoch increases from 12 seconds for BPR to 16 seconds
for adaptive oversampling. This confirms that adaptive over-
sampling does not increase computational complexity and
that the empirical overhead is only marginal.

5.3 Gradient Magnitude
Figure 6 shows the average gradient magnitudes. The first

observation is that both oversampling methods are success-
ful in increasing the gradient magnitudes, i.e. the sampled
pairs result in SGD updates that actually change model pa-
rameters (eq. 8). E.g. on BBC, the average gradient of
adaptive oversampling is 0.034 after 256 iterations whereas
for BPR it is 0.004 – an increase of 8.5 times. For ECML’09
the numbers are 0.016 after 2000 iterations for adaptive over-
sampling and 0.0005 for BPR – an increase of 32 times.
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Figure 6: Average gradient magnitude as a function of training epochs. Oversampling increases the average
gradient magnitude by a large factor and thus SGD updates result in faster change of model parameters.
Static oversampling generates pairs with large gradient magnitudes but the pairs are not as informative as
with adaptive oversampling (see figure 5).

Comparing static oversampling with adaptive oversam-
pling, static oversampling has even a larger average gradi-
ent magnitude than adaptive oversampling throughout all
epochs. However, the qualitative results in figure 5 show
that static oversampling has worse prediction quality than
adaptive oversampling and even than uniform sampling (on
the long run). This indicates that a large gradient magni-
tude alone is not enough but the sampled pairs also should
be informative. The qualitative results (fig. 5) indicate that
adaptive oversampling fulfills both requirements.

6. RELATED WORK
Factorization models play a central role in modern recom-

mender systems. The popular matrix factorization model
(e.g. [16]), has been extended for many recommender sce-
narios, e.g. using implicit information [10, 18], time [11],
neighborhood information [10] or attributes [20]. For context-
aware settings, tensor factorization approaches have been
applied (e.g. [9, 13]). Whereas these works solve the rating
prediction task (i.e. regression), our work deals with item
recommendation (i.e. ranking) from implicit (one-class) feed-
back. The item recommendation task is much harder be-
cause the optimization target is not directly observed. Hu
et al. [6] and Pan et al. [12] investigate item recommen-
dation from implicit feedback and propose to cast the one-
class problem into a two class problem by imputing all non-
observed values with 0 and to apply regression. This is sim-
ilar to standard (algebraical) singular value decomposition
(SVD) but includes confidence weights and L2 regulariza-
tion. Weimer et al. [21] optimize a matrix factorization
model for the ranking measure NDCG. This approach is
mainly designed for data where ratings (or other ordering
information on user feedback) is present. Recently, CLiMF
[19] has been proposed for optimizing a matrix factoriza-
tion model using implicit feedback datasets for the reciprocal
rank measure. Bayesian personalized ranking (BPR) [14] is
a generic optimization framework (not restricted to matrix
factorization) for learning recommender systems from im-
plicit feedback. BPR has been applied among others to ma-
trix factorization and nearest-neighbor [14], tensor factoriza-

tion for tag recommendation [15], factorized markov chains
for sequential basket recommendation with taxonomy-aware-
ness [8], social update streams [4] and relation extraction
[17]. All these works on BPR use the uniform sampling
assumption and thus are supposed to suffer from slow con-
vergence. Our proposed adaptive sampler has the potential
to improve all existing recommender systems that are based
on BPR learning.

Gantner et al. [3] extend BPR with non-uniform sam-
pling where the sampling probabilities for negative items are
a priori given weights resulting from the problem descrip-
tion. In our work, the sampling probabilities are not fixed,
but are generated from the current model. In the WARP
algorithm [22], negative items (=‘annotations’) are drawn
repeatedly until the score of a drawn item is large enough.
This algorithm increases the runtime because up to N ≤ |I |
samples are drawn and their score is computed each time
(in O(N Tpred)) before an SGD update (costs O(Tpred)) is
performed. Moreover, within the rejection sampler, the neg-
ative items are sampled uniformly in WARP, which might
need a large number of draws N before finding an item that
is not in the tail.

7. CONCLUSION
In this paper, we have shown how to increase convergence

of BPR-style learning algorithms. The motivation is that
uniform sampling of negative items results in mostly non-
informative updates. An adaptive and context-dependent
sampling distribution for negative items is proposed which
oversamples top ranked items. An efficient approximative
sampling algorithm is developed for MF and a broad class
of factorization machine models, including PITF, attribute-
aware MF or sequential MF. The proposed algorithm has
an amortized constant runtime. Empirically, the computa-
tional overhead over common BPR was about 33%. On two
real-world datasets, the proposed sampler improves conver-
gence by a large factor – in our experiments about 10 and 20
times faster. We expect our improved algorithm also to be
valuable for existing recommender systems that are based
on the BPR algorithm, such as [17, 8, 7, 1, 5].
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