
Improving Performance of QUIC in WiFi

Jawad Manzoor∗, Llorenç Cerdà-Alabern†, Ramin Sadre∗ and Idilio Drago‡

∗Université Catholique de Louvain

{jawad.manzoor,ramin.sadre}@uclouvain.be

†Universitat Politècnica de Catalunya

llorenc@ac.upc.edu

‡Politecnico di Torino

idilio.drago@polito.it

Abstract—QUIC is a new transport protocol under standard-
ization since 2016. Initially developed by Google as an experi-
ment, the protocol is already deployed in large-scale, thanks to
its support in Chromium and Google’s servers. In this paper
we experimentally analyze the performance of QUIC in WiFi
networks. We perform experiments using both a controlled WiFi
testbed and a production WiFi mesh network. In particular,
we study how QUIC interplays with MAC layer features such
as IEEE 802.11 frame aggregation. We show that the current
implementation of QUIC in Chromium achieves sub-optimal
throughput in wireless networks. Indeed, burstiness in modern
WiFi standards may improve network performance, and we show
that a Bursty QUIC (BQUIC), i.e., a customized version of QUIC
that is targeted to increase its burstiness, can achieve better
performance in WiFi. BQUIC outperforms the current version
of QUIC in WiFi, with throughput gains ranging between 20%
to 30%.

I. INTRODUCTION

With the exponential growth in adoption of mobile phones

and other smart connected devices, the usage of wireless

networks continues to grow. Today, wireless networks are

commonplace in every sector of life including homes, offices,

restaurants, hospitals and university campuses. In a recent

Cisco white paper [1] it is predicted that wireless and mobile

device traffic will exceed that of PCs, and comprise more than

63 percent of total IP traffic by 2021. There is a continuous

increase in user demand for richer mobile web content and

reduced loading time. At the same time, complex applications

and web content put a large computational burden on mobile

devices, which are in general more resource-constrained than

PCs and laptops.

Nonetheless, technological advancements have allowed to

overcome these issues and provide better user experience. On

one hand, WiFi technologies, which are based on the IEEE

802.11 standards, have undergone an enormous evolution in

the recent years [2]. For instance, the 802.11n standard, which

is predominant nowadays, allows coding schemes (MCS)

that support data rates up to 600 Mbps. It also includes a

high throughput enhancement called frame aggregation, which

consists of combining two or more data frames into a single

transmission, thus reducing the fixed overhead associated with

each frame transmission. On the other hand, efforts from

content providers in developing customized mobile versions

of websites and new low-latency transport protocols such as

QUIC have contributed to improve user experience. QUIC

started as an experimental protocol designed by Google and

has emerged as a serious alternative to TCP. In a recent

measurement study [3], it was estimated that around 7% of

the Internet traffic is QUIC.

In this paper we experimentally analyze the performance of

QUIC in WiFi networks. We start from the observation that

Chromium’s implementation of QUIC (version 39) has sub-

optimal performance in WiFi. We then investigate root-causes

for the problem, finding that some of the QUIC features in

Chromium impair the protocol performance in WiFi networks.

In particular, bursty traffic has been traditionally considered

undesirable, since it can lead to longer queuing delays and

multiple consecutive losses which are more difficult to recover.

This fact has motivated QUIC to be designed with packet

pacing [4], with the aim to reduce burstiness and, thus, packet

losses. While this consequence is generally true in wired

networks, we observe that due to the characteristics of the

WiFi medium and interactions between transport and MAC

protocols, bursty traffic might actually be beneficial in WiFi.

One apparent reason for this behavior is frame aggregation. As

mentioned above, frame aggregation is a key feature to achieve

high throughput in recent 802.11 standards and burstiness

increases aggregation opportunities.

Therefore, we implement and evaluate a Bursty QUIC

(BQUIC) in Chromium, which is a customized version of

QUIC targeted to increase traffic burstiness by reducing

the transport layer acknowledgment frequency and disabling

packet pacing. We show the advantage of BQUIC for two

different use cases of WiFi: (i) in home or enterprise wireless

local area networks (WLANs), and (ii) wireless mesh networks

(WMN) such as Guifi.net, MadMesh, Merkai and Google

WiFi. We analyze these use cases by taking measurements in

a lab and a production WMN. Our experimental results show

that increasing burstiness of QUIC improves its throughput in

WiFi, with gains ranging between 20% to 30%.

Our results are a step forward for understanding perfor-

mance trade-offs in QUIC. They can help in the design of

the standard protocol, which would extract better performance

from lower layer protocols. Since layer-2 protocols in wired

and wireless networks are nowadays significantly different,

we believe that the transport protocol can be improved by

individually tuning it for both networks.

II. BACKGROUND AND RELATED WORK

A. 802.11 and frame aggregation

802.11 is a set of IEEE standards that regulate wireless

transmission. A recent measurement study [5] with millions of

Cisco Meraki access points (APs) shows that around 99% of



the APs use the 802.11n and 802.11ac standards. These stan-

dards introduce enhancements to increase data rates. Among

them, frame aggregation is a simple method to enhance

throughput.

The wireless medium has a high overhead, which includes

the MAC and PHY headers, acknowledgments (ACK), backoff

time and inter-frame spacing. For ACKs and small segments,

the overhead in terms of bytes can be higher than the actual

payload. The frame aggregation scheme amortizes this over-

head and achieves high data throughput by combining multiple

data frames into a single transmission unit.

Aggregation in WiFi MAC architecture is supported at two

layers. In the first layer multiple MAC service data units

(MSDUs) are aggregated into an A-MSDU. In the second

layer multiple A-MSDUs are combined to form an aggregated

A-AMPDU. A detailed description of these concepts can be

found in [6]. Their impact on throughput have also been

extensively evaluated [7], [6], [8]. We here evaluate how to

profit from the mechanisms to improve QUIC performance.

B. QUIC protocol

QUIC is a user-space transport protocol running on top of

UDP. QUIC provides several cross-layer enhancements, cover-

ing the weaknesses of TCP for transporting web content. For

example, in the case of HTTP/2 running over TLS and TCP,

the loss of a single TCP packet blocks all HTTP/2 streams,

since a single connection is shared by all streams. QUIC

instead is designed to handle the streams, thus eliminating

head-of-line blocking delays in case of a packet loss.

QUIC profits from recent advances in TLS, implementing

new TLS 1.3 concepts such as zero handshake latency. That

is, QUIC is able to reduce latency by reusing credentials of

known servers on repeated connections. QUIC also provides

an improved congestion controller, better RTT estimation, and

a better loss recovery mechanism than TCP.

QUIC is still under development, thus its features and

operations are not completely standardized yet. To understand

its internal workings, we have studied the QUIC source code

in the open-source Chromium project [9]. Our experiments in

this paper have been performed with QUIC version 39.

Two aspects of QUIC implementation particularly influence

how the protocol interacts with 802.11 frame aggregation: (i)

acknowledgment modes, and (ii) packet pacing.

1) QUIC acknowledgment modes: Chromium’s implemen-

tation of QUIC includes two acknowledgment modes:

• TCP ACKING: This mode is similar to TCP delayed

acknowledgment, in which an ACK is generated for every 2

received packets in accordance with RFC 1122. This was the

default mode of QUIC in Chromium at the time of writing.

• ACK DECIMATION: In this mode acknowledgments

are delayed up to a maximum of 10 packets (unless

unlimited_decimation is enabled) and a cumulative

ACK is generated. The maximum duration for which the ACK

can be delayed is 25 ms and the actual delay_time is calcu-

lated on the fly as the minimum between max_delay_time

and one quarter of minimum RTT observed during the session.

The ACK_DECIMATION is only considered after at least 100

packets have been received to avoid interfering with slow start.

This mode was disabled in Chromium at the time of writing. In

either mode, if an out-of-order packet or a previously missing

packet is received, the ACK is sent without any delay to inform

the sender immediately about it.
2) Packet pacing: Chromium’s implementation of QUIC

includes a packet pacing mechanism that aims to reduce send-

ing bursts of packets by introducing delay between consecutive

packets. Reducing traffic burstiness is known to prevent con-

gestion and, as a consequence, reduce the undesirable effects

of packet loss. However, it may also hinder performance in

high-speed networks with low loss rates.

C. Transport protocols enhancements for WiFi

To the best of our knowledge, no previous work has evalu-

ated the performance of QUIC in WiFi by exploring its inter-

actions with the wireless medium and 802.11 enhancements

such as frame aggregation. However, given the popularity of

TCP, it is not a surprise that previous works have targeted

similar problems in TCP deployments.

Considering the role of TCP acknowledgments for the

protocol reliability, reducing the acknowledgement frequency

and performing delayed cumulative acknowledgements may

provide benefits in wireless networks. Many works propose to

reduce TCP acknowledgement frequency in wireless networks.

Altman el. al [10] investigated the impact of increasing the

TCP delayed acknowledgement mechanism to more than two

segments as recommended by RFC 1122. Singh et. al [11]

propose TCP with adaptive delayed acknowledgement, which

aims to reduce the number of ACKs to one per congestion

window. Oliveira el. al [12] propose Dynamic Adaptive Ac-

knowledgement where the delay window is adjusted according

to the channel condition. In [13], the same authors provide

an improved delaying window strategy for robustness against

losses.

These works agree that a key factor affecting TCP perfor-

mance in wireless networks is the contention and collision be-

tween ACK and data packets. Reducing the number of ACKs

saves wireless resources and reduces interferences with other

packets. Moreover, lowering the ACK frequency increases

burstiness of traffic as the sender releases a micro burst of

packets after receiving the cumulative ACK. This behavior

may reduce the inter-packet time increasing the opportunities

for frame aggregation at the 802.11 MAC layer.

The closest work to ours is [14], which provides a deep view

on QUIC performance. The authors show, for example, that

since QUIC runs on user-space it incurs performance penalties

particularly for mobile devices that are usually constrained

by processing power. We extend the knowledge about QUIC

performance here, showing how the protocol interacts with

features of lower-layer protocols in WiFi.

III. METHODOLOGY

We now describe our methodology, covering our customiza-

tion to Chromium’s QUIC implementation (Sec. III-A), our



test environment (Sec. III-B and Sec. III-C) and the perfor-

mance metrics used in the experiments (Sec. III-D). The results

presented in the evaluation have been obtained parsing traces

captured with tcpdump.

A. Bursty QUIC

Our goal is to study QUIC’s behavior and improve its

performance in WiFi networks. Based on the observations

in the previous section, we believe that the (non)burstiness

of QUIC traffic cannot fully exploit frame aggregation in

WiFi MAC layer. Therefore, we tune QUIC to produce

bursty traffic: We have compiled a version of Chromium with

ACK_DECIMATION as default acknowledgment mode and

without packet pacing. Disabling packet pacing is important

since it can neutralize the effect of burstiness created by

ACK_DECIMATION. These two features are not controllable

from the browser configuration — we had to study the source

code and make required modifications. We call this tuned

version Bursty QUIC (BQUIC).

We focus only on WiFi and do not evaluate the scenarios

with wired or hybrid connectivity between client and server.

There are concerns about the impact of high burstiness on

packet drops and queuing delays in wired networks, particu-

larly in long Internet paths. However, we will show that the

performance gains in the WiFi environment are high and can

potentially overshadow other effects. Moreover, in real-world

scenarios service providers are increasingly deploying caches

and CDN nodes closer to end-users [15]. Thus, the scenario

tested in the following is already popular and tends to become

widespread as more servers are deployed closer to users.

In the following experiments we place the server geograph-

ically close to the clients i.e., at WiFi access point or mesh

network gateway, with an average RTT in the range of 6 ms to

10 ms between the clients and server. Performing experiments

on Internet-wide scale are left for future work. We carry out

experiments in two testbeds (i) a controlled lab and (ii) a real

production mesh network.

B. Lab testbed

Our lab testbed consists of a client connected to a WiFi

router, all using 802.11n. The WiFi router in our testbed is

connected to a server through a Gigabit Ethernet connection.

We use two devices as clients (i) an Android smartphone with

ARM Cortex A-57 quad-core CPU and 2 GB RAM running

Android 6.0 and (ii) a Raspberry PI 3 (RPi) having quad-

core ARM Cortex-A53 CPU and 1 GB RAM running Debian

9. The server in our testbed has a quad-core Intel Core i5-

3470 CPU and 8 GB RAM running Ubuntu 16.04. We cross-

compile chromium browser with QUIC and BQUIC for ARM

and Android and deploy it on the respective clients.

C. Wireless community network

Our second testbed is a production wireless community

network deployed in a neighborhood of the city of Barcelona

(Spain) called Sants [16]. The network was started in 2009

and in 2012 was joined by nodes installed at Universitat

Politècnica de Catalunya (UPC) within the EU CONFINE

project [17]. The network is operative since 2009. The nodes

use the linux/openwrt [18] based distribution provided by the

Quick Mesh Project (QMP) [19], which runs the BMX6 mesh

routing protocol [20]. From now on we will refer to this

network as QMPSU. QMPSU is part of a larger community

network started in 2004, which has more than 30.000 operative

nodes called Guifi.net [21]. At the time of writing QMPSU

has around 80 active nodes. Fig. 1 shows the geographic

location of active nodes and links, using distinct colors to

represent wireless links configured with different channels. In

QMPSU there are 2 gateways that connect QMPSU to the rest

of Guifi.net and the Internet.

0.0

0.5

1.0

1.5

2.0

0 2 4
x (km)

y
(k

m
)

RP4

RP2
RP3

RP5

RP1

UPC Campus Nordserver

Figure 1: QMPSU geographical topology. Colors indicate links

configured in the same WiFi channel.

QMPSU is 802.11an-based and the most common hardware

is the Ubiquiti NanoStation M5, equipped with a sectorial an-

tenna and running QMP firmware. There are also a number of

point-to-point links using Ubiquiti parabolic antennas running

the original manufacturer firmware. QMPSU also has a live

monitoring web page updated hourly. A detailed description

of QMPSU can be found in [22], and a live monitoring page

updated hourly can be accessed on-line [23].

QMPSU has been deployed by its own users. Its unplanned

spread out using heterogeneous WiFi devices in an urban area

has produced a high diversity on the quality of the links. Thus,

it offers a very realistic testbed to evaluate the performance of

QUIC under a variety of conditions.

We deploy five RPi clients attached using the Ethernet port

to the premises of different volunteers across the QMPSU

network. Moreover, we set up a server in one of the gateways

of QMPSU to the Internet. Nodes are marked as RP or server

respectively in Fig. 1.

The server has an Intel dual-core CPU and 8 GB RAM,

running Ubuntu 16.04. The hardware specifications of the RPi

are similar to the smartphone used in the Lab testbed, and we

will show later that lab results with smartphone and RPi are

quite similar. For this reason we only use RPis for experiments

in QMPSU for convenience of deployment and maintenance.

Tab. I shows the number of wireless hops from the clients

to the gateway (W-hops). Note that many of these hops use

different frequencies and thus are not interfering with each

other.



Table I: Characteristics of the client locations.

RP Name W-hops

RP1 BCNevaristoarnus5Rd3-BPi 4

RP2 GS-BCNpisuerga17Rd1 3

RP3 GS26gener10-8710 3

RP4 GSgV-rb-dce0 1

RP5 BCNJardiBotanicSants186-ba35 5

Table II: Statistics of cloned web pages with the number of

objects of various file types.

Website HTML CSS JS Image Other Total
Size
(kB)

Google 2 1 3 5 1 12 56

Live 2 2 2 2 0 8 262

Twitter 6 1 4 2 3 16 421

Wikipedia 1 1 2 20 1 25 441

Reddit 4 2 5 26 2 39 470

Yahoo 16 13 5 48 4 86 839

Ebay 4 1 6 3 14 28 985

Instagram 3 1 7 25 1 37 1 409

YouTube 8 3 5 113 20 149 2 911

Facebook 1 1 8 123 1 134 3 560

Amazon 5 2 14 41 2 64 3 723

D. Measuring performance

We have selected 10 websites from Alexa’s top 100 list,

downloaded their landing pages and other publicly available

pages and hosted them on our servers. The selected websites

are a mix of social networks, online shopping, news and search

engines. The main characteristics of the cloned pages are

summarized in Tab. II.

We load these pages from the clients using the default

Chromium QUIC implementation and BQUIC. To automate

the page loading we use Chrome-HAR-capturer1 to connect

to remote clients in the lab or WMN and repeatedly load the

pages multiple times while capturing traffic at both client and

server sides.

We parse the HAR file and the captured traffic to calculate

various metrics such as the page load time (PLT), throughput,

and packet inter-arrival time over 30 runs. We also analyze

data segments and ACK packets. We compute throughput by

dividing the amount of bits sent in the UDP payloads of

the QUIC connections over the time of the transfer, ignoring

connection establishment time. We have also instrumented the

web server to log the CWND size on every acknowledgment.

To emulate bulk file transfers, we have created a synthetic

web page with a large image of 10 MB that we have

downloaded in 100 runs over 10 days from the lab nodes and

the mesh nodes. We calculate the mean throughput and 95%

confidence interval for all runs. We also compute the relative

improvement achieved by BQUIC, referred to as gain.

IV. EVALUATION

A. Bulk transfer throughput

Tab. III shows the mean values of the measured throughput

and end-to-end % loss obtained by downloading our 10 MB

1https://github.com/cyrus-and/chrome-har-capturer

Table III: Performance comparison of QUIC and BQUIC

Throughput (Mbps) Loss rate (%)

Device QUIC BQUIC Gain QUIC BQUIC

L
ab Android 34.8 43.8 26% - -

RPi 42.38 52.3 23% - -

M
es

h
n

et
w

o
rk RP1 8.2 10.6 29% 0.63 0.8

RP2 1.97 2.54 28% 0.79 1.23
RP3 12.8 15.5 20% 0.36 0.4
RP4 20.9 27.2 30% 0.01 0.01
RP5 18.6 24.5 31% 0.05 0.06

synthetic web page during the 100 runs. The losses have been

computed by comparing the identification field of the IP header

of transmitted and received datagrams. We have computed the

95% confidence intervals for throughput, and they are small

in all cases (less than 10%). In the lab testbed, we can see that

the RPi achieves higher throughput than the smartphone. This

is mainly because the antenna gain of the RPi is higher than in

the smartphone, and thus, the network card can use MCS with

higher bitrates during the transfer. However, the throughput

gain of BQUIC over QUIC is similar for both devices (26%

and 23% in the smartphone and the RPi, respectively).

Regarding the losses measured at the transport layer, Tab. III

shows that they are negligible. This is normal on a WiFi link

of an acceptable quality, since 802.11 retransmits lost unicast

frames multiple times before abandoning its transmission.

Indeed, the worst connected device (RP2) has a loss of only

0.79% in QUIC and 1.23% in BQUIC. We can see that the loss

rate slightly increases in BQUIC, but it is negligible. More-

over, the high throughput gain achieved in BQUIC surpasses

the negative effects.

Notice that there are significant differences between the

client in terms of delays, number of hops and link capacities,

which is expected as it is a production network. Despite these

differences and the large variations of measured throughput

between mesh nodes (1.97 Mbps for RP2 and 20.9 Mbps for

RP4 with QUIC) we observe significant performance improve-

ments (between 20% and 31%) in all cases. Since there are too

many factors such as the antenna hardware, firmware, wireless

link conditions etc. for each node, investigating the low level

details to find the root cause of the observed differences is out

of scope of this paper. Our main objective is to experimentally

show that burstiness increases performance of QUIC in WiFi.

B. Web page load time

In order to see the impact of BQUIC upon different types

of web browsing we perform experiments using the cloned

websites. RP5 is used as client. Fig. 2 shows the mean PLT

for various cloned web pages which are summarized in Tab. II.

Using BQUIC we observe a decrease in PLT for all websites

ranging from 5% for small web pages such as Google and

Live up to 25% for large web pages such as Amazon and

Facebook. We can see that the larger the page is, the larger

is the reduction of the PLT. This is an expected result, since



 0

 5

 10

 15

 20

 25

 30

go
og

le
liv

e

tw
itt

er

w
ik

ip
ed

ia

re
dd

it

ya
ho

o
eb

ay

in
st
ag

ra
m

fa
ce

bo
ok

am
az

on

T
ra

n
sf

er
 t

im
e 

re
d
u
ct

io
n
(%

)

Figure 2: Relative reduction in PLT achieved for various

websites by using BQUIC vs QUIC

60

80

100

120

0 1 2 3 4

time [s]

cw
n
d

(k
b
y
te

s)

QUIC
BQUIC

Figure 3: CWND size comparison

the connection establishment, which includes the exchange of

certificates, has a larger relative overhead for small web pages.

C. Detailed analysis

To better understand the difference in behavior of QUIC

and BQUIC, we now perform a detailed analysis for one of

the experimental runs from Section IV-A with RP5 node. We

observe similar trends for the other nodes, albeit to different

extent.

1) CWND size: We instrument the web server to log the

size of the congestion window upon each acknowledgement.

Fig. 3 shows the CWND size of standard QUIC and BQUIC.

We can see that QUIC exits from slow start phase much earlier

than BQUIC and thus achieves lower throughput. In QUIC

the slow start phase exits when increasing delay is detected.

The detection algorithm is called on every new ACK frame

and a new RTT measurement is performed. If the minimum

delay of the first few packets of the current burst exceeds the

minimum delay during the session by a certain threshold, the

slow start phase exits. The early exit from slow start in QUIC

is conceivably due to packet pacing which reduces aggregation

opportunities and allows only a few packets to be transmitted

together. The next packets get transmitted in separate unit after

gaining access to the wireless medium which injects extra

delay. The increased delay is detected by the algorithm and it

exits slow start. In BQUIC there is no packet pacing and the

inter packet time is much smaller which allows a large number

of consecutive packets to be aggregated and transmitted as part

of a single unit. Therefore the CWND increases to a much

larger value before exiting slow start.

2) Sequence-Acknowledgement analysis: Fig. 4 shows the

ACK reception (blue vertical bar) and packet transmission

(yellow circle) at the sender side during an interval of 20 ms.

2.510 2.515 2.520 2.525

4480

4490

4500

4510

5700

5730

5760

5790

5820

time [s]

p
ac

k
et

n
u
m

b
er

Q
U

IC
B

Q
U

IC

Figure 4: Transmission of data packets (circles) and reception

of ACKs (vertical bars) at the sender side

0.18

0.89

0.0

0.5

1.0

1.5

0.00

0.25

0.50

0.75

1.00

10
1

10
2

10
3

10
4

inter packet time [µs] (log10 scale)

co
u

n
t
×
1
0
3

E
C

D
F

QUIC
BQUIC

QUIC
BQUIC

Figure 5: Inter packet time histogram and ECDF

The effect of packet pacing in QUIC can be observed in the

upper sub-figure where segments are mostly evenly spaced

from one another. In the middle of the figure many ACKs

are received together and as a consequence many segments

are transmitted by the sender, which can be observed by

a steeper slope. The bottom sub-figure represents BQUIC.

The figure shows much less ACKs in the interval, due to

ACK_DECIMATION. Furthermore, since a large window is

acknowledged by each ACK and pacing is disabled, a burst

of packets is released shortly after an ACK is received.

3) Inter packet time: We measure the inter packet time

(IPT) at the server side to get a better insight into the different

acknowledgement strategies. Fig. 5 shows the IPT histogram

(upper sub-figure) and empirical cumulative distribution func-

tion, ECDF (lower sub-figure). We can see that in BQUIC

89% packets are sent with an IPT lower than 100µs, while

in QUIC this value is only 18%. The histogram shows two

peaks in QUIC around 100 µs and 500 µs due to different

pacing rates used by QUIC during this execution. The pacing

rate is decided by QUIC on the fly depending on the link

conditions such as bandwidth, RTT etc., and varies between

different nodes in the mesh and even different runs using the

same node. On the other hand, BQUIC IPT is very small and

is concentrated around 30 µs.

4) Throughput: Fig. 6 shows the throughput of QUIC and

BQUIC computed by averaging over intervals of 50 ms during

the bulk transfer time (recall that we compute the throughput



mean=20.1, σ = 8.5

mean=26.1, σ = 9.1

0 1 2 3 4

0

10

20

30

40

0

10

20

30

40

time [s]

th
ro

u
g
h
p
u
t

[M
b
p
s]

Q
U

IC
B

Q
U

IC

Figure 6: Throughput

trimming out the connection establishment time). As shown

in the figure, the overall throughput increases from 20.1 Mbps

in QUIC, to 26.1 Mbps in BQUIC (30% gain). Note that,

despite BQUIC being more bursty than QUIC at packet level,

as shown before, Fig. 6 depicts similar variations of throughput

at larger time scale. Indeed, the standard deviation of the

throughput measured at 50 ms intervals increases only from

8.5 in QUIC to 9.1 in BQUIC (7%).

Takeaway: Increasing burstiness of QUIC in WiFi provides

significant gain in throughput without introducing many neg-

ative effects such as packet losses or high jitter.

V. CONCLUSIONS

We analyzed the performance of QUIC in WiFi, investi-

gating the interactions of the protocol with 802.11 frame ag-

gregation. We first highlighted that Chromium’s QUIC (v.39)

delivers sub-optimal throughput in typical WiFi scenarios. The

root-cause is the way QUIC paces packets in the network and

its acknowledgment mechanisms. Whereas these mechanisms

are desirable to reduce packet loss in Internet paths, they

prevent QUIC from benefiting from frame aggregation.

We implemented and evaluated BQUIC, i.e., a customized

version of QUIC that increases traffic burstiness and, thus,

opportunities for frame aggregation in WiFi. We carried out

experiments using both a controlled testbed and a production

WMN. Results showed that BQUIC increases the throughput

between 20% to 30% with respect to current Chromium’s

implementation of the protocol.

Since our results are true for WiFi only and burstiness may

be undesirable in some other scenarios, we believe that the

protocol could be tuned for particular cases, e.g., enabling

BQUIC whenever applications are running on WiFi. Perform-

ing experiments on an hybrid scenario combining WiFi and

Internet-wide scale are left for future work.

ACKNOWLEDGMENTS

This work was supported by the Erasmus Mundus Joint

Doctorate in Distributed Computing EMJD-DC program, the

Spanish grant TIN2016-77836-C2-2-R, and Generalitat de

Catalunya through 2017-SGR-990.

REFERENCES

[1] (2017) Cisco Visual Networking Index. [Online]. Available:
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/
visual-networking-index-vni/complete-white-paper-c11-481360.pdf

[2] G. R. Hiertz, D. Denteneer, L. Stibor, Y. Zang, X. P. Costa, and B. Walke,
“The ieee 802.11 universe,” IEEE Communications Magazine, vol. 48,
no. 1, 2010.

[3] A. Langley et al., “The quic transport protocol: Design and internet-scale
deployment,” in Proceedings of the SIGCOMM, 2017, pp. 183–196.

[4] F. Gratzer, “Quic-quick udp internet connections,” Future Internet and

Innovative Internet Technologies and Mobile Communications, 2016.

[5] A. Bhartia, B. Chen, F. Wang, D. Pallas, R. Musaloiu-E, T. T.-T. Lai, and
H. Ma, “Measurement-based, practical techniques to improve 802.11 ac
performance,” in Internet Measurement Conference. ACM, 2017, pp.
205–219.

[6] D. Skordoulis, Q. Ni, H. h. Chen, A. P. Stephens, C. Liu, and A. Ja-
malipour, “Ieee 802.11n mac frame aggregation mechanisms for next-
generation high-throughput wlans,” IEEE Wireless Communications,
vol. 15, no. 1, pp. 40–47, February 2008.

[7] B. S. Kim, H. Y. Hwang, and D. K. Sung, “Effect of frame aggregation
on the throughput performance of ieee 802.11n,” in 2008 IEEE Wireless

Communications and Networking Conference, March 2008, pp. 1740–
1744.

[8] Y. Lin and V. W. S. Wong, “Wsn01-1: Frame aggregation and optimal
frame size adaptation for ieee 802.11n wlans,” in IEEE Globecom 2006,
Nov 2006, pp. 1–6.

[9] (2018) QUIC, a multiplexed stream transport over UDP. [Online].
Available: https://www.chromium.org/quic/

[10] E. Altman and T. Jiménez, “Novel delayed ack techniques for improving
tcp performance in multihop wireless networks,” in IFIP International

Conference on Personal Wireless Communications. Springer, 2003, pp.
237–250.

[11] A. K. Singh and K. Kankipati, “Tcp-ada: Tcp with adaptive delayed
acknowledgement for mobile ad hoc networks,” in Wireless Communi-

cations and Networking Conference, vol. 3. IEEE, 2004, pp. 1685–
1690.

[12] R. De Oliveira and T. Braun, “A dynamic adaptive acknowledgment
strategy for tcp over multihop wireless networks,” in INFOCOM 2005,
vol. 3. IEEE, 2005, pp. 1863–1874.

[13] ——, “A smart tcp acknowledgment approach for multihop wireless
networks,” IEEE Transactions on Mobile Computing, vol. 6, no. 2, pp.
192–205, 2007.

[14] A. M. Kakhki, S. Jero, D. Choffnes, C. Nita-Rotaru, and A. Mislove,
“Taking a long look at quic,” in Proceedings of the 2017 Internet

Measurement Conference, 2017.

[15] M. Trevisan, D. Giordano, I. Drago, M. Mellia, and M. Munafò, “Five
years at the edge: Watching internet from the isp network,” to appear in
Proceedings of CoNEXT’18, Heraklion, Greece, 2018.

[16] “Sants-UPC Community Newtork,” http://sants.guifi.net.

[17] “Community Networks Testbed for the Future Internet, CONFINE,” http:
//confine-project.eu/, FP7 European Project 288535.

[18] “OpenWrt Linux distro. for embedded devices,” https://openwrt.org.

[19] “Quick Mesh Project,” http://qmp.cat.

[20] L. Cerdà-Alabern, A. Neumann, and L. Maccari, “Experimental evalua-
tion of bmx6 routing metrics in a 802.11 an wireless-community mesh
network,” in Future Internet of Things and Cloud (FiCloud). IEEE,
2015, pp. 770–775.

[21] “Open, Free and Neutral Network Internet for everybody,” http://guifi.
net/en.

[22] L. Cerdà-Alabern, A. Neumann, and P. Escrich, “Experimental evalua-
tion of a wireless community mesh network,” in MSWiM’13. Barcelona,
Spain: ACM, Nov. 3–8, 2013.

[23] “qMp Sants-UPC monitoring page,” http://dsg.ac.upc.edu/qmpsu.


