s

S,
FKTHE

VETENSKAP
38 OCH KONST 2%

N

KTH Information and
Communication Technology

Improving Performance and Quality-of-Service through
the Task-Parallel Model

Optimizations and Future Directions for OpenMP

ARTUR PODOBAS

Doctoral Thesis in Information and Communication technology
KTH Royal Institute of Technology
School of Information and Communication Technology

KTH
TRITA-ICT 2015:13 SE-100 44 Stockholm
ISBN 978-91-7595-711-1 SWEDEN

Akademisk avhandling som med tillstand av Kungl Tekniska hogskolan framlagges
till offentlig granskning for avlidggande av doktorexamen 2015-11-10 i KTH Forum
Kista.

(© Artur Podobas, 2015, September 25

Tryck: US-AB

Abstract

With the failure of Dennard’s law, which stated that shrinking transistors will be
more power-efficient, computer hardware has today become very divergent. Initially
the change only concerned the number of processor on a chip (multicores), but
has today further escalated into complex heterogeneous system with non-intuitive
properties — properties that can improve performance and power consumption but
also strain the programmer expected to develop on them.

Answering these challenges is the OpenMP task-parallel model — a programming
model that simplifies writing parallel software. Our focus in the thesis has been to
explore performance and quality-of-service directions of the OpenMP task-parallel
model, particularly by taking architectural features into account.

The first question tackled is: what capabilities does existing state of the art
runtime-systems have and how do they perform? We empirically evaluated the
performance of several modern task-parallel runtime-systems. Performance and
power-consumption was measured through the use of benchmarks and we show that
the two primary causes for bottlenecks in modern runtime-systems lies in either the
task management overheads or how tasks are being distributed across processors.

Next, we consider quality-of-service improvements in task-parallel runtime-systems.
Striving to improve execution performance, current state of the art runtime-systems
seldom take dynamic architectural features such as temperature into account when
deciding how work should be distributed across the processors, which can lead to
overheating. We developed and evaluated two strategies for thermal-awareness in
task-parallel runtime-systems. The first improves performance when the computer
system is constrained by temperature while the second strategy strives to reduce
temperature while meeting soft real-time objectives.

We end the thesis by focusing on performance. Here we introduce our original
contribution called BLYSK — a prototype OpenMP framework created exclusively
for performance research.

We found that overheads in current runtime-systems can be expensive, which
often lead to performance degradation. We introduce a novel way of preserving
task-graphs throughout application runs: task-graphs are recorded, identified and
optimized the first time an OpenMP application is executed and are later re-used
in following executions, removing unnecessary overheads. Our proposed solution
can nearly double the performance compared with other state of the art runtime-
systems.

Performance can also be improved through heterogeneity. Today, manufactur-
ers are placing processors with different capabilities on the same chip. Because
they are different, their power-consuming characteristics and performance differ.
Heterogeneity adds another dimension to the multiprocessing problem: how should
work be distributed across the heterogeneous processors? We evaluated the per-
formance of existing, homogeneous scheduling algorithms and found them to be
an ill-match for heterogeneous systems. We proposed a novel scheduling algorithm

that dynamically adjusts itself to the heterogeneous system in order to improve
performance.

The thesis ends with a high-level synthesis approach to improve performance
in task-parallel applications. Rather than limiting ourselves to off-the-shelf pro-
cessors — which often contains a large amount of unused logic — our approach is
to automatically generate the processors ourselves. Our method allows us to gen-
erate application-specific hardware from the OpenMP task-parallel source code.
Evaluated using FPGAs, the performance of our System-on-Chips outperformed
other soft-cores such as the NioslI processor and were also comparable in perfor-
mance with modern state of the art processors such as the Xeon PHI and the AMD
Opteron.

Sammanfattning

Anda sedan Dennard’s forutsdgelse om att mindre transistorer dven férbrukar
mindre stréom avtog har processorer med flera kirnor blivit den framsta kandidaten
att forbattra datorers prestande. Idag &r i princip alla processorer sa-kallade mul-
ticores, alltsa processorer som i sig innehaller ett flertal mindre processor som delar
utrymme och minne med varandra.

Detta paradigmskift medforde stora forandringar. Historiskt sett har man
utvecklat mjukvara med seriel programkorning i atanke. Att nu behdva ténka
parallellt ndr man utvecklar program &r svart och tidskrdvande, atminstone med
de flesta utvecklingsverktygen som finns.

Ett verktyg som faktiskt underléttar utveckling av parallella program ar OpenMP.
OpenMP kriver vildigt fa &ndringar i ursprungsprogrammet, har en enkel program-
meringsmodel och ar portabel, vilket har gjort den till en av de mer framgangsrika
parallella programmeringsmodellerna. Framfor allt sa ger OpenMP tillgang till kon-
ceptet tasks. Konceptet har blivit en populdr metod vid parallellisering av program
eftersom det erbjuder asynkron och komposerbar parallellism.

I arbetet presenterat i denna avhandling behandlar vi framtida utokningar av
OpenMP och liknande, task-parallella, programmeringsmodeller. Vi har undersokt
hur dagens moderna task-parallella runtime-system presterar och vad som skiljer
dem at. Genom benchmarks och sma specialskrivna program har vi visat att den
fraimsta orsaken till dalig prestanda &r schemaldggningen och omkostnader i att
underhalla parallellismen i programmen.

Vidare har vi forbattrat prestandan genom att ta temperatur i beaktande vid
schemaléggning av tasks pa processorer. Genom att ge runtime-systemet — alltsa
den modul som bestdmmer vilken processor som skall utfora vilket arbete — atkomst
till &ndringar i processorns temperatur har vi visar hur schemaléggning kan undvika
att processorn Gverhettas, vilket leder till en forhojd prestanda. Vi har &ven un-
dersokt hur man kan minska varmeutvecklingen vid real-tids mal genom att forsatta
processorer i viloldge om de inte behovs.

Avhandlingen avslutas med fokus pa prestanda. Dagens och framfor allt framti-
dens system kommer att bli med heterogena. Med heterogena menas att ett fler-
tal olika processor kommer dela samma yta kisel. Ett exempel pa heterogenitet i
dagsléget ar system dér grafikkortet ar inbyggda i processorn. Heterogena losningar
kan prestera valdigt bra givet att man vet deras begransningar. Vi har undersokt
hur man schemaldgger arbete pa ett system som innehaller tre distinkt olika pro-
cessorer. Genom att dynamiskt méta deras prestanda under programkorning tar
vi reda pa var och nér arbete skall schemalédggas for bésta resultat.

Avhandlingen avslutas med fragan: kan man anvinda OpenMP for att generera
hardvara som accelererar det parallela programmet? Varat arbete har visat hur
OpenMP kan fungera som model for att skapa hardvara med hog potential att
utnyttja parallellism. De systemen som varan metod genererar har liknande eller
béttre prestanda &n dagens moderna Intel eller AMD processorer.

Acknowledgments

I would like to start by thanking my main supervisor, Mats Brorsson, who has
guided me, given me positive feedback and encouraged me through the entire PhD-
studies. I would also like to thank my secondary supervisor Vladimir Vlassov, for
the help and support he has offered me. Tremendous thanks to all my co-authors
— you know who you are (if you forgot, then you can find it on the next page)!

Next is Ananya Muddukrishna, my closest colleague. Together we have shared
moments of despair, calamity, joy and happiness throughout these five years — you
are like no other person I know of.

Thanks to Georgios Varisteas and Ahsan Javed Awan — both colleagues of mine
— who have helped make every day seem a tad bit darker. Thanks!

I would like to thank all colleagues at my KTH department and at SICS — it is
a privilege to have worked with and among such great minds.

My family, including Daniel, Teresa and Jerzy Podobas, to whom I still cannot
explain what exactly I am researching. Needless to say, they have been there not
only throughout my studies, but throughout my life. Particular thanks goes to my
grandmother, Chryszanta Kasperska, whom I hope is watching me finish this from
afar.

Finally, my love Linda Schenk, who has been there for me, listening, giving
me advice’s, cheered me on and helped me. The 51554 words of this thesis are
insufficient to describe my appreciation.

Thank you!

Funding

This thesis and its work have been funded by the European Communities Seventh
Framework Programme [FP7/2007-2013] under the ENCORE Project (www.encore-
project.eu), grant agreement nr. 248647 and the Artemis PaPP projected nr.
295440.

Contents

1 Introduction 13
1.1 Contributions e e e e 16
1.2 Layout e 16

2 Background 17
2.1 Flynn’s Taxonomy and Parallelism today 17
2.2 Internals of Task Parallelism 28
2.3 Task-parallel Challenges 34

3 Improving Task-Parallel Performance and Quality-of-Service 37
3.1 Performance of Task-Parallel Programming Models and Libraries

(Paper I) 37
3.2 Quality of Service in Task-Parallel Runtime-systems (Paper 1T and IIT) 39
3.3 Improving Performance of Task-Parallel Runtime-systems (Paper IV-

VII . o 42

4 Conclusions and Future work 49

Bibliography 53

5 Appendix 65

List of papers included in the
thesis

Paper I: A comparative performance study of common and popular
taskcentric programming frameworks

Published: Concurrency and Computation: Practice and Ezperience 27 (Jour-
nal, Wiley)

Authors: Artur Podobas, Mats Brorsson, Karl-Filip Faxén

Author contribution: Designed and performed experiments, analysis and wrote
the paper.

Paper II: Architecture-aware Task-scheduling: A thermal approach

Presented: First Workshop of Future Architecture Support for Parallel Program-
ming, FASPP’11. Held in conjunction with ISCA’11

Published: In proceedings of the First Workshop of Future Architecture Support
for Parallel Programming, FASPP’11

Authors: Artur Podobas, Mats Brorsson

Author contribution: Formed the hypothesis, designed and conducted the ex-
periments, analyzed results and wrote the paper.

Paper III: Considering Quality-of-Service for Resource Reduction using
OpenMP

Presented: Programmability Issues for Heterogeneous Multicores 2014, MULTI-
PROG’14. Held in conjunction with HiPEAC’14

Authors: Artur Podobas, Mats Brorsson, Viadimir Viassov, C.C. Chi, Ben Ju-
urlink

Author contribution: Formed the hypothesis, designed and conducted the ex-
periments, analyzed results and wrote the paper.

9

10 CONTENTS

Paper IV: Exploring heterogeneous scheduling using the task-centric
programming model

Presented: FEleventh International Workshop on Algorithms, Models and Tools
for Parallel Computing on Heterogeneous Platforms, HeteroPAR’12. Held in con-
junction with EuroPAR’12

Published: Euro-Par 2012: Parallel Processing Workshops (Springer)
Authors: Artur Podobas, Mats Brorsson, Viadimir Viassov

Author contribution: Formed the hypothesis, designed and conducted the ex-
periments, analyzed results and wrote the paper.

Paper V: TurboBLYSK: Scheduling for Improved Data-Driven Task
Performance with Fast Dependency Resolution

Presented: 10th International Workshop on OpenMP, IWOMP’14

Published: Using and Improving OpenMP for Devices, Tasks, and More (2014,
Springer)

Authors: Artur Podobas, Mats Brorsson, Viadimir Vlassov

Author contribution: Formed the hypothesis, designed and conducted the ex-
periments, analyzed results and wrote the paper.

Paper VI: Accelerating Parallel Computations with OpenMP-Driven
System-on-Chip Generation for FPGAs

Presented: 8th International Symposium on Embedded Multicore/Manycore
SoCs, MCSo(C"’14

Published: In proceedings of the 8th International Symposium on Embedded Mul-
ticore/Manycore SoCs, MCSoC’1/ (IEEE)

Authors: Artur Podobas

Author contribution: Wrote the paper by myself.

Paper VII: From software to parallel hardware through the OpenMP
programming model

Submitted to: 22nd IEEE Symposium on High Performance Computer Archi-
tecture, HPCA’16

Authors: Artur Podobas, Mats Brorsson

Author contribution: Formed the hypothesis, designed and conducted the ex-
periments, analyzed results and wrote the paper.

CONTENTS 11

Other relevant but not included publications

Investigating the Potential of Energy-savings Using a Fine-grained
Task Based Programming Model on Multi-cores

Presented: 2nd Workshop on Applications for Multi and Many Core Processors,
A4MMC 11
Authors: Alexandru Iordan, Artur Podobas, Lasse Natvig, Mats Brorsson

Task scheduling on manycore processors with home caches

Presented: First workshop on On-chip memory hierarchies and interconnects:
organization, management and implementation, OMHI’12

Published: Furo-Par 2012: Parallel Processing Workshops (Springer)
Authors: Ananya Muddukrishna, Artur Podobas, Mats Brorsson, Vladimir
Vlassov

Using Transactional Memory to Avoid Blocking in OpenMP
Synchronization Directives

Presented: 11th International Workshop on OpenMP Workshop, IWOMP’15
Published: To appear in proceedings of IWOMP’15 (Spriger)
Authors: Lars Bonnischen and Artur Podobas

Chapter 1

Introduction

The performance of a processor is dependent on the clock frequency that drives it.
Because nearly all processors are synchronous (driven by a clock), the width of the
clock pulse determines the minimum time for the computer to perform an operation
— the higher the frequency, the faster does the processor perform instructions.

Twentieth century processors could continuously increase the clock-frequency
for each new generation. Improvements in manufacturing technology led to a dou-
bling of transistors roughly every second year. Improved computer architectures
allowed pipelining which divided heavy operations in the processor to span several
clock cycles, which allowed an increased clock frequency.

The continuous increase in frequency was beneficial for hardware and software
developers alike. Programmers could continue to use legacy code while benefiting
from better performance for each new processor generation. Hardware manufactur-
ers could follow the transistor technology and reuse the same designs with smaller
transistors to gain performance.

Continuing to increase the clock frequency was stopped in the twentieth century.
Moore’s law [1] was still followed, with transistor doubling every 18 months. So
why is processor frequency no longer increased? Power consumption is the answer
why.

The power consumption of any piece of digital circuitry consists can be briefly
summarized with the following equation:

P=aCV?x [+ Vieak [2, 3].

The dynamic part of the power consumption is related to how often the transis-
tors switch from logical zero to logical one (a,when the transistor draws current to
charge a capacitive node up), how many transistors we have (the area or capacitance
C), the frequency f and the square of the operating voltage (V2).

Because the power consumption is directly proportional to the frequency, dou-
bling the frequency means doubling the dynamic power consumption. As previously

13

14 CHAPTER 1. INTRODUCTION

stated, one way to increase the clock frequency from an architecture perspective is
to split heavy operations so that they overlap several clock cycles. This is called
pipelining. The higher the clock-frequency, the more pipeline-stages are required
to reduce the critical-path of the processor, where the time to propagate through
the critical-path is equal to the clock pulse-width. However, more pipeline stages
makes it expensive to restart computations currently in execution. For example,
a wrongly predicted branch on a processor with 40 pipeline stages wastes a lot of
time to flush everything out of the pipeline.

Another way to increase the clock-frequency is to increase the operating volt-
age. Because the time to charge up a capacitance is proportional to the voltage
(the current drawn from the voltage source), the higher the voltage the faster tran-
sistor switch. But increasing the voltage squares the dynamic power consumption
(because the power is proportional to V?2).

The driving discovery that ended single-core processors was that Dennard scal-
ing [4] — which states that each new generation of transistors will operate on a lower
voltage — has failed. Since Moore’s law was still being followed — with a doubling of
transistors every 18 months — the power that was consumed had to be dissipated
on a continuously shrinking chip die area. This lead to a temperature problem,
which is also why today’s processor have so much more cooling attached to them
compared to decades ago.

Given the power and thermal problems, the only way to progress was to reduce
the frequency, reduce the voltage while increasing the performance — the ” free lunch
is over” [5] for software and hardware developers alike. Answering the challenges,
the multicore processor was born.

A multicore processor is composed of several processing elements on the same
chip-die. Rather than spending silicon on expensive branch-predictors, deep pipelines,
larger caches or complex speculative out-of-order schemes, the silicon is spent on
replicating several simple cores. Because they are simple, the processor can work
with lower clock frequency and thus a reduced voltage yielding a smaller power
budget. The silicon is better spent on adding many such simple cores rather that
adding features to one large core, as it yields higher performance and is less power-
hungry— assuming that we can execute programs in parallel.

The weaker processor cores can be used to improve program execution time.
Amdahl’s law [6] describes how the execution time of a program is improved when
an application becomes parallel:

1
Fparallel
N

Speedup =

fserialt

Here, fseriar is the fraction of the application running sequentially and fparaiiel
is the fraction of the application capable of executing in parallel divided over the
N number of processing elements. Amdahl’s law implies that by parallelizing our
serial application as much as possible, we can exploit multiple cores to reduce the
execution time.

15

Today the multicore processors has fully replaced the single-core processor in
general purpose processor market by enabling higher performance and a reduced
power-budget — and new challenges.

Programming for parallel, shared-memory processor has historically been per-
formed through the thread-parallel model. Programmers were exposed to threads
and had to work closely with the architecture to define and orchestrate parallel
execution. Abstraction was needed, as portability and performance of manually
managing parallelism was difficult to attain and maintain.

Programming multicore processors is today assisted by programming models
— language extensions and libraries that simplify the programmer’s job to create
portable and efficient parallel code. The task-parallel model is a popular pro-
gramming model that has transcended the limitations of the thread-parallel model.
Offering asynchronous parallelism in the shape of fork/join and data-flow paral-
lelism, the task-parallel model copes with many parallel computation patterns and
is well-prepared for future challenges such as exploiting heterogeneous systems.

One of the challenges concerns heterogeneity. Aware of the end of Dennard
scaling and the power-consuming threats of dark silicon [7] — all transistors on the
chip cannot be activate at the same time — chip designers have proposed use of
accelerators such as general-purpose graphics cards (GPUs) [8] or the Intel Xeon
Phi [9] to deal with specific parallel patterns. But how do we distribute the com-
putations across such heterogeneous systems? How do we extend the task-parallel
runtime-system to support heterogeneity?

One direction of heterogeneity that has been explored in the thesis is High-
Level Synthesis [10]. Emerging and existing processors such as Xilinx Zynq [11] or
Intel-Altera HARP [12] that contains both general purpose processors and Field-
programmable gate-arrays call for a change in programming models — a change
from a fully software approach to a hybrid software/hardware approach. Today,
the task-parallel model is exclusively used for writing software. Our work have
extended it to also drive hardware generation, which is needed to exploit future
heterogeneous architectures.

Another challenge is the thermal issue [13]. Temperature is a first-class con-
straint in computer systems. Processors today use various frequency and volt-
age scaling schemes to manage temperature — when a processor is overloaded and
reaches a certain temperature, its performance is crippled until it cools down. How-
ever, current parallel models are oblivious of the temperature of the underlying
hardware. Because most task-parallel models are targeting performance, they can
quickly heat the processor up, which leads to performance loss. How could a parallel
runtime-system utilize knowledge about the temperature to improve performance
or other objectives?

This thesis deals exclusively with the task-parallel programming model and its
materialization in the OpenMP framework— a directive-driven framework originally
proposed to handle parallelism in shared-memory nodes in high-performance com-
puters.

16 CHAPTER 1. INTRODUCTION

1.1 Contributions
The contributions of this thesis are:

e An evaluation of modern task-parallel runtime-systems with respect to their
performance and power consumption properties in order to reason about their
performance trade-offs

e A thermal-aware task-parallel scheduler that balances the temperatures of
processor cores in order to improve execution time in a thermally stressed
environment

o A task-parallel scheduler that provides soft real-time guarantees in OpenMP
tasks and attempts to minimize the overall temperature of underlying pro-
Cessors

e An evaluation of commonly used homogeneous scheduling techniques on a
highly divergent heterogeneous system and a proposed scheduling algorithm
that improves execution time performance under such a heterogeneous system.

e An novel OpenMP-based task-parallel runtime-system, which allows recording
of tasks’ dependency patterns to to improve OpenMP data-flow performance

e Methods for using OpenMP to drive hardware generation through High-Level
Synthesis, allowing software programmers to automatically generated highly-
parallel computer hardware that improves performance of task-parallel appli-
cations

1.2 Layout

Chapter 2 presents a background on multiprocessor programming and dives deeper
into the task-parallel programming model used in OpenMP. Chapter 3 summarizes
the publications of the thesis, briefly explaining why, what and how the studies were
conducted. We conclude and discuss future work in Chapter 4. The remainder of
the thesis includes the peer-reviewed original contributions.

Chapter 2

Background

2.1 Flynn’s Taxonomy and Parallelism today

Today there are multiple ways of utilizing parallelism in computer architectures,
ranging from programmer-transparent automatic schemes inside processors to ex-
plicit task-based parallelism that require interaction from the programmer. Most of
these parallelization strategies can be describes by three out of the four concurrent
classes described by Flynn [14], and are summarized below:

Single Instruction Single Data (SISD, Figure 2.1:a)

Even before the end of the single-core processor, architects developed techniques to
exploit instruction-level parallelism inside a processor. Out-of-Order (OO) instruc-
tion scheduling, a technique for automatic tracking dependencies between instruc-
tions to detect possible parallelism without the intervention of the programmer is
a common technique used in high-performance processors today. Dating back to
the 1960’s [15], out of order instruction scheduling can today be found in nearly all
non-embedded general purpose processors such as Intel x86/x64, SPARC-v9 and
IBM Power architectures.

Embedded processors are also seeing instruction-level parallelism today. Here,
the trend is to push the work of instruction scheduling over to the compiler and
adding very-long instruction-word support (VLIW) for processors [16]. In a VLIW
architecture, several instructions are compressed and executed in parallel on differ-
ent resources in the processor. Unlike Out-of-Order execution, which is relatively
expensive (area-wise) to implement, VLIW is much cheaper and relies quite heavily
on the compiler to construct tight program code. VLIW today exists in for example
Tilera TILE64/TILEPro64 [17], Hexagon [18] and Intel Ttanium [19].

17

18 CHAPTER 2. BACKGROUND

(a) SISD (b) SIMD

Instruction Data Instruction Data

EEEIE
i S S

(c) MIMD (d) SIMT
. Thread-Block
Instruction Data Contexts Data
% Y
Instruction

|PE| |PE| |PE| |PE|
A

Y
|PE| |PE| |PE| |PE|

Figure 2.1: Various types of parallelism in today’s computer architectures

Single Instruction Multiple Data (SIMD, Figure 2.1:b)

SISD-architectures such as the general purpose processor today often implement
some form of Single Instruction Multiple Data functionality (SIMD), also known
as vector-processing. SIMD differs from SISD in that the very same instruction(s)
are applied simultaneously to different data. The motivation to include SIMD
functionality in processor design is intuitive: algorithms often perform the same
operation on large arrays of data. Rather than serially performing the computation
one data-item at a time, it is better to delegate computation of different data points
to different but identical resources in the processor.

SIMD can speed calculations up. However, unlike VLIW or OO parallelism, they
still rely on explicit programmer help because compiler support for automatic vec-
torization is limited. SIMD instructions occurred as early as the vector-processors
in the 1970’s such as the Cray-1 [20]. Today, most general purpose processors con-
tain SIMD functionality: Intel have MMX/AVX instructions, MIPS have MSA and
ARM use the NEON co-processor.

Recently a derivate of the SIMD parallel class has emerged called Single Instruc-

2.1. FLYNN’S TAXONOMY AND PARALLELISM TODAY 19

tion Multiple Threads (SIMT) [21]. SIMT (Figure 2.1:d) applies to the massively
parallel General Purpose Graphics Processor Units (GPGPUs) that have become
popular to use in accelerating very specific parallel patterns. The difference between
SIMT and SIMD is how the vector-units are exposed: in SIMD they are exposed to
the software (the programmer must explicitly state where and how SIMD operates)
while in SIMT they are not [22] (all threads will execute the kernel). Additionally,
SIMT allows thread-level parallelism since each thread have its own control flow.

A GPU usually has a large number of threads (often in the order of thou-
sands). These threads are grouped into thread-blocks [23], and each thread-blocks
executes the very same instruction. Resources are shared between thread-blocks,
whose execution is often interleaved. GPUs focus on hiding latency and to in-
crease throughput, which is the opposite to general purpose processors that tend to
minimize latency instead. Programming GPUs is often done using either nVidia’s
CUDA [8] or OpenCL [24]. Programs are written in Single Program Multiple Data
fashion (SPMD) [25]- all threads in the GPUs will execute the very same program
on different data-sets.

Multiple Instruction Multiple Data parallelism (Figure 2.1:c)

The final class of concurrency is the Multiple Instructions Multiple Data (MIMD)
class. Multicore/multiprocessor systems belong to the MIMD class. Each process-
ing element has its own execution content (their own program counter and memory
stack) from which instruction and data are fetched, asynchronous to what other
processing elements are doing.

There are many programming models that can exploit MIMD architectures,
but we will focus on explaining the two most commonly used for shared-memory
architecture, in particular the task-parallel model which is the primary focus of this
thesis.

Thread-level parallelism

The concept of a thread is basic to computer systems. A thread is a representation
of an execution context as provided by an operating system. In its basic form, it
provides a stack, a copy of the processors internal register and program counter.
Historically, even before the advent of common multiprocessors, threads were used
to provide software layers with concurrency. There need not be a one-to-one corre-
spondence between the number of threads and the number of processors — threads
can time-share processors through interrupts.

One of the low-level ways to exploit thread-level parallelism in an application is
through POSIX threads (Pthreads) [26]— an interface native to UNIX-like operating
systems. Pthreads offer the programmer an API for creating threads and joining
(synchronizing) them. Because it is minimalistic, programmers are required to
manually orchestrate the entire computation, which is often undesirable. Nonethe-
less, Pthreads still remain one of the more popular approaches to parallelization,

20 CHAPTER 2. BACKGROUND

existing in everything from webservers to video decoders [27, 28]. More abstract
models such as OpenMP often use Pthreads inside the runtime-system.

A simple example on how to parallelize the iterative calculation of Prime num-
bers is shown in Figure 2.2:a using Pthreads. We split the original for-loop and
place it in a separate function definition (lines: 4-16). We then create three threads,
where each thread is responsible for calculating over a subset of the entire itera-
tion span (lines: 24-36); the caller (starter) thread is the last thread to call the
prime_thread calc() function. Once all threads have been started, the program
waits until all threads are finished before exiting the program (lines: 38-40).

The weaknesses in using Pthreads for parallel computation is shown in the
Figure 2.2:c speed-up graph. The speed-up graph is the increase in performance of
a multithreaded application over its sequential version. The problem given is fairly
simple, yet the performance of the application does not scale with the number
of threads (four threads) given to it. Ideally, with the embarrassingly parallel
application shown here, the performance should scale linearly with the amount of
threads up to the number of physical number of processing elements available in
the system. Four physical cores were available as it was executed in a four-core
Intel Nehalem processor, yet the performance only barely reaches twice that of the
serial version.

Additionally, the programmer is directly exposed to the hardware, requiring to
use low-level protection for variables accessible by different threads to avoid data-
races [29]. Data-races are one of the challenges that programmers experience when
parallelizing software. Data-races occurs when processing elements locally update
copies of the same memory location, leading to incorrect results when the data
is written back to memory. Protection in the example code is achieved through
hardware-supported atomicity (lines: 13-14) but portability is not guaranteed —
architectures with no support for atomicity will be not be able to run the code.
Similarly, architectures with fewer than four cores will suffer performance degrada-
tion (due to over-subscription) because of thread context-switching overheads, while
architectures with more cores will be underutilized (due to under-subscription).

The reason for the poor performance in the example case above is load imbal-
ance. Because the iterations in the example are non-uniform in computation cost
(calculating higher primes is more expensive than lower primes), some of the threads
will have a larger workload to perform while other threads will finish quickly.

Load balancing is but one of the many challenges parallel programmer face
today. Other problems include race-conditions, memory consistency, false-sharing
and heterogeneity. For example, a Pthreads application written for the x86 total-
store-order (T'SO) memory model [30] will likely not work on the PowerPC’s re-
laxed consistency memory model [31]. While possible, tackling these problems in
Pthreads is difficult and not portable — all architecture behaves differently, and
problems can be more or less pronounced when moving across architecture. There
is a need to assist programmers to become more productive when writing paral-
lel programs, motivating the creation of new more abstract parallel programming
models.

2.1. FLYNN’S TAXONOMY AND PARALLELISM TODAY 21

OpenMP [32] is one such programming model, developed to assist program-
mers in creating portable and well-performing program code. OpenMP is driven
by compiler directives (#pragma’s), requiring little change in the original serial
code in the parallelization effort. Figure 2.2:b shows the OpenMP code for the
prime-calculation kernel. Here, we started with the original sequential code and
only added a compiler directive (lines: 7-8) describing that the for-loop can execute
in parallel. The impact on the source-code is marginal. While data protection is
still explicit through the reduction() clause, the act of portability now lies within
the OpenMP runtime-system rather than the programmer. Performance-wise the
OpenMP program is better compared to the more manual Pthread version, and
the code is portable. For example, the programmer needs not to explicitly state
how many threads should be used — the OpenMP runtime-system will automati-
cally detect the number of processor cores available in the system executing the
application.

Still, thread-level parallelism exposes the concepts of threads to application
developer. Both the Pthreads and the thread-parallel OpenMP model require in-
formation concerning what can be scheduled on threads and, in most cases, hints
about how the work is scheduled. There was a need for a model where the parallel
work exposed by the programmer is decoupled from how the work is scheduled onto
the available threads— a task-parallel model.

Task-level parallelism

There are several models that exist for task-level parallelism. OpenMP, starting
from version 3.0 [33], supports task-based parallelism. There are several OpenMP
implementation supporting the 3.0 standard, including compilers from Intel, GNU
and Oracle/Sun, as well as academic frameworks such as OpenUH [34], Rose-based
compilers [35] and Mercurium [36].

Cilk-5 [37], the pre-cursor of Intel Cilk+, was one of the early research models
for task-level parallelism. Tasks in the Cilk runtime-system are always immediately
executed, leaving the parent task available to the runtime-system. This style of
scheduling, called strands in Cilk-5 and untied in OpenMP, offers good caching
characteristics and has been proved to be optimal [38] when ignoring memory effects
and under the influence of infinite amount of processing elements.

Intel’s Threading Building Blocks [39] is a C++ library for exposing parallelism.
Unlike other compiler directive-driven models, which requires some sort of compiler
support, TBB works with any C++ supporting compiler. Wool [40] is yet another
task-based runtime-system, specializing in small overheads in a work-stealing envi-
ronment.

Task-level parallelism offers programmers the possibility to expose parallelism
that is asynchronous, composable and unbound to a particular processing element,
and is easier to use than the POSIX thread model [41]. A task is a collection
of sequential instructions that can be executed asynchronously with other tasks.
Tasks can run in parallel with other tasks and can spawn additional parallelism

22

POSIX Threads (a)
Thread-Level Parallelism

1 #include <stdio.h>
2 #include <pthread.h>

3int primes = 0;

4 void *thread_prime_calc (void *start)

5{

6 intij;

7 for (i =*((int*) start);

8 i < (*((int *) start))+25000;

9 i++) {

10 for (j=2;j<i;j++)

11 if (1(1%j))

12 break;

13 _ sync_fetch_and_add (&primes,
14 (i==))
15 }

16}

17 int main(int argc, char *argv[])

18

19 intij;

20 pthread_t Threads[3];

21 int Threadlteration[4] = {0, 25000,

22 50000, 75000}
23
24 pthread_create (&Threads[0] , NULL,

25 thread_prime_calc,
26 &Threadlteration[0]);
27

28 pthread_create (&Threads[1] , NULL,

29 thread_prime_calc,
30 &Threadlteration[1]);
31

32 pthread_create (&Threads[2] , NULL,
33 thread_prime_calc,
34 &Threadlteration[2]);
35

36 thread_prime_calc (&Threadlteration[3]);

37
38
39
40
41}

pthread_join(Threads[0], NULL);
pthread_join(Threads[1], NULL);
pthread_join(Threads[2], NULL);

CHAPTER 2. BACKGROUND

OpenMP (b)
Thread-Level Parallelism
1 #include <stdio.h>
2 #include <omp.h>
3int primes = 0;
4 int main(int argc, char *argv[])
5{
6 inti};
7 #pragma omp parallel for reduction(+:primes) \
8 firstprivate(j) schedule(dynamic)
9 for (i=2;i<100000; i++) {
10 for (j=2;j<i;j++)
11 if (1(i%j))
12 break;
13 primes += (i ==j);
14 }
15}
Thread-Level Parallelism (€)
Performance
4
3.54
34
g— 2.54
i
o 24
o
0
1.51
1K
——— Pthreads
0.54 —o>—— OpenMP
0 T T]
1 2 3 4
Threads

Figure 2.2: An example of a simple prime-number calculation application using
POSIX threads (a) and OpenMP (b), and their respective performance (c).

2.1. FLYNN’S TAXONOMY AND PARALLELISM TODAY 23

(a) Original code

(b) POSIX
Thread-parallel version

#include <pthread.h>

p = listhead,; p = listhead;
while (p) { while (p) {
process(p); pthread_t thr;
p = next(p); pthread_create (&thr,NULL, \
} &process, p);
p = next(p);
(c) Incorrect OpenMP (d) OpenMP

Thread-parallel version

#include <omp.h>

p = listhead;
#pragma omp parallel for
while (p) {

process(p);

p = next(p);

Task-parallel version

#include <omp.h>

p = listhead,;
#pragma omp parallel
#pragma omp single
while (p) {
#pragma omp task
process(p);
p = next(p);

#pragma omp taskwait

Figure 2.3: A parallel pattern that is unproductive and performance-ineffective
to parallelize using thread-parallel models, but easily made parallel with the task
model. Problem derived from Ayguade et al. [33].

24 CHAPTER 2. BACKGROUND

Tasks allows for parallel patterns that are difficult or impossible to expose using
the thread-parallel model. One such motivating example is the parallel list traver-
sal case in Figure 2.3:a. If the programmer has a list that is traversed and the
computation performed on each element in the list can be computed in parallel,
how can the programmer parallelize such a pattern? One approach would be to
spawn a POSIX Thread for each element (Figure 2.3:b), but this would quickly
degrade performance because of the overheads in maintaining threads inside the
operating system [42]. The OpenMP thread-parallel construct cannot help here
(Figure 2.3:c), as they require a-priori (prior to the computation starts) knowledge
about how many iterations exist — since the example is traversing a list, the number
of elements is unknown.

The task-parallel model solves this by processing each element as a task (Fig-
ure 2.3:d). A task can be exposed in nearly the same time it takes to call the
computation itself, meaning it is a very lightweight construct [43]. When a task is
exposed, it is submitted to a runtime-system. The runtime-system will decide how,
when and where the task will be executed. Often the task is placed inside a queue,
letting existing threads poll for the work themselves. If the threads are polling
uninhibitedly for work, the scheduling algorithm [44] is said to be greedy [45]. Tt
is the scheduling algorithm that decides which action threads take with respect to
tasks. Work-stealing [46, 38] is the most commonly used scheduling algorithm, in
which idle threads steal tasks from other, more loaded, threads.

Another parallel pattern that is often used with the task-parallel model is re-
cursive parallelism. By creating a single task that by itself create more parallelism,
problems can be easily decomposed. Recursive parallelism also offers control over
the amount of parallelism exposed, which is a quick way to tune an application
when migrating it to a new architecture. Here, control is often in the form of a
cut-off, most commonly used a depth-based cutoff [47]. When the recursive tree
reaches a certain depth, tasks are no longer created but instead are executed se-
rially. The span [48] or critical-path (the longest task-path in the task-graph) is
controlled through cutoffs.

Another difference between the task- and thread-parallel models is how threads
are viewed. Thread-parallel models often rely on the operating system to bal-
ance/migrate threads across the system. In the task-parallel models, we prefer
threads to be pinned to cores and never relocated, which is why many task-based
runtime-system limits the number of threads to the amount of processing elements
in the system. Threads in the task-parallel model are often viewed as proxies for
processor cores, meaning that each thread should be executed in isolation at a
hardware processing core and not be migrated/timeshared.

Recursively calculating Fibonacci’s series has historically been the most common
way of showing how (recursive) task-level parallelism is used and is repeated in
Figure 2.4:a. The first time the fib function is called, it recursively spawns two
new tasks through the omp task directives (lines: 6-8), decomposing the problem
and yielding more parallelism. The task-graph (Figure 2.4:b) is hierarchical and
unfolds dynamically during executing, yielding more and more parallelism. Once

2.1. FLYNN’S TAXONOMY AND PARALLELISM TODAY 25

the tasks have reached the leaves, further recursion is impossible and the graph
folds back, synchronizing upwards.

The programmer is responsible to insert task barriers through the omp taskwait
(lines: 10), which ensures that the program is blocked until all previously created
tasks are finished.

These task-barriers are among the limitations of the traditional fork/join task-
level model. There are no possibilities to insert dependencies between tasks except
for heavy task-barriers. Several data-patterns such as various sliding window pat-
terns or pipelined patters cannot easily be expressed. This limitation has been
overcome by including data-flow or data-driven parallelism into the tasking-model.

Data-flow Task-Parallelism

Data-flow task-parallelism can parallelize patterns that are hard to make parallel
with the traditional fork/join tasking model. Synchronization in the data-flow
model is implicit — no explicit synchronization amongst tasks is required by the
user. This is unlike the traditional fork/join tasking model where task-barriers are
required for correct execution of the code.

The data-flow programming model relaxes the need for explicit task synchro-
nization by requiring the programmer to provide data-usage information regarding
tasks. Now a task not only contains the computation but also information about
what data-region the task will use and how it accesses the data-region. The how-
part is usually expressed in one of three ways: read, write and read/write.

Given the information about data-regions, the runtime- system can now con-
struct a dependency-graph dynamically during execution. Instead of using heavy
task-barriers, the runtime-system will insert lightweight dependencies between tasks,
preventing parallel execution of tasks that access the same data. When a task fin-
ishes, it proceeds to release subsequent, dependent tasks.

Although the programmer now has to decide the data-usage of tasks, the method
is worthwhile. The first advantage is that more parallelism can generally be de-
tected. The method for data-flow task-parallelism is closely related to what OO-
processors perform on the instruction level. By dynamically finding out dependen-
cies, tasks that are spatially far from each other when invoked can still benefit from
parallelism, which often can reduce the makespan(the maximum completion time
of the tasks) [49]. This is more clearly illustrated in the Figure 2.5, where we show
part of the Mergesort algorithm [50].

The program initially creates four tasks (lines: 3,6,9,12), dividing the to-be
sorted array into four pieces which are sorted in parallel. When the four tasks
finish, two more tasks are created to merge the four array chunks into two arrays,
again performed in parallel (lines: 17,20). Finally the two arrays are merged into
the final array (line: 25).

In the traditional fork/join tasking model (Figure 2.5:a), there is a need to in-
sert a task-barrier (line: 15,23) in-between the parallel regions to avoid data-races
between the phases. This works well as long as the work is uniform in computa-

26 CHAPTER 2. BACKGROUND

(a) Example OpenMP kernel

lintfib (intn) 14 o _

29 15 int main (int argc, int argv[])
3 if(n<2)returnn; 16 {

4 intxy; 17 #pragma omp parallel
5 18 #pragma omp single
6 #pragma omp task shared(x) 19 fib(30);

7 y=fib (n-1); 20}

8 #pragma omp task shared(y)

9 y = fib (n-2);

10 #pragma omp taskwait

11

12 return x+y;

13}

(b) Dynamically unfolding task-graph

£ Root-task
§ fib(30)
s
g
£e &
88 fib(29) fib(28)
3c
g2 vy vy
2 _§ fib(28) fib(27) fib(27) fib(26)
5
% [fib@7)| [fib@e)| |fibze) | |fib(zs)| |fib2e)| |fibs)| |fib(zs) | |fib(24)

Figure 2.4: Parallelized Fibonacci kernel using OpenMP with recursive task paral-
lelism (a), and how the task graph unfolds dynamically during execution, yielding
more but finer grained parallelism (b).

2.1.

(a) Traditional Task-parallelism

1 int array[1024];

2.

3 #pragma omp task

4 quarter_sort (array);

5

6 #pragma omp task

7 quarter_sort (&array[256]);
8

9 #pragma omp task

10 quarter_sort (&array[512]);
11

12 #pragma omp task

13 quarter_sort (&array[768]);
14

15 #pragma omp taskwait
16

17 #pragma omp task

18 half_sort (&array);

19

20 #pragma omp task

21 half_sort (&array[512]);
22

23 #pragma omp taskwait
24

25 sort (array);

FLYNN’S TAXONOMY AND PARALLELISM TODAY

27

(b) Data-flow Task-parallelism

1 int array[1024];
2

3 #pragma omp task depend (inout: array)

4 quarter_sort (array);

5

6 #pragma omp task depend (inout: array[256])

7 quarter_sort (&array[256]);

8

9 #pragma omp task depend (inout: array[512])

10 quarter_sort (&array[512]);

11

12

13

14 #pragma omp task depend (inout: array[768])

15 quarter_sort (&array[768]);

16

17 #pragma omp task depend (inout: array,array[256])
18 half_sort (&array);

19

20#pragma omp task depend(inout:array[512], array[768])
21 half_sort (&array[512]);

22
23 #pragma omp task depend (inout : array, array[256], \
24 array[512], array[768])

25 sort (array);

(c) Hypothetical Traditional Task-parallelism

Core, |- quarter_sort // half_sort ¥ /7 sort -
Core, | | quarter_sort / /
Core, | quarter_sort / - half_sort /
Core, || quarter_sort /Z /
-
(d) Hypothetical data-flow execution
Core, [quarter_sort - half_sort —/_\s‘ort
Core, |- quarter_sort A 4
Core, | quarter_sort half_sort
Core, [~ quarter_sort :
L

Figure 2.5: Parts of the Mergesort application constructed to expose parallelism
using fork/join (a) and data-flow (b) types of parallelism. Execution examples
where data-flow (d) is preferred over fork/join (c) due to immediately executing
tasks whose dependencies are complete can lead to a shorter makespan

28 CHAPTER 2. BACKGROUND

tional cost. However, should the tasks be non-uniform in execution time, there is
a high probability load imbalance, as illustrated by the example schedule in Fig-
ure 2.5:c. Data-flow (Figure 2.5:b) parallelism can overcome load imbalance in this
example because as soon as two of the fast tasks are finished, the merging phase
can start(Figure 2.5:d), which can lead to a smaller make-span (reduced execution
time).

The second advantage is that patterns that were difficult/impossible to make
parallel before can now be parallelized. Wavefront [51] or similar patterns where
tasks have very fine dependencies between each other cannot easily be expressed
using heavy-weight full-barriers. Data-flow parallelism has been used to for example
express the complex patterns in the H264 decoder standard [52], which are difficult
to express using fork/join task-parallelism.

Arguably, data-flow programming can be easier to use than the fork/join model.
Since parallelism is automatically deduced and detected based on data-usage in the
data-flow model, the programmer needs little knowledge on how the problem is
parallelized. In the fork/join model, the programmer must know what parts of the
application can execute in parallel and delimit the parts from each other to ensure
correct execution.

The final advantage is that the prerequisite for distributed computing comes
for free. Because the runtime-system now knows what data a task will use, it can
transfer that data to a distributed device such a GPU and execute the tasks there,
offering opportunities for acceleration. While the OpenMP commitee decided that
the direction towards acceleration for OpenMP would be by including new target
directives [53], existing work has successfully demonstrated the use of data-flow
directives in heterogeneous computation [54, 55, 56].

Today, data-flow parallelism exists in OpenMP version 4, introduced in 2014 [57].
One of the pioneering frameworks for task-based data-flow parallelism is CellSs [58],
which showed how to efficiently program the notoriously complicated IBM Cell pro-
cessor [59] using the data-flow tasking model. OmpSs [54], a sequel to CellSs has
used the data-flow model with GPUs and Intel Xeon PHI [9] to accelerate computa-
tions. Various other data-driven model have also been proposed. Runtime-systems
with similar goals using other semantics include the OpenStream [60] framework,
which uses streams to express producer/consumer relationships between tasks. A
more manual approach is the programmer-assisted task-to-task synchronization
model proposed in OpenUH [61] is also early work that strengthen the need for
data-flow task parallelism.

2.2 Internals of Task Parallelism

This section overviews how task-parallelism is implemented in the compiler and the
runtime-system with particular focus on the OpenMP framework BLYSK that has
been developed throughout the thesis.

2.2. INTERNALS OF TASK PARALLELISM 29

Compiler

The compiler is an important part of the OpenMP programming model as it bridges
the gap between the complex runtime-system API and the programming language.
Its primary purpose is to parse and understand the grammatical structure of the
target language as well as the semantics of the OpenMP directives and to interface
the underlying task-parallel runtime-system.

OpenMP compilers today come in two forms. There are fully-fledged compilers
where the OpenMP transformation is a phase like any other inside the compiler,
typical in for example GNU’s C compiler, Intel’s C/C++ compiler and Sun (Oracle)
compilers. The other variation, often used in university research, are source-to-
source or transcompilers. Source-to-source compilers only perform the OpenMP
transformation part and output the transformed file in the same language that
it was parsed from, after which any backend compiler can be used to generate the
binary executable. Popular research compilers for OpenMP include Mercurium [36]
and ROSE-based compilers [35].

We will now look at how BLYSKCC [62], a contribution of the thesis, transforms
various OpenMP directives and how they are interfaced inside the BLYSK runtime-
system. The language of choice here is C. Our input source code, which will be used
throughout this section, is shown in Figure 2.6 and corresponds to the well-used
recursive Fibonacci series calculation.

pragma omp parallel

The omp parallel directive states that a team of threads should be created. In
other words, the program should boot a number of threads, where each thread will
execute the following structured-block (list of statements). The translation of the
omp parallel is performed inside the compiler through these four steps:

e Identify all references to variables with no local declaration (called shared in
OpenMP terminology) inside the parallel region. Create a structure called
_blysk_arg_struct_2 which contains pointers that point to these external
declarations. In this example, no variables with external declarations used in
the parallel structured block.

e Change all references to shared variable in the structured parallel block so
that they are references through the pointer in the structure.

e Extract the structured block and put it into a separate function called __blysk_omp_parallel f 2.
The function should take a pointer to structure (of type __blysk_arg_struct_2)
that contain the variable scoping as an argument.

e Replace the omp parallel directive and the structured block with a call
to the runtime-system: BLYSK__parallel(). We give the runtime-system a

30 CHAPTER 2. BACKGROUND

OpenMP Source-Code | Transformed (source-to-source) code
First-private |
struct _ blysk arg task struct_0 {
1 int fib ([int n}) intn
2{ ————®_int (*x);]
3 if(n<2)returnn; | I
4 intxy;
5 | void __blysk_omp_task_f 0 (void *args) {
6 #pragma omp task |§hared(x] struct __blysk_arg_task_struct_0 *__blysk_args = args;
7 y = fib (n-1); | int (*x) = __blysk_args ->x ;
g #pra_gr_na omp'task shared(y) () =fib (_blysk_args ->n - 1); (Outlined function)
y = fib (n-2); }
10 #pragma omp taskwait I—l—
11
12 return x+y; | int fib (int n) {
13} if(n <2)
| return n;
14 int x,v;
15 int main (int argc, int argv[]) | {'struct __blysk_arg_task_struct_0 __blysk_argsO0 ;
16{ __blysk_args0.x = (int (*))&x ;
17 |#pragma omp parallel = | __builtin_memcpy (&__blysk_args0 .n ,&n ,sizeof (n));
18 |#pragma omp single | | blysk__ TASK_submit_simple (__blysk_omp_task_f 0,
19 fib(30); & blysk_args0,
20} | sizeof __blysk_args0);
}
I

L— | blysk_ SCHEDULER_taskwait (); |

returnx +vy;

| }

int main (int argc ,char *argv [J){
| struct blysk arg struct 2 blysk args ;
BLYSK__parallel (4 ,0,__blysk_omp_parallel_f_2
| = ,&__blysk_args);}

| struct __blysk_arg_struct_2 {};

| void __blysk_omp_parallel_f_2 (void *args) {
struct __ blysk arg_struct 2 * blysk args =args;

if (BLYSK__single ())
‘|—>| fib (30);

J
I

Figure 2.6: Transformation of an OpenMP extended Fibonacci program into using
BLYSK runtime-system calls.

2.2. INTERNALS OF TASK PARALLELISM 31

pointer to the parallel structured-block and a pointer to the structure con-
taining variable information. The runtime-system is responsible for booting
the threads and forcing them to execute the provided function.

pragma omp single

Next in line is the single statement, which ensures that only one of the threads
executing the current context is allowed to execute the following statement. The
source-to-source conversion is trivial, since we simply ask the runtime-system if a
thread is allowed to execute — it is up to the runtime-system to either return a
true or false value and to ensure that only one thread executes the region. The
directive is removed and an if-statement is instead composed with a call to the
BLYSK__single() function inside the runtime-system.

pragma omp task

Being the workhorse of the task-parallel mode, the omp task directive exposes the
following structured block as an asynchronous task. Similarly to the creation of a
parallel region, a task-structure (__blysk_arg task_struct) is created, one for each
task. The structure will hold references to out-of-scope variables, unless specified
private or first-private. In our case, the x variable have been specified as shared,
forcing the task-structure to contain a pointer to the original declaration of x.
Variables that are specified as private will be re-declared inside the task-structure.
The variable n is by default first-private. First-private variables means that the task
should have a local copy of the variable and it should also be initialized to the value
of the original declaration. Thus, during task creation, a copy of the declaration
for the variable n is added to the task-structure and initialized (through memcpy)
to the original variable’s value.

The task’s structure block is extracted and placed in a separate function called
_blysk_omp_task_f_0. All variable references that are not locally declared in
the task are replaced with references to the task-structure. Finally a call to the
runtime-system is made (blysk_TASK_submit_simple()), with the address to the
task-function and the structure containing the variables.

pragma omp taskwait

Used to synchronize all previously spawned tasks, this directive provides another
simple transformation. The directive is directly replaced with a call to the runtime-
system’s blysk_SCHEDULER taskwait ().

The Runtime-system

The runtime-system is the most important part of the task-parallel programming
model, orchestrating the execution. Any parallel runtime-system must provide:

32 CHAPTER 2. BACKGROUND

Create and manage threads

e Manage parallelism in the form of tasks

Capable of synchronization of threads and tasks and to have the notion of
task scopes

e Schedule work onto processing elements

The four points stated above are common to all task-based runtime-systems.
However, a modern state of the art runtime-system will have more advance features:

e Accelerator support. Most commonly GPUs.

e Data-flow tasks. Unlike fork/join tasks, data-flow task parallelism requires
more effort to perform well.

e A variety of scheduling algorithms, chosen depending on the parallel workload

An overview over the BLYSK runtime-system, developed throughout the PhD
studies, is shown in Figure 2.7: During execution, an application that uses task-
parallelism will continuously call the runtime-system’s API to expose asynchronous
tasks (Figure 2.7:a). Each of these calls will result in a task being created inside the
runtime-system (Figure 2.7:b). The task contains information about what program
code it should execute — in most of the cases, the program code is given from the
application in the form of a function pointer and its arguments. When the task
have been internally created, it is either submitted to the dependency manager or
directly to the scheduler.

The dependency manager (Figure 2.7:c) is invoked if the task uses data-flow
synchronization. The dependency manager is responsible for ensuring that only
dependency-free tasks, that is, those tasks whose dependency has been cleared are
allowed to execute. It also houses methods for releasing tasks’ dependencies and
querying tasks for the dependency information, which are often useful when taking
locality-based scheduler decisions (e.g. for GPUs [63]).

Tasks that are ready to be executed will be sent to the scheduler (Figure 2.7:d).
The scheduler decides where and when a task is placed onto the available hardware
resources. The scheduler also ensures correctness of barriers and task-synchronization
points, and maintain communication with the threads that are executed on the
cores.

Inspired by the OmpSs runtime-system Nanos++ [54], the BLYSK scheduler
uses scheduler-plugins (Figure 2.7:e) to choose from a variety of scheduler algo-
rithms. Unlike for example GNU OpenMP or Intel’s OpenMP implementation,
which both only supports one type of scheduler, the user can test a variety of
scheduling algorithms without recompiling the application.

The thread-manager (Figure 2.7:f) is a collection of user-level threads abstract-
ing the underneath hardware (Figure 2.7:g). The abstraction is most commonly
implemented using POSIX Threads, where each thread is a proxy for a core. In

2.2. INTERNALS OF TASK PARALLELISM 33

c @)

=]

®

L

=

o

«

o

2 ,:EX oses tasks Internal Task ®

2 P Creation

o

o —

[

' j //_

=

=]

m

\/ Dependency (c)
Manager

.. (Data-flow parallelism)

2

.............................. () (d)
g
Scheduler
V=
< Hardware:I Thread
Manager
—> Scheduling (©)
Algorithm

Figure 2.7: Overview over the components included in the BLYSK task-parallel
runtime-system.

34 CHAPTER 2. BACKGROUND

BLYSK, each thread-context usually contain a task-queue on which the scheduler
enqueues work into. Threads will continuously consult the scheduling policy con-
cerning what they should be doing when they finish executing a task.

2.3 Task-parallel Challenges

While the task-model has matured throughout the years since its inception, there
are still many challenges.

Overheads

It is generally agreed upon that the trend for homogeneous processors will continue
to include more and more cores. More cores should yield a faster execution speed,
which is often proportional to the number of cores used when the entire application
is made parallel. Often, more cores also means decomposing the application into
using finer grained parallelism.

Maintaining tasks in a runtime-system comes with a cost — the task must be
created, dependencies analyzed, scheduled and executed. This overhead cost is not
free. When the overhead cost consumes a large fraction of the overall work for a
task, performance gains are reduced — sometimes performing slower than its serial
counterpart.

There are many engineering efforts that reduces overheads in a runtime-system,
allowing for better performance of fine-grained tasks. One such runtime-system
is Wool [40], which strives to minimize overheads through cache-aligned task-
structures, an efficient work-stealing scheduling policy and fast queue implementa-
tions.

Lock-free structures are another broad research field where performance im-
provements can be obtained [64]. Data-structures shared amongst multiple threads
are often protected by locks. Locks are often expensive and can lead to severe
degradation in performance [65]. A better way is to remove the locks and im-
plement those using atomic instructions. Atomic instructions perform a certain
computation on a memory location atomically — it appears as if the sequence of
instructions were performed atomically. Atomic instructions are fast compared to
general spin-locks, and can dramatically increase performance because they are
performed in the memory hierarchy (rather than in the processor).

Another method is to use transactional memory [66] (TM) in software or hard-
ware instead of locks. Where atomic instructions can only handle small calculations,
TM can be used as a direct replacement for normal locks. TM is usually imple-
mented through the cache consistency mechanism, where regions of protected code
called transactions are repeated if any memory hazard occur.

The problem of overheads increase when more complex task-parallel functions
are used. Data-flow parallelism experience much larger overheads because now each
task must pass through the dependency manager to solve dependencies.

2.3. TASK-PARALLEL CHALLENGES 35

In his paper that revisits Amdahl’s law, John Gustavsson wrote [67]: We should
be ”... scaling the problem to the number of processors, not by fixing problem size”.
His intent was to show that one cannot achieve the level of parallelism required for
Amdahl’s law to scale to a thousand cores. Interestingly, his conclusion can reduce
the problem of large overheads. Runtime-system overheads are relative — they only
pose a problem if the work within the tasks are small in comparison. By scaling
up the problem size, the ratio of overhead to work decreases, and the problem is
likely to scale. Unfortunately, not all problems can be scaled up (nor do we want
them to). For example, if the intention is to solve a matrix multiplication with
particular dimension, then there is no way to scale the problem up. Instead, we
want the runtime-system to be able to handle as much parallelism that we can
potential exploit in our application, with no degradation in expected performance.

Objective-based scheduling

The most common objective that task-parallelism is used for is performance — we
want to execute the application as fast as possible given a certain multiprocessor
system. But there are many other objectives that can be desirable to strive for
within the task-parallel model.

One such objective is the need to control temperature. Temperature today
governs the performance of the processor. Processors today employ a variety of
techniques to cool the processor down. For example, when an Intel processor be-
comes overheated, the hardware automatically decreases the operating frequency
to decrease power consumption [68]. This method, employed in many designs to-
day, is called dynamic-voltage-and-frequency-scaling (DVFS) and is frequently used
today. Another example where temperature is the limiting factor is space applica-
tions, where the ability to conduct heat away is limited.

Reason and intuition tells us that scheduling can make an impact on the overall
temperature of the processor. How can we schedule tasks onto available cores such
that the performance can be improved under a thermally constrained environment?

Another objective that does not exist in mainstream task-parallel models is at-
taining some form of real-time guarantees. Unlike traditional real-time scheduling,
where the work-load is known a-priori and a schedule can be developed offline to
provide hard real-time services, the task-parallel model has dynamically unfolding
parallelism during runtime. The main challenge here concerns enabling the seman-
tics for expressing real-time execution in the task-parallel model and how to use
the new timing information to make good scheduling decisions.

Heterogeneity

The trend of processors moves towards more cores and more heterogeneity. For
example, the cores in the processor may be different (but with same ISA) such as
the ARM bigLITTLE [69] cores. They can also be of different type, such as mixing
GPUs with CPUs on the same die or hybrid FPGA/CPU approaches.

36 CHAPTER 2. BACKGROUND

Independent on how the future will look, it will include special-purpose accel-
erators for speeding up some parallel patterns. The programmer now faces the
challenges of using these accelerators.

The task-parallel model works well with heterogeneity. Often the programmer
is asked to provide different versions for the same task for the different hardware,
letting the runtime-system decide which task to invoke. The main research question
is how to where the tasks should be scheduled? Incorrectly scheduling work on a
CPU while a GPU is inactive may lead to substantial loss in performance.

Using FPGAs can offer improvements in both performance and power con-
sumption over GPUs or CPUs[70, 71, 72]. Seeing how future systems will contain a
mixture of ASICs and FPGAs, such as Xilinx ZYNQ and the Intel HARP program,
there is a need to tightly incorporate the functionality for tailoring FPGAs to fit
the needs of the task-parallel application. The main challenge is how to bridge
and break the typical hardware synthesis flow so that it becomes available for the
any software programmer. One direction explored in the thesis is to automatically
create hardware accelerators based on the task-parallel source code. The main
challenge here is how the hardware accelerators work: we want to have as parallel
hardware as possible.

Chapter 3

Improving Task-Parallel
Performance and
Quality-of-Service

The following chapter summarizes and discusses the peer-reviewed contributions of
the thesis.

3.1 Performance of Task-Parallel Programming Models and
Libraries (Paper I)

The task-parallel model has gained momentum and popularity, and today there are
several different commercial and research runtime-systems. How do these different
runtime-system differ? What are the key insights to performance and why do the
performance vary across them? What impact does a centralized scheduling policy
have on the performance? Does a work-stealer thrash the cache?

This work quantitatively compares several different runtime-system implemen-
tation in terms of power and performance, including a thorough study of the over-
heads related with them.

The study focuses on task-parallelism, particularly but not exclusively viewed
through the eyes of OpenMP. Most previous work concerned thread-parallel per-
formance of OpenMP and related programming models [73, 74]. In particular,
existing work focuses on synchronization, thread-barrier and critical section over-
heads. Since the inception of the OpenMP task-parallel model, several authors
have created new runtime-systems adhering to the OpenMP standard. Most (if
not all) of the new runtime-system implementation feature a performance evalua-
tion with respect to existing implementations [75, 76, 77, 60]. However, our study
provides a unique insights gained due to the independent nature of the evaluation
and includes more evaluated runtime systems than previous work. Our work is

37

CHAPTER 3. IMPROVING TASK-PARALLEL PERFORMANCE AND
38 QUALITY-OF-SERVICE

also among the few to evaluate what impact various runtime-systems have on the
power- and energy consumption.

Method

The Barcelona OpenMP Task Suite(BOTS) [50] is a benchmark suite targeting
OpenMP tasking performance. The BOTS benchmark suite was ported by us to
Intel Cilk Plus [78], Intel Threading Building Block (TBB) [39] and Wool [40].

The evaluated OpenMP implementations were Intel’s runtime-system, GNU’s
OpenMP (GOMP), Nanos++ [54] (today: OmpSs), Sun’s (today Oracle) OpenMP [79]
and OpenUH [34].

The TBB and Nanos++ library was also ported to the Tilera TILEPro64 pro-
Cessor.

The evaluation took place on an AMD Opteron 48-core system (AMD Opteron
6172) and a TILEPro64 processor. Additionally, the power consumption was mea-
sured for the TILEPro64 using by measuring the voltage crossing the resistor on
the voltage-supply pin. The power consumption setup was identical to the work by
Sjélander et al. [80].

The performance was measured and compared by evaluating the speed-up of the
different runtime-systems. The speed-up is the parallel execution time improvement
over the serial execution time:

Speedup = ﬁ
We only considered the parallel region when measuring performance — serial work
such as initialization, memory allocation, etc. prior to the parallel region was
excluded.

The cache performance of each benchmark was measured using PAPI [81] cal-
culated using the weighted-average (task execution times are the weights) over all
tasks and their execution time. Load-balancing was calculated by averaging about
how many threads were simultaneously running tasks during the execution. Task
creation and synchronization overhead was measured using a microbenchmark cre-
ated for the purpose.

Conclusion and Discussion

We found that overheads had a leading role in terms of performance for the paral-
lel applications. While most runtime-systems managed coarse-grained parallelism
fairly well, most of them failed handling finer grained parallelism. Load-balancing
correlated with granularity and using finer grained tasks often leads to better load-
balancing property assuming that the runtime-system could manage the overheads.
Among the runtime-systems that were unable to manage fine-grained parallelism
were Nanos++ and GNU’s OpenMP implementation — both had magnitudes larger
overhead times compared too for example Wool. These high overheads materialized

3.2. QUALITY OF SERVICE IN TASK-PARALLEL RUNTIME-SYSTEMS
(PAPER II AND III) 39

in slower execution time on the benchmarks, particularly when exposing more (and
finer) parallelism.

Overall, we found that work-stealing was preferable for benchmarks that utilized
recursive parallelism. Work-stealing on recursive applications helped to balance the
load more evenly across cores and to reduce negative cache-effects. The caching
performance for work-stealers were better than that of centralized approaches. This
was most evident when comparing the Nanos++ work-stealer against their central-
ized approach— the same framework with identical overheads yet vastly different
cache performance.

Performance on the TILEPro64 was similar to that of the AMD Opteron server.
On the power-consumption side, we found that faster is usually better. Wool, a
framework that focuses only on execution time without explicitly putting threads
to sleep, had the highest power-consumption while consuming the least amount of
energy for the benchmarks. GCC’s OpenMP had the lowest power-consumption,
partially due to the explicit thread-sleeping mechanisms (Fast Userspace Mutexes),
but also had the highest amount of energy consumption due to the increase in
execution time.

3.2 Quality of Service in Task-Parallel Runtime-systems
(Paper II and III)

Temperature is an ever present constraint in today computer architectures. The
power consumption scales linearly with the frequency and with quadratic growth on
the voltage. Because increasing the clock frequency has historically been one of the
driving forces behind performance while at the same time decreasing transistor sizes,
the power-densities (the temperature) have continued to grow — more transistors
one a continuously shrinking area increases the temperature.

While there are many autonomous systems such as frequency-scaling [82] or
clock-gating [83] that reduce power consumption in modern processors, we wanted
to look at the runtime-system side of the matter, in particular task scheduling.
Intuitively, a scheduling algorithm that is obliviously greedy will not be consistently
thermally most efficient. Because of the greedy property, a core will always execute
a task if there is one to be found, independent of its current temperature.

Scheduling algorithm for minimizing thermal effects exist, but most of these
reside in the operating system. One way is to let a thread jump between cores— the
thread will start on one core, heat that core up, and migrate to a cooler core [84].
Another approach that works for applications that execute for a long while is to
predict the temperature, either by estimating the time before a certain core will
reach a certain temperature or by predicting the thermal impact of the application
on the underlying core [85, 86]. While these approaches work in a thread-centric
view, they may be inadequate in a task-parallel model, where work is fine-grained
enough to occupy all cores and can be very dynamic.

CHAPTER 3. IMPROVING TASK-PARALLEL PERFORMANCE AND
40 QUALITY-OF-SERVICE

Paper II concerns scheduling tasks with their power-consuming properties in
mind onto processors core to reduce negative thermal-related effects. More specif-
ically, we developed a scheduling algorithm that strives to keep core-temperature
below a certain thermal throttling threshold.

Paper III takes a different approach in which there is a fixed objective — a soft-
real time constrain — placed on tasks. The question now becomes: how do we
schedule tasks onto the available resources such that we minimize the temperature
while meeting the soft real-time constraints?

Thermal-aware OpenMP design (Paper II)
Method

Our approach was to model the TILEPro64 processor. The TILEPro64 is a VLIW
MIPS-type processor with 64 cores but we limited ourselves to 16 cores. A simplified
HotSpot [87] thermal model was created where we modeled each core in the system
independently with no thermal leakage between them. A McPAT [88] model was
developed for the power-consuming properties of the TILEPro64 and a number
of benchmarks from the BOTS [50] suite were executed to estimate their power-
consumption; a strong correlation between an applications Instruction per Cycle
(IPC) and the power-consumption was found, which was used to drive the thermal
model. The thermal model was continously running on the platform, modeling the
temperature of each core and stalling program execution if the processor’s throttling
temperature was reached.

We used Nanos++ [54] to develop our temperature aware scheduler. Our sched-
uler is called TTI (Thermal-Task-Interleaving) and probes tasks for their power-
consuming properties (their IPC). When a task with known power-consuming prop-
erties is created, it is sorted into either a low-, medium- or high-power queue. Cores
then greedily pull the low-power queues when they are near the thermal throttling
threshold to cool-off (while still performing useful work) or the high-power queues
when they are already cool.

Evaluation was performed by mixing applications from the BOTS benchmark
suite. Comparison between the TTI scheduler and the existing Nanos++ default
and breadth-first schedulers were performed by evaluating the speed-up.

Results

The TTI scheduler could improve the execution time performance when compared
to the existing task-schedulers by as much as 27%. The impact of the TTI scheduler
is particularly visible when there is a large variety of high- and low-power tasks
that can be used to heat-up or cool-down the cores. The performance when there
is only high-power tasks was low, and there were was no significant improvement
in scenarios where only low-power tasks were present.

3.2. QUALITY OF SERVICE IN TASK-PARALLEL RUNTIME-SYSTEMS
(PAPER II AND III) 41

Soft-real time OpenMP extensions (Paper IIT)
Method

We used the Nanos++ [54] framework as a starting point. The Mercurium [36]
compiler was extended to support three new task clauses:

e deadline(t) specifies the latest time a task can start
e release after(t) specifies the earliest time a task can start

e on_error (OMP_DROP) specifies if the task can be dropped by the runtime-
system. A task that can be dropped should not have any impact on the
correctness of the application.

We also allowed the programmer to set a global constraint on the real-time
requirements: the number of deadlines that were allowed to be missed (in percent-
age). In a real-life scenario, the operating system would control the global real-time
constraint across different running application in order to maximize the experience
perceived by the user.

We implemented a PID [89] controller that continuously monitors the amount
of deadlines missed and adjust the amount of time a core is active (or put to
sleep). For example, if the user allows 2% of the tasks to be missed, and the
controller detects that currently 1% of the deadlines are missed, then the cores
will be proportionally decreased. The opposite will happen if the controller detects
that too many deadlines are missed. The sampling rate for the amount of deadlines
missed was 100 milliseconds.

The scheduler implementation consisted of a global earliest-deadline first (EDF)
queue [90] from which the threads pull tasks from.

We evaluated our scheduler with two benchmarks: a raycaster written in the
classical fork/join task-model and a H.264 decoder [52] written in data-flow style.
A 2562 sized voxel image and a movie was used for the evaluation, both using
frames-per-second (FPS) as a metric for performance.

The temperature was measured using the CoreTemp kernel module on a Intel
Nehalem i7 processor. The running temperature of our algorithm was compared
against a temperature and real-time unaware scheduler — the commonly used work-
stealer.

Results

Our scheduler showed little deviation in terms of providing the real-time service
that was expected. It either provided the expected real-time service or slightly
over /under-shot the expectation. The work-stealer always over-provided the ex-
pected real-time service, which led to a hotter chip. Our scheduler could lower the
average temperature of processor cores by up-to 17.7% degrees Celsius compared
to a work-stealing algorithm while keeping comparable real-time performance.

CHAPTER 3. IMPROVING TASK-PARALLEL PERFORMANCE AND
42 QUALITY-OF-SERVICE

Discussion

Paper II showed how to regulate the temperature of processor cores through iden-
tification and scheduling of tasks’ potential power consumption and balancing the
load accordingly. Our method holds promise where temperature cannot easily be led
away, such as space-oriented application. One may wonder why thermal regulation
should reside inside the user-level OpenMP runtime-system and not use existing OS
thread-centric thermal schemes [85, 91, 92]. One reason is that future systems might
not have a fully-fledged operating system running on each core but instead be par-
titioned into clusters of cores running a thin OpenMP (or similar) runtime-system
layer on top. A second reason is that the Operating System and the task-parallel
runtime-system does generally not synergize very well; the runtime-system’s view of
the architecture is that the threads are proxies for cores — disturbing the runtime’s
viewpoint by letting the Operating System migrate threads or allowing them to
time-share the same core will upset the task-parallel runtime-system view of the
system.

OpenMP has historically been used for high-performance computing. Paper
IIT showed another side of OpenMP — it can be used to describe and achieve soft
real-time behavior in general purpose systems. The work conducted is novel, and
makes no distinction between fork/join and data-flow (previous work only consid-
ered fork/join [93]). While OpenMP is ill suited for hard/firm real-time, we showed
the benefits it can give in a soft-real time, everyday scenario — such as playing a
movie on the desktop computer.

Limitations to the study include the feedback control (configured empirically)
and the scheduling implementation, which uses a global queue; global queues are
known to cause lock-contention. Future work would benefit from the reduced over-
heads in a distributed (work-stealing) EDF schedule policy. Nonetheless, the contri-
bution is among the few to attempt to include real-time properties into the OpenMP
programming model.

An important limitation to both papers is that they only work well when run-
ning in isolation — something that is currently true for most user-level task-parallel
application. Two OpenMP applications running simultaneously on a system will
have no awareness of each other, often disturbing each other’s execution due to
oversubscription of threads, context switching or cache thrashing. Both contribu-
tion suffer this limitation, although the work in Paper II is slightly more resilient
due to the dynamic feedback controller. While addressing this limitation is out of
the papers’ scope, it is actively being worked on in the community, although usually
to improve execution performance [94].

3.3 Improving Performance of Task-Parallel
Runtime-systems (Paper IV-VII

Task-parallel execution time performance can be increased in several ways. One is
to take advantage of new and exotic hardware, such as GPUs or other acceleration

3.3. IMPROVING PERFORMANCE OF TASK-PARALLEL
RUNTIME-SYSTEMS (PAPER IV-VII 43

devices. One of the research challenges is the change in programming language to
allow these accelerators to work within the task-parallel framework in a user-friendly
way. A common solution is to extend the task-parallel framework to include syntax
to specify multiple implementations of the very same task [54, 95, 56], for example a
CUDA [96] and an x86 version. Another alternative is to use tools to automatically
translate the OpenMP directives into runnable accelerator code [97, 98].

A method for improving performance is improving task-scheduling. Because
the performance of accelerators differ vastly from general purpose processors [99],
scheduling decisions can drastically affect the makespan of an application. One
method is to balance the work according to estimate kernel finish execution time
for all processing elements in the system [100]. This approach, called HEFT (Het-
erogeneous Earlier Finish Time), is similar to our contribution in Paper II but with
timing rather than power, and has been implemented in StarPU [95]. It has been
shown to work well for multiple-GPU systems. Another approach is to dynamically
detect the critical path [101] of the executing task-graph and schedule tasks that
are on the critical path on faster accelerators; because the critical path dictates the
makespan of the application, reducing the critical path also reduce the execution
time of the application.

Another way to improve performance is to tackle overheads in the runtime-
system. Paper I revealed that overheads limit the performance of task-parallel
applications, particularly with fine-grained tasks. Tasks of fine-granularity are often
required to enable smaller workloads to scale. While overheads in fork/join task-
parallel runtime-system can be large, they can still be dealt with by various cutoff
mechanisms [50, 47]. Cutoff mechanisms does not work as well with data-flow
tasks, as there is no way to inline tasks who are not yet ready to execute. Here,
every task must go through the effort of analyzing its dependencies with other tasks
before taking action. The time taken for the dependency analyzing step is crucial,
and can vary much between implementations [102]. Paper V presents a way to
reduce the cost of analyzing dependencies through reuse and a fast runtime-system
implementation.

Our work ends with improving performance by transcending the architectural
parallelism offered by today’s off-the-shelf processors and instead automatically
generate the hardware. By creating hardware absent of logic unused in the task-
parallel application, our system could contain a higher degree of architecture-level
parallelism compared to commodity processors.

GPUs and distributed devices (Paper IV)

Paper IV introduces UnMP, the precursor to the BLYSK framework. UnMP is a
task-parallel runtime-system aiming to utilize distributed memory accelerators such
as the GPUs and TILEPro64 devices dynamically. The programmer is responsible
for providing three different kernel implementations (similar to OmpSs [54]) for
the same task: an x86 host version, a GPU CUDA [96] version and a TILEPro64

CHAPTER 3. IMPROVING TASK-PARALLEL PERFORMANCE AND
44 QUALITY-OF-SERVICE

version. The UnMP runtime-system can, when a task is submitted for execution,
decide on which device the task will be executed.

Because TILEPro64 never was intended for host-initiated execution, a small
loader-kernel was developed. The kernel is booted on the TILEPro64 upon ap-
plication execution and handles communication between the board and the host
system through PCI. Executing a kernel on the TILEPro64 involves sending the
position-independent kernel and the associated data to the TILEPro64 together
with a pointer (on the device side) to the arguments. The load-kernel will invoke
the task in a SPMD-fashion on the device, enabling all 60 cores to execute the
kernel.

A number of known homogeneous scheduling algorithms were evaluated with the
three-device setup (x86,GPU, TILEPro64) on the device: a random work-stealer,
a random work-dealer and a weighted-random work-dealer [95]. The weighted-
random work-dealer used a-priori calculated weights; the weights for each devices
were obtained by executing the task-kernels in isolation on each device.

We developed a new scheduling algorithm, called FCRM, that complements
the weighted-random scheduling algorithm by constructing dynamically adjusting
the weights. The weight can change at runtime because of several reasons. For
example, we utilize a Least Recently Used (LRU) soft-cache [56, 103] to minimize
transfer overheads between the host processor and the accelerators. Depending on
where data is located, certain device should have a higher probability of received a
task. Our weights are calculated through segmented linear regression.The data for
the linear regression is obtained by probing task execution times on the different
devices. The function regresses on any user-defined variable, which can be for
example the data-size of the kernel.

Results

Our FCRM scheduler performed much faster than the alternatives. While be-
ing initially slower than the weighted-random work-dealer, the FCRM method of
scheduling gradually improves as the regressed function builds up. By avoiding
scheduling tasks on slower devices after probing them, the scheduler schedules tasks
onto devices that execute the kernel quickly.

Runtime-system design for data-flow task parallelism (PAPER
V)

One of the main conclusions in Paper I was that overheads can be a substantial
bottleneck in fork/join type of task-parallelism, limiting the speed-up that can be
attained. With the introduction of data-flow parallelism in OpenMP, the matter of
overheads became even more severe. Initial experiments that we performed showed
that granularities that worked with fork/join parallelism experienced worse than
sequential performance in the data-flow model, which motivated us to work on
reducing data-flow task overheads.

3.3. IMPROVING PERFORMANCE OF TASK-PARALLEL
RUNTIME-SYSTEMS (PAPER IV-VII 45

Unlike existing work, which use the data-flow model to improve scheduling de-
cisions or use accelerators (e.g. GPUs) to gain performance, our goal to reduce the
overheads in solving dependencies between tasks. It was towards this aim that the
BLYSK infrastructure was developed, using knowledge gained from Paper I and
IV. The BLYSK infrastructure was made with fast dependency resolution in mind.

We observed that many data-flow patterns were dynamic and not dependent on
the content that the data used for the dependencies had. Our hypothesis was that
performance could be gained by preserving the task dependency-patterns across
applications runs. Our hypothesis was driven by the fact that many data-flow
kernels’ dependency structure remain unchanged and are static, such as for example
Matrix Multiplication and various wave-front applications.

Method

We created BLYSKCC, a compiler capable of transforming OpenMP version 4.0
directives into API calls into the BLYSK runtime-system. A new clause was added:
dep_pattern(*name*), which allowed the programmer to record the dependency-
graph of the subsequent task-group and name it. The dependency-graph could
then be optimized to remove unnecessary dependencies such as Read-after-Read
(RAR) dependencies. Once the dependency-graph had been recorded, it could be
reapplied on the next invocation of that same group of tasks to reduce dependency-
analysis overhead. Several improvements were done inside the runtime-system.
A fast, multilocked bitwise trie was created to reduce the overheads of solving
dependencies. The Hypergraph scheme [102] independently created by us to quickly
solve dependencies.

Performance of the proposed methods were evaluated using standard bench-
marks and compared to the GCC OpenMP 4 version as well as OmpSs (known for
its data-flow task implementation). The evaluation particularly focused on tasks
with fine-granularity, as these were the problem areas detected with state of the art
data-flow runtime-systems.

Results

The evaluated performance of BLYSK surpassed that of OmpSs and GCCs OpenMP
library. Performance could reach twice that of OmpSs or GCC, solely because we
could handle task granularities that other runtime-systems could not. Our ap-
proach further leverage performance by reusing patterns, which allowed data-flow
task granularities to be on par with the original fork/join model. Our method
also work with heterogeneity because the dynamic information concerning the each
task’s data region is preserved.

CHAPTER 3. IMPROVING TASK-PARALLEL PERFORMANCE AND
46 QUALITY-OF-SERVICE

Hardware acceleration of OpenMP task parallelism (Paper VI
and VII)

Processors have continously grown faster and better, integrating more and more
cores, enabling better performance. However, often the sheer amount of parallelism
that exists in parallel applications (in particular benchmarks) does not match the
parallelism offered by today’s general purpose systems. An abundance of parallelism
(especially if it is fine-grained) can lead to performance degradation as shown in
Paper 1.

Rather than using commodity hardware, why not generate the cores and tune
them such that they correspond to what is needed for the computation? The
generated processing elements could then be simulated using Field Programmable
Gate Arrays (FPGAs) and include a large number of cores.

Commercially available processors contain many redundant and unused units
such as translation-lookaside buffers, floating point units, large register files etc —
while all the aforementioned units are necessary for an operating system to work
properly, they are not necessary needed for the actual task-parallel application to
work. An automatically generated core would only contain the logic needed for the
computation, thus enabling a large amount of these small cores to be present in an
FPGA.

Paper VI and VII focuses on High-Level Synthesis of OpenMP application into
custom System-on-Chips (SoC) with an order of magnitude more processing ele-
ments than what current shared-memory systems allow.

High-Level Synthesis have been well-studied before. One direction exploited is
to improve sequential performance of soft-cores (processors suitable for FPGAs)
by adding custom-build circuitry that perform parts of the application [104, 105].
Another approach is to synthesize the equivalence to threads in hardware [106, 107],
and use the obsolete thread-parallel model to exploit parallelism. A third popular
way is to use the SIMT paradigm to auto-generated synthesizable hardware [108,
109].

Our work is exclusive to the task-parallel model, enabling all three of Flynn’s [14]
parallel architecture when generating the hardware. The proposed methodology in
Paper VI and VII includes SISD, SIMD, MIMD and SPMD.

Method

The BLYSK compiler (Paper V) was extended to support an intermediate format
(IR) in standard form. A compiler backend was created to transform the IR into
actual hardware in the VHDL language. OpenMP task primitives are converted
into hardware units called hyper-tasks. Each hyper-task is very application-specific
and only perform the computation within the task. All other OpenMP directives
are source-to-source transformed to exploit the hyper-tasks.

The cores that are generated work with Altera’s tool-flow. They use Altera’s
components such as the floating-point units [110] and sit on the Avalon [111] bus.

3.3. IMPROVING PERFORMANCE OF TASK-PARALLEL
RUNTIME-SYSTEMS (PAPER IV-VII 47

The system is very similar to the IBM Cell [59] architecture, where there is a master
processor and a number of slaves. The master processor used was the Altera NioslI
soft-core [112] and the slaves are the hardware materialization of OpenMP task-
constructs. The master runs the BLYSK runtime-system and orchestrates the
execution, scheduling work onto the slaves.

We call a cluster of hyper-tasks that shares a memory interface controller as an
accelerator. Inside an accelerator, individual components can be shared between
hyper-tasks. Sharing components is done through arbiters that are automatically
inserted as decision makers between requesting hyper-tasks. SIMD units (vector
units) and more complex components such as dot- and cross-product calculations
are supported. Chaining [113] is supported, where the output of components can
be directly connected to the inputs of other components (rather than being saved
in intermediate registers).

The execution is governed by a finite-state machine (FSM), composed during the
compilation of hardware tasks. Decisions regarding which components are shared
and which are private was solved through a constraint satisfactory problem (CSP).
The CSP was implemented in Gecode [114]. The CSP takes information from both
the TR code (e.g. instruction dependencies) and the hardware backend (e.g. la-
tencies and area occupancy). The model calculates the schedule (the states that
instructions should map into the FSM), component sharing and commutative prop-
erties of instructions. The goal is to maximize the area-performance, estimated
through the number of instructions per cycle divided by the area of the hardware.

The Altera Stratix V [115] was used for evaluation, comparing the generated
systems to existing soft- and hard-cores such as the NioslII [116], AMD Opteron
6172 and Xeon PHI systems. We compared against the Intel OpenMP and GNU’s
OpenMP task-parallel implementations.

Results

The systems generated through the BLYSK compiler was comparable in perfor-
mance of both the AMD Opteron and the Xeon PHI processor, while being several
order of magnitudes faster than the Niosll soft-core. I found that the property
limiting the performance the most was the DSP-blocks— hard-blocks in the FPGA
that are used for intensive computations (e.g. Multipliers). Future generations of
FPGA will likely contain more DSP logic, enabling our methodology to further
improve performance.

Discussion

Exploring heterogeneity for performance purpose constituted majority of the work
in papers IV-VII. Both existing off-the-shelf heterogeneous systems and application-
specific generated hardware were studied. A continuation would tie all these sys-
tems together: targeting GPUs for highly-parallel branch-less kernels, using general-
purpose host processors for orchestrating the execution and auto-generating custom

CHAPTER 3. IMPROVING TASK-PARALLEL PERFORMANCE AND
48 QUALITY-OF-SERVICE

accelerators for the gray-area between the two. A particularly interesting direction
for future research would be to investigate energy efficiency under power- and/or
real-time constraints.

Another use for the HLS direction used in papers VI and VII is for evaluating
scheduling mechanisms or benchmarks. Simulation using existing tools such as
GEMS5 [117] or Simics [118] is very slow. Using our approach for simulation purposes
would not slow simulation speed down (compared to a software simulator) and be
able to quickly access the performance of a processor. This would require compiler
changes to support setting constraints on for example the maximum number of
instructions in flight (the throughput) such that it can mimic the behavior of the
intended simulated system.

Another direction is to use microcode [119] rather than our hardcoded FSM
to allow more freedom. While microcoded logic on FPGAs can consume more
area [120], the benefit of reconfigurability without re-synthesis could be desirable.
A microcoded solution would most probably loose performance-wise.

Runtime-systems’ inability to cope with fine-grained tasks was identified in Pa-
per I as one of the limiting factors of future application scaling with the task-parallel
model. This inability, which we show is amplified with data-flow tasks, was the tar-
get of Paper V. For patterns whose dependency graph is static, the performance
is on par with traditionally fork/join tasks, removing the extra overheads associ-
ated with solving dependencies. Our approach would also work to improve the
programmer-friendly (but slow) region-based data-flow implementation [121].

Continuing this approach would involve adding scheduling decisions or informa-
tion to the static dependency graphs, based on on- or offline knowledge, which would
improve cache behavior, load-balancing or adding firmer real-time constraints.

Chapter 4

Conclusions and Future work

We have studied the quality-of-service and performance aspects of the task-parallel
programming model.

In the first study, performance in modern runtime-system was scrutinized. Through
the use of microbenchmarks and profiling libraries, we quantified the performance
and identified the major bottlenecks in the runtime-systems. The bottlenecks
turned out to be runtime-system overheads and the scheduling policies. Incorrect
scheduling decisions led to reduced cache performance and increased load imbal-
ance. We also found that power-usage was much higher in the well-performing
runtime-systems but led to a lower total energy consumption.

Expanding the study would include scrutinizing performance when parallelism
is low. Our work primarily focused on scalability when parallelism was abundant.
Unfortunately, real-life applications do not have the amount of parallelism that is
exposed by the benchmarks we used. A complementary study would thus evaluate
the performance where limited amount of parallelism is exposed. Such a study
would identify decisions taken by the runtime-system with respect to architectural
details.

Another direction of the study would be to evaluate runtime-systems that focus
on heterogeneity, in particular the use of GPUs or Xeon PHI accelerators to improve
performance. There is a need for such a study given the heterogeneous trend of
today.

We then studied temperature for quality-of-service reasons. The motivation for
the study was that current runtime-systems ignore thermal effects in the architec-
ture. We developed two strategies for dealing with temperature.

The first was to balance the power-consumption of processing cores by estimate
the power-consuming properties of various tasks. Our method successfully allowed
cores to regulate their temperature based on the task they execute. Continuing this
study would integrate a more complex thermal model, possibly taking future sce-
narios such as the challenging 3D stacked die into considerations. From the software
perspective, one could allow the programmer to provide several implementations

49

50 CHAPTER 4. CONCLUSIONS AND FUTURE WORK

for the same task, and reformulate our problem statement: is it beneficial to use
a less power-hungry implementation to cool cores or do we allow the processor to
throttle performance?

The second strategy was to reduce the overall temperature of the processors
by providing just-enough performance needed to meet soft real-time objectives.
Our method was to use a feedback mechanism that takes samples the expected
performance of the application and regulates the number of processor active in order
to reduce power-consumption. The study holds promise, as it is among the few to
allow some form of real-time service to the programmer — a majority of the task-
parallel literature focus solely on performance aspects, particularly when running
in isolation. Continuing this study would move the responsibility for setting the
expected real-time performance from the programming into the operating system.
A processor manager (often called CPU brokers) would be implemented to handle
communication from several running OpenMP runtime-systems and negotiate the
number of processors each application would need in order to gracefully degrade
the real-time performance. For example, OpenMP applications running in the
background would be allowed to miss more deadlines and applications running in
the foreground would have stricter needs.

We finally studied performance. While there are many aspects that limit task-
parallel performance, we chose to study runtime-system overheads, heterogeneity
and high-level synthesis.

We created the BLYSK framework because we were unsatisfied by how current
runtime-systems handle data-dependent tasks. We found that the overheads in cur-
rent runtime-systems were far to large to exploit the parallelism in the application
— more often than not, the application would scale worse than the serial version
when the parallelism theoretically allowed far more.

Our method for handling the overheads was to engineer a fast, multilocked
approach to data dependency. We also complemented the engineering effort by
allowing task-graphs to be sampled. The sampled task-graphs were then optimized
offline, removing unnecessary dependencies and improving how the dependency
structure map to the various locks inside our runtime-system to further reduce
overhead. The sampled task-graph could then be re-applied the next time the
pattern was encountering in the application, removing the need to dynamically
resolve the dependencies.

There are many possible future strategies for out method. One possible scenario
would be to extend the sampled task-graphs with (worse-case) executions times and
use it together with our real-time scheduler. Such an study would strive to allow
more firm real-time guarantees. Another similar direction would be to partially
compute the schedule of the task-graph offline given the architectural information.
These hints would help the runtime-system scheduler in making better decisions
with regards to for example memory hierarchy performance. A final direction would
be to improve the compression of the task-graph. One method would be to insert
control-flow information into the task-graph to allow the runtime-system to jump
between different points into the task-graph, reducing size of the task-graph.

51

Heterogeneity as it is most-commonly deployed today was studied. We over-
came limitations in historically homogeneous scheduling algorithms by introducing
a method for dynamically probing and predicting the performance of a particu-
lar task on a device. We used the predicted information as weights to randomly
schedule the tasks on the device that is likely to perform the computation the
fastest, taking memory transfers into account. The objective for the study was
performance. The natural continuation of this study would be to schedule for
power-consumption. Because the different processors perform varying on the dif-
ferent tasks they are likely to have different power characteristics. Intuitively, the
fastest device for a particular kernel will also consume the least energy, but this
may very well not hold when the power budget itself is limited.

The final study also concerned heterogeneity, albeit now the heterogeneous hard-
ware was created automatically using the application as a template rather than
relying on off-the-shelf hardware. We continued with the BLYSK framework and
extended its compiler with the ability to generate a custom system-on-chip. The
systems that were generated only contained the logic required for the tasks to op-
erate, which allowed us to create systems with a large amount of parallel potential.

There are several different paths to continue this study. For example, to over-
come the bottlenecks with regards to the management of data-dependent tasks
(which is very slow on soft-core in the FPGA), a hardware module could be cre-
ated that enables low-overhead data-flow parallelism. The auto-generated tasks
could also communicate with the hardware task-module to create more parallelism.
Another direction would be to focus on the memory hierarchy; something that is
missing from the current study. Through trace-driven profiling, a more optimal
memory hierarchy could be designed to exploit the spatial or temporal locality in
the task-parallel application. Tuning both the processing elements and the mem-
ory hierarchy could have a substantial effect on the performance. Another direction
would be to couple the hardware with real-time scheduling of tasks — since we control
what hardware is generated, we could more easily provide bounds on the worse-case
with regards to tasks, possibly enabling hard real-time guarantees.

Bibliography

[1]

R. R. Schaller, “Moore’s law: past, present and future,” Spectrum, IEEE,
vol. 34, no. 6, pp. 52-59, 1997.

D. Liu and C. Svensson, “Power consumption estimation in CMOS VLSI
chips,” Solid-State Circuits, IEEE Journal of, vol. 29, no. 6, pp. 663-670,
1994.

A. P. Chandrakasan, S. Sheng, and R. W. Brodersen, “Low-power CMOS
digital design,” IEICE Transactions on Electronics, vol. 75, no. 4, pp. 371-
382, 1992.

R. H. Dennard, V. Rideout, E. Bassous, and A. Leblanc, “Design of ion-
implanted MOSFET’s with very small physical dimensions,” Solid-State Cir-
cuits, IEEE Journal of, vol. 9, no. 5, pp. 256268, 1974.

H. Sutter, “The free lunch is over: A fundamental turn toward concurrency
in software,” Dr. Dobbs journal, vol. 30, no. 3, pp. 202-210, 2005.

G. M. Amdahl, “Validity of the single processor approach to achieving large
scale computing capabilities,” in Proceedings of the April 18-20, 1967, spring
joint computer conference, pp. 483-485, ACM, 1967.

H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger,
“Dark silicon and the end of multicore scaling,” in Computer Architecture
(ISCA), 2011 38th Annual International Symposium on, pp. 365-376, IEEE,
2011.

J. Sanders and E. Kandrot, CUDA by example: an introduction to general-
purpose GPU programming. Addison-Wesley Professional, 2010.

J. Jeffers and J. Reinders, Intel Xeon Phi coprocessor high-performance pro-
gramming. Newnes, 2013.

D. D. Gajski, N. D. Dutt, A. C. Wu, and S. Y. Lin, HighLevel Synthesis:
Introduction to Chip and System Design. Springer Science & Business Media,
2012.

53

[14]

[15]

BIBLIOGRAPHY

Xilinx, Zyngq-7000 All Programmable SoC, 2015.

Intel/Altera, Intel Altera Heterogeneous Architecture Research Platform,
2015.

S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and V. De, “Pa-
rameter variations and impact on circuits and microarchitecture,” in Proceed-
ings of the 40th annual Design Automation Conference, pp. 338-342, ACM,
2003.

M. J. Flynn and K. W. Rudd, “Parallel architectures,” ACM Computing
Surveys (CSUR), vol. 28, no. 1, pp. 67-70, 1996.

C. MEMORY, C. MEMORY, C. M. MEMORY, and P. P. P. PERIPHERAL,
“Parallel operation in the control data 6600,” Readings in computer architec-
ture, p. 32, 2000.

J. A. Fisher, Very long instruction word architectures and the ELI-512, vol. 11.
ACM, 1983.

S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung, J. MacKay,
M. Reif, L. Bao, J. Brown, et al., “Tile64-processor: A 64-core soc with mesh
interconnect,” in Solid-State Circuits Conference, 2008. ISSCC 2008. Digest
of Technical Papers. IEEE International, pp. 88-598, IEEE, 2008.

L. Codrescu, W. Anderson, S. Venkumanhanti, M. Zeng, E. Plondke,
C. Koob, A. Ingle, C. Tabony, and R. Maule, “Hexagon DSP: An architecture
optimized for mobile multimedia and communications,” Micro, IEFE, vol. 34,
no. 2, pp. 34-43, 2014.

H. Sharangpani, “Intel® Itanium processor microarchitecture overview,” in
Microprocessor Forum, 1999.

R. M. Russell, “The CRAY-1 computer system,” Communications of the
ACM, vol. 21, no. 1, pp. 63-72, 1978.

E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “NVIDIA Tesla: A
unified graphics and computing architecture,” IEEFE micro, no. 2, pp. 39-55,
2008.

J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel program-
ming with CUDA,” Queue, vol. 6, no. 2, pp. 40-53, 2008.

J. Nickolls and W. J. Dally, “The GPU computing era,” IEEE micro, no. 2,
pp- 56-69, 2010.

J. E. Stone, D. Gohara, and G. Shi, “OpenCL: A parallel programming stan-
dard for heterogeneous computing systems,” Computing in science & engi-
neering, vol. 12, no. 1-3, pp. 66-73, 2010.

BIBLIOGRAPHY 55

[25]

[26]

[27]

[28]

[36]

B. Wilkinson and M. Allen, Parallel programming, vol. 999. Prentice hall
New Jersey, 1999.

D. R. Butenhof, Programming with POSIX threads. Addison-Wesley Profes-
sional, 1997.

J. Balart, A. Duran, M. Gonzalez, X. Martorell, E. Ayguadé, and J. Labarta,
“Experiences parallelizing a web server with OpenMP,” in OpenMP Shared
Memory Parallel Programming, pp. 191-202, Springer, 2008.

E. Baaklini, H. Sbeity, and S. Niar, “H. 264 macroblock line level parallel
video decoding on embedded multicore processors,” in Digital System Design
(DSD), 2012 15th Euromicro Conference on, pp. 902-906, IEEE, 2012.

R. H. Netzer and B. P. Miller, “What are race conditions?: Some issues
and formalizations,” ACM Letters on Programming Languages and Systems
(LOPLAS), vol. 1, no. 1, pp. 74-88, 1992.

P. Sewell, S. Sarkar, S. Owens, F. Z. Nardelli, and M. O. Myreen, “x86-
TSO: a rigorous and usable programmer’s model for x86 multiprocessors,”
Communications of the ACM, vol. 53, no. 7, pp. 89-97, 2010.

S. V. Adve and K. Gharachorloo, “Shared memory consistency models: A
tutorial,” computer, vol. 29, no. 12, pp. 66-76, 1996.

L. Dagum and R. Enon, “OpenMP: an industry standard API for shared-
memory programming,” Computational Science & Engineering, IEEE, vol. 5,
no. 1, pp. 46-55, 1998.

E. Ayguadé, N. Copty, A. Duran, J. Hoeflinger, Y. Lin, F. Massaioli,
X. Teruel, P. Unnikrishnan, and G. Zhang, “The design of OpenMP tasks,”
Parallel and Distributed Systems, IEEE Transactions on, vol. 20, no. 3,
pp. 404-418, 2009.

C. Liao, O. Hernandez, B. Chapman, W. Chen, and W. Zheng, “OpenUH:
An optimizing, portable OpenMP compiler,” Concurrency and Computation:
Practice and Experience, vol. 19, no. 18, pp. 2317-2332, 2007.

C. Liao, D. J. Quinlan, T. Panas, and B. R. De Supinski, “A ROSE-based
OpenMP 3.0 research compiler supporting multiple runtime libraries,” in Be-
yond Loop Level Parallelism in OpenMP: Accelerators, Tasking and More,
pp- 15-28, Springer, 2010.

J. Balart, A. Duran, M. Gonzalez, X. Martorell, E. Ayguadé, and J. Labarta,
“Nanos mercurium: a research compiler for openmp,” in Proceedings of the
European Workshop on OpenMP, vol. 8, 2004.

56

[37]

[40]

[41]

[42]

[43]

BIBLIOGRAPHY

M. Frigo, C. E. Leiserson, and K. H. Randall, “The implementation of the
Cilk-5 multithreaded language,” ACM Sigplan Notices, vol. 33, no. 5, pp. 212—
223, 1998.

R. D. Blumofe and C. E. Leiserson, “Scheduling multithreaded computations
by work stealing,” Journal of the ACM (JACM), vol. 46, no. 5, pp. 720-748,
1999.

J. Reinders, Intel threading building blocks: outfitting C++ for multi-core
processor parallelism. 7 O’Reilly Media, Inc.”, 2007.

K.-F. Faxén, “Wool-a work stealing library,” ACM SIGARCH Computer Ar-
chitecture News, vol. 36, no. 5, pp. 93—100, 2009.

C. C. Chi, T. Dallou, V. Garcia, C. Gou, S. Lyberis, X. Martorell, A. Mendel-
son, A. Muddukrishna, M. Pavlovic, M. R. Puzovic, et al., “D5. 3 Final Sys-
tem Performance Evaluation Version 1.0,”

C. Tancu, S. Hofmeyr, F. Blagojevi¢, and Y. Zheng, “Oversubscription on
multicore processors,” in Parallel & Distributed Processing (IPDPS), 2010
IEEE International Symposium on, pp. 1-11, IEEE, 2010.

A. Podobas, M. Brorsson, and K.-F. Faxén, “A comparative performance
study of common and popular task-centric programming frameworks,” Con-
currency and Computation: Practice and Experience, vol. 27, no. 1, pp. 1-28,
2015.

A. Duran, J. Corbaldan, and E. Ayguadé, “Evaluation of OpenMP task
scheduling strategies,” in OpenMP in a new era of parallelism, pp. 100110,
Springer, 2008.

R. D. Blumofe and C. E. Leiserson, “Space-efficient scheduling of mul-
tithreaded computations,” SIAM Journal on Computing, vol. 27, no. 1,
pp. 202-229, 1998.

F. W. Burton and M. R. Sleep, “Executing functional programs on a vir-
tual tree of processors,” in Proceedings of the 1981 conference on Functional
programming languages and computer architecture, pp. 187-194, ACM, 1981.

A. Duran, J. Corbalan, and E. Ayguadé, “An adaptive cut-off for task paral-
lelism,” in High Performance Computing, Networking, Storage and Analysis,
2008. SC 2008. International Conference for, pp. 1-11, IEEE, 2008.

C. E. Leiserson, “The Cilk++ concurrency platform,” The Journal of Super-
computing, vol. 51, no. 3, pp. 244-257, 2010.

BIBLIOGRAPHY 57

[49]

[52]

[53]

[54]

M. A. Bender and M. O. Rabin, “Scheduling Cilk multithreaded parallel
programs on processors of different speeds,” in Proceedings of the twelfth
annual ACM symposium on Parallel algorithms and architectures, pp. 13-21,
ACM, 2000.

A. Duran, X. Teruel, R. Ferrer, X. Martorell, and E. Ayguade, “Barcelona
openmp tasks suite: A set of benchmarks targeting the exploitation of task
parallelism in openmp,” in Parallel Processing, 2009. ICPP’09. International
Conference on, pp. 124-131, IEEE, 2009.

N. Manjikian and T. S. Abdelrahman, “Scheduling of wavefront parallelism on
scalable shared-memory multiprocessors,” in Parallel Processing, 1996. Vol.
8. Software., Proceedings of the 1996 International Conference on, vol. 3,
pp. 122-131, IEEE, 1996.

M. Andersch, C. C. Chi, and B. Juurlink, “Programming parallel embed-
ded and consumer applications in OpenMP superscalar,” in ACM SIGPLAN
Notices, vol. 47, pp. 281-282, ACM, 2012.

C. Liao, Y. Yan, B. R. de Supinski, D. J. Quinlan, and B. Chapman, “Early
experiences with the openmp accelerator model,” in OpenMP in the Era of
Low Power Devices and Accelerators, pp. 84-98, Springer, 2013.

A. Duran, E. Ayguadé, R. M. Badia, J. Labarta, L. Martinell, X. Martorell,
and J. Planas, “OmpSs: A proposal for programming heterogeneous multi-
core architectures,” Parallel Processing Letters, vol. 21, no. 02, pp. 173-193,
2011.

A. Podobas, M. Brorsson, and V. Vlassov, “Exploring heterogeneous schedul-
ing using the task-centric programming model,” in Furo-Par 2012: Parallel
Processing Workshops, pp. 133-144, Springer, 2013.

T. Gautier, J. V. Lima, N. Maillard, and B. Raffin, “Xkaapi: A runtime
system for data-flow task programming on heterogeneous architectures,” in
Parallel & Distributed Processing (IPDPS), 2013 IEEE 27th International
Symposium on, pp. 1299-1308, IEEE, 2013.

A. Duran, J. M. Perez, E. Ayguadé, R. M. Badia, and J. Labarta, “Extending
the OpenMP tasking model to allow dependent tasks,” in OpenMP in a New
Era of Parallelism, pp. 111-122, Springer, 2008.

P. Bellens, J. M. Perez, R. M. Badia, and J. Labarta, “CellSs: a programming
model for the Cell BE architecture,” in SC 2006 Conference, Proceedings of
the ACM/IEEE, pp. 5-5, IEEE, 2006.

D. Pham, S. Asano, M. Bolliger, M. Day, H. Hofstee, C. Johns, J. Kahle,
A. Kameyama, J. Keaty, Y. Masubuchi, et al., “The design and implemen-
tation of a first-generation CELL processor-a multi-core SoC,” in Integrated

58

[60]

[61]

[62]

[63]

[64]

[69]

[70]

BIBLIOGRAPHY

Circuit Design and Technology, 2005. ICICDT 2005. 2005 International Con-
ference on, pp. 49-52, IEEE, 2005.

A. Pop and A. Cohen, “OpenStream: Expressiveness and data-flow compi-
lation of OpenMP streaming programs,” ACM Transactions on Architecture
and Code Optimization (TACO), vol. 9, no. 4, p. 53, 2013.

P. Ghosh, Y. Yan, and B. Chapman, “Support for dependency driven exe-
cutions among OpenMP tasks,” in Data-Flow Execution Models for Extreme
Scale Computing (DFM), 2012, pp. 48-54, IEEE, 2012.

A. Podobas, M. Brorsson, and V. Vlassov, “TurboBLYSK: Scheduling for
Improved Data-Driven Task Performance with Fast Dependency Resolution,”
in Using and Improving OpenMP for Devices, Tasks, and More, pp. 45-57,
Springer, 2014.

T. Gautier, J. V. F. Lima, N. Maillard, and B. Raffin, “Locality-aware work
stealing on Multi-CPU and Multi-GPU architectures,” in 6th Workshop on
Programmability Issues for Heterogeneous Multicores (MULTIPROG), 2013.

G. Barnes, “A method for implementing lock-free shared-data structures,” in
Proceedings of the fifth annual ACM symposium on Parallel algorithms and
architectures, pp. 261-270, ACM, 1993.

M. M. Michael and M. L. Scott, “Nonblocking algorithms and preemption-
safe locking on multiprogrammed shared memory multiprocessors,” journal
of parallel and distributed computing, vol. 51, no. 1, pp. 1-26, 1998.

M. Herlihy and J. E. B. Moss, Transactional memory: Architectural support
for lock-free data structures, vol. 21. ACM, 1993.

J. L. Gustafson, “Reevaluating Amdahl’s law,” Communications of the ACM,
vol. 31, no. 5, pp. 532-533, 1988.

G. Semeraro, G. Magklis, R. Balasubramonian, D. H. Albonesi, S. Dwarkadas,
and M. L. Scott, “Energy-efficient processor design using multiple clock do-
mains with dynamic voltage and frequency scaling,” in High-Performance
Computer Architecture, 2002. Proceedings. Fighth International Symposium
on, pp. 29-40, TEEE, 2002.

H. Cho, P. D. P. Engineer, K. Chung, and T. Kim, “Benefits of the big.
LITTLE Architecture,” EETimes, Feb, 2012.

S. Kestur, J. D. Davis, and O. Williams, “BLAS Comparison on FPGA, CPU
and GPU.,” in ISVLSI, pp. 288-293, 2010.

BIBLIOGRAPHY 59

[71]

R. Scrofano, S. Choi, and V. K. Prasanna, “Energy efficiency of FPGAs and
programmable processors for matrix multiplication,” in Field-Programmable
Technology, 2002.(FPT). Proceedings. 2002 IEEE International Conference
on, pp. 422-425, IEEE, 2002.

D. Gohringer, M. Birk, Y. Dasse-Tiyo, N. Ruiter, M. Hubner, and J. Becker,
“Reconfigurable MPSoC versus GPU: Performance, power and energy evalu-
ation,” in Industrial Informatics (INDIN), 2011 9th IEEE International Con-
ference on, pp. 848-853, IEEE, 2011.

J. M. Bull and D. O’Neill, “A microbenchmark suite for OpenMP 2.0,” ACM
SIGARCH Computer Architecture News, vol. 29, no. 5, pp. 41-48, 2001.

V. V. Dimakopoulos, P. E. Hadjidoukas, and G. C. Philos, “A microbench-
mark study of OpenMP overheads under nested parallelism,” in OpenMP in
a New Era of Parallelism, pp. 1-12, Springer, 2008.

V. V. Dimakopoulos and A. Georgopoulos, “The OMPi OpenMP/C Com-
piler,” in Proc. PCI2005, 10th Panhellenic Conference on Informatics, Volos,
Greece, pp. 153-162, 2005.

C. Addison, J. LaGrone, L. Huang, and B. Chapman, “OpenMP 3.0 tasking
implementation in OpenUH,” in Open64 Workshop at CGO, vol. 2009, 2009.

F. Broquedis, T. Gautier, and V. Danjean, “LIBKOMP, an efficient openMP
runtime system for both fork-join and data flow paradigms,” in OpenMP in
a Heterogeneous World, pp. 102-115, Springer, 2012.

A. D. Robison, “Composable Parallel Patterns with Intel Cilk Plus.,” Com-
puting in Science and Engineering, vol. 15, no. 2, pp. 66-71, 2013.

Oracle, “Sun Studio 12: OpenMP API User’s Guide.”
http://docs.oracle.com/cd /FE19205-01/819-5270/, 2010.

M. Sjalander, S. McKee, B. Goel, P. Brauer, D. Engdal, A. Vajda, et al.,
“Power-aware resource scheduling in base stations,” in Modeling, Analysis €
Simulation of Computer and Telecommunication Systems (MASCOTS), 2011
IEEE 19th International Symposium on, pp. 462-465, IEEE, 2011.

P. J. Mucci, S. Browne, C. Deane, and G. Ho, “PAPI: A portable interface to
hardware performance counters,” in Proc. Department of Defense HPCMP
Users Group Conference, 1999.

E. Le Sueur and G. Heiser, “Dynamic voltage and frequency scaling: The laws
of diminishing returns,” in Proceedings of the 2010 international conference
on Power aware computing and systems, pp. 1-8, USENIX Association, 2010.

60

[83]

[88]

[92]

[93]

BIBLIOGRAPHY

H. Jacobson, P. Bose, Z. Hu, A. Buyuktosunoglu, V. Zyuban, R. Eickemeyer,
L. Eisen, J. Griswell, D. Logan, B. Sinharoy, et al., “Stretching the lim-
its of clock-gating efficiency in server-class processors,” in High-Performance
Computer Architecture, 2005. HPCA-11. 11th International Symposium on,
pp- 238-242, IEEE, 2005.

J. Choi, C.-Y. Cher, H. Franke, H. Hamann, A. Weger, and P. Bose,
“Thermal-aware task scheduling at the system software level,” in Proceedings

of the 2007 international symposium on Low power electronics and design,
pp- 213-218, ACM, 2007.

A. K. Coskun, T. S. Rosing, and K. Whisnant, “Temperature aware task
scheduling in MPSoCs,” in Proceedings of the conference on Design, automa-
tion and test in Europe, pp. 1659-1664, EDA Consortium, 2007.

I. Yeo, C. C. Liu, and E. J. Kim, “Predictive dynamic thermal management
for multicore systems,” in Proceedings of the 45th annual Design Automation
Conference, pp. 734-739, ACM, 2008.

W. Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan, K. Skadron, and
M. R. Stan, “HotSpot: A compact thermal modeling methodology for early-
stage VLSI design,” Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, vol. 14, no. 5, pp. 501-513, 2006.

S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P.
Jouppi, “McPAT: an integrated power, area, and timing modeling frame-
work for multicore and manycore architectures,” in Microarchitecture, 2009.
MICRO-42. 42nd Annual IEEE/ACM International Symposium on, pp. 469—
480, IEEE, 2009.

N. Minorsky, “Steering of Ships,” 1984.

C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogramming
in a hard-real-time environment,” Journal of the ACM (JACM), vol. 20, no. 1,
pp. 4661, 1973.

M. Gomaa, M. D. Powell, and T. Vijaykumar, “Heat-and-run: leveraging
SMT and CMP to manage power density through the operating system,” in
ACM SIGARCH Computer Architecture News, vol. 32, pp. 260-270, ACM,
2004.

L. Xia, Y. Zhu, J. Yang, J. Ye, and Z. Gu, “Implementing a thermal-aware
scheduler in linux kernel on a multi-core processor,” The Computer Journal,
vol. 53, no. 7, pp. 895-903, 2010.

K. Lakshmanan, S. Kato, and R. Rajkumar, “Scheduling parallel real-time
tasks on multi-core processors,” in Real-Time Systems Symposium (RTSS),
2010 IEEE 31st, pp. 259-268, IEEE, 2010.

BIBLIOGRAPHY 61

[94]

[100]

[101]

[102]

[103]

[104]

K. Agrawal, C. E. Leiserson, Y. He, and W. J. Hsu, “Adaptive work-
stealing with parallelism feedback,” ACM Transactions on Computer Systems
(TOCS), vol. 26, no. 3, p. 7, 2008.

C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, “StarPU: a uni-
fied platform for task scheduling on heterogeneous multicore architectures,”
Concurrency and Computation: Practice and Ezperience, vol. 23, no. 2,
pp. 187-198, 2011.

D. Kirk et al., “NVIDIA CUDA software and GPU parallel computing archi-
tecture,” in ISMM, vol. 7, pp. 103-104, 2007.

S. Lee, S.-J. Min, and R. Eigenmann, “OpenMP to GPGPU: a compiler
framework for automatic translation and optimization,” ACM Sigplan No-
tices, vol. 44, no. 4, pp. 101-110, 2009.

R. Reyes, 1. Lépez-Rodriguez, J. J. Fumero, and F. de Sande, “accULL: an
OpenACC implementation with CUDA and OpenCL support,” in Furo-Par
2012 Parallel Processing, pp. 871-882, Springer, 2012.

V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D. Nguyen,
N. Satish, M. Smelyanskiy, S. Chennupaty, P. Hammarlund, et al., “Debunk-
ing the 100X GPU vs. CPU myth: an evaluation of throughput computing on
CPU and GPU,” in ACM SIGARCH Computer Architecture News, vol. 38,
pp. 451-460, ACM, 2010.

H. Topcuoglu, S. Hariri, and M.-y. Wu, “Performance-effective and low-
complexity task scheduling for heterogeneous computing,” Parallel and Dis-
tributed Systems, IEEE Transactions on, vol. 13, no. 3, pp. 260-274, 2002.

K. Chronaki, A. Rico, R. M. Badia, E. Ayguadé, J. Labarta, and M. Valero,
“Criticality-Aware Dynamic Task Scheduling for Heterogeneous Architec-
tures,” 2015.

H. Vandierendonck, G. Tzenakis, and D. S. Nikolopoulos, “Analysis of depen-
dence tracking algorithms for task dataflow execution,” ACM Transactions
on Architecture and Code Optimization (TACO), vol. 10, no. 4, p. 61, 2013.

E. Ayguadé, R. M. Badia, F. D. Igual, J. Labarta, R. Mayo, and E. S.
Quintana-Orti, “An extension of the StarSs programming model for plat-
forms with multiple GPUs,” in Euro-Par 2009 Parallel Processing, pp. 851—
862, Springer, 2009.

A. Filgueras, E. Gil, D. Jimenez-Gonzalez, C. Alvarez, X. Martorell,
J. Langer, J. Noguera, and K. Vissers, “OmpSs@Zynq All-programmable SoC
Ecosystem,” in Proceedings of the 2014 ACM/SIGDA International Sympo-
sium on Field-programmable Gate Arrays, FPGA ’14, (New York, NY, USA),
pp. 137-146, ACM, 2014.

62

[105]

[106]

[107]

[108]

[109]

[114]

[115]
[116]

[117]

BIBLIOGRAPHY

K. Martin, C. Wolinski, K. Kuchcinski, A. Floch, and F. Charot, “Constraint-
driven identification of application specific instructions in the DURASE sys-
tem,” in Embedded Computer Systems: Architectures, Modeling, and Simula-
tion, pp. 194-203, Springer, 2009.

A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H. Anderson,
S. Brown, and T. Czajkowski, “LegUp: high-level synthesis for FPGA-based
processor/accelerator systems,” in Proceedings of the 19th ACM/SIGDA in-
ternational symposium on Field programmable gate arrays, pp. 33-36, ACM,
2011.

Y. Leow, C. Ng, and W.-F. Wong, “Generating hardware from OpenMP
programs,” in Field Programmable Technology, 2006. FPT 2006. IEEE In-
ternational Conference on, pp. 73-80, Ieee, 2006.

T. S. Czajkowski, U. Aydonat, D. Denisenko, J. Freeman, M. Kinsner,
D. Neto, J. Wong, P. Yiannacouras, and D. P. Singh, “From OpenCL to
high-performance hardware on FPGAs,” in Field Programmable Logic and
Applications (FPL), 2012 22nd International Conference on, pp. 531-534,
IEEE, 2012.

A. Papakonstantinou, K. Gururaj, J. A. Stratton, D. Chen, J. Cong, and
W.-M. Hwu, “FCUDA: Enabling efficient compilation of CUDA kernels onto
FPGAs,” in Application Specific Processors, 2009. SASP’09. IEEE Tth Sym-
posium on, pp. 3542, IEEE, 2009.

Altera, “Altera Megafunction Overview User Guide,” 2015.
Altera, Avalon Interface Specifications, mar 2015.
Altera, “NioslI Instruction Set Reference,” 2015.

A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, T. Czajkowski, S. D.
Brown, and J. H. Anderson, “LegUp: An open-source high-level synthesis
tool for FPGA-based processor/accelerator systems,” ACM Transactions on
Embedded Computing Systems (TECS), vol. 13, no. 2, p. 24, 2013.

C. Schulte, M. Lagerkvist, and G. Tack, “Gecode,” Software download and
online material at the website: hitp://www. gecode. org, 2006.

Altera, Stratiz V Device Handbook Volume 1, 2015.

J. Ball, “The Nios II Family of Configurable Soft-Core Processors,” Hot Chips,
Altera, 2005.

N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, et al., “The gemb simu-
lator,” ACM SIGARCH Computer Architecture News, vol. 39, no. 2, pp. 1-7,
2011.

BIBLIOGRAPHY 63

[118]

[119]

[120]

[121]

P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg,
J. Hogberg, F. Larsson, A. Moestedt, and B. Werner, “Simics: A full system
simulation platform,” Computer, vol. 35, no. 2, pp. 50-58, 2002.

F. Nowak, M. Bromberger, and W. Karl, “An Architecture Framework for
Porting Applications to FPGAs,” in Architecture of Computing Systems
(ARCS), 2014 27th International Conference on, pp. 1-7, VDE, 2014.

N. Q. M. Noor, A. Saparon, and Y. Yusof, “An overview of microcode-based
and FSM-based programmable memory built-in self test (MBIST) controller
for coupling fault detection,” in Industrial Electronics € Applications, 2009.
ISIEA 2009. IEEE Symposium on, vol. 1, pp. 469-472, IEEE, 2009.

J. Bueno, X. Martorell, R. M. Badia, E. Ayguadé, and J. Labarta, “Im-
plementing ompss support for regions of data in architectures with multiple
address spaces,” in Proceedings of the 27th international ACM conference on
International conference on supercomputing, pp. 359-368, ACM, 2013.

