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Abstract

Purpose—To develop parallel imaging techniques that simultaneously exploit coil sensitivity 
encoding, image phase prior information, similarities across multiple images and complementary 
k-space sampling for highly accelerated data acquisition.

Methods—We introduce Joint Virtual Coil (JVC-) GRAPPA to jointly reconstruct data acquired 
with different contrast preparations, and show its application in 2D, 3D and Simultaneous Multi-
Slice (SMS) acquisitions. We extend the joint parallel imaging concept to exploit limited support 
and smooth phase constraints through Joint (J-) LORAKS formulation. J-LORAKS allows joint 
parallel imaging from limited auto-calibration signal (ACS) region, as well as permitting partial 
Fourier sampling and calibrationless reconstruction.

Results—We demonstrate highly accelerated 2D bSSFP with phase-cycling, SMS multi-echo 
spin echo, 3D multi-echo MPRAGE and multi-echo GRE acquisitions in vivo. Compared to 
conventional GRAPPA, proposed joint acquisition/reconstruction techniques provide more than 2-
fold reduction in reconstruction error.

Conclusion—JVC-GRAPPA takes advantage of additional spatial encoding from phase 
information and image similarity, and employs different sampling patterns across acquisitions. J-
LORAKS achieves a more parsimonious low rank representation of local k-space by considering 
multiple images as additional coils. Both approaches provide dramatic improvement in artifact and 
noise mitigation over conventional single-contrast parallel imaging reconstruction.
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INTRODUCTION

Magnetic Resonance (MR) data acquisition routinely involves image acquisition at multiple 
echoes or phase-cycles to obtain complementary information. Multi-echo acquisition finds 
important applications in T2 and T2* relaxation time mapping (1–4), water/fat imaging (5–
8), and reduction of field inhomogeneity related distortion (9). Although enabling numerous 
applications, achieving whole-brain coverage with high-resolution multi-echo imaging is 
encoding intensive, leading to excessive scan times.

Another application where multiple images are acquired and combined is balanced steady 
state free precession (bSSFP). Despite being an SNR efficient sequence with unique T2/T1 

contrast, bSSFP suffers from image banding artifacts due its sensitivity to B0 field 
inhomogeneity. To mitigate these artifacts, multiple images with different RF phase-cycling 
can be acquired (10,11). This scheme shifts the location of the banding artifacts in each 
acquisition, so that the phase-cycled images can be combined through e.g. maximum 
intensity projection (MIP) to eliminate the artifacts. However, collecting multiple phase-
cycles increases the scan time and counteracts the inherent efficiency of bSSFP.

Faster acquisitions are possible using receiver encoding, e.g. with sensitivity encoding (12) 
or generalized auto-calibrating partially parallel acquisitions (GRAPPA) (13). While parallel 
imaging allows acceleration along one phase encoding direction in 2D acquisitions, 
undersampling can be flexibly distributed between two axes (phase encoding and partition/
slice direction) in 3D (14,15) and SMS imaging (16–20) to achieve higher accelerations.

Parallel imaging can be combined with compressed sensing to exploit sparsity/low-rank 
properties (21–24), and can be augmented with the Virtual Coil (VC) concept to provide 
additional spatial encoding using image phase prior information (25–27). On the other hand, 
LORAKS has been introduced as a novel method that can harness image phase smoothness 
and limited spatial support, and relies on local low rank properties of k-space to estimate 
missing data (28). Its extension to parallel imaging also allows utilization of coil sensitivity 
encoding (29,30). Earlier applications of low rank prior in k- or image-space have also 
permitted calibrationless parallel imaging (28,29,31–34).

These approaches have been designed to utilize coil sensitivity encoding and prior 
information to reconstruct a single contrast, without exploiting potential similarities/
differences across multiple images. Within the SENSE framework (12), joint reconstruction 
across echoes/contrasts can be performed by exploiting joint sparse (35–39) (in this context, 
we use “joint reconstruction” to refer to approaches that couple the reconstruction of 
multiple images of the same anatomy (37,40)). However, compared to regularized SENSE 
per single image (41,42), exploiting similarities at the regularization level was seen to 
provide a small improvement (43). Joint reconstruction at the receiver encoding level could 
serve as a better alternative to coupling the images at the regularization stage. Such 
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approaches include k-t GRAPPA (44,45), joint reconstruction of multiple shots in echo-
planar diffusion imaging (46,47), k-space interpolation across all echoes in a gradient and 
spin echo (GRASE) acquisition (48,49), or across multiple gradient echoes for temperature 
mapping (50). Moreover, transmit inhomogeneity at ultra-high field can be mitigated by 
acquiring multiple images with different excitation modes, which are then jointly 
reconstructed in the TIAMO approach (51).

Recent advances in multi-shot diffusion imaging also perform joint reconstruction (46,47). 
These techniques aim to reconstruct a single, high-resolution k-space by merging data from 
multiple acquisitions while avoiding motion artifacts. Liu et al. (52) made use of self-
navigated trajectories to estimate motion-induced shot-to-shot phase variations. Inverse 
reconstruction (53) instead solves for the complex-valued diffusion images in each shot 
separately. The phase information of each shot is then used as additional coil sensitivity 
variation to jointly reconstruct a combined, real-valued diffusion image with data from all 
shots. Similarly, MUSE estimates the phase variation of each shot using regularization, then 
solves a general model incorporating data from all shots and the calculated phase 
information (54). GRAPPA-based realigned kernel techniques (46,47) embed these phase 
variations into GRAPPA kernels estimated from additional navigators, which are then used 
for jointly reconstructing multi-shot data. The goal of such Joint-GRAPPA DWI techniques 
is to reduce the sensitivity to mismatches between navigator and image echoes.

MUSSELS is a new approach for phase-calibration-free multi-shot DWI reconstruction (55). 
This considers the multi-shot images to have the same contrast, but allow for slowly varying 
phase across the shots. These constraints are modeled with an annihilating k-space filter 
(55–60), which is learned during the structured low-rank recovery of the missing data.

While multi-shot DW images have the same contrast except for phase discrepancies, we 
instead focus on joint reconstruction to treat a broader class of applications, where the 
acquisitions are made with multiple contrasts/echoes/cycles. Rather than improved 
combination of multiple shots, we are targeting higher acceleration rates. For this, we 
propose a general framework for joint reconstruction. We reformulate the joint 
reconstruction problem as an extension of parallel imaging, and employ existing components 
such as GRAPPA, LORAKS, and virtual coils as our building blocks. We also extend the 
scope, performance and application space of these techniques. In designing our joint parallel 
imaging approaches, our hypothesis was that joint reconstruction would allow us to 
accelerate multi-contrast acquisitions further than currently possible with conventional 
parallel imaging.

To this end, we introduce the Joint Virtual Coil (JVC) technique wherein multiple echoes/
cycles are reconstructed jointly under the GRAPPA framework. This combines and extends 
k-t (44,45), realigned GRAPPA (46,47) and TIAMO (51) approaches with the VC concept 
(25,26) to permit highly accelerated 2D, 3D and SMS acquisitions. JVC-GRAPPA allows all 
channels from all image contrasts to contribute to the reconstruction of a particular channel, 
and employs VC to convert image phase information into additional spatial encoding. Data 
were undersampled with shifts in the k-space sampling pattern across echoes/cycles to 
provide complementary k-space coverage and improve reconstruction.
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We further extend the joint parallel imaging concept to exploit limited support and smooth 
phase constraints through Joint (J-) LORAKS formulation. J-LORAKS achieves a more 
parsimonious low rank representation of local k-space by considering multi-contrast images 
as additional coils, and allows reconstruction from limited ACS region. J-LORAKS 
seamlessly incorporates partial Fourier sampling into joint parallel imaging and permits 
improved calibrationless parallel imaging through joint reconstruction.

Herein, we demonstrate our joint parallel imaging concept in 2D phase-cycled bSSFP, 3D 
ME-MPRAGE (9,61) multi-echo gradient-echo (ME-GRE), and SMS multi-echo spin-echo 
imaging. We have reported initial versions of this work as abstracts (62,63), where we have 
shown the application of joint GRAPPA and SPIRiT (21) in reconstructing phase-cycled 
bSSFP with 2D and SMS encoding. Herein, we have extended this initial version with the 
addition of VC concept, J-LORAKS formalism that admits arbitrary sampling patterns 
including partial Fourier and CAIPI (14), calibrationless reconstruction, and application to 
multi-echo acquisitions. We also note the elegant profile-encoding by Ilicak et al. that 
independently developed joint parallel imaging reconstruction for phase-cycled bSSFP 
(64,65), which was also extended to multi-echo acquisition in a recent abstract (66).

Accompanying Matlab code that reproduces our results is submitted as supplementary 
material and can also be downloaded from: http://bit.ly/2sY1FJT

METHODS

RECONSTRUCTION ALGORITHMS

GRAPPA, JVC-GRAPPA and J-LORAKS were implemented and compared for a number of 
imaging cases/applications. All experiments used 16 compressed channels with singular 
value decomposition (SVD) coil compression for faster reconstruction (67,68). ACS regions 
used for calibration were included in the final reconstruction for improved SNR and fidelity. 
Partial Fourier experiments made use of coil-by-coil projection onto convex sets (POCS) 
processing (69–71) following GRAPPA reconstruction. Experiments were performed on a 
workstation with 64 Intel Xeon CPU’s and 256 GB memory running Matlab 8.0 
(Mathworks, Natick, MA). Details of various reconstructions are provided below.

GRAPPA and Slice GRAPPA—Kernel estimation for conventional parallel imaging 
reconstruction using GRAPPA (13) and Slice GRAPPA (16) was regularized with Tikhonov 
penalty, and kernel sizes and regularization parameters were selected to minimize root mean 
squared error (RMSE) relative to the fully sampled data. Slice GRAPPA made use of signal 
leakage constraint (72) to minimize crosstalk between reconstructed slices.

JVC-GRAPPA and JVC Slice GRAPPA—JVC-GRAPPA creates additional channels by 
treating data from other echoes/cycles as extra coils. In addition to stacking all contrasts in 
the coil axis, virtual coil concept is employed to further double the number of channels. 
Starting with Nc coils in each of the Ne echoes, we end up having 2 × Nc × Ne total number 
of channels for joint reconstruction. For example, using typical numbers Nc = 16 and Ne = 4, 
the number of coils reach 128, and the amount of kernels that need to be estimated escalates 
rapidly since this scales with the square of the channel count.
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To address this, we follow (26) and perform an iterative procedure where an initial Joint-
GRAPPA is performed without virtual coils. This way, the entire k-space of the interim 
reconstruction becomes available for calibration of JVC kernels. We limit the number of 
JVC iterations to 4, since the gain diminishes after the first couple of iterations (26). In 
addition to providing ample sample points for kernel estimation, such large calibration 
region is also better at capturing high-resolution image phase information into the kernels of 
the virtual coils, thus preventing structured aliasing artifacts (26). During reconstruction, two 
different Tikhonov regularization parameters were used for the initial Joint (λinit) and the 
latter JVC (λlatter) kernel calibrations to further optimize RMSE in the face of increasing 
calibration region.

To provide complementary frequency information, k-space sampling patterns of the 
individual echoes/cycles were shifted with respect to each other. Partial Fourier sampling 
was also explored in 2D, 3D and SMS acquisition settings. This, however, has prevented the 
use of VC concept because missing portion of virtual coil k-space due to partial Fourier 
would be otherwise used for reconstructing the actual coil k-space based on conjugate 
symmetry. As such, partial Fourier experiments made use of Joint (J-) GRAPPA only, 
without the aid of virtual coils. Similarly, all contrasts were constrained to use the same 
partial Fourier sampling direction in the J-GRAPPA reconstructions. To increase the amount 
of available k-space region for kernel calibration, J-GRAPPA also used an iterative scheme 
with 4 iterations. The initial step used the ACS data to train kernels and generate an interim 
reconstruction. The following iteration was then able to utilize the k-space of this interim 
data and re-train kernels with a larger calibration region. Again, two different Tikhonov 
regularization parameters could be used for the initial and latter iterations.

Both regularization parameters, kernel sizes and k-space staggering amounts were optimized 
to minimize RMSE in joint reconstruction.

Fig1 provides a depiction of Joint and Joint Virtual Coil GRAPPA reconstructions, ignoring 
coil and readout axes for simplicity.

Autocalibrating J-LORAKS—J-LORAKS also stacks data from all contrasts in the 
channel axis, and makes use of image phase information by creating virtual coils. It enforces 
local k-space neighborhoods, now extended across all echoes/cycles in the coil dimension, to 
have low rank during the reconstruction. There are two parameters associated with this 
constraint; the neighborhood size and the target rank of the local k-space matrices, which 
were optimized to reduce RMSE. Since J-LORAKS admits arbitrary sampling patterns, 
staggering across contrasts, 2D-CAIPI controlled aliasing as well as using different partial 
Fourier undersampling (e.g. +k or –k) for each image were explored. While many LORAKS 
publications solve non-convex matrix completion problems and are compatible with 
calibrationless data, substantial computational accelerations are possible when ACS data is 
present. Specifically, the autocalibrated LORAKS framework learns the nullspace properties 
of the k-space matrices prior to image reconstruction, and then uses the learned nullspace to 
formulate image reconstruction as a simple linear least squares problem that can be solved 
efficiently (73). Autocalibrating J-LORAKS reconstruction was performed using 
preconditioned conjugate gradient (pcg) with 50 iterations for all cases, apart from partial 

Bilgic et al. Page 5

Magn Reson Med. Author manuscript; available in PMC 2019 August 01.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



Fourier experiments which employed 100 iterations to ensure successful completion of k-
space. Unlike GRAPPA, this also obviated the need for a sequential POCS reconstruction for 
partial Fourier sampling. For SMS image reconstruction, autocalibrated J-LORAKS was 
implemented using the SMS framework for LORAKS (74).

Calibrationless J-LORAKS—In calibrationless J-LORAKS, we assume that no ACS 
data are available, and thus solve the non-convex matrix completion problems described in 
(28,29) instead of the simpler least-squares problem associated with the autocalibrated case. 
To reduce reconstruction time, we first reconstruct a central subregion of the k-space data, 
and then use that as quasi-ACS data to enable autocalibrated J-LORAKS reconstruction of 
progressively larger k-space regions until the entire region has been covered. Since the 
quasi-ACS data may have imperfections, we then use the autocalibrated results as an 
initialization for the original non-convex optimization problem. The neighborhood size and 
the matrix rank were tuned to optimize RMSE. The number of maximum iterations were set 
to 1000.

DATA ACQUISITION AND COMPARISON CASES

The performances of various reconstruction algorithms were compared for 2D phase-cycled 
bSSFP, 3D ME-MPRAGE, SMS multi-echo spin-echo and calibrationless 3D ME-GRE 
imaging. Imaging parameters and comparison scenarios are described in detail below.

2D Phase-Cycled bSSFP

Data Acquisition: A single abdominal slice of a volunteer was imaged with bSSFP on a 3T 
Siemens Skyra system. Four phase-cycles (0, π/2, π, 3π/2) were collected during a single 
breath-hold to minimize motion. Parameters were: field of view (FOV) = 380×380 mm2, 
matrix size = 160×160, slice thickness = 5 mm, repetition time (TR) = 3.3 ms, echo time 
(TE) = 1.54 ms, flip angle = 37°, bandwidth = 822 Hz/pixel, using 34-channel chest/spine 
coil reception.

Image Reconstruction at 6-fold acceleration: Fully-sampled data were retrospectively 
undersampled by R=6×1-fold with a uniform sampling pattern. The three reconstruction 
methods used 20 lines of ACS data for kernel calibration.

For J-LORAKS, using an ACS size smaller than 20 lines was also explored, and the 
calibration region was reduced until J-LORAKS had similar RMSE performance as JVC-
GRAPPA from 20 lines of calibration data. 50 pcg iterations were used in these 
reconstructions.

The sampling pattern was shifted by ∆ky = {0,1,2,3} samples between the four phase-cycles 
to provide complementary k-space coverage in the JVC-GRAPPA and J-LORAKS 
reconstructions.

For comparison, VC-GRAPPA without joint reconstruction was also performed. As an 
alternative to k-space based parallel imaging, Tikhonov-regularized SENSE reconstruction 
with ESPIRiT coil sensitivity estimation (75) was also explored. Both the regularization 
parameter and the threshold for sensitivity mask size were optimized to reduce RMSE.
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Image Reconstruction at 7-fold acceleration: To explore even higher acceleration rates 
where conventional parallel imaging would break down, we further pushed the 
undersampling rate to R=7×1. We also tested the combination of uniform R=6×1-fold 
undersampling and partial Fourier acquisition, while keeping the number of sampled points 
the same as the R=7×1-fold case. For this, the required partial Fourier amount to achieve the 
same number of phase encoding lines, including the ACS data, was 7/8.

Combination of J-GRAPPA and POCS was used for reconstructing the data at R=6×1-fold 
undersampling with 7/8 partial Fourier. Following parallel imaging reconstruction, the 
missing portion of k-space due to partial Fourier sampling was completed with 100 
iterations of POCS.

J-LORAKS with 7/8 partial sampling and R=6×1-fold uniform acceleration employed 100 
pcg iterations to ensure successful completion of partially sampled k-space.

3D Multi-Echo MPRAGE

Data Acquisition: A volunteer was scanned with a Siemens 3T Skyra system using a fully-
sampled ME-MPRAGE sequence at 1 mm3 resolution with FOV = 256×240×192 mm3. 
Salient parameters were: TR = 2530 ms, inversion time (TI) = 1100 ms, four echos were 
sampled at TE’s = {1.7, 3.6, 5.4, 7.3} ms, flip angle = 7°, and bandwidth = 651 Hz/pixel. A 
Siemens 32 channel head coil was used for reception.

Image Reconstruction at 12-fold acceleration: A single slice along the readout direction 
was selected out of the 3D dataset, and was retrospectively undersampled along the two 
phase encoding axes by R=4×3. Performance of the reconstruction methods was compared 
using an ACS region size of 24×24.

The sampling pattern was shifted by (∆ky, ∆kz) = (2,2) in the second, by (4,4) in the third, 
and by (6,6) samples in the fourth echo relative to the first TE to provide complementary k-
space coverage. In addition to such complementary sampling, J-LORAKS also employed a 
different 2D-CAIPI sampling pattern (14) for each TE to better distribute aliasing. These 
were designed according to (Ry=4, ∆=0) for TE1, (Ry=4, ∆=1) for TE2, (Ry=4, ∆=2) for TE3 

and (Ry=4, ∆=3) for TE4.

Iterative VC-GRAPPA without joint reconstruction and Tikhonov-regularized SENSE were 
also performed for each echo individually.

Image Reconstruction at 16-fold acceleration: To push the acceleration even further, we 
compared R=4×4 uniform sampling against R=4×3-fold acceleration combined with partial 
Fourier sampling in both phase encoding axes. The required partial sampling amount to keep 
the acquired number of sampled points the same was 6/8, distributed among ky and kz.

Partial Fourier cases were reconstructed using J-GRAPPA with POCS as well as J-
LORAKS. J-GRAPPA was constrained to use the same partial Fourier sampling direction, 
whereas J-LORAKS used a different partial Fourier mask for each echo, rotated by 90° in 
each image, to provide complementary information.
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SMS Multi-Echo TSE

Data Acquisition: A volunteer was scanned with a Siemens 3T Prisma system using a fully-
sampled 2D multi-echo turbo spin echo (TSE) sequence. The imaging parameters were, 
FOV = 240×240, matrix size = 256×256, slice thickness = 4 mm, slice gap = 12.8 mm, 
number of slices = 10, number of echoes = 6, TR = 4 sec, TE’s = {12, 25, 50, 62, 87, 99} 
ms, echo train length (ETL) = 3, and bandwidth = 260 Hz/pixel. A Siemens 32 channel 
product head coil was used for reception.

Image Reconstruction at MB-10 acceleration: The separately encoded 10 slices were 
retrospectively collapsed to simulate an MB-10 acquisition. Slice unaliasing performance of 
conventional and JVC Slice GRAPPA as well as Joint SMS LORAKS were compared using 
24 lines of ACS data.

Image Reconstruction at MB-10 acceleration with 6/8 partial Fourier: The same MB-10 
experiment was performed using an additional 6/8 in-plane partial Fourier acceleration. 
Since VC concept is not applicable with partial Fourier due to asymmetric sampling, joint 
parallel imaging was performed with Joint Slice GRAPPA, without virtual coils. 100 
iterations of POCS were utilized to estimate the missing data due to partial sampling 
following conventional and Joint Slice GRAPPA reconstruction.

Unlike the Joint Slice GRAPPA case, J-SMS-LORAKS still used virtual coils and did not 
require POCS to implement phase-constrained partial Fourier reconstruction.

Calibrationless: 3D Multi-Echo Gradient-Echo

Data Acquisition: A volunteer was scanned using Siemens 3T Skyra system to collect 3D 
ME-GRE data. The imaging parameters were, FOV = 240×240×192, matrix size = 
160×160×128, TR = 23 ms, TE’s = {3, 7, 11, 15, 19} ms, flip angle = 15° and bandwidth = 
496 Hz/pixel using a Siemens 32 channel head array.

Image Reconstruction at 4-fold acceleration: A single slice along the readout was taken 
out from 3D k-space data. Then, it was retrospectively undersampled with R=4 fold 
calibrationless Poisson random sampling pattern in 2D. The performance was compared 
between conventional single contrast LORAKS and the proposed multi-contrast J-LORAKS 
in terms of reconstruction of the individual echoes, as well as the R2* parameter maps. Echo 
images were coil combined with the RSoS method, and parameter mapping was performed 
by taking the logarithm of the echo images and fitting a line in each voxel. The negative 
slope of the fitted line yielded the R2* value in that voxel. To ensure realistic parameter 
maps, a non-negativity constraint on the R2* values was applied using the lsqnonneg 
function in Matlab.

RESULTS

A quick summary of reconstruction results is provided in Table 2, in which the RMSE 
performance of the methods under consideration are compared.
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2D Phase-Cycled bSSFP

Image Reconstruction at 6-fold acceleration—Optimal parameters for conventional 
GRAPPA were, kernel size = 7×3 and regularization parameter λ = 10−8. Best RMSE in 
JVC-GRAPPA was obtained with 5×3 kernels and an initial Joint-GRAPPA reconstruction 
using regularization parameter λinit = 3×10−8, which was increased to λlatter = 3×10−6 in the 
subsequent JVC iterations. For J-LORAKS, best results were obtained with a k-space 
neighborhood radius of 2 voxels and rank constraint = 600.

Fig2 compares the reconstruction results, where the phase-cycle images were combined with 
MIP. Conventional GRAPPA suffered from aliasing artifacts (yellow arrows) and noise 
amplification and yielded 13.3% RMSE. Image quality and noise suppression were 
improved with JVC-GRAPPA, and reconstruction error was reduced to 7.1%. J-LORAKS 
provided more than 2-fold RMSE improvement (6.5%) over conventional GRAPPA using 
the same calibration region size of 20 lines. Even with a more stringent calibration region of 
16 lines, J-LORAKS had similar performance as JVC-GRAPPA that used 20 ACS lines, 
(7.1% RMSE, not shown). Fig2 provides further comparison against SENSE (18.6% RMSE) 
and VC-GRAPPA (7.5% RMSE) methods, which reconstructed each phase-cycle image 
separately.

Supporting Fig S1 demonstrates the individual phase-cycles and the sampling patterns, 
where the improvement in noise reduction thanks to joint parallel imaging is more apparent. 
Yellow arrows point to more subtle aliasing artifacts in JVC-GRAPPA, which were better 
mitigated in the J-LORAKS reconstruction.

Image Reconstruction at 7-fold acceleration—Optimal kernel size and regularization 
parameters at R=7×1-fold acceleration were 7×3 and λ = 3×10−8 for conventional 
GRAPPA, and 3×3, λinit = 3×10−8 and λlatter = 3×10−6 for JVC-GRAPPA.

At R=6×1-fold undersampling with 7/8 partial Fourier, the optimal parameters for J-
GRAPPA and POCS were, 3×3 kernel size, λinit = 3×10−8 and λlatter = 3×10−7. J-LORAKS 
used a local neighborhood of 2 voxels and rank constraint = 600.

Fig3 shows reconstructed MIPs, error images as well as the k-spaces of the first phase-cycle 
reconstructed data. Conventional GRAPPA broke down at such high acceleration with 
19.0% RMSE, while JVC-GRAPPA demonstrated better artifact and noise mitigation and 
yielded 10.7% error. At the same net acceleration factor, the combination of 6-fold uniform 
and 7/8-fold partial Fourier undersampling returned 9.2% RMSE with J-GRAPPA and 
POCS. The portion of k-space that was completed with POCS appeared underestimated 
(white arrow). J-LORAKS had the best RMSE performance with 8.0%, and mitigated this 
underestimation problem.

3D Multi-Echo MPRAGE

Image Reconstruction at 12-fold acceleration—The kernel size that yielded the best 
RMSE was 3×3 for both conventional and JVC-GRAPPA. Optimal Tikhonov parameter for 
conventional GRAPPA was λ = 7×10−6. For initial Joint GRAPPA reconstruction, 
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regularization parameter was λinit = 2×10−7, and for the following JVC iterations optimal 
parameter was λlatter = 2×10−6.

J-LORAKS obtained optimal performance using a k-space neighborhood of radius = 1 and 
rank constraint of 300, with 50 pcg iterations.

RSoS combined echoes from the three reconstruction techniques are compared in Fig4. 
GRAPPA suffered from noise amplification especially in the middle of the FOV (more 
visible in Supporting Fig S2 where each echo is shown separately). The RMSE of 
conventional reconstruction was 10.3%, and this was reduced to 6.4% with JVC-GRAPPA. 
Despite substantially mitigating noise amplification, JVC suffered from a structured aliasing 
artifact (yellow arrow). This was eliminated in the J-LORAKS reconstruction, with similar 
noise mitigation and RMSE performance (6.8%). Fig4 also presents comparisons against 
SENSE and VC-GRAPPA reconstructions that were performed for each echo separately.

Supporting Fig S2 demonstrates the staggered sampling patterns and the individual echoes’ 
reconstructions, where the noise mitigation difference between the conventional and joint 
techniques can be better appreciated.

Image Reconstruction at 16-fold acceleration—Conventional and JVC-GRAPPA 
used kernels of size 3×3. Optimal RMSE’s were achieved using λ = 2×10−5 for 
conventional GRAPPA, and λinit = 2×10−7, λlatter = 7×10−6 for JVC reconstruction.

For the partial Fourier cases, optimal parameters were λinit = 2×10−7, λlatter = 2×10−6 for J-
GRAPPA, and neighborhood radius = 1, rank constraint = 300, and 100 pcg iterations for J-
LORAKS.

At this high acceleration factor, conventional GRAPPA demonstrated severe aliasing 
artifacts and noise amplification (Fig5), with an RMSE of 14.8%. JVC-GRAPPA partially 
mitigated these issues with an error of 7.8%, but some aliasing artifacts were still visible. 
Combination of J-GRAPPA and POCS used R=4×3 uniform and 6/8 partial Fourier 
undersampling to achieve the same net acceleration factor. Despite an overall improvement 
in artifact reduction, partially sampled k-space suffered from underestimation (white arrow) 
and some structured aliasing artifacts were present (yellow arrow). J-LORAKS was able to 
further address these issues to provide a cleaner reconstruction with an RMSE of 7.9%.

SMS Multi-Echo Spin-Echo

Image Reconstruction at MB-10 acceleration—FOV shift between slices was 
optimized to yield the best RMSE and was found to be FOV/4.

Optimal kernel size and Tikhonov regularization parameter for conventional Slice GRAPPA 
were 9×9 and 10−6. These were selected as 7×7 and 10−7 for JVC Slice GRAPPA.

The parameters chosen for J-SMS-LORAKS were neighborhood radius = 3 (which lead to 
circle diameter 7), rank r = 1000, with regularization parameter λ = 10−5.
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RSoS combination of reconstructed echoes are shown in Fig6. Conventional Slice GRAPPA 
yielded 5.1% error and exhibited structured aliasing artifacts (yellow arrows). JVC Slice 
GRAPPA partially mitigated these artifacts as well as reducing the noise amplification 
(better appreciated in Supporting Fig S3 where individual echo images are shown). While 
the RMSE was reduced to 3.6%, some structured artifacts were present (yellow arrows). J-
SMS-LORAKS was more successful at artifact mitigation, as well as at RMSE performance 
(3.3%).

Whereas Fig6 displays only 5 out of 10 reconstructed slices, the entire 10-slice 
reconstruction can be viewed in Supporting Fig S4.

Image Reconstruction at MB-10 acceleration with 6/8 partial Fourier—All 
reconstruction parameters for the three methods were the same as the previous MB-10 
experiment.

Reconstruction results, error images and k-space data of the first echo are compared in Fig7. 
Slice GRAPPA followed by POCS processing returned 6.0% error with aliasing artifacts as 
pointed by yellow arrows. Due to asymmetric k-space sampling, VC concept could not be 
exploited in Joint Slice GRAPPA. As such, the reconstruction was performed without the aid 
of virtual coils, and sequential POCS processing was applied to estimate the partially 
sampled portion. Despite the reduction in RMSE to 4.9%, some residual aliasing artifacts 
were still present (yellow arrows). Apart from the readout line at the edge of the partial 
Fourier sampling mask, POCS completed portion did not appear to be underestimated. This 
is because the background phase is minimal for spin-echo data, unlike the bSSFP and 
MPRAGE cases.

J-SMS-LORAKS attained the best RMSE performance (3.7%), with some structured 
aliasing artifacts at such high acceleration (yellow arrows). Estimated k-space appeared 
smooth, and devoid of discontinuity or underestimation problems.

For display purposes, Fig7 shows only 5 out of 10 slices reconstructed in this MB10 
experiment. The entire array of 10 slices can be viewed in Supporting Fig S5.

Calibrationless: 3D Multi-Echo Gradient-Echo

The parameters were tuned to minimize RMSE, where neighborhood radius = 3 for both 
cases, and the matrix rank r = 50 for single contrast and r = 300 for multi-contrast LORAKS. 
While both reconstructions were devoid of visible artifacts, observing the error maps in Fig8 
revealed a signal bias especially in the early echoes of the conventional LORAKS results. 
These were reflected in the estimated R2* parameter maps, where J-LORAKS mitigated the 
underestimation problem that single-LORAKS suffered from (yellow arrow). The 
reconstruction errors were 4.2% and 3.1% for the two algorithms.

DISCUSSION

We presented joint parallel imaging acquisition/reconstruction approaches that exploit 
similarities between multi-contrast images, as well as complementary sampling and image 
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phase priors to provide dramatic improvements over conventional techniques for highly 
accelerated acquisitions. JVC-GRAPPA made this possible by converting intensity and 
phase differences across images into extra spatial encoding and utilizing the VC concept. J-
LORAKS, sought to achieve local k-space matrices with lower rank because of the added 
redundancy from the multiple images stacked along the coil axis. Proposed joint 
reconstruction techniques thus enabled acceleration rates beyond the capability of 
conventional parallel imaging, while mitigating aliasing artifacts and reducing noise 
amplification.

JVC-GRAPPA is a straightforward extension of GRAPPA, where multi-contrast images are 
stacked in the coil axis with staggered k-space sampling and iterative VC reconstruction. J-
LORAKS addresses two main limitations of JVC-GRAPPA: (i) it allows arbitrary sampling 
patterns, and (ii) can work with parsimonious ACS size or even without calibration. We took 
advantage of (i) by using different sampling patterns in each contrast, as well as exploiting 
VC concept despite partial Fourier sampling. Mitigating drawback (ii) is especially 
important at high acceleration rates, where the span of GRAPPA kernels can be very large. 
At R=7-fold acceleration with a small kernel size of 3 samples, GRAPPA kernels would 
already span a 15-sample distance in k-space. With small ACS sizes, it becomes difficult to 
extract sufficient amount of training data because we can only slide such a large 15-sample 
window in k-space by a few samples. This also constrains the size of the GRAPPA kernel, 
e.g. we would need 30 ACS lines to be able to fit a 5-sample kernel.

In terms of reconstruction time, both algorithms perform similarly with a small advantage 
for J-LORAKS. Points where JVC-GRAPPA might be advantageous are its simplicity in 
implementation and less memory usage than J-LORAKS. Overall, J-LORAKS is superior to 
JVC-GRAPPA in most aspects, except for the relative ease of exporting it to online 
reconstruction platforms.

Joint reconstruction of calibrationless dataset showed advantages in RMSE (Fig8), which 
could be further improved using different sampling patterns across the echoes. In most 
conventional exams, calibration signal can be acquired by fully-sampling the k-space center, 
or by using a separate acquisition e.g. a low-resolution GRE. Since such separate calibration 
information is cheap, Cartesian acquisitions for high-resolution structural imaging may not 
benefit from calibrationless reconstruction.

There are, however, applications where a rapid separate acquisition may not provide suitable 
calibration information, or an integrated ACS region with Nyquist-sampling may be 
disadvantageous. For instance, inconsistencies between the separate ACS data and the 
accelerated functional imaging acquisition can reduce the temporal SNR (76), and it is not 
practical to have an integrated calibration region in echo planar trajectories. Dynamic 
imaging could be another domain where calibrationless reconstruction could be impactful 
(33), since coil sensitivity information is subject to change due to motion and it is costly to 
sample ACS data over time. Despite having potential applications, increased computational 
burden and the reduction in the achievable acceleration are some of the trade-offs in 
calibrationless imaging.
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Because SENSE-based reconstruction does not introduce coupling between different 
contrasts, we have chosen to employ GRAPPA and LORAKS in joint reconstruction. 
However, we have combined SENSE and LORAKS in our earlier work (30), and recently 
improved on this by combining LORAKS with k-space parallel imaging constraints in 
(58,59). In particular, (58) provides a comparison of SENSE-based LORAKS versus 
autocalibrating LORAKS, where the latter has a clear advantage.

We think that VC-GRAPPA can be modified to allow partial Fourier reconstruction. Similar 
to the way that the GRAPPA kernel needs to change for each distinct local sampling pattern, 
we would need to apply a different GRAPPA kernel for the asymmetrically sampled region 
compared to the kernel used for the symmetric region. This kernel for the asymmetric region 
would employ only the actual k-space during the training and reconstruction stages. For 
simplicity, we used J-GRAPPA without VC in partial Fourier experiments. The impact of 
not using VC can be appreciated by comparing Figs6&7. With JVC Slice GRAPPA, 
reconstruction error reduced by 42% compared to Slice GRAPPA (Fig6, no partial-Fourier 
case). With Joint Slice GRAPPA (Fig7, 6/8 partial-Fourier, no VC) the improvement was 
22%. With J-LORAKS, the phase prior constraint is better incorporated into the 
reconstruction for partial Fourier acquisition to provide a 62% reduction compared to 
standard GRAPPA reconstruction. Please also see Supporting Information for further 
discussion on partial Fourier sampling in specific acquisitions. We have also explored using 
VC concept without joint reconstruction in Supplementary Figs S2&4. This has provided 
improvement over conventional GRAPPA/SENSE, but failed to reach the quality of the 
proposed joint reconstruction algorithms.

Shifted sampling patterns are helpful in providing increased collective frequency coverage. 
In the bSSFP experiments at R=6-fold acceleration (Fig2), JVC-GRAPPA would have 
yielded 8.4% RMSE if all phase-cycles were using the same undersampling pattern, 
compared to the optimal 7.1% with the staggered acquisition. For J-LORAKS, the 
reconstruction error would have increased to 7.0%, as opposed to the optimal 6.5% RMSE. 
These indicate that complementary undersampling is aiding the joint reconstruction, but both 
algorithms are robust to changes in the sampling strategy, with small degradation in the 
RMSE performance (less than 20%). Table 1 report the same analysis for MPRAGE 
reconstruction, where both techniques are seen to be robust to changes in the staggering 
amount (less than 15% degradation without shifts).

Because it stacks data from all image contrasts into the channel axis and also creates virtual 
coils, JVC-GRAPPA requires larger amount of calibration data as the number of kernels 
scale with the square of the channel count. This problem is exacerbated by shifted sampling, 
as the staggered JVC kernels span a larger k-space extent which is more difficult to fit in the 
ACS region. This is addressed in part by the iterative approach, which uses the reconstructed 
k-space to re-train the kernels. Increasing the size of calibration region however lengthens 
the reconstruction time, since the calibration matrix that needs to be inverted grows in size. 
J-LORAKS addresses this second limitation of large ACS requirement as well, and is 
capable of outperforming JVC-GRAPPA even when it uses a smaller calibration region size 
(Fig1).
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The reconstruction errors in the 2D and 3D acquisition experiments include some 
contribution from the intrinsic √R SNR penalty. This stems from the data undersampling that 
reduces the total noise averaging window of the images. Such √R penalty does not impact 
SMS acquisition in practice, since SMS k-space data are not undersampled and each slice 
experiences the same noise averaging benefit as the MB-1 case. However, because we have 
simulated SMS acceleration by collapsing separately acquired slices, our results are actually 
impacted by √MB = √10 noise penalty in Figs6&7. Since the actual SMS experiment would 
not have been affected by this additional noise, the RMSE levels would have been lower. 
Nonetheless, it would not be possible to eliminate the additional factor of √(4/3) SNR 
penalty due to partial Fourier undersampling in Fig7.

Limitations

We have employed different regularization parameters for kernel training in the initial Joint-
GRAPPA reconstruction and the following JVC iterations for optimal RMSE. It is possible 
to use the same Tikhonov parameters for the two steps without a large drop in the 
performance. For instance, using λinit = λlatter = 3×10−8 in Fig2 led to an RMSE of 7.7%, 
which is slightly higher than the optimal JVC performance (7.1%). Automatic parameter 
selection algorithms could further help address this limitation (77,78).

Another drawback in the joint parallel imaging reconstruction is the increased reconstruction 
time. For the results presented in Fig2, computation time for the four phase-cycles was 6 sec 
for GRAPPA, 6.8 min for JVC-GRAPPA, and 5.4 min for J-LORAKS. We think that there 
are several ways to reduce this 50-fold gap in performance. We have used SVD coil 
compression in the current experiments. More advanced compression techniques such as 
Geometric Coil Compression (79) would permit higher compression rates. Secondly, JVC-
GRAPPA uses the entire k-space to re-train kernels in the latter iterations. This calibration 
size could be restricted to a smaller portion of k-space to reduce the calibration time, at the 
cost of increasing the condition number of the matrix inversion. Rather than applying these 
large number of JVC kernels via convolution in k-space, an image space version could be 
implemented with a simple elementwise multiplication. Finally, the number of pcg iterations 
in J-LORAKS could be reduced to reach a better compromise between speed and accuracy.

A further limitation of the joint reconstruction is potential motion between scans. While 
multi-echo acquisitions do not suffer from this drawback, phase-cycled bSSFP could be 
impacted by potential mismatches across cycles. Since JVC-GRAPPA employs low-
resolution kernels for data interpolation, we expect this technique to be resilient against 
small amounts of motion. In the presence of larger mismatches, an initial GRAPPA could be 
applied on each phase-cycle independently, followed by retrospective motion correction and 
JVC-GRAPPA or J-LORAKS processing. The higher acceleration factors that can be 
achieved with joint reconstruction could also help mitigate some of the involuntary motion.

Extensions

A potential extension to the proposed joint parallel imaging techniques could be the addition 
of joint sparse regularization (36,43). This extension would easily fit within SPIRiT (21) or 
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LORAKS (28) frameworks. For JVC-GRAPPA, sparsity enforcing priors could be used 
either during kernel calibration (80) or reconstruction (23).

Another application where joint parallel imaging could be powerful is single-shot diffusion 
imaging, where multiple diffusion volumes at neighboring q-space positions could be jointly 
reconstructed.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig1. 

Joint GRAPPA fits kernels across contrasts and employs staggered k-space sampling to 
improve parallel imaging capability. Joint Virtual Coil GRAPPA further employs extra phase 
information provided by virtual coils to synthesize the target k-space signal.
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Fig2. 

Maximum intensity projection combination of phase-cycled bSSFP reconstructions with 
four cycles at R=6x1-fold acceleration. Conventional SENSE and GRAPPA suffered from 
noise amplification and aliasing artifacts, leading to 18.6% and 13.3% RMSE, respectively. 
VC-GRAPPA made use of image phase information to improve the reconstruction with 
7.5% RMSE. JVC-GRAPPA jointly reconstructed the phase-cycles with staggered k-space 
sampling and mitigated noise and aliasing with 7.1% error. J-LORAKS further improved the 
image quality and RMSE performance (6.5%). Even when using a more limited calibration 
region of 16 samples, J-LORAKS was able to yield similar performance as JVC-GRAPPA 
using 20 lines of ACS (7.1% RMSE, not shown).
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Fig3. 

Phase-cycled bSSFP with 7-fold total acceleration. Conventional GRAPPA broke down at 
such high acceleration factor, and had 19.0% error with severe aliasing artifacts and noise 
amplification. JVC-GRAPPA was able to mitigate some of these artifacts, but still yielded a 
large error of 10.7%. Combination of 6-fold uniform and 7/8 partial Fourier sampling 
provided the same 7-fold net acceleration. In this setting, virtual coil concept was not 
applicable in Joint GRAPPA. Its combination with POCS reconstruction led to 9.2% RMSE 
and some signal underestimation in k-space (white arrow). J-LORAKS was able to 
outperform all methods with 8.0% error, and was more successful in completing the partially 
sampled k-space without the need for an additional POCS step.
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Fig4. 

Root-sum-of-squares combination of multi-echo MPRAGE reconstructions with four echoes 
and R=4x3-fold acceleration. Regularized SENSE reconstruction suffered from structured 
artifacts with 9.9% error. Conventional GRAPPA had noise amplification especially in the 
middle of the field of view with 10.3% RMSE. VC-GRAPPA provided minor improvement 
to yield 9.5% error. JVC-GRAPPA mitigated this and reduced the error to 6.4%, but at the 
expense of some structured aliasing artifact (yellow arrow). J-LORAKS provided a cleaner 
image with reduced noise amplification and 6.8% error.
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Fig5. 

Multi-echo MPRAGE reconstruction at 16-fold total acceleration. Conventional GRAPPA 
broke down at this high acceleration factor, yielding 14.8% error. JVC-GRAPPA managed to 
mitigate most of the structured artifacts and noise amplification, with 7.8% RMSE and some 
residual aliasing artifacts (yellow arrow). At the same net acceleration factor, the 
combination of R=4x3 uniform undersampling and 6/8 partial Fourier sampling was 
explored. Combination of J-GRAPPA and POCS had 8.5% error, underestimation in 
partially sampled k-space (white arrow), and structured artifact (yellow arrow). J-LORAKS 
was able to provide an improved reconstruction with 7.9% RMSE and more successfully 
completed partial k-space data.
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Fig6. 

Multi-echo Turbo Spin Echo reconstruction with six echoes and Simultaneous MultiSlice 
acceleration (displaying 5 out of 10 slices). Root-sum-of-squares combination of the echoes 
using MultiBand=10 acceleration are depicted. Conventional Slice GRAPPA with signal 
leakage constrained yielded 5.1% error and structured aliasing artifacts (yellow arrows). 
JVC Slice GRAPPA obtained a reduced RMSE of 3.6% with better noise suppression and 
artifact mitigation. However, some aliasing artifacts were still visible. Joint SMS LORAKS 
provided the lowest error 3.3% with better artifact suppression.
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Fig7. 

Multi-echo Turbo Spin Echo reconstruction with MultiBand=10 acceleration and 6/8 partial 
Fourier sampling (displaying 5 out of 10 slices). Combination of Slice GRAPPA and POCS 
had 6.0% RMSE with visible aliasing artifacts and some k-space discontinuity at the partial 
Fourier transition line. Joint Slice GRAPPA was not able to utilize virtual coil concept, and 
required POCS post-processing to estimate partially sampled data. This combination led to 
4.9% error with some reconstruction artifacts and minor k-space discontinuity. Joint SMS 
LORAKS did employ virtual coils, and incorporated partial Fourier reconstruction without 
the need for POCS processing. This allowed 3.7% RMSE performance, while not being able 
to fully mitigate aliasing artifacts at such high acceleration factor (yellow arrows).
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Fig8. 

Calibrationless multi-echo gradient-echo reconstruction at R=4-fold pseudo-random 
acceleration. Single-contrast calibrationless LORAKS yielded 4.2% error with 
underestimation in the R2* parameter map (yellow arrow). This is likely caused by the signal 
drop in the early echoes as can be better seen in the error maps. Joint calibrationless 
LORAKS had an improved RMSE performance of 3.1%, and mitigated the signal dropout 
problem in both the individual echoes and the estimated parameter map.
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Table2

Comparison of GRAPPA and the proposed joint reconstruction algorithms, where the results in Figs 2–7 are 
summarized.

RMSE%

(Slice)
GRAPPA

JVC (Slice)
GRAPPA

Joint (Slice)
GRAPPA & POCS

Joint (SMS)
LORAKS

Phase-cycled bSSFP @ R=6 13.3% 7.1% – 6.5%

Phase-cycled bSSFP @ R=7 19.0% 10.7% 9.2% 8.0%

ME-MPRAGE @ R=12 10.3% 6.4% – 6.8%

ME-MPRAGE @ R=16 14.8% 7.8% 8.5% 7.9%

ME-TSE @ MB=10 5.1% 3.6% – 3.3%

ME TSE @ MB=10 & PF=6/8 6.0% – 4.9% 3.7%
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