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Abstract. We study the performance portability of OpenCL across di-
verse architectures including NVIDIA GPU, Intel Ivy Bridge CPU, and
AMD Fusion APU. We present detailed performance analysis at assem-
bly level on three exemplar OpenCL benchmarks: SGEMM, SpMV, and
FFT. We also identify a number of tuning knobs that are critical to per-
formance portability, including threads-data mapping, data layout, tiling
size, data caching, and operation-specific factors. We further demonstrate
that proper tuning could improve the OpenCL portable performance
from the current 15% to a potential 67% of the state-of-the-art perfor-
mance on the Ivy Bridge CPU. Finally, we evaluate the current OpenCL
programming model, and propose a list of extensions that improve per-
formance portability.

1 Introduction

The recent development of OpenCL [2] provide an open, portable C-based pro-
gramming model for highly parallel processors. In contrast to NVIDIA’s pro-
prietary programming API CUDA [17], a primary goal of OpenCL is porta-
bility across a diverse set of computing devices including CPUs, GPUs, and
other accelerators [6]. Although the initial focus of OpenCL is to offer func-
tional portability, performance portability is a critical feature for it to be widely
adopted. However, it still remains unclear and lacks a systematic study on how
performance-portable OpenCL is across multicores and GPUs, given that it is
heavily influenced by a GPU-centric programming model, CUDA.

In this work, we study the performance portability of OpenCL programs
(SGEMM, SpMV, and FFT) across diverse architectures including NVIDIA
GPU, Intel Ivy Bridge CPU, and AMD Fusion CPU. The central questions
we would like to answer are: (1) what is the gap between the portable per-
formance of single-source OpenCL programs and the optimized performance of
architecture-specific programs? (2) How much of this gap could be closed by
certain tuning knobs that adapt OpenCL programs to diverse architectures?
And what are those tuning knobs? (3) How should the OpenCL programming
interface be extended to better incorporate these tuning knobs?

With these questions in mind, we make the following contributions in this
work. First, our study found that the portable performance of three OpenCL
programs is poor, generally achieving a low percentage of peak performance
(7.5%–40% of peak GFLOPS and 1.4%-40.8% of peak bandwidth). Second, we
identify a list of tuning knobs including thread-data mapping, parallelism gran-
ularity, data layout transformation, data caching, and we demonstrate that they



could improve the OpenCL portable performance from the current 15% to a po-
tential 67% of the state-of-the-art performance. Third, we evaluate current Intel
and AMD OpenCL CPU compilers, particular on their features of vectorization,
multithreading, and thread aggregation. Fourth, we evaluate the OpenCL pro-
gramming interface and propose potential extensions on parallelism and data
abstractions for performance portability.

The rest of the paper is organized as follows. Section 2 describes our test
platform and selected benchmarks. Section 3 presents our experiment results on
the portable performance, as well as an evaluation of compiler quality. Section 4
identifies performance critical tuning knobs and demonstrates their performance
impacts. Section 5 evaluates the OpenCL programming interface, and proposes a
performance portable programming framework. Section 6 discusses related work.
Section 7 summarizes and describes future work.

2 Experiment Setup

2.1 Test platform

Tab. 1: Processor specifications

Processor Cores Vector width Freq Peak LLC Bandwidth
(32 bits) (GHz) GFLOPS size (GB/s)

Fermi GPU 14 32 (ALUs) 1.15 1030.4 768 KB 144
APU CPU 4 4 2.9 92.8 4 MB 29.9
APU GPU 5 16×5 (VLIW) 0.6 480 256 KB 29.9

Ivy Bridge CPU 4 8 3.4 217.6 6 MB 25.6
Ivy Bridge GPU 16 8 1.15 166.4 6 MB 25.6

Our test processors include NVIDIA Tesla C2050 (Fermi), Intel Core i5
3570K CPU (Ivy Bridge), and AMD A8-3850 APU. Table 1 summarizes the
specifications for these processors including the integrated GPUs. Our software
platforms use NVIVIA CUDA 4.2 for Ubuntu 12.04, AMD Catalyst 12.4 driver
for OpenCL 1.2 and Ubuntu 12.04, and Intel SDK for OpenCL 1.1 and Windows
7.

2.2 Benchmarks

We select three programs from the SHOC OpenCL benchmark suite [8] as our
case studies: Single Precision General Matrix Multiply (SGEMM), Sparse Matrix
Vector multiply (SpMV), and Fast Fourier Transform (FFT), which represent a
range of easy to difficult, but computationally important benchmarks. Table 2
summarizes their computation characteristics and performance bottlenecks.

SGEMM is a sub-routine in the Basic Linear Algebra Subprograms (BLAS)
library, and its performance behaviors are representative of other level-3 matrix-
matrix operations [12]. The SHOC program is based on the implementation



Tab. 2: Benchmark characteristics.

Benchmarks Compute complexity Compute-to-memory ratio Bottleneck

SGEMM O(N3) O(N) Compute-limited
SpMV O(N) O(1) Bandwidth-limited
FFT O(NlogN) O(logN) Compute-limited

developed by Volkov and Demmel [24]. The major improvement introduced by
them is to use a block-based algorithm and an improved loop order so that only
one input sub-matrix needs to be cached instead of two. Choosing an appropriate
block size is critical to the SGEMM performance.

The SHOC SpMV routine is adapted from the version developed by Bell and
Garland [4]. It is well known that SpMV is memory-bound, and a compact stor-
age format is critical to its performance. Bell and Garland experimented with a
number of compact formants and discovered the ELLPACK format [18] generally
performs best on GPUs. This format could guarantee continuous memory access
to matrix entries by adjacent threads and thus maximize the bandwidth utiliza-
tion. We will use the ELLPACK format and its column-major and row-major
variants for performance experiments.

The SHOC FFT routine is based on the version developed by Volkov and
Kazian[25]. The program is hard-coded for processing many 512-point FFTs.
The major optimization exploits the Cooley-Tukey algorithm [6] to decompose
a 512-point FFT to many 8-point FFTs and process them by individual threads
in registers, instead of processing a large 512-point FFT by many threads col-
lectively in the slower on-chip scratchpad memory. A vectorization-friendly data
layout and efficient twiddle factor calculation are critical performance factors.

3 OpenCL Portable Performance

In this section, we study the portable performance of the three OpenCL bench-
marks for a diverse set of processors. We will also investigate the causes of the
gap between the portable performance and optimized performance.

3.1 SGEMM

Figure 1a shows the nomalized SGEMM performance. The benchmark is not
tailored to any of our test processors, as it was originally written in CUDA for
NVIDIA G80/GT200 GPUs [24], and later ported to OpenCL in SHOC. Still, it
reaches 40% of the peak Tesla C2050 (Fermi) performance, which is much higher
than that of other processors, but lower than the reported 60% for the previous
generation GT200 GPU [24]. Since the Fermi GPU significantly increases the
hardware resources of ALUs, registers and scratchpad memory, it may need a
larger sub-matrix size to achieve a higher GPU utilization.

The major inefficiency of the APU GPU (integrated) comes from the low
utilization of its VLIW ALUs. Our examination of the assembly code reveals that



only an average of 2.4 slots of the total 5 VLIW slots are used, and only 38% of
the total dynamic instructions are compute instructions, which together bound
the performance to 2.4

5 ×38% = 18.4%, close to our measured 14.6%. We also test
a SGEMM program in the AMD APP SDK, which achieves a performance of 329
GFLOPS, 68.5% of the peak, thanks to its customized vector operations. The
low performance of the APU CPU is mainly due to two factors: (1) the AMD
CPU compiler does not support vectorization, and (2) the expensive context
switching between threads at synchronization points.

The Intel CPU compiler does a better job on supporting vectorization and
thread aggregation (serialize threads to avoid unnecessary thread synchroniza-
tions), and thus achieves a higher percentage of the peak performance (13.5% vs.
7.5% for the AMD CPU compiler). The OpenCL program uses a column-major
data layout, which favors GPUs by preserving the inter-thread locality, instead
of the intra-thread locality favored by the CPUs. This is why the Ivy Bridge
CPU performance decreases for larger matrices, which demand better locality
to reduce the bandwidth requirement.

3.2 SpMV

We generate our random test sparse matrices of various sizes, with 1% non-zeros.
Figure 1b shows the SpMV performance and bandwidth utilization, which we
define as the ratio of the effective bandwidth to the peak bandwidth. The effective
bandwidth is calculated as

3×NumberNonzeros× 4Bytes

ProgramRuntime

where 3 is the number of reads for a matrix entry, a column index, and a vec-
tor entry, and 4 bytes is the size for a 32-bit floating point or integer value.
The performance is memory-latency-bound for small matrices, and gradually
becomes bandwidth-bound as the matrix size increases. Due to the random ac-
cess to vector entries, the bandwidth utilization is low on all processors. The
Ivy Bridge CPU performance is higher than the integrated GPU performance
for smaller matrices, mainly thanks to the L1–L2 cache. However, because of
the poor locality of the column-major data layout on the CPU, the CPU per-
formance drops as input matrix becomes too big to fit into the cache; the Ivy
Bridge integrated GPU performance is not affected, because the program uses
a GPU-friendly column-major data layout. The APU processor shows a similar
performance trend.

3.3 FFT

We use 5Nlog2N (radix-2 FFT arithmetic complexity) as the number of flops for
a N-point FFT, as a convenient and normalized way to compare the performance
of different FFT algorithms, as suggested in the paper by Volkov and Kazian [25].
Figure 1c shows the normalized FFT performance. Both Tesla C2050 and APU
integrated GPU support native sin/cos instructions, which enables a speedup
of 2 − 8× over the program using software-emulated sin/cos calculations. The
program defines a data type for complex numbers and uses a array-of-structure



(AoS) layout with real and imaginary parts of complex numbers stored in an
interleaved way. In this SHOC FFT program, this interleaved layout is fine for
GPUs, but unfriendly for CPUs, because the CPU vectorization is at the but-
terfly level, instead of the 8-point-FFT level in the GPU case. Both AMD CPU
and Ivy Bridge CPU show low performance. The Intel OpenCL CPU compiler
chooses not to vectorize the code, because of the interleaved data layout, while
the AMD compiler does not support vectorization yet.
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Fig. 1: SGEMM, SpMV, and FFT performance normalized to the peak perfor-
mance of each processor.

3.4 Summary

For the three OpenCL benchmarks across multicores and GPUs, the portable
performance is generally low (7.5%–40% of peak GFLOPS and 1.4%-40.8% of
peak bandwidth). In addition to compiler support, we identified the major causes
of low performance, related to submatrix size, thread-data mapping, data layout,



and native sin/cos support. Next, we show how portable performance can be
significantly improved by tuning.

4 Performance Tuning

In this section, we will discuss the motivation and methodology of performance
tuning, and show it could significantly improve the portable performance.

4.1 Problem Statement

Multicores and GPUs have different architecture features and configurations, and
thus demand different program optimizations. However, current single-source
OpenCL programs lack the ability to adapt. A number of architecture features
impact programmers’ tuning decisions on thread-data mapping, data layout,
tiling size, and so on. These features include core types (complex ILP cores
vs. simple highly-threaded cores), vectorization style (explicit SIMD vs. implicit
SIMT [17]), core count, vector width, cache types (hardware vs. programmer-
managed), cache size (kilobytes vs. megabytes), and bandwidth. The goal of
performance tuning is to make the best choices to map a program to architecture
features.

4.2 Methodology

Tab. 3: Tuning knobs and their settings for three benchmarks.
Benchmark Tuning knob Setting

SGEMM Tile size 2 × 2
......

128 × 128
Data layout Row-major

Col-major
Prefetching/caching Enabled

Disabled

SpMV Thread-data mapping Interleaved
Blocked

Data layout Row-major
Col-major

FFT Share sin/cos calculations Enabled
Disabled

Data layout SoA
AoS

We adopt a systematic approach for performance tuning by summarizing
all potential program optimization aspects as tuning knobs, which form a high
dimensional optimization space. We explore this optimization space by exper-
imenting with the settings of these tuning knobs. Table 3 summarizes all the
tuning knobs and their settings for three benchmarks. In the following subsec-
tions, we will explain why these tuning knobs might be critical performance
factors.



Tiling size Tiling is an effective technique used by block-based algorithms
(e.g. SGEMM) to increase the cache reuse and thus the compute-to-memory ratio
for bandwidth-limited programs. An optimal tiling size depends on multiple ar-
chitecture features including bandwidth, cache size, core count, vector width, and
processor frequency. A perfect size will balance between the effective cache reuse
(large tiles preferred) and sufficient parallelism (small tiles preferred). GPUs usu-
ally prefer smaller tiling sizes because of limited on-chip scrachpad memory and
massively parallel hardware, while CPUs often prefer bigger tiling sizes because
of large cache and fewer hardware parallelism.

Data layout Data layout plays an important role in program performance
optimization. GPU threads are lightweight and work in a tightly coupled, syn-
chronized fashion in thread groups. It is highly desirable for adjacent threads in
a group to access adjacent data in memory to maximize the bandwidth utiliza-
tion. As a result, GPUs usually favor column-major data layout for inter-thread
data locality. On the other hand, CPU threads are more independent and have
a larger working set. They usually favor row-major data layout for intra-thread
locality, and a column-major layout will result in inefficient strided memory
access. Both CPUs and GPUs favor the SoA layout for vectorized operations.
There are tricky exceptions where the AoS layout could be efficient on GPUs,
and the SHOC FFT benchmark is an example, as discussed in Section 3.3.

Caching and prefetching GPUs use programmer-managed scratchpad mem-
ory (as well as hardware L1 and L2 caches for post-Fermi GPUs) for data caching,
while CPUs use hardware-managed cache. For CPUs, OpenCL currently simply
treats arrays in scratchpad memory as the ones in external memory, in order
to ensure the program correctness. The extra loads and stores to such emu-
lated scrachpad memory for CPUs may have a performance penalty. However,
the prefetching effect of such loads can help the performance, as shown in Sec-
tion 4.3.

Thread data mapping CPUs and GPUs have a two-level parallelism struc-
ture with cores and vector units. However, many applications show multiple lev-
els of parallelism (e.g. SGEMM has three levels of parallelism: sub-matrix, row,
and element). It is desirable to have the ability to flexibly map the cross-level par-
allelism to the two-level architectures to maximize the hardware utilization. An-
other option is to choose between blocked and interleaved thread-data mapping.
GPUs prefer interleaved mapping (adjacent data mapped to adjacent threads)
for intra-thread locality, while CPUs prefer blocked mapping (adjacent data are
mapped to a single thread) for intra-thread locality, because CPU threads are
more independent and often have their own L1/L2 cache.

Operation-specific tuning Different generations of CPUs and GPUs may
support a different set of hardware intrinsic instructions such as trigonometric,
logarithmic, and thread coordination (atomic, sync, fence, etc.) operations. To
avoid expensive software emulation, programs should try minimizing the use of
intrinsic functions for the architectures that do not support them.

4.3 Performance Tuning Results

In this section, we will present our performance tuning results. Although we use
the Intel CPU for experiments, we expect similar tuning benefits on other proces-
sors. To experiment with different optimizations, we port the baseline OpenCL



programs to OpenMP, so that we can control the mapping of parallelism to the
hardware, and if vectorization or multithreading is applied. For all experiments,
we use Intel Core i5 3570K CPU (Ivy Bridge) and Intel C++ Compiler XE
13.0, which supports both AVX vectorization and OpenMP multithreading. All
experiments are performed with single precision floating point arithmetic.

8, 3.8% 

29, 13.3% 

62, 28.5% 
68.8, 31.6% 

76, 34.9% 

59, 27.1% 

37, 17.0% 

153, 70.3% 

217.6, 100% 

0 

50 

100 

150 

200 

250 

4x4 8x8 16x16 32x32 64x64 128x128 OpenCL 
(16x16) 

MKL Peak 

Performance (GFLOPS) 

(a) SGEMM with tunable submatrix tile
size. Percentage of peak performance.

1.69 

0.0001 

0.001 

0.01 

0.1 

1 

10 

163 655 2621 10485 41943 167772 671088 2684354 

4 thread, column major 4 thread, row major 

1 thread, column major 1 thread, row major 

OpenCL (4 threads, column major) MKL (4 threads, CSR) 

Performance 
(GFLOPS) 

Number of Nonzeros 

2.51 

0.73 
0.40 
0.34 

0.11 

(b) SpMV for row- and column-major lay-
outs, w/o multithreading. Blocked thread-
row mapping.

2.2 2.3 

1.8 

1.6 

1.1 

2.5 

2.7 

2.1 

1.8 

1.2 

0 

0.5 

1 

1.5 

2 

2.5 

3 

random qcd5_4 shipsec1 mc2depi-1M cop20k-A 

Interleaved mapping Blocked mapping Performance (GFLOPS) 

(c) SpMV with interleaved and blocked
thread-row mapping for various matrices.

2.3 
1.7 

1.1 

4.7 

7.9 

15.1 

0 

2 

4 

6 

8 

10 

12 

14 

16 

   OpenCL        
(4 threads) 

4 threads 4 threads + 
vector 

4 threads + 
vector+SoA 

4 threads + 
vector+SoA+ST 

FFTW 

Performance (GFLOPS) 

(d) FFT with various optimizations. SoA:
structure of arrays. ST: shared twiddle fac-
tors.

Fig. 2: Performance of SGEMM, SpMV, and FFT, with tuning knobs incorpo-
rated on the Ivy Bridge CPU.

SGEMM Tiling size Figure 2a compares the performance of the original
OpenCL program, the ported OpenMP program with tunable sub-matrix size,
and the Intel MKL 10.2 SGEMM routine. Our ported OpenMP program is auto-
vectorized by the Intel compiler using 8-wide AVX instructions on 32-bit floating
point numbers. An optimal sub-matrix size of 64×64 doubles the performance of
the original OpenCL program which has a hard-coded sub-matrix size of 16×16.

Caching and prefetching On the CPU, the use of scratchpad memory (which
caches one input sub-matrix) is emulated by external memory. We first thought



the extra copies to and from such emulated scrachpad memory would have a
performance penalty. However, it turns out it even provides a slight performance
improvement, most likely due to the prefetching effect of such extra load.

Data layout We experiment with both the column-major and row-major lay-
out. Although the column-major format introduces strided memory access and
is bad for cache performance, the two-dimensional block-based algorithm min-
imizes its performance penalty by caching the sub-matrices and making better
use of the cacheline data brought in by each strided access. With a sub-matrix
size of 16 × 16, a row of 16 32-bit values could use the entire cacheline of 64
KB brought in by a strided access. As a result, the row-major layout only offers
slight performance advantage over the column-major layout.

Comparing with the state-of-the-art performance Our tuned performance is
is still low compared with the MKL routine (Figure 2a). By comparing their as-
sembly code, we find that the vectorized section of our ported OpenMP program
is not as efficient as that of the MLK routine, in that it requires two extra data
shuffling and replacement instructions per multiply-add.

SpMV Data layout We experiment with both the row-major and column-
major ELLPACK format. Using four threads and the row-major layout, we
achieve the best performance, which is 7.4× higher than that of the SHOC bench-
mark as shown in Figure 2b. Although SpMV is a memory-bound program, we
find that the performance scales well with the number of threads for large inputs.
This is most likely because more threads are able to use the L1 and L2 caches in
more cores and thus reduce the bandwidth requirement. For small matrix sizes,
data layout and multithreading do not help with the performance, because the
program is memory-latency-bound and all data could fit into cache. Data layout
or multithreading starts to make a performance difference at the point where the
total matrix data and index size(2× 41943Nonzeros× 4Bytes/1024 = 327KB)
exceeds the 256 KB of L2 cache.

Thread data mapping We experiment with interleaved and blocked thread-
row mapping schemes for one random matrix plus four matrices from a collection
of sparse matrices from various scientific and engineering applications, which is
also used in prior work by others [7] [4]. The blocked mapping is always faster
than the interleaved mapping by 7% to 21% (Figure 2c).

Comparing with the state-of-the-art performance The Intel MKL library does
not support ELLPACK. We test its SpMV routine in compressed sparse row
(CSR) format. It has a high startup cost for small matrices and is 33% slower
than our row-major ELLPACK program for the largest matrix (Figure 2b).

FFT Data layout We experiment with both the SoA and AoS layout. As
shown in Figure 2d, the ported program with the same AoS data layout achieves
comparable performance to that of the OpenCL FFT benchmark. The auto-
vectorized program by the Intel compiler even hurts the performance. However,
the SoA layout is suitable for vectorization and makes the program 2× faster
than the OpenCL benchmark.

Operation-specific tuning Calculating twiddle factors consumes a consider-
able amount of compute time, as the Intel CPU does not have hardware arith-
metic for sin/cos functions. The Cooley-Tukey algorithm decomposes a 512-point
FFT to 8 64-point FFTs, which share the same set of twiddle factors. Based on
this observation, we further improve the program efficiency by cutting 8 times
of redundant twiddle factor calculations to one time per 8 64-point FFTs. This



speeds up the program by another 68% in addition to the data layout optimiza-
tion.

Comparing with the state-of-the-art performance Our tuned program is still
50% slower than the state-of-art FFTW library. There are two improvement
oppurtunities. First, we could speedup the twiddle factor calcuation by using
lookup tables and the symmetric property of sin/cos functions. Second, cur-
rently only half of the 8-wide AVX vector unit are utilized, limited by the four
concurrent butterflies in the radix-8 algorithm. A radix-16 algorithm will fully
utilize the vector unit. Another option is to vectorize over 8 FFTs rather than
over butterflies in a single FFT. This optition is used on the GPU, thanks to
convinient data shuffling provided by the crossbar interconnect of scrachpad
memory. On CPUs, however, this will involve major data shuffling overhead.

4.4 Summary

Tab. 4: Summary of the optimal settings of tuning knobs for the Ivy Bridge
CPU. The improvement is compared with the baseline OpenCL programs.

Programs Optimal knob settings Improvement

SGEMM 64 × 64 tile size 2×
Row-major layout Insignificant

Prefetching/caching Insignificant
Total 2×

SpMV Row-major (small input) Insignificant
Row-major (larger input) 6.2×
Blocked thread mapping 1.2×

Total 7.4×
FFT SoA layout 2.0×

Minimize expensive sin/cos 1.7×
Total 3.4×

Average Total 4.3×

We have explored the performance optimization space formed by various
tuning knobs, and demonstrated a large room of performance tuning for three
benchmarks. Table 4 summarizes all the optimial setting of these tuning knobs
for the Ivy Bridge CPU. On average, the optimized programs perform 4.3×
faster. Another major observation is that the same optimizations may have dras-
tically different performance impacts for different programs and input sizes. For
example, the SpMV performance is much more sensitive to the row-major layout
optimization than the SGEMM performance.

One primary goal of this paper is to investigate the gap between the “current”
portable performance of single-source OpenCL programs and the performance of
state-of-the-art programs with architecture-specific optimizations. We also want
to quantify how much of this gap could be closed by “potential” portable perfor-
mance, which is the performance achieved with our tuning knobs incorporated
(summarized in Table 4). Figure 3 shows the current and potential portable
performance of SGEMM, SpMV, and FFT on the Ivy Bridge CPU, normalized
against the performance of today’s state-of-the-art programs (the MKL SGEMM
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routine, FFTW, and our ELLPACK SpMV routine, which outperforms the MKL
CSR SpMV routine). On average, by incorporating tuning knobs to program,
the OpenCL portable performance could be improved by more than 4×, from
15% to a 67% of the state-of-the-art performance.

5 Programming Model Implications

In this section, we evaluate current OpenCL programming interface, and propose
extensions towards a performance-portable programming framework.

Although OpenCL provides functional portability across multicores and GPUs,
its performance portability is poor (Figure 3). We have demonstrated a set of
tuning knobs could significantly improve the portable performance. To incor-
porate these tuning knobs, however, the OpenCL programming interface needs
to be raised to a more abstract level. In particular, we propose the following
extensions.

First, the mapping between threads and data is currently specified by pro-
grammers in a two-level parallelism hierarchy with work-items (threads) and
work-groups (groups of threads), where work-groups are mapped to cores and
work-items to vector lanes. This two-level parallelism model limits the possi-
bility to tune thread-data mapping across multiple levels of parallelism. The
current model also requires programmers to specify a fixed parallelism granular-
ity (the amount of work per work-item is fixed by the specified total number of
work-items, although the OpenCL runtime could select a work-group size if not
provided) and implies interleaved thread-data mapping, which is not favorable
to CPUs. To support tunable thread-data mapping, we propose the notion of
logical threads with more levels of parallelism hierarchy and logical dimensions,
so that they could be re-mapped and re-sized to match today’s two-level (core
and vector) processors in an adaptive way.

Second, OpenCL currently does not support any data layout abstraction
and requires programmers to specify a fixed data layout. However, multicores



and GPUs favor different data layout between row major and column major,
and between structure-of-arrays and array-of-structures. To solve this problem,
OpenCL needs to introduce some form of data abstraction, which decouples data
structure and content from the data layout, and allows programmers to write
generic code without specifying an architecture-specific layout. Examples of such
decoupling include layout specifiers in UPC [5] and data distributive directives
in HPF [15].

Third, OpenCL currently does not have an abstract way to use or not
use scrachpad memory. Although OpenCL programs could explicitly manage
scratchpad memory on GPUs, such programs do not naturally fit into CPUs
with hardware cache. As a result, the OpenCL compiler uses external mem-
ory as an emulated scratchpad memory for CPUs, which may cause a perfor-
mance penalty. OpenCL needs to introduce a simple switch for using either
programmer-managed or hardware-managed cache, such as the cache directive
in OpenACC [1].

A higher-level programming interface allows a larger tuning space, but is still
not sufficient. To support architecture-specific performance tuning, we need to
build a more intelligent compiler and runtime framework. As we have noted pre-
viously, there is not a one-size-fit-all recipe on how to turn those tuning knobs,
and the same optimizations may show totally different performance impacts for
different programs and inputs. Therefore, such tuning should be analyzed on a
case-by-case basis and could potentially be guided by recently proposed perfor-
mance models [3, 13, 26]. Application-specific GPU performance autotuning has
also been recently explored with success [7, 9, 16]. These studies, as well as ours
in this paper, still require considerable manual work of programmers, and we
expect a higher-level programming interface with model-guided tuning will be
an important direction for future research.

6 Related Work

There have been quite a few studies on the portability of GPU programming
models [10, 11, 14, 19–23]. However, the previous work focus mainly on architecture-
specific optimizations for OpenCL programs. The contribution of this work is a
methodically designed performance portability study that covers both compute-
limited and bandwidth-limited benchmarks, systematically summarizes common
tuning knobs, and discusses their programming model implications.

MCUDA is one of the pioneering work to compile CUDA programs to a CPU
architecture [22]. The loop fission technique is used to convert explicitly syn-
chronized fine-grained parallel GPU programs to implicitly synchronized coarse-
grained multi-threaded CPU programs. Potential optimizations including data
layout transformation, optional use of shared memory, and flexible thread-data
mapping are not explored in the paper.

Du et al. [10] did an interesting study on portable performance of vendor-
specific SGEMM kernels across NVIDIA and ATI GPUs. Only compute-bound
dense matrix kernels and one tuning parameter (tiling size) are investigated in
their proposed autotuning infrastructure. Similar studies [19, 23] explored other
tuning parameters including caching, vectorization, and thread block size. Seo
et al [20] also noticed the limited performance portability of OpenCL, but did
not further investigate its causes.



Shen et al. [21] showed properly tuned OpenCL programs could achieve com-
parable performance to OpenMP versions. Various tuning aspects including data
layouts and parallelism granularity are explored. Fang et al. [11] and Komatsu
et al. [14] respectively compare the performance of OpenCL and CUDA, and
reach a similar conclusion that the performance of OpenCL programs is compa-
rable to those of CUDA if optimized appropriately. Both studies call for future
autotuning research to adapt OpenCL programs to various processors.

7 Conclusions and Future Work

We have identified major tuning knobs for performance portable programming,
and demonstrated that they could improve the OpenCL portable performance
from the current 15% to a potential 67% of the state-of-the-art performance. We
also evaluated the current OpenCL compilers and programming model, and made
a list of proposals towards a performance portable programming framework. We
believe these results will inform and inspire more thinkings on the design and
evolution of OpenCL and other emergining higher-level programming models.

Future directions of this work include: (1) study the performance portability
of irregular programs with data-dependent control flows and memory access
patterns, (2) investigate the feasibility of incorporating a performance model to
compiler or runtime for model-based tuning, and (3) extend this study to other
architectures such as Intel’s Xeon Phi and other emerging programming APIs
such as OpenACC.
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