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Abstract: Background: The accurate classification between malignant and benign breast lesions
detected on mammograms is a crucial but difficult challenge for reducing false-positive recall rates
and improving the efficacy of breast cancer screening. Objective: This study aims to optimize a new
deep transfer learning model by implementing a novel attention mechanism in order to improve the
accuracy of breast lesion classification. Methods: ResNet50 is selected as the base model to develop
a new deep transfer learning model. To enhance the accuracy of breast lesion classification, we
propose adding a convolutional block attention module (CBAM) to the standard ResNet50 model
and optimizing a new model for this task. We assembled a large dataset with 4280 mammograms
depicting suspicious soft-tissue mass-type lesions. A region of interest (ROI) is extracted from each
image based on lesion center. Among them, 2480 and 1800 ROIs depict verified benign and malignant
lesions, respectively. The image dataset is randomly split into two subsets with a ratio of 9:1 five
times to train and test two ResNet50 models with and without using CBAM. Results: Using the
area under ROC curve (AUC) as an evaluation index, the new CBAM-based ResNet50 model yields
AUC = 0.866 ± 0.015, which is significantly higher than that obtained by the standard ResNet50
model (AUC = 0.772 ± 0.008) (p < 0.01). Conclusion: This study demonstrates that although deep
transfer learning technology attracted broad research interest in medical-imaging informatic fields,
adding a new attention mechanism to optimize deep transfer learning models for specific application
tasks can play an important role in further improving model performances.

Keywords: computer-aided diagnosis (CAD) scheme of mammograms; convolutional block attention
module (CBAM); residual network (ResNet); breast lesion classification

1. Introduction

Breast cancer is among the leading cause of death among women around the world.
The early detection and diagnosis of breast cancer can play an important role in reducing
the mortality rate of breast cancer patients due to early and proper treatments. Thus,
breast cancer screening has been widely promoted and used in the last several decades.
Currently, digital mammography is still the primary imaging screening tool used in breast
cancer screening due to its advantages of having low costs, wide accessibility, and short
screening times. However, the efficacy of population-based screening mammography
remains controversial (particularly due to high false-positive recalls) [1]. As a result, the
majority of breast lesion biopsy results are benign. This not only wastes healthcare resources
but also creates anxieties among women with false-positive detections or benign biopsies,
which can induce long-term psychosocial consequences among these women [2] and render
them less likely to continue participating in breast cancer screening [3]. Therefore, there
is substantial research interest aiming to develop novel quantitative image markers or
decision-making supporting tools that can effectively assist radiologists in making more
accurate diagnostic decision to classify suspicious or worrisome breast lesions detected
on mammograms.
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In the last two decades, many researchers developed and tested a variety of computer-
aided diagnosis (CAD) schemes to classify malignant and benign breast lesions [4]. How-
ever, the performance of these CAD schemes heavily depends on breast lesion segmentation
and the selection of optimal “handcrafted” image features, which remain challenging tech-
nical issues in CAD development [5,6]. Thus, the performance and scientific rigor of the
conventional CAD schemes remain lower. Recently, due to rapid developments in deep
learning technology, training and applying deep learning models to develop new CAD
schemes of medical images including mammograms to classify malignant and benign
breast lesions have attracted broad research interest [7,8]. Using a deep learning method
can typically avoid lesion segmentation processes and use model-generated automated
image features to build and train the final lesion classifier. Specifically, by using a relatively
large and diverse image dataset, a deep learning model can learn intricate patterns from
large dimensionally raw data with no or little human guidance [9,10].

Among many different deep learning models, the convolutional neural network (CNN)
is the most popular deep learning architecture [11]. Because of its relatively simple but
robust characteristics [12], CNN-based deep learning models have been widely applied to
develop CAD schemes of medical images [13–17]. However, one of the major drawbacks
of the convolutional neural network is that it requires large amounts of data for training,
which is sometimes difficult to obtain in medical imaging fields. Thus, transfer learning
has recently become a popular strategy among researchers to address this issue [18,19].
The current standard of transfer learning is to select and use an existing model (i.e., an
AlexNet model [20]) that was originally trained using a large natural image dataset such as
ImageNet [21] and then to finetune the model using limited medical imaging data. Despite
the advantages of CNN, one of the major difficulties or challenges of using CNNs is how to
optimally train or finetune the model due to the problem of vanishing gradients, which
may make the training process difficult in identifying the “best” or optimal converging
result. One solution that has been used in previous studies is to place an auxiliary loss in an
intermediate layer as additional monitoring, but it does not solve the problem completely.

Thus, many modified or advanced deep learning models have recently been devel-
oped and tested. Previous studies have compared many different deep learning models
and found that ResNet50 model was the best architecture framework for the image classifi-
cation task with the highest accuracy and efficiency to train [22,23]. As a result, recently, a
ResNet50 model has also been used to build a new transfer learning model or CAD scheme
of mammograms to classify breast lesions [24]. On the other hand, a new technology,
namely, attention mechanisms, has also become a popular method used in image analysis
and demonstrates their unique capability and advantages in boosting the representational
strength by emphasizing crucial details and squelching superfluous ones [25], which have
been applied in computer vision systems of object recognition [26]. In particular, a convolu-
tional block attention module (CBAM) is designed to highlight significant characteristics
along the two principal dimensions, namely, channel and spatial attention axes. Each
branch learns “what” and “where” to attend in the channel and spatial axes, respectively,
by applying channel and spatial attention modules in order, which can more effectively
identify and distinguish different image patterns. However, despite the advantages, to the
best of our knowledge, CBAM has not been used to help develop deep transfer learning
models, particularly for the task of classifying medical images, including classifying breast
lesions using mammograms.

Therefore, based on the literature review, we propose a hypothesis as follows: Adding
an optimal attention mechanism (i.e., a CBAM) to the finetuning process of ResNet50 model
can combine the advantages of two technologies, which will have significant advantages in
developing a new CAD scheme and further improve the CAD performance of breast lesion
classification using mammograms. The objective of this study is to test or verify the above
hypothesis. The details of this study are presented in the following sections of this paper.
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2. Materials and Methods
2.1. Image Dataset

In this study, we assembled a retrospective image dataset from an existing mammogra-
phy database previously collected in our medical imaging laboratory, which has been used
to develop several CAD schemes reported in our previous research papers (i.e., [27–29]).
The dataset used in this study includes 4280 mammograms. Each mammogram contains
a suspicious soft-tissue mass-type breast lesion that was detected by a radiologist during
initial image reading and diagnosis in mammography screening. All suspicious lesions
were recalled and had biopsy tests. Based on the confirmed pathology examination results,
2480 images include benign lesions, while the rest of the 1800 images depict malignant
lesions in this image dataset.

All detected breast lesions are also previously annotated by the radiologists. Figure 1
shows four example mammograms from both the craniocaudal (CC) and mediolateral
oblique (MLO) views acquired from two patients. In each image, the lesion’s center location
is annotated with a green circle, as shown in the figure. Next, in this study, we extract a
region of interest (ROI) with a fixed size of 128× 128 pixels from each image. The annotated
lesion center and the extracted ROI center overlapped. If part of the ROI is beyond the
boundary of the original mammogram (i.e., a lesion that is detected close to the edge of the
image as shown in Figure 1b), a zero-pad correction method is applied. The same size ROI
or patch has been affectively used in our previous CAD studies (i.e., [24]). This relatively
large and diverse image dataset is then used in this study to develop and test our proposed
new deep transfer learning ResNet50 model implemented with a novel convolutional block
attention module (CBAM), as discussed below.
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Figure 1. Illustration of four mammograms of CC and MLO views of two patients in which two
suspicious mass type lesions are detected, as circled by green rings. Two images of one patient depict
a benign lesion (a) and two images of another patient depict a malignant lesion (b).

2.2. A New Integrated Transfer Learning Model
2.2.1. A ResNet 50 Model

In brief, the basic concept of ResNet is to introduce an identity shortcut relation that
skips one or more layers [30]. It employs a technique known as skip connections, which
link skips connections on two to three layers containing ReLU and batch normalization
among the architectures. It allows the network to match the residual mapping rather than
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enabling the network to learn the underlying mapping. For example, let us consider H(x)
as an underlying mapping to be fit by a few stacked layers, with “x” denoting the inputs
to the first of these layers. If several nonlinear layers are thought to be able to asymptoti-
cally approximate complex functions, this is the same as thinking they can asymptotically
approximate a residual function defined as F(x): = H(x) − x. The original function thus
becomes F(x) + x. Although it should be possible for both forms to asymptotically approxi-
mate the desired functions (as was originally envisioned), the learning curves for each form
may vary.

The benefit of using the skip link is that any layer that degrades the design performance
will be skipped by regularization. The training of very deep neural networks is therefore
not hampered by vanishing gradients as conventional CNN models. The parametric gates
are used in these skip connections, much like they are in long short-term memory (LSTM)
networks. These gates control the quantity of data that moves across the skip connection.
The gradient vanishing and feature map vanishing issues are addressed by ResNet when
training an excessive number of deep CNN. Identity links between non-adjacent layers
have no impact on the ideal mapping as the application task wants to produce, which is
why the ResNet works. As a result of the gradients having access to an additional shortcut
channel thanks to the identity connection, back propagation is more fluid. In summary,
ResNet50 is a popular deep residual network that achieves a good balance between the
depth of network and training efficiency. A typical ResNet50 architecture is shown in
Figure 2, which is originally trained using more than a million images collected from the
ImageNet database (ImageNet. http://www.image-net.org) (accessed on 1 August 2022).
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2.2.2. Channel Attention Module

Several different attention modules have also been investigated and applied in deep
learning field to help improve deep learning model-training efficacy and results. Among
them, the channel attention module focuses on “what” is meaningful given an input image
as each channel of a feature map is considered as a feature detector [31]. Figure 3 provides a
schematic of the process. To efficiently compute the channel attention, the spatial dimension
of the input feature map is squeezed. The max-pooled and average pooled features are

http://www.image-net.org
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employed together to infer finer channel-wise attention. Both feature descriptors, Fc
avg and

Fc
max, are then forwarded to a shared network to produce the channel attention map: Mc
∈ RC×1×1. The shared network is composed of a multi-layer perceptron (MLP) with one
hidden layer. The output feature vectors are merged using element-wise summation, as
shown in the equation below:

Mc(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F)))

= σ (W1 (W0 (Fc
avg)) + W1(W0 (Fc

max)))
(1)

where σ denotes the sigmoid function, W0 ∈ R( C
r )×C, and W1 ∈ RC×( C

r ). MLP weights, W0
and W1, are shared for both inputs, and the ReLU activation function is followed by W0.
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2.2.3. Spatial Attention Module

Another popular attention module is a spatial attention module that is generated by
utilizing the inter-spatial relationship of features. This module emphasizes on “where”
an informative part is, which is complementary to the channel attention module. At first,
average-pooling and max-pooling operations are applied along the channel’s axis. Applica-
tions of pooling techniques along the channel axis demonstrated success in emphasizing
informative sections [32]. Then, they merge to generate an efficient feature descriptor.
A convolution layer is applied on the merged feature descriptor to generate a spatial atten-
tion map Ms(F) ∈ RH×W , which encodes the location to focus on or suppress. The detail of
the spatial attention module is illustrated in Figure 4:

Ms(F) = σ
(

f 7×7([AvgPool(F); MaxPool(F)])
)

= σ
(

f 7×7 ([Fs
avg; Fs

max]))
(2)

where σ denotes the sigmoid function, and f 7×7 represents a convolution operation with a
filter size of 7 × 7.

2.2.4. Convolution Block Attention Module

Due to the complementary characteristics between the channel attention module
and the spatial attention module, a new attention module was developed to sequentially
combine these two modules in an attempt to take advantages of these two attention
modules. This new module is named as the convolution block attention module (CBAM).
The overall attention process of CBAM [33] can be summarized as follows:

F′= Mc(F) ⊗ F (3)
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F′′= Ms
(

F′
)
⊗F′ (4)

where ⊗ denotes element-wise multiplication. F” is the final refined module output.
The basic architecture of the CBAM is illustrated in Figure 5. Due to its combined ca-
pability or advantages, CBAM has recently been attracting research interest in medical
imaging field [34,35]. However, CBAM has not been explored in helping develop deep
learning models for breast lesion classification. In this study, we propose to add CBAM
to the ResNet50 fine-tuning process in order to improve transfer learning efficacies and
breast lesion classification performance using the CAD scheme implemented with the
ResNet50 model.
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2.3. Transfer Learning Process

In the original or standard ResNet50 model, all network connection weights are pre-
trained using a large and diverse ImageNet database to recognize or classify 1000 different
objects, which thus has 1000 nodes in the last classification layer. In this study, we use
the pre-trained ResNet50 model as a base to build two transfer learning models or breast
lesion classifiers with and without adding CBAM in the finetuning process. Two new
models only include two output nodes to represent benign and malignant lesions. For this
purpose, we take following steps to conduct the transfer learning process to build breast
lesion classifiers, as shown in Figure 6.
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Figure 6. Schematic of our proposed CBAM-based ResNet50-model-based transfer learning process.

First, we apply several image pre-processing steps to optimally use mammograms as
input images of the model. The steps include the following: (1) gray to RGB: the original
grayscale mammogram is simply copied into all three (RGB) input channels of the ResNet50
model. (2) Resizing to 224× 224: Images in all three channels are resized to 224 × 224 pixels
using the standard mathematics interpolation method to fit the default image size of the
ResNet50 model. (3) Randomly split the original image dataset into to train, validation,
and test subsets (which will further be discussed in Section 2.4). (4) Data augmentation:
The standard augmentation method is applied to increase the size of training samples and
diversity in lesion orientations.

Second, to optimally control training iteration epochs in order to reduce overtraining
bias, we divide the training dataset into two subgroups to be used for model training and
validation using a ratio of 9:1. We will use validation data and validation results to control
model training or fine-tuning processes, such as the number of training epochs.

Third, we modify the original architecture of the ResNet50 model, which is shown in
Figure 2. Specifically, the original architecture of ResNet50 remains unchanged (i.e., the
weights and biases remain the same) until the last or top Fully Connection Layer (FCL),
which are removed. Specifically, the last layer in the original architecture as shown in
Figure 2 is removed at the start of the model’s finetuning process. A new flatten layer
is added to the model. We also integrate the CBAM to ResNet50 after adding the new
flattened layer. Next, we add two FCLs with 256 and 128 nodes. In these two convolution
layers, Rectified Linear Unit (ReLU) [36] is used as the activation function. In the final step
of this finetuning process, we add the last classification layer, which uses Softmax as the
activation function to fulfill a new two-class breast lesion classification task.

Fourth, in order to train or finetune the new transfer learning model, the complete
model is compiled with the Adam [37] optimizer with a batch size of 32, the max epoch
is limited to 100, and the initial learning rate is chosen as 2× 10−5, which is smaller than
the learning rate of ResNet50 used on ImageNet due to the small dataset of mammograms.
The small learning rate preserves valuable parameters as much as possible by avoiding
dramatic changes on the pre-trained parameters and lets the model better learn the input
images more minutely.

2.4. Model Training and Testing

After determining the architecture of our modified transfer learning ResNet50 model,
we apply following steps to train and test two classifiers based on transferred ResNet50
model with and without adding CBAM in the model fine-tuning process. Specifically,
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we randomly split the entire image dataset of 4280 images into 3 independent subsets of
training, validation, and testing. Overall, 10% of images (428) were assigned to testing
subset. In the rest of the dataset, 90% of the images (3467) formed a training subset, while
10% of the images (385) were assigned to the validation subset. To maintain the same image
partition ratios for the two classes of benign and malignant breast lesions, the case partition
of the assignment was performed on images of both benign and malignant lesion classes
independently using the same case-splitting ratios.

On the training data subset, we applied shearing, zoom, rotation, width and height
shift, and horizontal flip as augmentation techniques that have been commonly used in
training deep learning models, aiming to increase the size of training samples [38]. The
values of these parameters are shown in Table 1.

Table 1. Parameters used in data augmentation.

Shear Range Zoom Range Rotation Range Width Shift Range Height Shift Range Horizontal Flip

0.2 0.2 40 0.2 0.2 True

Next, multiple iteration or epochs are applied to train the CBAM-based ResNet50
model. The model is first trained or finetuned using the data in the training subset and
then tested using the validation subset. To close the performance gap between training
and validation datasets, the optimizer tries to push the architecture to learn more data
during training. To control overfitting and maintain training efficiencies, we limit model
training epochs to 100 in the experiment. During these 100 epochs, an optimally trained
model based on validation dataset result is saved and then the trained model is tested “as
is” using the data in the independent testing subset, which does not involve in the model
training and validation process.

Additionally, in order to evaluate the robustness or rigor of the above training, val-
idation and testing process, we repeat this model training and testing process five times
by randomly dividing all images into 3 subsets of training, validation, and testing five
times using the same image partition ratios in order to reduce the risk of potential bias
in image data partitions [39]. Specifically, the image assigned to the validation and test-
ing subsets is entirely different for these five instances of image partitions. As a result,
five sets of the trained deep transfer learning models are validated and tested with ut-
terly unique testing scenarios. Therefore, the total number of testing images increases to
2140 (428 × 5). Figure 7 shows a schematic diagram of the training, validation, and testing
phase of this experiment.

2.5. Performance Evaluation

We apply the following two statistical data analysis methods to evaluate and com-
pare breast lesion classification performances or accuracy levels of two transfer learning
ResNet50 model with and without adding CBAM. First, we use a receiver operating char-
acteristic (ROC) type data analysis method and the area under the ROC curve (AUC) as
an evaluation index. Second, based on model-generated probability scores between two
output/classification nodes that represent malignant and benign lesions, a testing image is
assigned to one class of either malignant or benign lesion, based upon which the probability
score is greater between two output nodes of the model. Then, a confusion matrix is
generated for each testing subset. Based on the confusion matrix, several additional evalu-
ation indices are computed, which include the overall classification accuracy, sensitivity,
specificity, and F1 score computed as follows to evaluate model performances used in a
binary or practical decision environment:

Accuracy =
TM + TB
All images

(5)
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Sensitivity =
TM

TM + FB
(6)

Speci f icity =
TB

TB + FM
(7)

F1 = 2× TM2

TM× (2× TM + FM + FB)
(8)

where TM and TB represent the number of correctly classified true malignant lesion and
true benign lesions, respectively, while FM and FB represent misclassified malignant and
benign lesions, respectively.
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3. Results

First, the experimental results show that when applying five transfer learning ResNet50
models optimized with CBAM to five independent testing datasets, the computed AUC
values are 0.86, 0.87, 0.89, 0.86, and 0.85, which results in a mean AUC value of 0.866 and a
standard deviation of 0.015. When testing five standard transfer learning ResNet50 without
adding CBAM, AUC values are 0.77, 0.78, 0.79, 0.79, and 0.78 for the five testing datasets,
in which the mean AUC value is 0.780 and the standard deviation is 0.008. By comparing
AUC values generated by two models, the ResNet50 model optimized with CBAM yields a
significantly higher mean AUC value (p < 0.01).

Second, Figure 8 demonstrates classification performance trends and confusion matri-
ces generated by five repeated experiments. Specifically, the left columns of Figure 8 present
five trend curves of training (or fine-tuning) and validation accuracy of the ResNet50 model
optimized with CBAM using different training and validation image data subsets. These
curves show that the training and validation accuracy increases as the number of learning
iterations (epochs) increases initially. However, after epoch 20, the models do not show the
trend of a continuous improvement in lesion classification, while overfitting risk increased.
Thus, we chose epochs = 20 to train and build all five models to prevent the risk of model
overfitting. Then, by applying the trained models to the corresponding independent testing
subsets, five confusion matrices that are computed based on the lesion classification of
testing datasets using the ResNet50 model optimized with CBAM are displayed in the right
columns of Figure 8.
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with CBAM, applied to the training and validation subsets for five experiments in 100 training epochs.
The horizontal axis shows the number of epochs, and the vertical axis shows the accuracy. The right
column shows five confusion matrices of the corresponding testing results. In labeling axes of each
confusion matrix, “1” represents a malignant lesion class, while “0” represents a benign lesion class.

Third, from these five confusion matrices, the computed lesion classification accuracy
values are 0.78, 0.76, 0.79, 0.76, and 0.78, which indicates that the mean accuracy value
of lesion classification is 0.774 ± 0.019. Additionally, the mean sensitivity and specificity
values are 0.77 ± 0.05 and 0.81 ± 0.06, respectively. Table 2 lists and compares five sets of
the lesion classification index data computed based on lesion classification results between
using two transfer learning ResNet50 models with and without adding CBAM in the
model’s training process. The results show that using ResNet50 with CBAM achieves a
higher performance, as evauated by all five indicies reported in Table 2.

Table 2. Performance comparison between two ResNet50 models with and without using CBAM.

Model AUC Accuracy Sensitivity Specificity F1 Score

Standard ResNet50 0.77 ± 0.01 0.76 ± 0.03 0.76 ± 0.02 0.50 ± 0.09 0.67 ± 0.07

ResNet50 & CBAM 0.87 ± 0.02 0.77 ± 0.02 0.77 ± 0.05 0.79 ± 0.06 0.75 ± 0.05

Fourth, Figure 9 shows another confusion matrix by combining or pooling all 2140 testing
images in all five independent training and testing experiments. The computed overall
accuracy of the pooling testing images is 0.77 (1649/2140), while the sensitivity and speci-
ficity are 0.77 and 0.79, respectively. The performance indices are quite comparable to the
results of mean index values, as reported in Table 2, using five smaller testing datasets,
which also demonstrates the robustness of the ResNet50 model finetuned with CBAM for
this breast lesion classification task.
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4. Discussion

Deep learning technology and a variety of models with different architectures have
recently been widely used to develop new CAD schemes for medical images, including
classifying breast lesions detected on mammograms. However, due to the use of small
training image datasets and/or possible bias in image partitions, the performance of the
deep learning models of medical images varies greatly with lower scientific rigor. As a
result, most deep learning models have pitfalls or bias and are not acceptable in clinical
practice [40]. In this study, we investigate a novel approach to develop a new CAD scheme
in order to classify benign and malignant breast lesions detected on mammograms. Our
study has several unique characteristics and study results have also demonstrated several
advantages of our new approach.

First, although a ResNet50 model has significant advantages over many other existing
deep learning models in performing object recognition or classification tasks, directly
adopting the ResNet50 model to develop a new transfer learning model to classify breast
lesion detected on mammograms may not be an optimal or accurate approach because
breast lesions are more subtle and heterogenous than many other targeted objects. To
address this challenge and improve model performances, we investigate and test a unique
approach by adding a novel attention module, namely, a convolutional block attention
module (CBAM), to help finetune and optimize the ResNet50 model to classify breast
lesions. Our study results demonstrate that the ResNet50 model optimized using CBAM
yields significantly higher breast lesion classification performance (AUC value) than the
standard ResNet50 model without using CBAM in its finetuning process. This indicates the
importance of the research effort to continuously search for novel and more effective model
finetuning and optimization methods in developing deep transfer learning model-based
CAD schemes with respect to medical images.

Second, although several different attention modules are currently available for se-
lection and applied to help finetune and optimize deep transfer learning models, this
study also demonstrates that using CBAM has the advantage of combining complementary
learning approaches to achieve higher performance. Specifically, CBAM is a combination
of two popular attention modules, namely, the Channel Attention Module (CAM) and
Spatial Attention Module (SAM), as shown in Figure 6. In order to investigate and/or
demonstrate the advantages of using CBAM over the use of these two attention modules
independently, we also compare the lesion classification performance of three ResNet50
models optimized by separately adding these three attention modules. Table 3 shows and
compares the breast lesion classification performance of three ResNet50 models optimized
by adding three attention modules. The comparison data indicate that the ResNet50 model
optimized by adding CBAM achieves the highest breast lesion classification performance
evaluated using all five evaluation indices.

Table 3. Comparison of breast lesion classification results of three transfer learning ResNet50 fine-
tuned by adding three different attention modules.

Attention Module AUC Accuracy Sensitivity Specificity F1 Score

CAM 0.82 0.74 0.74 0.71 0.74

SAM 0.78 0.75 0.75 0.78 0.65

CBAM 0.87 0.78 0.77 0.79 0.75

Third, this study uses a relatively large and diverse image dataset with 4280 mammograms
or lesion regions. In particular, 3467 images were randomly selected to finetune ResNet50
models. Although the size of this image dataset is much larger than most datasets used and
reported in the previous studies of developing CAD schemes of breast lesion classification,
we recognize the potential bias of image partitions in training, validation, and testing data
subsets. Thus, in order to test the scientific rigor or robustness of the deep transfer learning
ResNet50 model used for breast lesion classification, we randomly divided the dataset and
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repeated the experiment five times. As a result, five sets of ResNet50 models optimized or
finetuned with and without adding CBAM were applied “as is” to five independent testing
image datasets. No one image was selected and used twice as a testing image in these
five repeated experiments. The data analysis results show small standard deviations (i.e.,
≤0.02 or 2.3% for AUC values as shown in Table 2), which demonstrated that the finetuned
transfer learning ResNet50 models are robust. This is encouraging and indicates that using
a relatively large and diverse image dataset can play an important role in developing and
training robust deep transfer learning models of mammograms. We believe that this con-
cept of using larger training datasets and the approach to finetuning deep transfer learning
models by adding or using an effective attention module are not only limited to this study
with the task of breast lesion classification using mammograms, but the approaches are also
applicable for developing and optimizing other deep transfer learning models for many
other medical-imaging application tasks.

Despite the encouraging results or observations made in this study, we also recognize
several limitations. First, the original ResNet50 model was designed to process color
images with three (RGB) input channels. However, a mammogram is a gray-level image.
In this study, we simply copy the same gray-level image into all three input channels of
ResNet50 model, which may not be the optimal approach. Previous studies investigated
different methods to create pseudo-color images by applying different image preprocessing
algorithms and demonstrated the potential advantages of using pseudo-color images over
only copying raw images into three input channels of the deep learning models [39,41].
Second, since the goal of this study is to investigate the feasibility and advantages of
adding CBAM to help finetune the ResNet50 model, we directly used all model-generated
automated image features to build the final lesion classifier, which may also not be an
optimal approach because it misses a potentially important step of feature selection or the
feature dimensionality reduction process as used in some of other previous studies [39,41].
Third, although this study uses a large and diverse image dataset, all images were acquired
using one type of digital mammography machine in one medical center. The robustness
of the ResNet50 models finetuned in this study needs to be tested and validated in future
studies with more diverse image datasets acquired from different medical centers or
hospitals. Thus, the above issues or limitations need to be further investigated in our future
studies. However, we believe that this study is valid, and it successfully tests or verifies
the hypothesis of this study discussed in the last paragraph of the Introduction section of
this paper.

5. Conclusions

In this paper, we present a unique study that investigates the feasibility and advantages
of developing a new CAD scheme based on a deep transfer learning ResNet50 model that
is finetuned using a convolutional block attention module (CBAM) to classify malignant
and benign breast lesions detected on mammograms. The study uses a relatively large
and diverse image dataset with 4280 images or lesion regions. The data analysis’ results
demonstrate that a transfer learning ResNet50 model finetuned by adding CBAM yields
significantly higher lesion classification performance (AUC value) than a standard ResNet50
model without using CBAM. The robustness of the lesion classification results is also tested
and demonstrated using five repeated experiments with independent testing image datasets.
Thus, although deep transfer learning technology has attracted broad research interests
in the medical-imaging informatics field, adding a new attention mechanism or other
optimization methods to finetune deep transfer learning models for the specific application
tasks can play an important role in further improving model performances.
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