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ABSTRACT

Disdrometer observations indicate that the raindrop size distribution (DSD) can be represented by a

constrained-gamma (CG) distribution model. The model is used to retrieve DSDs from polarization radar

measurements of reflectivity and differential reflectivity and to characterize rain microphysics and physical

processes such as evaporation, accretion, and precipitation. The CG model parameterization is simplified to

a single parameter for application in single-moment numerical models. This simplified parameterization is

applied in the Variational Doppler Radar Analysis System (VDRAS) using Kessler-type parameterizations

for model initialization and forecasting. Results are compared to those for the Marshall–Palmer (MP) DSD

model. It is found that the simplified CG model parameterization better preserves the stratiform rain and

produces better forecasts than the MP model parameterization.

1. Introduction

Understanding and characterization of precipitation

microphysics is needed for improving parameterization

in numerical weather prediction (NWP) models

(Droegemeier et al. 2000; Sun 2005; Zhao and Carr

1997). Early, microphysical parameterizations were

mostly single-moment (bulk water) schemes (Kessler

1969). Recently, two-moment parameterization

schemes and spectral models have received attention

(e.g., Ferrier 1994; Meyers et al. 1997; Hong et al. 2004;

Chen and Liu 2004). In addition to rainwater mixing

ratio, two-moment models typically forecast total drop

concentration and diagnose the mean particle diameter.

Spectral models start with a stochastic collection equa-

tion and solve for the temporal and spatial changes in

the drop spectra. While two-moment parameterizations

provide additional freedom in describing microphysics

and spectral models are more rigorous, single-moment

parameterization is still widely used (Walko et al. 1995;

Thompson et al. 2004), for example, in the fifth-

generation Pennsylvania State–National Center for At-

mospheric Research (PSU–NCAR) Mesoscale Model

(MM5) and Weather Research and Forecast (WRF)

models, because of its simplicity and computational ef-

ficiency.

The fundamental characterization of rain microphys-

ics is through the raindrop size distribution (DSD). Mi-

crophysical processes of evaporation, accretion, and

precipitation rate are all related by the DSD. The pa-

rameterization scheme of Kessler (1969) was developed

on the assumption of an exponential distribution of

raindrops, written as

N�D� � N0 exp���D�, �1�

where the slope parameter � relates to a characteristic

size of the raindrops such as the mean diameter [�D� �

(2/�)] or median volume diameter [D0 � (3.67/�)].

Here, N0 is an intercept parameter, which was fixed

at 10 000 m�3 mm�1 by Kessler. When N0 � 8000

m�3 mm�1, Eq. (1) becomes the Marshall–Palmer (MP)

drop size distribution (Marshall and Palmer 1948). For
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the MP DSD model and Kessler’s parameterization

scheme, microphysical processes for evaporation rate

(Re in g m�3 s�1) for a unit water vapor saturation

deficit, accretion rate (Rc in g m�3 s�1) for a unit cloud

water content, and mass-weighted terminal velocity

(Vtm in m s�1) can be represented in terms of rainwater

content (W in g m�3) as follows:

Re � 5.03 	 10�4W13�20 �2�

Rc � 5.08 	 10�3W7�8 �3�

Vtm � 5.32W1�8. �4�

The radar reflectivity factor at horizontal polarization

(ZH in mm6 m�3) is related to water content by

ZH � 2.04 	 104W7�4. �5�

Although there have been some modifications, for ex-

ample, by Miller and Pearce (1974), Clark (1977),

Klemp and Wilhelmson (1978), Lin et al. (1983), and

Rutledge and Hobbs (1983), this simple approach to

model parameterization, called a Kessler-type scheme,

is still widely used in mesoscale models. As noted by

Kessler (1969, p. 30), an exponential DSD model with a

fixed intercept “does some violence to the physics of

the evaporation process”. The problem with fixed-

intercept parameterizations is that the rainwater gets

redistributed into smaller drop categories as the drop

spectra slope parameter increases, thus accelerating the

process of rainwater removal through evaporation.

Rainfall rate cannot be accurately estimated with an

R–Z relation derived from the MP DSD model (Wilson

and Brandes 1979, their Table 3). The uncertainty of

rain-rate estimation can be as high as 50% (Smith et al.

1975, 1993; Hagen and Yuter 2003). The coefficients

and exponents in (2)–(5) are often arbitrarily adjusted

to improve forecast results (Miller and Pearce 1974;

Sun and Crook 1997). However, such adjustments are

mostly empirical (Liu and Daum 2004) and lack verifi-

cation with observations. Another problem with the

Kessler-type scheme occurs when an adjoint model is

derived in a four-dimensional data assimilation

(4DVAR) system. Because of the highly nonlinear na-

ture of expressions such as Eqs. (2) and (4), the mini-

mization of the cost function tends to have convergence

problems (Sun and Crook 1997).

The gamma distribution has been used to improve

the characterization of rain DSDs over the exponential

distribution (Ulbrich 1983; Willis 1984). Recent dis-

drometer observations indicate that rain DSDs can be

represented by a constrained-gamma (CG) distribution

model (Zhang et al. 2001). The CG model was devel-

oped for retrieving rain DSDs from polarization radar

observations. The procedure is to determine the three

parameters of the gamma distribution from radar re-

flectivity, differential reflectivity, and a constraining re-

lation between the shape and slope of the distribution.

It has been shown that the CG model characterizes

natural DSDs better and leads to more accurate retriev-

als than that with a two-parameter exponential model

and with a variable N0 (Brandes et al. 2003). The CG

rain DSD model allows accurate rainfall estimation and

study of storm microphysics through the retrieval of

total number concentration, droplet size, and the shape

of rain spectra (Brandes et al. 2004a, 2006; Vivekanan-

dan et al. 2004).

In this paper, we apply the constrained-gamma DSD

model to the microphysical parameterization in a cloud

model and evaluate the impact of the parameterization

scheme on the initialization and forecasting of storms.

Our ultimate goal is to develop a two-moment scheme

that utilizes two polarization radar measurements of ZH

and ZDR for model parameterization and initialization.

At this moment, however, a two-moment data assimi-

lation system is not available. In addition, the case we

studied in this paper does not have volumetric polar-

ization. Therefore, the objective of this manuscript is to

(i) show the potential of using polarization radar data

for improving model parameterization with the CG

model, (ii) simplify it to a single parameter simplified

CG model, and (iii) test the simplified CG model in

VDRAS for model parameterization and initialization

to see the improvements. Section 2 describes the mi-

crophysical parameterization based on constrained-

gamma DSDs and compares it with the MP distribution

model. Section 3 simplifies the CG model parameter-

ization to a single parameter for application in bulk

models. Experiments in variational data assimilation

and numerical weather prediction are presented in sec-

tion 4. A summary and discussion are provided in sec-

tion 5.

2. Constrained-gamma DSD model and rain

microphysical processes

The constrained-gamma DSD model consists of a

gamma distribution in the form (Ulbrich 1983)

N�D� � N0D� exp���D� �6�

[where N0 (mm�(1�
) m�3) is a concentration param-

eter, 
 is a shape parameter, and � (mm�1) is a slope

parameter] and a constraining relation between 
 and

� given by
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� � 0.0365�2 � 0.735� � 1.935. �7�

Relation (7) was derived from 2D video-disdrometer

measurements made in Florida (Zhang et al. 2001) and

has been verified by data collected in Oklahoma

(Brandes et al. 2003). It has been shown that (7) char-

acterizes natural rain DSD variations quite well and is

not purely the result of measurement error (Zhang et

al. 2003). It has recently been verified by numerical

simulations with a simple rain shaft model (Seifert

2005). The relation applies to both convective and

stratiform DSDs except for that at leading edges of

convective storms and drizzle rains. Fine tuning for

geographical locations/climatology with further obser-

vations may improve the model results. Special atten-

tion and treatment is required for small drops when 
 is

negative. The negative 
s can cause infinite total num-

ber concentration and unrealistically large evaporation.

Hence, 
 is forced to 
 � �1 for 
 � �1 and the

integration is performed in a finite limit [Dmin, Dmax]

rather than [0, 
].

The constrained-gamma DSD model represented

by (6) and (7) is essentially a two-parameter model

much like the exponential distribution or a gamma

distribution with a fixed 
. The difference, however,

is that the constrained-gamma DSD model is capable

of describing a variety of drop-size distributions with

different spectral shapes: concave upward shape for

a broad distribution versus convex for a narrow dis-

tribution on a semilogarithm plot. Because 
 and

� jointly describe the DSD shape, the characteristic

size (e.g., median volume diameter D0) and the spec-

trum width are related (Brandes et al. 2004b). This

makes physical sense because, except at the leading

edge of some convective storms, large raindrops are

usually accompanied by small drops, which leads to a

broad spectrum. On the other hand, small and medium

size raindrops are not necessarily accompanied by large

drops, for example, stratiform and light convective rain

DSDs. A 
 � � (or 
 � D0) relation allows better

characterization of the raindrop size/spectrum width

dependence than a fixed distribution shape without in-

creasing the number of parameters. A fixed 
 is a spe-

cial 
–� relation, for example, an exponential distribu-

tion (
 � 0).

The 
–� relation facilitates the reliable retrieval of

the gamma DSD parameters (N0, 
, and �) from po-

larization radar measurements of radar reflectivity fac-

tor (ZH) and differential reflectivity (ZDR). Rain physi-

cal parameters can then be obtained by integration of

the DSD with proper weight. For example, rainwater

content (W in g m�3) is

W �
�w 	 10�3�

6
N0�

Dmin

Dmax

D��3 exp���D� dD

�
�w 	 10�3�

6
N0�����4�����Dmax, � � 4�

� ���Dmin,� � 4��, �8�

where � is the incomplete gamma function, Dmin and

Dmax are raindrop minimal and maximal diameters.

Here, Dmin was set to 0.1 mm; Dmax, the size of the

largest drop, can be estimated from radar reflectivity or

differential reflectivity (Brandes et al. 2003). For com-

putational convenience, expressions for rainwater con-

tent, rainfall rate (R in mm h�1), total number concen-

tration (NT in m�3), D0 (in mm), and the parameter 


can be expressed in terms of ZH and ZDR as (Brandes

et al. 2004b)

W � 5.589 	 10�4ZH 	 10�0.223ZDR
2

�1.124ZDR� �9�

R � 0.00760ZH 	 10�0.165ZDR
2

�0.897ZDR� �10�

NT � 2.085ZH 	 10�0.728ZDR
2

�2.066ZDR� �11�

D0 � 0.171ZDR
3 � 0.725DR

2 � 1.479ZDR � 0.717 �12�

� � 6.084D0
2 � 29.85D0 � 34.64, �13�

where ZH is in linear units (mm6 m�3) and ZDR is in dB.

Relations (9)–(13) have been verified for tropical rain

in Florida (Brandes et al. 2003, 2004a,b). The uncer-

tainty for rainwater content estimates is within 10%,

similar to that for rainfall rate. The total number con-

centration estimates are normally within an order of the

measurements. The standard error for median volume

diameter is less than 0.2 mm. These numbers are for the

Florida data and further verifications are needed in

other climatological regions. The equations allow de-

tailed study of precipitation microphysics for convec-

tive and stratiform precipitation and their evolution

(Brandes et al. 2004a). For example, at the same rainfall

rate, stratiform rain often has a larger median volume

diameter than that for convective rain. Figure 1 shows

an example of rain physics retrievals from radar mea-

surements using the CG and MP models. Direct calcu-

lations with disdrometer measurements are also pre-

sented for reference. The comparison reveals that the

MP model (i) overestimates NT except for heavy con-

vective rains and has a small dynamic range, (ii) under-

estimates W for convective rainfall (1440–1490 UTC),
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(iii) overestimates W for stratiform rain (after 1520

UTC), and (iv) underestimates D0 for stratiform rain.

Clearly, the polarization radar–based CG model char-

acterizes rain microphysics more accurately than the

reflectivity-based MP model.

Once the rain DSD is known, rain microphysical

processes can be estimated. The constrained-gamma

DSD model with two independent parameters can be

used to derive rain microphysical process parame-

ters: evaporation rate (Re), accretion rate (Rc), and

mass-weighted terminal velocity (Vtm). Following

Kessler’s parameterization procedure, the microphysi-

cal process parameters are derived (see appendix) by

integration of the gamma DSD (6). Assuming an

evaporation coefficient Ee � 1 and accretion coefficient

Ec � 1, we obtain Re for a unit vapor saturation deficit

(me � 1 g m�3) from (A3), Rc for a unit cloud water

content (mc � 1 g m�3) from (A6), and Vtm from (A7),

as given by

Re � 6.78 	 10�4W�7�5

	
����Dmax,� � 13�5� � ���Dmin,� � 13�5��

����Dmax,� � 4� � ���Dmin,� � 4��

�14�

Rc �
3 	 10�3W

2 �
i�0

4

cl�
�l�1

	
����Dmax, � � l � 3� � ���Dmin, � � l � 3��

����Dmax, � � 4� � ���Dmin, � � 4��

�15�

Vtm � �
l�0

4

cl�
�l

	
����Dmax, � � l � 4� � ���Dmin, � � l � 4��

����Dmax, � � 4� � ���Dmin, � � 4��
,

�16�

where cl are coefficients representing the drop terminal

velocity relation of Brandes et al. (2002). Figure 2 com-

pares retrieved microphysical process parameters using

the CG DSD model with that from the MP DSD model

(another example is presented in Brandes et al. 2006).

Calculations with the disdrometer observations are

shown for reference. If the disdrometer results can be

considered as “truth,” the MP model overestimates

evaporation and accretion for stratiform rain by up to a

factor of 10 and underestimates them for strong con-

vection. This might be the reason that the parameter-

ization coefficients in (2)–(3) are usually reduced by

FIG. 1. Time series comparison of estimated total number con-

centration (Nt), rainwater content (W ), and median volume di-

ameter (D0). Results are shown for disdrometer observations and

radar estimates using the CG, SCG, and MP DSD models. Data

were collected on 21 Aug 1998 in Florida.

FIG. 2. As in Fig. 1 except for estimated evaporation rate (Re)

for a unit vapor saturation deficit, accretion rate (Rc) for a unit

cloud water content, and mass-weighted terminal velocity (Vtm).

1276 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 63



one-half (or more) in an attempt to improve weather

model forecasts (Miller and Pearce 1974; Sun and

Crook 1997). The MP model also underestimates the

mass-weighted terminal velocity for stratiform rain be-

cause the droplet size is underestimated. The MP

model yields a smaller dynamic range for all micro-

physical process parameters, which could be a reason

(in addition to grid resolution) that cloud models have

difficulty resolving finescale storm features (Seifert and

Beheng 2001). It is apparent that the CG DSD model

gives more accurate estimation of rain microphysical

processes than the MP model. It is because of the use of

reflectivity and differential reflectivity (i.e., two param-

eters) in the retrieval process that the CG rain model

more closely represents the disdrometer-derived (natu-

ral) raindrop spectra than the single parameter MP

model. Therefore, the CG parameterization scheme

[(14)–(16)] can be used to improve two-moment models

that forecast two microphysical parameters (e.g., W and

D0). For convenience, the CG parameterization can be

expressed in terms of W and D0 as

Re � W��0.1494D0
3 � 1.109D0

2 � 2.767D0 � 2.597�

	 10�3 �17�

Rc � W�0.0161D0
3 � 0.0139D0

2 � 1.097D0 � 6.982�

	 10�3 �18�

Vtm � 0.100D0
3 � 1.133D0

2 � 5.145D0 � 0.104. �19�

Equations (17)–(19) are alternative forms of (14)–(16),

obtained by fitting Re /W, Rc /W, and Vtm to polynomial

functions of D0. The fitting results are shown in Fig. 3.

The discrete points are calculations from integrations of

disdrometer measurements (Zhang et al. 2001; Brandes

et al. 2003). There is very little deviation from the fitted

curves, suggesting that the two-parameter model accu-

rately represents rain microphysics. Mean relative er-

rors for Re, Rc, and Vtm estimates with (17)–(19) are less

than 6%. (The same approach was applied to polariza-

tion radar retrievals and similar results were obtained.)

The ratios Re /W and Rc /W decrease as D0 increases

except for Re /W at large D0. This is because the total

surface area and cross section associated with evapora-

tion and accretion are smaller for DSDs dominated by

large raindrops than for small drops at the same W. The

flattening of Re /W at large D0 is due to the fact that

large D0s usually occur in storm centers where DSDs

typically have a broad distribution with large numbers

of small drops. It is obvious that microphysical process

parameters computed from the CG DSD depend on

both rainwater content and droplet size, which makes

physical sense.

3. Simplified constrained-gamma model

parameterization

Bulk model parameterization in most numerical

simulations using the MP DSD model is typically based

on only one parameter, liquid water content, or water

mixing ratio. To apply the CG model parameterization,

(14)–(16) or (17)–(19), in a numerical model that does

not forecast D0, we need to reduce the two-parameter

model to a single parameter. As we have seen, the CG

DSD model and retrievals are represented by two radar

measurements, that is, reflectivity and differential re-

flectivity. It is noted that for rain these measurements

are statistically related. The dataset in Fig. 4 was cre-

ated from calculations of electromagnetic wave scatter-

ing for disdrometer measurements collected in east-

central Florida during the summer of 1998 field pro-

gram (PRECIP98) when NCAR’s S-band dual-

polarization Doppler radar (S-Pol) was deployed

(Brandes et al. 2002). A mean relation is derived from

the data as follows:

ZDR � 10��2.362 	 10�4ZH
2

� 0.04581ZH � 1.4333�, �20�

where ZH is in dBZ and ZDR is in dB. The ZDR–ZH

scatterplot, for Florida convective storms, provides in-

formation about rain type and microphysics. As indi-

cated in the figure, the data points for moderate and

small reflectivity above the mean curve are usually as-

sociated with stratiform rain formed from convective

FIG. 3. Dependence of rain microphysical process parame-

ters (Re, Rc, and Vtm) on median volume diameter (D0) for CG

DSDs. The discrete points are estimates from disdrometer mea-

surements; Re and Rc are in g m�3 s�1, W in g m�3, and Vtm in

m s�1.
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debris or with the leading edge of convection where

drops are typically large (large ZDR). The points with

large reflectivity and distributed along the mean curve

are characteristic of convective storm cores. Those

close to the lower boundary of the data domain are

representative of rainy convective downdraft with lots

of small drops. Stratiform rain in Florida tends to have

small number concentrations and relatively large D0

compared with light convective rain with the same rain-

fall rate. These properties are similar to those found by

Bringi et al. (2003) and Steiner et al. (2004). Normally,

both ZH and ZDR are needed to accurately characterize

rain microphysics and physical process. Note, however,

with (20) much of the information in the ZDR measure-

ment is lost; and, consequently, it should be used only in

one-moment models.

Substitution of (20) into (9) enables rainwater con-

tent estimation from radar reflectivity alone and con-

stitutes a simplified CG (SCG) DSD model. Retrievals

of rain microphysical parameters based on the SCG

DSD model are shown in Figs. 1 and 2 and are im-

proved over those from the MP DSD model. Rainwater

estimates from radar reflectivity using the SCG model

and the MP model (5) are compared in Fig. 5. Calcu-

lations with disdrometer data are also shown for

reference. It is seen that the two estimated water con-

tents agree for the medial radar reflectivity values at

which most rain falls, but the SCG DSD model allows

a larger dynamic range of water content and gives a

smaller water content for weak radar reflectivity (stra-

tiform rain) than the MP model. The SCG model

results agree with disdrometer observations better

than the MP model. This is consistent with the results

shown in Figs. 1 and 2, which is a subset of data shown

in Fig. 5.

FIG. 5. Comparison of rainwater content estimates using the

SCG and MP DSD models.

FIG. 4. The statistical relation between radar reflectivity and differential reflectivity for rain. The dataset is

obtained from the disdrometer observations collected in east-central Florida during the PRECIP98 project.

1278 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 63



Microphysics process parameters for evaporation, ac-

cretion, and mass-weighted terminal velocity are calcu-

lated for the SCG DSD model parameterization. The

procedure is to (i) estimate ZDR from ZH using (20); (ii)

calculate W, D0, 
, and � using (9), (12), (13), and (7),

respectively; and (iii) substitute W, 
, and � into (14)–

(16) to calculate Re, Rc, and Vtm. The microphysics pro-

cess parameters are plotted as a function of rainwater

content in Fig. 6. Results for MP DSD model param-

eterization and that from the direct calculation with the

disdrometer data are shown for comparison. It is noted

that the SCG DSD model yields smaller evaporation

and accretion rates than the MP DSD model for light

(stratiform) rain, which agrees with the disdrometer re-

sults better. However, the scatter in Fig. 6 is so much

larger than that in Fig. 3, indicating that a single pa-

rameter cannot accurately characterize rain micro-

physical processes. Derivatives of the physical process

parameters with respect to the rainwater content are

also calculated and shown in Fig. 7 with a logarithmic

scale. It is interesting to note that the derivative of

evaporation rate approaches a constant for the SCG

model rather than a monotonic increase for the MP

model when the rainwater content approaches zero.

The large derivative resulting from the nonlinearity of

the evaporation rate and the terminal velocity for the

MP model causes a significant convergence problem in

data assimilation, requiring special treatment and ap-

proximations to be made in the variational analysis of

radar data (Sun and Crook 1997). For example, a con-

stant derivative was forced for rainwater mixing ratios

below a specified value. Therefore, the reduced nonlin-

earity at low water contents in the SCG model param-

eterization is another advantage over the MP param-

eterization for data assimilation applications.

For convenience, the microphysical process param-

eters (14)–(16) constrained by (20) were also fitted to

exponent polynomial functions, giving

Re � 10�0.00679�logW�4�0.0557�logW�3�0.119�logW�2�0.937 logW�3.369� �21�

Rc � 10��0.0000603�logW�4�0.00255�logW�3�0.0212�logW�2�0.933 logW�2.294� �22�

Vtm � �4.509 	 10�4�logW�4 � 0.0148�logW�3 � 0.263�logW�2 � 1.410 logW � 5.799. �23�

Performances of these formulas [(20)–(23)] are quan-

tified by calculating relative bias and errors of their

estimates as shown in Table 1. The results with the MP

model [(2)–(5)] are also shown for comparison. The

water content (W) is estimated from radar reflectivity,

and Re, Rc, and Vtm are estimated from W. The relative

FIG. 6. Comparison of rain physical process parameters be-

tween SCG DSD and MP DSD model; Re and Rc are in g m�3 s�1,

and Vtm is in m s�1.

FIG. 7. Derivatives of physical process parameters: evaporation

rate (dRe /dW), accretion rate (dRc /dW), and mass-weighted ter-

minal velocity (dVtm/dW) for the SCG and MP DSD models.
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bias and error are calculated in both linear and loga-

rithm domains because the error analysis in linear do-

main is highly weighted by heavy rain and that in loga-

rithm domain accounts for more contribution from light

rain data points. The relative bias and error for water

content estimates with the SCG model in the linear

domain are comparable to those with the MP model at

about 13% bias and 50% error. However, estimations

of microphysical processes: Re, Rc, and Vtm with the

SCG model are generally improved, especially in the

logarithm domain (numbers superscripted with aster-

isks). For example, the error of the SCG Re estimates is

18.6% in linear domain and 3.2%* in logarithm domain

while that of the MP estimates is 40.1% and 8.2%*,

respectively. The relative bias is also reduced substan-

tially. It is noted that this error analysis is preliminary

and further verification is required in the future. The

parameterization scheme of (21)–(23) can be applied to

any numerical weather model with microphysics char-

acterized by a single parameter; that is, by bulk water

content or rainwater mixing ratio.

Figure 8 shows the spatial distributions of the rain

microphysical process parameters estimated from

NCAR’s S-pol radar measurements using the CG,

SCG, and MP models. The polarization radar is located

at (�9 km, �25 km) from the origin. The radar mea-

surements of reflectivity and differential reflectivity

were collected at 0.5 degree of elevation. In general, the

CG model gives a larger dynamic range, and more de-

tailed features, and larger spatial variations for Re and

Rc than the MP model. Results for the SCG model are

between that for the CG and MP models. The MP

model overestimates evaporation by about three times

for the stratiform rain in the upper-right corner of the

images. The SCG model gives stratiform rain evapora-

tion close to that of the CG model.

4. Impact of the SCG parameterization on

forecasting of storm evolution

The parameterization scheme (21)–(23) with the

autoconversion term kept the same was implemented

in the warm cloud model developed by Sun and Crook

(1997). A case of Florida multicell storms observed

during PRECIP98 was used to test whether the new

parameterization scheme improves the forecasting

of storms over the MP parameterization scheme

(2)–(4). This cloud model is chosen for our study

because it has a 4DVAR radar data assimilation

system for model initialization. The system is referred

to as VDRAS. It has the ability to retrieve the dyna-

mical and microphysical variables needed for initial-

ization and has reasonable skill for very short-

term forecasting of storm evolution (Sun and

Crook 1998; Wu et al. 2000; Warner et al. 2000; Sun

2005).

The numerical model in VDRAS is anelastic with

Kessler-type warm rain microphysical parameter-

ization. There are six prognostic equations: one for

each of the three velocity components (u, �, and w),

the liquid water potential temperature (�l), the total

water mixing ratio (qt), and the rainwater mixing

ratio (qr � W/�, where � is the air density). The pres-

sure (p) is diagnosed through a Poisson equation. The

temperature (T ) and the cloud water mixing ratio

(qc) are diagnosed from the prognostic variables (�l, qt,

and qr) by assuming that all vapor in excess of the satu-

ration value is converted to cloud water. The lateral

boundary conditions of the numerical model are open,

such that the inflow is prescribed and the outflow is

extrapolated using the values at the closest two inner

grid points. The top and bottom boundary conditions

for vertical velocity are set to zero, and all other vari-

ables are defined such that their normal derivatives

vanish. A simple constant diffusion scheme is used to

parameterize turbulence and to maintain numerical

stability.

The 4DVAR scheme in VDRAS assimilates a series

of consecutive volumes of radar radial velocity and

rainwater content (converted from radar reflectivity)

within a specified assimilation window. By iteratively

adjusting the initial state of the model, a cost function

measuring the difference between the model forecast

and observations is reduced such that the forecast

TABLE 1. Bias and error of rain microphysics estimates with the SCG and MP model. Estimations of microphysical processes: Re,

Rc, and Vtm with the SCG model are generally improved, especially in the logarithm domain (numbers superscripted with asterisks).

Bias and error

(%)
Bias:

�X�E� � X�M��

|�X�M��|
Error:

�|X�E� � X�M�
|�

|�X�M��|

Method SCG MP SCG MP

W/log(W )* �13.5/4.2* �13.1/16.3* 49.5/23.9* 49.4/27.0*

Re /log(Re)* 0.9/1.1* 14.4/7.8* 18.6/3.2* 40.1/8.2*

Rc /log(Rc)* �5.4/0.3* �4.4/2.9* 8.9/0.9* 13.7/3.3*

Vtm/log(Vtm)* �4.7/�2.3* �18/�12.8* 16.7/10.7* 21.7/15.1*

1280 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 63



matches the observations as closely as possible. The

cost function is defined as

J � �x0 � xb�TB�1�x0 � xb�

� �
�,t

�	v�
r � 
r
0�2 � 	w�W � Wo�2� � Jp, �24�

where x0 represents the model state at the beginning of

the assimilation window and xb represents the large-

scale background (e.g., an analysis using all obser-

vations other than radar observations). The symbol B

denotes the background covariance matrix and is as-

sumed diagonal and constant in this study. The variable

�r is the radial velocity computed from the model ve-

locity components; �o
r is the observed radial velocity; W

is the modeled rainwater content; and W0 is the rain-

water content estimated from radar reflectivity.

The terms �� and �w are weighting coefficients for

radial velocity and water content and are assumed

to be constant. To have comparable contributions from

the radial velocity and water content terms, �� � 1 and

�w � 100 in this study. The symbol Jp denotes the

spatial and temporal smoothness penalty term. The

function of the penalty term is to ensure a smooth fit to

the observations. Its exact form can be found in Sun

and Crook (2001). Minimization of (24) requires

knowledge of the gradient of the cost function, which is

provided by the adjoint of the forecast model. The SCG

model parameterization for rain microphysical pro-

cesses (21)–(23) is used in the forecast model and their

adjoint is derived to give the gradient for the variational

analysis.

FIG. 8. Comparison of microphysical parameterizations estimated from radar observations using the CG, SCG, and MP models. The

data were collected on 2 Sep 1998 with NCAR’s S-pol radar.
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The simulation domain is a region of 140 	 140 	 15

km3 with 70 	 70 	 30 grid points. The cloud model is

initialized by assimilating radar data from the Mel-

bourne, Florida, Weather Surveillance Radar-1988

Doppler (WSR-88D; KMLB). (For this storm, volu-

metric measurements with the polarization radar were

not available.) Thunderstorms examined here formed

in central Florida on 2 September as part of an outer

rainband associated with Hurricane Earl. Three volu-

metric datasets at 2310, 2315, and 2320 UTC, when the

storms were most intense, are used for model initializa-

tion with the 4DVAR technique. Figure 9 shows the

model domain and the locations of the KMLB and S-

pol radars, and a sounding site at the Kennedy Space

Center. The observed radial velocity (color) and reflec-

tivity (contour) from KMLB are also shown in Fig. 9.

The radar data were edited to eliminate contamination

caused by insects and ground clutter. Radar reflectivi-

ties (ZH � 5 dBZ) were converted to rainwater con-

tents using (9) and (20) for the SCG model and (5) for

the MP model. The first guess (and background) of the

4DVAR data assimilation is from a sounding released

at 1900 UTC (Fig. 10).

The initial conditions were found iteratively until a

step change of the cost function fell below a threshold

value. It took 117/105 iterations for the SCG/MP mod-

els. The initial condition from the 4DVAR was then

used to make forecasts with SCG and MP microphysi-

cal parameterizations. The model rainwater contents

are converted to radar reflectivities by solving inversion

problems of (9) and (20) for SCG model and (5) for the

MP model (using the two curves in Fig. 5). Figure 11

shows the reflectivity results at the first model level

(0.25 km above ground) for the initialization time (2320

UTC) and for 15-, 30-, 45-, and 60-min forecasts (2335,

2350, 0005, and 0020 UTC, respectively). The retrieved

wind field at the initialization time and the forecast

wind are overlaid on the reflectivity field. The left

(right) column presents results for the SCG model (MP

model) parameterization. The radar observations are

shown in the middle column for comparison.

Before examining the impact of microphysical pa-

rameterization on model forecasts some issues associ-

ated with the 4DVAR analysis need to be discussed.

Insertion of radar observations into the background

field shocks the system creating poorly represented

convergence and divergence regions that take some

time to dampen out. Regions of weak precipitation

seen primarily in the initialization for the SCG simula-

tion but not in the radar measurements are a manifes-

tation of this problem and because of the small contri-

bution to the cost function. Note that the spurious pre-

cipitation rapidly dissipates. As discussed below, the

problem is less evident with the MP parameterization.

The apparent better initialization with the MP model

could be due to a wrong reason of overestimation for

evaporation. If we look at the region for the reflectivity

�20 dBZ, the SCG model results agree with the obser-

vation better than that with the MP model. It is ex-

pected that the effect of the false weak precipitation on

the forecasts is small because the rainwater content in

these regions is very low (�0.03 g m�3). Neither of the

model simulations forecast the storms that develop in

the southern half of the data domain. The sources caus-

ing the storms were not fully included in model initial-

ization. The new convection may have modified the

inflow air to the storms in the northern portion of the

data domain. It is difficult to quantify the impact these

storms had on the observed convection and their ab-

sence had on the model simulation.

Our results suggest that the SCG model parameter-

ization has several advantages over the MP DSD

model. Stratiform precipitation in the upper-right cor-

ner is better represented in the model initialization and

is better preserved in the forecasts. This is because the

SCG parameterization leads to smaller evaporation and

accretion rates, as discussed in the previous section.

Also, the linearity at low evaporation (a constant de-

rivative) with the SCG model allows better conver-

FIG. 9. Configuration of observation systems [sounding, WSR-

88D (KMLB), S-Pol] and the simulation domain. It shows radial

velocity in m s�1 (color) and reflectivity (contour at 20 and 40

dBZ ) measured by KMLB at 2320 UTC.
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gence in the minimization and a more accurate fit with

observations. The SCG model forecasts of convective

cores (intensity) agree with radar observations better

than the MP model. The MP model tends to overpre-

dict rain intensity in the storm core while underfore-

casting the total storm coverage due to a rapid decay of

the stratiform rain, as shown in Fig. 11. To better illus-

trate the differences of the forecast storm intensity be-

tween the two parameterization schemes, the maximal

reflectivity factors and forecast rainwater contents for

cells 1 to 5 are listed in Table 2. It is clear that the

forecast reflectivity using the SCG parameterization is

significantly closer to the observed reflectivity for all

cells except for cell 4. The difference in the predicted

reflectivity values is due to overpredicted water con-

tents by the MP model and different W–Z relations

used in the SCG and MP model. Perhaps this is a result

of higher evaporation in convective storm cores with

the SCG model. In Fig. 12, we compare rainwater

contents from radar estimates and model forecasts at

the first level for the 30-min forecast. The forecast

results are shown for a threshold of W � 0.001 g m�3.

The upper-left panel is the water content estimated

from polarization radar (S-Pol) measurements of Z

and ZDR using Eq. (9). The upper-right panel is reflec-

tivity-based rainwater estimates from KMLB radar

with Eq. (5). The SCG model forecasted water contents

are consistent with the S-Pol radar estimates from re-

flectivity and differential reflectivity. The MP model

results do not agree with radar estimates from either

dual-polarization measurements or reflectivity only.

Clearly, the SCG forecasts agree with radar estimates

better the MP model in terms of both coverage and

intensity.

FIG. 10. Skew-T diagram for initial temperature, pressure, and wind profiles. The sounding data was collected

at Kennedy Space Center at 1900 UTC, 4 h and 20 min before the model starting time.
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To show the vertical structure of the storm, results at

y � �30 km at initialization and for 30-min forecasts

are plotted in Fig. 13. A radar bright band was not

evident in this warm rain system. Both the SCG and MP

model initializations have background residual precipi-

tation in the left-hand portions of the images, but the

SCG model initialization and forecasts agree with ob-

servations better than the MP model for rain aloft and

FIG. 11. Numerical weather forecasts based on (left) SCG and (right) MP model parameterizations. Radar

observations are shown in the middle column for comparison. Rows show the model and observed reflectivity field

at initialization (2320 UTC) and for 15-, 30-, 45-, and 60-min forecasts (2335, 2335, 2350, 0005, and 0020 UTC).
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near the ground. The high evaporation rate in the MP

model parameterization causes fast decay of rain with

low water content and prevents some stratiform rain

from reaching the ground (e.g., in Fig. 11 for all fore-

casts and in Fig. 13 for the 30-min forecast). The SCG

model results are more accurate and reasonable in

characterizing the spatial precipitation distribution and

storm evolution than the MP model. A number of co-

lumnar precipitation rainouts can be seen in Figs. 11

and 13 (e.g., see large gradients at the edge of some

convective cores). Rainouts, believed to be caused by

inconsistencies in the numerical model system associ-

ated with gradients, occur less frequently with the SCG

model. To quantify the forecast results, Fig. 14 shows

the frequency distribution of reflectivity values (Z � 15

dBZ) of 2350 UTC at height of 0.25, 2.75, and 5.25 km

(Yuter and Houze 1995). Histograms are shown for

both radar observations and model forecasts. In gen-

eral, the forecast results with the SCG model agree with

radar observations better than the MP model results.

5. Summary and discussion

This paper presents a parameterization scheme for

rain microphysical processes based on a constrained-

gamma DSD model developed from disdrometer and

FIG. 12. Comparison of rainwater content (g m�3) from radar estimates and model forecasts for the

first level at 2350 UTC.

TABLE 2. Comparison of 30-min forecasts between the SCG and MP model parameterizations

Observation or forecast Radar observation SCG model MP model

Parameters Z, dBZ Z, dBZ W, g m�3 Z, dBZ W, g m�3

Cell 1 47.7 50.9 3.12 55.8 5.35

Cell 2 46.1 46.7 1.67 53.3 3.81

Cell 3 44.4 43.9 1.11 54.1 4.23

Cell 4 47.4 49.8 2.65 48.3 1.98

Cell 5 46.4 47.6 1.90 52.1 3.28
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polarization radar observations. The CG DSD model

yields smaller evaporation and accretion rates as well

as their derivatives than the MP model for strati-

form rain, and higher Re and Rc in the core regions of

convective storms. The CG model parameterization

was further simplified to a single-parameter scheme

(SCG) in which the microphysical process parameters

are expressed by polynomial functions of rainwater

content. The exponent polynomial form has better per-

formance (continuity and linearity) at lower water con-

tents than the power-law form of the MP model. The

SCG model parameterization produces better varia-

tional analysis for model initialization and better short-

term forecasts for warm rain processes by (i) preserving

the stratiform component of the precipitation and (ii)

predicting the intensity of convective cores more accu-

rately than MP model parameterization. This is because

the SCG model yields less (more) evaporation and ac-

cretion than the MP model at low (high) rainwater

content.

Parameterization coefficients have often been em-

pirically adjusted to produce better forecasts. Such ad-

justments may be applicable because evaporation, ac-

cretion, and precipitation also depend on temperature,

humidity, and storm dynamical processes that are not

included in microphysical parameterization and be-

cause of smoothing effects in model simulation. Reduc-

ing the evaporation and accretion terms may improve

forecast results, but the problems associated with the

nonlinear power-law functions remain. It is important

to have the correct functional forms for the microphysi-

cal process parameters before adjusting their coeffi-

cients. Accurate microphysical parameterization based

on advanced measurement techniques such as polariza-

tion radar observations and disdrometer measurements

is highly desirable and feasible. Because radar provides

large coverage weather observations and a 2D video

disdrometer measures ground truth, a combination of

polarization radar and disdrometer measurements

makes observation-based model parameterization reli-

able and useful.

The CG and SCG model parameterizations derived

in this study can be applied to two-moment and one-

moment numerical weather models, respectively. We

applied the SCG model parameterization in VDRAS in

this study because volumetric polarization radar data

were not available and a two-moment data assimilation

system has not been developed. The SCG model pa-

rameterization is a single-moment parameterization,

much like the MP model, without adding an additional

FIG. 13. As in Fig. 11 except for vertical profiles at Y distance of �30 km at initialization, and for 30-min forecasts.
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variable to a numerical model. The application of the

SCG model in VDRAS is just the first step in using the

CG model in NWP. The results shown in this paper are

not necessarily the best, as there are many factors af-

fecting model forecasting. Nevertheless, it has been

shown that (i) the single-parameter SCG model yields

better model initialization and forecast results than the

MP model, and (ii) the two-parameter CG model has

potential to further improve NWP. Future work will be

on applying the CG parameterization to a two-moment

numerical weather model so that both radar reflectivity

and differential reflectivity are used to characterize rain

microphysics, to initialize the model, and to verify the

forecast.
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APPENDIX

Derivation of Rain Microphysical Process

Parameters for the Constrained-Gamma

Drop Size Distribution

Rain microphysical process parameters: evaporation

rate (Re), accretion rate (Rc), and mass-weighted ter-

minal velocity (Vtm) depend on the rain drop size dis-

tribution (DSD). For a given rain DSD, such as con-

strained-gamma model, the microphysical processes

can be represented by the DSD parameters or model

forecasting parameters (rainwater content and droplet

size). Following Kessler (1969) and Brandes et al.

(2006), the parameters Re, Rc, and Vtm are derived as

follows.

a. Evaporation rate (Re)

As given in Eq. (8.28) of Kessler (1969), the rate of

evaporation of a single raindrop is rewritten with a unit

conversion as

�Me

�t
� 3.55 	 10�7EemeD

8�5�D in mm�, �A1�

FIG. 14. Histograms of reflectivity values at heights of 0.25, 2.75, and 5.25 km for radar

observations and model forecasts. The results are for 2350 UTC, 30-min forecasts.
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where the evaporation coefficient is Ee, D is the rain-

drop diameter, and me is the vapor saturation deficit.

Integrating (A1) over all diameters [Dmin, Dmax] for a

gamma DSD (6) yields the rainwater evaporation rate as

Re � �
Dmin

Dmax �Me

�t
N�D� dD

� 3.55 	 10�7EemeN0�
Dmin

Dmax

D��8�5 exp���D� dD

� 3.55 	 10�7EemeN0�����13�5�����Dmax, � � 13�5� � ���Dmin, � � 13�5��. �A2�

Replacing N0 in (A2) with W using (8), we obtain

Re � 3.55 	 10�7
6W����4�

�w 	 10�3�����Dmax,� � 4� � ���Dmin,� � 4��

	 Eeme�
����13�5�����Dmax,� � 13�5� � ���Dmin,� � 13�5��

� 6.78 	 10�4EemeW�7�5
����Dmax,� � 13�5� � ���Dmin,� � 13�5��

����Dmax,� � 4� � ���Dmin,� � 4��
�g m�3 s�1� �A3�

b. Accretion rate (Rc)

Accretion is the cloud water swept out and accumu-

lated by raindrops. The rate of accretion for a single

raindrop is given by Kessler (1969) in the Eq. (8.21) as

�Mc

�t
� 10�6

�D2

4
Ec�D�
�D�mc�D in mm�, �A4�

where the collection efficient is Ec(D), �(D) is the fall-

ing velocity of the raindrop, and m is the cloud water

content. The collection efficiency E(D) is usually as-

sumed to be constant. The terminal velocity is that of

Brandes et al. (2002)


 � �0.1021 � 4.932D � 0.9551D2 � 0.07934D3

� 0.002362D4 � �
l�0

4

clD
l. �A5�

Substituting (A5) into (A4), integrating the gamma

DSD (6) over all diameters, and replacing N0 with W

using (8), we obtain the accretion rate as

Rc � �
Dmin

Dmax �Mc

�t
N�D� dD

� 10�6�
Dmin

Dmax �D2

4
Ec�D�
�D�mcN�D� dD

�
�

4
	 10�6EmcN0�

Dmin

Dmax

D2�
l�0

4

clD
��l exp���D� dD

�
�

4
	 10�6Ecmc

6W����4�

�w 	 10�3�����Dmax, � � 4� � ���Dmin, � � 4��

	 �
l�0

4

cl�
����l�3�����Dmax, � � l � 3� � ���Dmin, � � l � 3��

�
3

2
	 10�3EcmcW �

l�0

4

cl�
�l�1

����Dmax, � � l � 3� � ���Dmin, � � l � 3��

����Dmax, � � 4� � ���Dmin, � � 4��
�g m�3 s�1�. �A6�
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c. Mass-weighted terminal velocity (Vtm)

The mass-weighted terminal velocity for a gamma rain DSD model is calculated from its definition and (A5) as

follows:

Vtm �

�
Dmin

Dmax

D3
�D�N�D� dD

�
Dmin

Dmax

D3N�D� dD

�

�
l�0

4

cl�
Dmin

Dmax

Dl�3N�D� dD

�
Dmin

Dmax

D3N�D� dD

�

�
l�0

4

cl�
Dmin

Dmax

D��l�3 exp���D� dD

�
Dmin

Dmax

D��3 exp���D� dD

� �
l�0

4

cl�
�l

����Dmax, � � l � 4� � ���Dmin, � � l � 4��

����Dmax, � � 4� � ���Dmin, � � 4��
�m s�1�. �A7�

Hence, (A3), (A6), and (A7) constitute microphysical

parameterization based on a gamma rain DSD model.
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