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Improving Pedestrian Prediction Models With
Self-Supervised Continual Learning

Luzia Knoedler
Bruno Brito

Abstract—Autonomous mobile robots require accurate human
motion predictions to safely and efficiently navigate among pedes-
trians, whose behavior may adapt to environmental changes. This
letter introduces a self-supervised continual learning framework
to improve data-driven pedestrian prediction models online across
various scenarios continuously. In particular, we exploit online
streams of pedestrian data, commonly available from the robot’s
detection and tracking pipeline, to refine the prediction model
and its performance in unseen scenarios. To avoid the forgetting
of previously learned concepts, a problem known as catastrophic
forgetting, our framework includes a regularization loss to penalize
changes of model parameters that are important for previous
scenarios and retrains on a set of previous examples to retain
past knowledge. Experimental results on real and simulation data
show that our approach can improve prediction performance in
unseen scenarios while retaining knowledge from seen scenarios
when compared to naively training the prediction model online.

Index Terms—Continual learning, service robotics, trajectory
prediction, human-aware motion planning.

1. INTRODUCTION

UTONOMOUS mobile robots increasingly populate hu-

man environments, such as hospitals, airports and restau-
rants, to perform transportation, assistance and surveillance
tasks [1]. In these continuously changing environments robots
have to navigate in close proximity with pedestrians. To effi-
ciently and safely navigate around them, robots must be able to
reason about human behavior [2]. Predicting pedestrian trajecto-
ries is challenging, especially in crowded spaces where humans
closely interact with their neighbors. This is the case, since
the occurring interactions are complex, often subtle, and follow
social conventions [3]. Furthermore, humans are influenced by
the robot’s presence [4], features of the static environment, such
as its geometry or obstacle affordance, and various internal
stimuli, such as urgency, which are difficult to measure [5], [6].
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Fig. 1.  Self-supervised Continual Learning (SCL) framework used to contin-
uously improve data-driven pedestrian prediction models online across various
scenarios.

A large amount of research has been done on pedestrian
prediction models [S5]. Recently, the focus has mainly been on
data-driven models which do not rely on hand-crafted functions
and thus allow to capture more complex features and leverage
large amounts of data. They address various aspects of pedestrian
behaviour such as stochasticity [7] and multi-modality [8], [9].
Moreover, they consider the influence of static obstacles [2],
interactions among pedestrians [3] and the robot’s presence [10].
However, these models are trained offline using supervised
learning and thus do not adapt to unseen behaviors or environ-
ments and may fail if the testing data distribution differs from
the training data distribution.

These limitations can be overcome by continuously training
pedestrian prediction models on new streams of data. Hurdles in
applying supervised continuous learning to existing prediction
models are the slow and expensive creation of labeled data sets or
the lack of supervision [11]. Robots operating in the same envi-
ronment as pedestrians can autonomously collect training exam-
ples based on the robot’s never-ending stream of observations.
If arobot can efficiently and autonomously collect examples, its
internal prediction models can be updated on the fly and the robot
can effectively adapt its behavior. However, neural networks are
prone to forget previously learned concepts while sequentially
learning new concepts [11]. This phenomenon is referred to as
catastrophic forgetting. To overcome catastrophic forgetting, we
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use a regularization strategy, namely elastic weight consolida-
tion (EWC) [12], to selectively slow down learning for important
model parameters, in combination with rehearsing a small set
of examples from previous tasks.

The main contribution of this work is therefore the introduc-
tion of a self-supervised continual learning framework that uses
online streams of data of pedestrian trajectories to continuously
refine data-driven pedestrian prediction models, see Fig. 1. Our
approach overcomes catastrophic forgetting by combining a
regularization loss and a data rehearsal strategy.

We evaluate the proposed method in simulation, showing
that our framework can improve prediction performance over
baseline methods and avoid catastrophic forgetting, and in ex-
periments with a mobile robot, showing that our framework can
continuously improve a prediction model without the need for
external supervision.

II. RELATED WORK

In this section, we describe relevant approaches for pedestrian
motion prediction and continual learning.

A. Pedestrian Motion Prediction

There has been a vast amount of work devoted to pedes-
trian trajectory prediction [5]. Early works are mainly model-
based, such as the well-known social force model (SFM) which
uses attracting and repulsive potentials to model the social
behaviours of pedestrians [13], and the velocity-based models
which compute collision-free velocities for trajectory predic-
tion [14], [15]. A limitation of these model-based approaches
is that they only utilize handcrafted features, thus not being
able to capture complex interactions in crowded scenarios. To
overcome the limitation, recurrent neural networks (RNNSs)
have been used for human trajectory prediction, which allows
to represent complex features and leverage large amounts of
data [16]. Building on RNNs, [3] utilized LSTM networks
to model time dependencies and employed a pooling layer
to model interactions. [10] proposed a network model that is
aware of the environment constraints. In addition, other network
models have been developed to predict pedestrian trajecto-
ries, including Generative Adversarial Networks (GANs) [8],
[17] and Conditional Variational Autoencoders (CVAEs) [18],
[19]. Albeit being efficient, these models are usually trained
and evaluated using (offline) bench-marking datasets [20]-
[23], which limits their online adaption to unseen scenarios.
In this letter, we propose an approach to improve these mod-
els online by introducing a self-supervised continual learning
framework.

B. Continual Learning

Continual learning (CL) addresses the training of a model
from a continuous stream of data containing changing input do-
mains or multiple tasks [24]. The goal of CL is to adapt the model
continually over time while preventing new data from overwrit-
ing previously learned knowledge. Existing CL approaches that
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mitigate catastrophic forgetting for neural network-based mod-
els can be divided into three categories: architecture-, memory-
and regularization-based [11], [25].

Architecture-based approaches change the architecture of
the neural network by introducing new neurons or layers [26]—
[28]. Intuitively, these approaches prevent forgetting by popu-
lating new untouched weights instead of overwriting existing
ones. However, the model complexity grows with the number of
tasks.

Memory-based approaches save samples of past tasks to
rehearse previous concepts periodically [11]. There are two
types of memory-based methods that differ in the way they
memorize past experiences: rehearsal methods explicitly saving
examples [29] and pseudo-rehearsal methods saving a genera-
tive model from which samples can be drawn [30]. The data
stored in the memory of rehearsal methods can be randomly
chosen or carefully selected [29], [31]. Some methods require
task boundaries [29] while other methods can be applied to the
task free setting [31]. Since memory-based approaches require
a separate memory, they can become unsustainable with an
increasing number of tasks.

Regularization-based approaches add a regularization term
to the loss to prevent modification of model parameters. This
can be done using basic regularization techniques, such as
weight sparsification, early stopping, and dropout, or with more
complex methods which selectively prevent changes in param-
eters that are important to previous tasks [11], [12] introduced
Elastic Weight Consolidation (EWC), a regularization approach
limiting the plasticity of specific neurons based on their impor-
tance determined from the diagonal of the Fisher Information
Matrix (FIM). To compute the FIM, clear task boundaries are
required. Other regularization approaches focus on relaxing this
assumption by automatically inferring task-boundaries [32], or
by calculating the importance in an online fashion over the
entire learning trajectory [33]. In contrast to other categories
of approaches, these regularization-based methods do not re-
quire much computational and memory resources. However,
one downside of regularization-based approaches is that an
additional loss term is added, which can lead to a trade-off
between knowledge consolidation and performance on novel
tasks.

Most of the time, combining different continual learning
strategies results in better performance [11]. Hence, in this letter,
we employ the EWC regularization technique combined with a
data rehearsal strategy to achieve continual learning to improve
pedestrian prediction models.

III. PROBLEM FORMULATION

Throughout this letter, we denote vectors, x, in bold lower-
case letters, matrices, M, in uppercase letters, and sets, X, in
calligraphic uppercase letters.

We address the problem of continuously improving a trajec-
tory prediction model online using streams of pedestrian data.
This data includes the position and velocity of all n tracked
pedestrians over time, and an occupancy map of the static
environment S. The position, velocity, and the surrounding static
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Fig. 2.

Schematics of the SCL framework. The aggregation dataset is collected by extracting examples from the stream of tracked surrounding pedestrians (task

aggregation). The prediction model is trained using the aggregated dataset and a separately saved coreset applying a EWC regularization to prevent catastrophic

forgetting (model adaption).

environment of the i-th pedestrian at time ¢ are denoted by
p; = [pl Pl ). vi = [0}, vl ], and O™ C S, respectively.
The sub-scripts x and y indicate the x and y direction in the
world frame. The super-script 7 denotes the query — agent, i.e.,
the pedestrian whose trajectory we want to predict.

Denote by X} the observations acquired within a past time
horizon t,,s for predicting pedestrian ¢’s future trajectory, which
typically includes its own states, the states of the other pedes-
trians and environment information. Further denote by )AJZ the
predicted trajectory of pedestrian ¢ over the future prediction
horizon teq.

We seek a data-driven prediction model )i = fg(X}), with
parameters 6, that best approximates the true trajectory )} across
the entire previous stream of states for every tracked pedes-
trian i € {1,...,n}. The true trajectory Y; will only become
available in hindsight after observing the trajectory taken by
pedestrian 4 during t,.eq. Thus, we formulate the problem of
continually learning a data-driven prediction model from past
observations at time ¢ as a regret minimization problem:

n t
nglnz Z o%)red(j)-,i—a y:—)v

1=1 T=t—this

(D

where t1,;5 is the entire elapsed time until ¢ and .Zeq (V2, V1)
is the regret at one past time step 7 for pedestrian 4, which will
be described in later sections.

IV. METHOD

In this section, we introduce the Self-supervised Continual
Learning (SCL) framework, an online learning framework to
continually improve pedestrian prediction models. Section IV-A
presents the overall structure of SCL, Section I'V-B the prediction
network architecture, Section IV-C the data aggregation and
Section IV-D the model adaption.

A. Self-Supervised Continual Learning

The SCL architecture consisting of two phases: a task ag-
gregation and a model adaptation phase is presented in Fig. 2.
Firstly, we use a prediction model which was pre-trained on
publicly available datasets [20], [21] and aggregate new training
examples using the surrounding pedestrians as experts (task ag-
gregation) for a period of time 7'. Then, we update the prediction
model using the aggregated data of the current task and a small
constant sized coreset, which contains examples from previous
tasks (model adaptation). During the model adaption phase,
we apply a EWC loss to preserve the prediction performance
on previous tasks. The two phases run alternately over time to
create a continuous learning autonomous robot. During the task
aggregation phase, we associate a new task to a new environment
on which the model was previously not trained on. To distinguish
between tasks, we will refer to the currently considered task as
tasky. The previous tasks are referred to as tasky.;—; where the
subscript O refers to the initial task.

B. Prediction Network Architecture

To evaluate our online learning framework we use a data-
driven pedestrian prediction model building on [2]. Please note
that our approach does not depend on which network model
we use. However, the memory requirements scale linearly with
the number of tasks and model parameters. Fig. 3 shows the
network model which uses three streams of information. The
first input is the query-agent’s velocity over an observation time
window Zobs, ngtobs:t’ which enables the model to capture the
pedestrian’s dynamics. The second input is the occupancy grid
information O7"}"" ., that contains information about the static
obstacles centered on the query-agent. In contrast to [2], the
third input is a vector containing information about the rela-
tive position and velocity of surrounding pedestrians O;°¢*",.
This adaption was done because the model using an angular
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Fig. 3. Pedestrian motion prediction model architecture.
pedestrian grid, presented in [2], has shown difficulties learning
social interactions [19]. For one neighbor pedestrian j the vector
including the relative measurements to the query-agent ¢ at time
tis

e;” = [pi —pt, vi = vil.
Thus, the information vector at time ¢ is defined as

social,i 7,1 7,0—1 7,1+1
O =ley,...,e0" ey

Hence, the information used for trajectory prediction of
pedestrian 7 is X} = (vi_, O™y 1, 05°9%M,), and the

el

obs:t? t—tops:t
. . : " .
prediction  model is given by Vi 4. = fo
i env,i social,i .
(Vitopait> Otmtlpots Ot 1), Where  the trajectory pre-

dictions are represented by a sequence of velocities, i.e.
Vi=Vi, ttyq- We use the permutation invariant sort
function as an attention mechanism by sorting the relative
vectors of surrounding agents by euclidean distance [34]. To
handle a variable number of pedestrians, only the closest n
pedestrians are considered. For situations with fewer than
n surrounding pedestrians, the relative vector of the closest
pedestrian is repeated.

C. Task Aggregation

For each task &, SCL saves the inputs of the prediction model,
X = (Vi 0 O s Ofiij}s’;), in a buffer for each time
step t = {—tpus, - .., 0} (see Fig. 2). Then, for each time step
t, the ground truth velocity sequence vj_ ., 4ty 18 extracted
in hindsight from the buffer and the corresponding input to the
prediction model X} (red arrows in Fig. 2). We aggregate the
velocity vectors (Target) together with the corresponding model
inputs (Input) and store them in the aggregated task dataset Dy, as
an example. The examples are aggregated as a sequence. As we
use a recurrent prediction model and train the model with trun-
cated back-propagation through time #y,,,¢, we only aggregate
sequences of examples with a length of tyug = tpred + tibptt-
We collect training examples for 7' seconds.

D. Model Adaption

We present the overall SCL procedure in Algorithm 1. For
each task, we aggregate a dataset Dy, over T' seconds. Then,
the model is adapted using Dj, and a set containing examples
of previous tasks referred to as coreset Deoreset. The Coreset
Rehearsal strategy is applied to mitigate forgetting. Thus, the
training dataset is defined as follows:

ﬁ = Dk U Dcoreset-

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 2, APRIL 2022

In the model adaptation phase, SCL uses the training dataset Dto
train the network for ) epochs. The training loss is composed by
a prediction loss and a regularization loss to avoid catastrophic
forgetting: Zirain = ZLpred + Lreg. We define the prediction
loss as the average norm between the predicted velocity se-
quence and the ground truth:

t+tpred
Lprea Vi, Vi) = — > RV )

pred -1y
We employ EWC [12] as regularization loss method to preserve
prediction performance on the previous tasks (taskg.;—1) and
overcome catastrophic forgetting. EWC penalizes the distance
between the new model parameters, @, and the previous task
parameters, 0¢.;_1, depending on their importance to keep the
knowledge of previous tasks. After learning each task, EWC
computes the corresponding importance parameter by using the

diagonal elements of the FIM F', which are defined as:

2
1
Fr.j; = ) (3)
23 Ika‘ Z 6_02>

XeDy,
where k represents the task number, Dy, is the training data
containing trajectories from task k, fo (X) is the predicted output
of the network with parameters 8 given data X' € Dj,. The impor-
tance measure Fy, is saved together with the network weights 6.
Based on F{.;—1 and 8., the following regularization term
is added to the loss function:

dlog fo(X)
56

Ead
|
—

ﬂeg(e) - Fl(e - 91)2, (4)

| >

l

I
o

where 6 is the current set of weights for the current task k£ and A
is the hyperparameter that dictates how important not forgetting
the old task is compared to learning the new one.

After the model adaptation phase is completed, we update the
coreset with M/ examples of the latest task (tasky ). Importantly
the new examples replace existing ones to ensure the coreset
remains of constant length N. We randomly select which exam-
ples to drop to update the coreset. After training the datasets Dy,
and D are cleared.

V. RESULTS

In this section, we present quantitative and qualitative results
in both simulation and real-world experiments.

A. Experimental Setup

The prediction model parameters are displayed in Fig. 3. We
pre-train the prediction model on the ETH and UCY pedestrian
datasets [20], [21] for 60 epochs. Our online learning framework
will improve this pre-trained model based on the behavior of
surrounding pedestrians. The applied hyperparameters are sum-
marized in Table I. Note that although ¢,,s = 0, the past states
are implicitly taken into account through the internal memory
of the LSTMs. First, we evaluate our framework in simulation

Authorized licensed use limited to: TU Delft Library. Downloaded on March 08,2022 at 15:05:14 UTC from IEEE Xplore. Restrictions apply.
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Algorithm 1: The Self- Supervised Continual Learning
(SCL) Framework.

1 Load pretrained model: fy

2 Load map: &

3 Initialize coreset: Deoreset <— 0
4 for k = 0 to co do

5 Initialize the empty task dataset: Dy < 0)
6 Aggregate examples for 7" seconds as follows:
7 fort=0to T do
8 Process pedestrian positions p?, velocities v¢, and
the occupancy grid O™ to model inputs X and
save them to a buffer for ¢ € {1,...,n}
9 Get examples from buffer:
gt = {(thvytl)7 ety (th7ytn)}
10 Update task dataset: Dy + Di |J &
11 end
12 Combine coreset and task: D < D U Deoreset
13 Train prediction model fs on D using EWC
14 Save EWC importances F}, and the updated parameters
05, of tasky
15 Update coreset Deoreser With M random examples from
Dy, .
16 Clear Dy, D from memory
17 end
TABLE I
HYPERPARAMETERS
time-step 0.2s || # training epochs Q) 250
task length 7° 200s|| learning rate 2x 1073
buffer size tpug 6s L2 regularization 5x 1077
predict. time tpreq | 38 EWC parameter A 1 x 10°
thptt time it 3s coreset size N/update size M | 100/ 20
observ. time t,phg 0s validation set size L., 100

assuming full knowledge of the map and current states of all
pedestrians. The pedestrian behaviour is simulated using the
SFM [13] and Reciprocal Velocity Obstacle model (RVO) [35].
We train the prediction model incrementally on arbitrary orders
of these environments.

To evaluate how well our framework scales to complex sce-
narios with more pedestrians we rerun the above experiments in
simulation with an increased number of pedestrians.

Then, we apply SCL in real-world experiments. Here, the
true pedestrian behavior differs from the models assumed during
simulation. To eliminate the perception-related errors as much
as possible, we first test our framework with an optical tracking
system (Optitrack) that provides pose information of all tracked
pedestrians. We set up three scenarios to replicate the simulation
environments. Finally, we evaluate our framework in an uncon-
trolled hall using only the on-board sensing and, a detection and
tracking pipeline.

B. Baseline Methods

We evaluate our method against three baseline approaches in
both simulation and real-world experiments:
1) Offline: The prediction model is trained offline on all
tasks. This baseline represents a performance upper-bound
assuming that all data is available.

4785

(a)

Fig. 4. The considered simulation environments consist of (a) Square, (b)
Obstacle, and (c) Hall environments.

2) Vanilla: The prediction model is trained using only the
aggregated data and standard gradient descent without any
regularization loss.

3) EWC: The prediction model is trained using only the
aggregated data with EWC regularization, but without
coreset rehearsal.

In simulation, we additionally consider the following base-

lines:

1) Coreset: The prediction model is trained using the aggre-
gated data and coreset data.

2) CV: The human behaviour is predicted using the constant
velocity model, no learning is applied.

The CV model was added since it was shown to outperform
state-of-the-art data-based prediction models [36] and to enable
robust navigation around humans [37]. A limitation of the CV
model is that it does not consider obstacles.

Since our focus is on applying continual learning strategies
to improve pedestrian prediction models on the fly without
forgetting, we only change the learning strategy across baselines
and keep the prediction network architecture fixed. Similar to
other works on pedestrian prediction models, we use the average
displacement (ADE) and final displacement error (FDE) as
performance metrics [19], [34].

C. Tasks

We consider three distinct environments, i.e., tasks, displayed
in Fig. 4:

1) Square: An infinite corridor setting with three pedestrians

walking clockwise and three anticlockwise.

2) Obstacles: Pedestrians walking towards each other in an

obstacle filled space.

3) Hall: Pedestrians walking towards each other in a hall

while behaving cooperatively.

The scenarios were selected since they include encounters
typically experienced in everyday situations. The specific envi-
ronments were chosen to investigate social interactions (Hall),
obstacle interactions (Obstacle) and semantic knowledge of
the map (Square). To additionally evaluate our framework in
scenarios with more interacting agents we consider the above
environments with 10 and 20 pedestrians. For the obstacle-
free environments, we use the open-source pedsim simulation
framework! employing the SFM [13] to simulate the pedestrian
behavior. For environments with static obstacles, we employ the

![Online]. Available: https://github.com/stl-freiburg/pedsim_ros
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TABLE II
QUANTITATIVE RESULTS OF THE CV PREDICTION AND VANILLA, EWC, CORESET AND SCL TRAINING APPROACHES FOR FOUR ENVIRONMENT SEQUENCES.

square — obstacle — hall obstacle — square — hall hall — obstacle — square obstacle — hall — square
forgotten seq. end forgotten seq. end forgotten seq. end forgotten seq. end

Method (mean=std) (mean=std) (mean4-std) (mean=std) (mean=std) (mean4std) (mean=std) (mean=std)
cv +0.00+0.00/ 1.12£1.18/ +0.004-0.00/ 1.2541.29/ +0.004-0.00/ 1.12+1.17/ +0.0040.00/ 1.26+1.31/
+0.0040.00 1.09+1.69 +0.00+0.00 1.10+1.65 +0.0040.00 1.16£1.91 +0.0040.00 1.24+1.92

Vanilla +0.1240.29/ 0.2140.31/ +0.1040.23/ 0.21+0.27/ +0.2040.27/ 0.27+0.26/ +0.1840.20/ 0.26+£0.21/
+0.31+0.74 0.49+0.79 +0.27+0.62 0.47+0.63 +0.51£0.62 0.62 +0.58 +0.52+0.51 0.63£0.51

EWC +0.10+0.25/ 0.19+0.25/ +0.05+0.13/ 0.17+0.13/ +0.1240.17/ 0.22+0.16/ +0.1040.18/ 0.21£0.19/
+0.28+0.67 0.46£0.66 +0.12+0.37 0.37£0.35 +0.33+0.44 0.51£0.41 +0.27+0.47 0.48+0.45

Coreset +0.03+0.09/ 0.16-£0.12/ +0.05+0.11/ 0.1740.14/ +0.03+0.10/ 0.17+0.13/ +0.04-0.09/ 0.1940.15/
; +0.09+0.27 0.36-:£0.34 +0.12+0.29 0.38+0.34 +0.08+0.25 0.360.28 +0.12+0.24 0.40£0.31
SCL +0.02+0.10/ 0.16£0.14/ +0.01+0.08/ 0.15+0.12/ +0.03+0.08/ 0.17+0.12/ +0.04+0.09/ 0.17+0.13/
+0.07+£0.29 0.36:£0.40 +0.04+0.20 0.34+0.27 +0.07£0.20 0.37£0.30 +0.08+0.21 0.36+0.28

SCL-10 +0.00+0.10/ 0.20=£0.17/ +0.01+£0.12/ 0.20£0.16/ +0.00+£0.08/ 0.20=£0.15/ +0.0140.10/ 0.20+0.14/
+0.0040.23 0.4540.40 +0.031+0.25 0.44+0.37 +0.0140.19 0.45+0.33 +0.0140.26 0.44+0.33

SCL-20 +0.0440.12/ 0.224-0.19/ +0.024-0.10/ 0.20+0.16/ +0.0440.11/ 0.21+0.18/ +0.0340.12/ 0.22+0.18/
+0.1040.31 0.49+0.42 +0.0540.25 0.46+0.37 +0.084+0.26 0.4740.40 +0.06+0.28 0.5040.41

The table lists the mean =+ standard deviation (std) of ADE / FDE for all environments at the sequence end under seq. end and the mean = std of the forgotten ADE / FDE,
which refers to the average increase in ADE / FDE on previous environments across the learning sequence. The results for the dense scenarios are included as SCL-10 and

SCL-20. All error measures are presented in meters.

RVO method [35]? as pedestrians following the SFM may still
collide with obstacles.

D. Simulation Results

‘We evaluate the prediction performance of the network model
trained with our method (SCL) versus the baselines on different
sequences of environments (square, obstacle, hall) starting
from a pre-trained model. Each environment is observed for T’
seconds to create the aggregated dataset on which the model
is trained. Thus, each environment corresponds to a new task.
To compute the ADE/FDE performance metrics, we collect a
validation set for each environment including L, examples not
used during training.

Table II reports the mean and standard deviation (std) of
ADE/FDE evaluated at the end of the sequence on all three envi-
ronments, under the columns denoted by seq. end. The columns
denoted by forgotten report the mean and std of ADE/FDE
increase of the prediction model on previous environments
after training on new environments. It can be seen that SCL
outperforms Vanilla. The significant increase in mean forgot-
ten ADE/FDE for Vanilla indicates that naive online training
over changing environments using standard gradient descent
results in catastrophic forgetting. Our method is independent
of sequence order, arriving at within £0.02 of the same mean
ADE/FDE for all orders.

To gain insight into where catastrophic forgetting occurs, we
save the models trained for the sequence (square — obstacle —
hall) after each training step and apply them to the validation set
of the square scenario only. Fig. 5 compares the performance of
the different training methods on the square scenario validation
set at each training step. By evaluating a single environment
over time, we can clearly visualize when and how much the
models degraded in prediction performance in the respective
environment. For ease of comparison, the offline trained model
is also plotted as a constant line. In the first section, all models

2[Online]. Available: https:/github.com/sybrenstuvel/Python-RVO2
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Fig. 5. Prediction performance of models trained on square — obstacle —
hall sequence evaluated on only the square scenario. Shows ADE (top) and
FDE (bottom) of all training methods on the validation set of the square task,
while learning new tasks. Note that the offline model is added for comparison
purposes only.

are trained on the aggregated dataset of the square scenario and,
as expected, the error measures decrease for all online learning
methods reaching better performance than offline trained predic-
tion model due to overfitting. However, when changing from the
square environment to the obstacle environment, the ADE/FDE
performance quickly and drastically degrades for the Vanilla
baseline (red arrow). It can be seen that using EWC to selectively
slow down learning on important parameters helps to signifi-
cantly mitigate the magnitude of the loss in ADE/FDE. Never-
theless, after two subsequent tasks, the EWC baseline performed
~ 30% worse on FDE and ~ 20% worse on ADE. Rehearsing
a set of past examples enables to retain more knowledge after
two subsequent tasks than applying EWC. Combining EWC and
the coreset rehearsal as done in SCL helps to further mitigate
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TABLE III
STATISTICAL SIGNIFICANCE ANALYSIS USING THE MANN-WHITNEY U TEST

obstacle hall square
Method ADE FDE ADE FDE ADE FDE
(&\% p=0.00|p=0.00|p=0.00|p=0.00p=0.00p=0.00
Vanilla |[[p=0.00p=000|p=000|p=0.00|p=097|p=053
EWC p=006|p=0.02|p=004|p=0.01|p=0065|p=0.71
Coreset [|[p=0.29 |p=0.09|p=0.63|p=068| p=022|p=0.33

Comparison of SCL’s performance (i.e., ADE and FDE) against all baselines on each
environment for the obstacle — hall — square sequence. Significant results are displayed
in bold considering a 5% confidence-level.

forgetting. SCL was able to train in two subsequent scenarios
while retaining knowledge of the initially experienced scenario.
We have performed pair-wise Mann-Whitney U tests between
our proposed method and each baseline to evaluate the statistical
significance of the presented results. Table III shows the p-values
comparing the performance results (i.e., ADE and FDE) on
each scenario for the obstacle — hall — square sequence. SCL
significantly outperforms CV on all environments, the Vanilla
baseline on all past environments, and EWC on one environment.
Rehearsing alone achieves marginally worse results than SCL.
Please note that the presented results consider a limited set of
environments with limited complexity. We expect that as the
number of scenarios and complexity increases, differences in
performance between the baselines become significant.

E. Dense Scenarios

To evaluate how well our framework scales to complex scenar-
ios with more pedestrians we employ the above simulation envi-
ronments with increased numbers of pedestrians (n = {10, 20}).
The results are presented in Table II. It can be seen that SCL
scales well to dense scenarios with more agents achieving
similar performance for 10 and 20 pedestrians. The forgotten
ADE/FDE even decreases for some sequences, indicating that
observing more pedestrians can improve the preservation of past
experiences.

F. Real-World Results

We first evaluate our method in real-world experiments as-
suming perfect perception capabilities by using an external
high-precision Optitrack tracking system. Secondly, we use the
robot’s on-board sensing capabilities combined with a detection
and tracking pipeline.

1) Perfect Perception: To evaluate our framework using the
Optitrack system, we set up three environments to replicate the
ones considered in simulation (i.e., square, obstacle, coopera-
tive). Each environment is observed for 7" seconds. Table IV
reports quantitative results on two different sequence orders
similar to Table II. Our framework significantly outperformed
the Vanilla baseline on both metrics indicating that we can
not only learn a prediction model from real human motion but
also that we need to consolidate the learned knowledge. SCL
was able to improve prediction performance and learn certain
concepts, such as avoiding crashing into walls, pillars, or fences.
Fig. 6 shows a qualitative example of the experiment, where our
framework learns to avoid both static obstacles and pedestrians.
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TABLE IV
QUANTITATIVE RESULTS OF VANILLA, EWC AND SCL ON REAL-WORLD DATA
COLLECTED USING AN OPTICAL TRACKING SYSTEM

square — obstacle — coop. || obstacle — square — coop.
forgotten seq. end forgotten seq. end

Method || (mean=std) | (mean=std) || (mean+std) | (meanzstd)
Vanilla +0.244-0.28/ | 0.46+0.29/ || +0.214-0.26/ | 0.45+0.29/
+0.58+0.67 | 0.9740.66 +0.50+0.64 | 0.944+0.63

EWC +0.1940.29/ | 0.43+0.27/ || +0.1240.23/ | 0.41£0.25/
+0.42+0.67 | 0.86+0.61 +0.31£0.58 | 0.87+0.56

SCL +0.04+0.21/ | 0.36+0.23/ || +0.051-0.22/ | 0.40+0.28/
+0.13+£0.50 | 0.73+0.56 +0.11+0.50 | 0.804-0.60

The table lists the mean =+ standard deviation (std) of ADE/FDE on all environments
at the sequence end under seq. end and the mean = std of the forgotten ADE / FDE,
which refers to the average increase in ADE / FDE on previous environments across
the learning sequence. All error measures are presented in meters.

Fig. 6. Real-world validation using an Optitrack system that streams the
pedestrian states. The predicted pedestrian trajectories are depicted as green
and blue disks.

&
&
&

&

Fig. 7. Map view of the real-world application of SCL on moving robot using
on-board perception. The green and blue disks depict the predicted trajectories
employing the pre-trained model and the SCL-trained model, respectively. The
red dotted lines depict the pedestrians’ past trajectories. The pedestrians’ and
robot’s future trajectories are shown as solid red lines.

2) On-Board Perception: We now evaluate our framework
in an uncontrolled hall environment using the robot’s detection
and tracking pipeline (i.e., LIDAR and cameras). In Fig. 7
we show qualitative results of the experiments with a moving
robot. The fact that the robot is constantly moving reduced the
average collected trajectory length of the interacting pedestrians
making the prediction problem harder. Thus, employing SCL in
more dense environments is expected to further improve the
resulting prediction performance. Nevertheless, the prediction
model learned online when pedestrians are likely to take corners,
by observing how real pedestrians walk in the environment.
Note that the ETH and UCY datasets, on which our model was
pre-trained, contain almost no interactions with static obstacles,
yet our framework autonomously learns obstacle interactions.
Furthermore, the occupancy map shown in Fig. 7 is generated
by the robot itself using the depth information from its LiDAR.
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Thus, our framework can continuously learn in new and unseen
environments autonomously.

VI. CONCLUSIONS & FUTURE WORK

This letter introduces a Self-supervised Continual Learning
framework (SCL) to improve pedestrian prediction models using
online streams of data. We combined Elastic Weight Consolida-
tion (EWC) and the rehearsal of a small constant sized set of ex-
amples to overcome catastrophic forgetting. We showed through
experiments that SCL significantly outperforms vanilla gradient
descent and performs similarly to offline trained models with
full access to pedestrian data in all considered environments.
Additionally, we showed in real-world experiments that our
pedestrian prediction model can learn to generalize to new and
unseen environments over time. Future work can investigate dif-
ferent methods to determine when the model should be updated,
how different pedestrian behaviour types could be integrated
into our framework and the integration of our approach with a
motion planner to improve the interaction-awareness between
pedestrians and the robot.
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